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We present the saddle-point approximation for the effective Hamiltonian of the quantum kink in two-
dimensional linear sigma models to all orders in the time-derivative expansion. We show how the effective
Hamiltonian can be used to obtain semiclassical soliton form factors, valid at momentum transfers of order
the soliton mass. Explicit results, however, hinge on finding an explicit solution to a new wavelike partial
differential equation, with a time-dependent velocity and a forcing term that depend on the solution. In the
limit of small momentum transfer, the effective Hamiltonian reduces to the expected form, namely,

H = /P? + M?, where M is the one-loop corrected soliton mass, and soliton form factors are given in
terms of Fourier transforms of the corresponding classical profiles.

DOI: 10.1103/PhysRevD.102.125002

I. INTRODUCTION AND MOTIVATION

The description of soliton states in quantum field
theory—the foundations of which were laid out in the
mid 1970s—is a beautiful subject where basic notions of
quantum field theory operate in the background of exact
solutions to nonlinear differential equations; for popular
reviews see [1-3]. Two-dimensional models possessing
kink solitons hold a privileged position: one can do more
analytically, owing to the relative simplicity of working in
one spatial dimension and the absence of gauge fields.

For example, in a class of linear sigma models, including
¢* theory and other nonintegrable models, the exact
canonical transformation of phase-space path integration
variables from the perturbative sector to the one-soliton
sector of the theory is known. This is a transformation
(p(x);z(x)) = (X, 9(p); P, w(p)), which extracts the sol-
iton collective coordinate X and its conjugate momentum P
as a single degree of freedom in the field theory. The
remaining field-theoretic degrees of freedom are collected
in a field ¢ and its conjugate w containing fluctuations
around the soliton, in such a way that the transformation
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preserves the phase-space measure. The coordinate p =
x — X(t) is comoving with the soliton. The Hamiltonian,
when expressed in the new variables, is nonlocal in space
and possesses an infinite set of higher-order vertices for the
fluctuation field