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Entrainment in selective withdrawal occurs when both the top and bottom phases are withdrawn
through a capillary tube oriented perpendicular to a flat gravitationally separated liquid-liquid
interface. The tube introduces two distinct features to the conditions for fluid entrainment. First,
the ratio of the two phases being withdrawn is affected by the region of influence of the flow upstream
of the tube’s orifice. Second, a minimum withdrawal flow rate must be reached for entrainment
regardless of the distance between the interface and the tube. We show that these phenomena
can be understood based on the Reynolds number that governs the external flow field around the
capillary tube and the capillary number that regulates the effect of the viscosity and capillarity.

Selective withdrawal occurs when a sink flow is present
near a stratified fluid-fluid interface. In an immiscible
fluid system, the sink flow causes the interface between
the fluids to deform until entrainment of both of the flu-
ids occurs given sufficient withdrawal strength. Near the
onset of entrainment, the interface can form a self-similar
hump or tip [1–5]; during entrainment the interface forms
a thin spout [6] following a saddle-node bifurcation tran-
sition, as suggested by numerical simulations [7]. The
structure that generates the sink flow, such as an im-
mersed tube, is often idealized as a point sink in theo-
retical studies of the hump-to-spout transition dynamics
[8]. However, the external flow profile outside a tube af-
fects which part of the flow domain gets entrained [9].
Moreover, for a fixed withdrawal flow rate, Q0, the en-
trainment of both liquids can be achieved by reducing
the tube-interface distance H until Q0 reaches a criti-
cal flow rate Q∗

0. Below Q∗
0, simultaneous withdrawal of

both phases is not possible at any H. To the best of our
knowledge, within the reports in the selective withdrawal
literature, it remains to understand how the presence of a
tube affects the entrainment flow rate of each phase and
how Q∗

0 is controlled by the liquid and tube properties.
In this paper, we study fluid entrainment by selective

withdrawal with a tube in its full range of independent
parameters that begins from a thin jet and ends when the
jet fills the whole capillary tube. A complete mapping of
the phase diagram with respect to the tube-interface dis-
tance H and flow rate Q0 reveals three regimes: single
phase withdrawal of the top phase, single phase with-
drawal of the bottom phase and the fluid entrainment
of both phases. During the fluid entrainment, the corre-
sponding flow rates of each phase are found to be depen-
dent on the external flow profile around the tube. At the
triple-point junction of the three regimes in the H −Q0

phase diagram lies the transition flow rate Q∗
0. We pro-

vide a scaling relationship to characterize the triple point
as a function of all of the material parameters.
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From a practical perspective, tube-based selective
withdrawal has been applied to particle and cell coat-
ings [10, 11]. It also arises during the manual pipette
operation of a stratified liquid in blood fractionation [12]
and biomolecule extraction [13]. The phenomenon could
also potentially be used to form jets or droplets without
micro-fabrication for a wide range of applications [14–17].
Thus, understanding the phase map, and dependence on
material properties, as we do here, may make possible
new applications.

The schematic of the setup and the definition of pa-
rameters are shown in Figure 1. An aqueous-two-phase-
system (ATPS) is made by mixing a solution made of
25 wt% isopropanol and 15 wt% dipotassium phosphate.
The solution will spontaneously separate in 30 minutes
into a more dense (bottom) phase and a less dense (top)
phase. The liquid is placed in a large tank (20 cm by
20 cm by 20 cm) and the bottom phase is at least 10
cm deep to minimize wall effects. The top and bottom
solutions have viscosities µ1, µ2 and densities of ρ1, ρ2,
respectively. The viscosity ratio λ = µ2/µ1. The inter-
facial tension between the two phases is γ. Also used in
the experiments are immiscible two-phase systems that
include 1-Decanol (top) / Glycerol aqueous solution (bot-
tom) and Glycerol aqueous solution (top) / fluorocarbon
oil (bottom, 3M Novec Engineering Fluid HFE-7500).
The glycerol aqueous solutions allow us to tune the top
phase viscosity from 10 mPa·s to 1000 mPa·s. The λ is
1 in the experiments for the entrainment flow rate ratio
and ranges from 0.001 to 1 in the experiments for Q∗

0.
All chemicals except otherwise specified were purchased
from Sigma-Aldrich.

The circular glass capillary has inner diameter R0 and
is placed perpendicular to a liquid interface with a sepa-
ration distance H from the undisturbed flat interface. H
is negative when the orifice is underneath the interface.
Capillaries with R0 = 150, 350 or 750 µm are used. To
minimize the influence of the capillary wall [11] we choose
thin-walled capillary with wall thickness no more than
0.67 time of R0. A withdrawal flow rate Q0 is applied to
the glass capillary with a syringe pump (Harvard Appa-
ratus). Images are taken with a digital camera through a
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FIG. 1. Schematic of experimental setup and definition of the
variables. H > 0 is indicated here. H < 0 corresponds to the
end of the tube being in the lower phase.

microscope objective. When entrainment occurs, a spout
of radius Rjet forms inside the capillary for the ATPS
system (Figure 1).

In a general case of a selective withdrawal experiment,
depending on the phases being withdrawn, the param-
eter space of H and Q0 is divided into three regimes:
only withdrawal of the top phase (T) (Figure 2(a)), only
withdrawal of the bottom phase (B) (Figure 2(d)), or en-
trainment of both phases (E) (Figure 2(b),(c)) as shown
in Figure 2(e). The transitional H and Q0 between the
T and E regimes follows a power law of Q0 ∝ H3.33

for the ATPS system, consistent with the results re-
ported experimentally by Cohen in aqueous-oil systems
(Q0 ∝ H3.4±0.6 λ = 0.83, γ = 31 mN/m [2, 3]). This
hump-to-spout transition has been well studied experi-
mentally, typically by fixing H and varying Q0. We note
that a hysteresis region exists at low flow rates above
the boundary between the T and E region where, after
reducing H and triggering entrainment, the entrainment
does not immediately stop if H is then slightly increased
[2], as shown by the dashed line in Figure 2(e). Similarly,
hysteresis occurs between the T-B and B-E boundaries
due to wetting.

We focus on the transitions indicated by the solid
curves in Figure 2(e) that are recorded with monoton-
ically decreasing H. We are not aware of the phase di-
agram in Figure 2(e) being recorded previously. In this
figure, the flow rate Q∗

0 corresponds to the Q0 at the
triple point among the T, E and B regimes, which we
will study in detail near the end of this paper.

In the E regime, the entrainment ratio φ = Qjet/Q0,
where Qjet is the flow rate of the bottom phase increases
from 0 to 1 from the TE boundary to the BE boundary.
To calculate φ, the width of the jet Rjet is measured. The
calculation of the jet flow rate Qjet is determined assum-
ing fully developed laminar flow inside the capillary:

FIG. 2. The phase diagram of selective withdrawal using
ATPS with R0 = 150 µm. The numbers in (a) - (d) indicate
the sampling location in (e) with corresponding numbers. (a)
Only withdrawal of the top phase (T). (b) Entrainment (E)
of both phases at positive H. (c) Entrainment (E) of both
phases at negative H. (d) Only withdrawal of the bottom
phase (B). Scale bar is 400 µm and Q0 = 8 ml/min for a-d.
(e) Phase diagram on the H-Q0 plane. T: only withdrawal of
the top phase; B: only withdrawal of the bottom phase; E: en-
trainment of both phases. Q∗

0 is the minimum flow rate of the
entrainment regime. The dashed line delineates the boundary
of the hysteresis region between T and E. Typical error bars
are the size of the symbols. Data points were obtained by
fixing Q0 and monotonically decreasing H. The solid lines fit
the data points.
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) (1)

Inclusion of the buoyancy effect for the flow in the cap-
illary shows only a small difference with the result from
Equation (1), thus gravity is neglected in the calculation
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of Qjet. To sample the phase space across the E regime
in Figure 2(e), for each fixed flow rate, the capillary is
moved from top to bottom across the fluid interface (de-
creasing H) until both the T and B regimes are reached.

We report φ versus H for different Q0 using a capil-
lary with R0 = 150 µm in Figure 3(a). We observe that
φ varies approximately linearly with H, with the linear
regression R2 > 0.98 for all flow rates tested.

To rationalize the data, we adopt the analysis frame-
work described by Lister for low-Reynolds-number flows
[8]. The selective withdrawal problem of a point sink
with fluids of equal viscosities can be fully character-
ized by two dimensionless numbers in the low-Reynolds-
number limit: dimensionless withdrawal strength Q =
Q0µ1/

(
∆ρgH4

)
and Bond number Bo = ∆ρgH2/γ,

where ∆ρ = ρ2 − ρ1. In the limit with zero surface ten-
sion, φ is only a function of Q for non-zero H.

The entrainment ratio is plotted versus Q in Fig-
ure 3(b). Q reaches maximum values when H → 0, which
separates the upper branch of the curve where H is neg-
ative (filled symbols) and the lower branch where H is
positive (open symbols). For each Q0, the data fall on
separate curves on the φ−Q plane at low Q0, but collapse
on the same curve at high Q0. The limiting φ −Q rela-
tionship at high Q0 agrees well with the simulation result
by Lister for the zero surface tension limit [8], shown as
the solid curves in the figure. The simulation branch for
H < 0 is symmetrical to the branch for H > 0 with re-
spect to φ = 1/2 for Bo → ∞ and equal viscosity fluid
systems. The analysis [8] shows that flow is viscously
driven outside a distance ` = O(ρ1Q0/µ1) away from the
sink. Within ` the flow becomes a momentum dominated
radial flow.

Why does the experiment with a tube and the simula-
tion with a point sink result in a different φ−Q relation-
ship at lower Q0 in Figure 3(b)? The finite Bond number
(surface tension) in the experiments cannot explain this
discrepancy at lower Q0. The restoring force from sur-
face tension reduces φ for a fixed Q with H > 0 and
increases φ for H < 0, resulting in a right-shifted φ −Q
relationship. From Figure 3(b), however, φ is larger in
the experiments than in the simulation for H > 0. Addi-
tionally, the experiments show asymmetry with respect
to φ = 1/2, which cannot be explained based on surface
tension.

The only other possibility to explain the φ − Q rela-
tionship in the experiment at lower Q0 is the different
upstream flow profile of the tube compared to a point
sink. In an ideal point sink, the flow is always radial in
its vicinity, drawing fluids equally from all directions. For
a capillary tube, however, the fluid it withdraws depends
on the Reynolds number [9]. We define the Reynolds
number as Re1 = ρ1Q0/(µ1R0). For our experiments,
the Reynolds numbers defined in either the top or the
bottom phase differ by less than a factor of two, so the
single-phase results of True and Crimaldi offers insight
[9]. At Re1=1 the fluid mainly enters directly from the
front of the tube as a result of the viscous effects near the

FIG. 3. (a) Entrainment ratio φ versus capillary height H
using a capillary with R0 = 150 µm in ATPS system. Filled
symbols represent H < 0 and hollow symbols represent H >
0. (b) φ versus Q for the same data in (a). Black lines are
the simulation result reported by Lister (equation 6.4 in ref.
[8]). (c) Q versus Re1 at φ = 0 and φ = 1 for the ATPS and
1-decanol / 63 wt% glycerol solution on the boundary of the
E regime. Experiments with higher values of Re1 for the 1-
decanol / 63 wt% glycerol system is interfered by cavitation.
ATPS: µ1 = 3.41 mPa·s, µ2 = 2.86 mPa·s, γ = 0.30 mN/m;
1-Decanol / 63 wt% glycerol: µ1 = µ2 = 12 mPa·s, γ = 5.0
mN/m.

wall. At Re1=100, the momentum of the fluid is signifi-
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cant so that the flow becomes more radial and more fluid
from the back of the tube can be withdrawn [9], which
better approximates an ideal point sink.

We hypothesize that in a tube-based selective with-
drawal, besides the dimensionless Q that regulates φ as in
a point sink, Re1 also influences φ through changing the
external flow profile. Because φ as a function of H has a
simple linear relationship for all Q0 (Figure 3(a)), we plot
Q versus Re1 at φ = 0 and 1, as shown in Figure 3(c).
The result agrees with the findings inferred from [9]: be-
yond Re1 of about 300, the Q values for φ = 0 and 1
converge, suggesting a symmetrical relationship when the
capillary is placed above or below the interface that can
only result from a radial external flow around the tube.
In another fluid system with four times the viscosities and
16 times the interfacial tension of the ATPS system, the
Q values for φ = 1 collapses with the ATPS system as a
function of Re1. In fluid system with λ = 0.08 (data not
shown) the Q values converge earlier at Re1 = 60. We
note that the analysis by Lister is conducted under the
assumption that `� H. The agreement on the φ−Q re-
lationship between the low-Reynolds-number simulation
and our experimental results at high Re1 suggests the
assumption can be relaxed.

In Figure 2(e), Q∗
0 controls the minimum Q0 for the

entrainment (E) regime. This is a common phenomenon
for selective withdrawal experiments of immiscible phases
with an orifice. Because the entrainment cannot be ob-
tained by decreasing H at Q∗

0, gravity is a subordinate
factor. A more important factor that affects Q∗

0 is the
restoring force from the surface tension. When the fluid
forms a jet in the capillary, the typical viscous stress from
the top phase µ1Q0/R

3
0 has to overcome the minimum

downward capillary pressure γ/R0. The ratio of the two
stresses is the capillary number Ca1 = Q0µ1/(γR

2
0). A

third factor is the flow profile around the capillary that
depends on Re1. At small Re1 only the fluid from the
front of the capillary enters the tube, which is occupied
by the bottom phase when the tube is close to the inter-
face. Together, Ca1 and Re1 regulate the value of Q∗

0.
For better presentation of the data we use the Ohnesorge
number (Oh1 =

√
Ca1/Re1 = µ1/

√
ρ1γ1R0) instead of

Re1.

To confirm our analysis, we measured Q∗
0 in a range

of different fluids and capillaries. The experimental en-
trainment results obtained using fluids with varying γ,
µ1, and viscosity ratio µ2/µ1, are reported as a function
of Ca1 and Oh1 in Figure 4. The filled symbols represent
the existence of the E regime while the open symbols in-
dicate that no E regime exists at any H. The evolution
of the interface as H decreases is shown in the insets of
(Figure 4). The top panels represent the filled symbols,
and the bottom panels represent the open symbols. Four
fluid systems are used in Figure 4 with γ ranging from 0.3
to 40 mN/m and µ1 ranging from 1 to 1000 mPa·s, while
µ2 is kept constant at 1 mPa·s, so that 10−3 < λ < 1.
The sole involvement of the top phase in the scaling re-
lationship in Equation (2) indicates the dominant effect

of the top phase properties in the range of λ tested.
We take the transition flow rate Q∗

0, indicative of the
triple point in Figure 2(e), as the middle point between
the nearest open and closed symbols of each type. Q∗

0 is
fitted as a power law of Oh1:

Ca∗1 =
Q∗

0µ1

γR2
0

= c Ohα1 . (2)

The prefactor is found to be c = 0.38 ± 0.08 and the
exponent α = 0.50± 0.07. Equation (2) is plotted as the
solid line in Figure 4. Rearranging Equation (2) leads to
a dimensional expression for Q∗

0

Q∗
0 = 0.38

γ3/4R
7/4
0

ρ
1/4
1 µ

1/2
1

, (3)

where decimals are expressed in the simplest fractions for
clarity. For the fluids and capillaries tested in Figure 4,
the value of Q∗

0 ranges from 0.05 ml/min to 25 ml/min
while H at Q∗

0 stays in a small range between 200 – 400
µm. The Bond number stays between 0.01 < Bo < 1,
indicating the dominant or comparable influence of sur-
face tension to gravity near Q∗

0. It is thus reasonable to
neglect gravity as first order approximation.

Previous research [1, 2] conducted with R0 < H so that
the experiment can be reasonably modeled by a point

FIG. 4. Ca1 versus Oh1. The black line indicates the relation-
ship Ca1 = 0.38Oh1/2. The insets show representative time
sequences when the capillary is moved towards the interface.
Scale bar 500 µm. Top panels represent the filled upward-
pointing triangle where the E regime occurs between the T
and B regimes (Q0 = 0.25 ml/min); bottom panels repre-
sent the open upward-pointing triangle where the withdrawal
will jump from T to B regimes without going through en-
trainment of both fluids (Q0 = 0.20 ml/min). Circle/square/
diamond: γ = 40 mN/m, λ = 1, R0 = 750 µm, 350 µm
, 150 µm, respectively. Right-pointing triangle/left-pointing
triangle: γ = 32 mN/m, λ = 0.1, R0 = 750 µm, 350 µm, re-
spectively. Upward-pointing triangle/downward-pointing tri-
angle: γ = 0.3 mN/m, λ = 1, R0 = 350 µm, 150 µm, respec-
tively. Pentagram/hexagram: γ = 28 mN/m, λ = 0.001, R0

= 750 µm, 350 µm, respectively.
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sink placed above the liquid-liquid interface. Here we
demonstrate that once the flow near the tube becomes
nearly radial beyond Reynolds number of 100, the en-
trainment flow from the tube effectively behaves like a
point sink even when R0 > H. The region of influence
and the entrainment flow rate can also be influenced by λ
but it is beyond the scope of this paper. Where the T-E,
T-B and E-B borders meet in the complete H−Q0 phase
diagram, analogous to a triple point, a critical withdrawal
flow rate Q∗

0 is identified. The critical flow rate satisfies a

relationship Ca∗1 = cOh
1/2
1 , where c = 0.38. for λ ranging

from 0.001 to 1. Further research is needed to investigate
the coupling between the viscous stress and the region of
influence near Q∗

0.
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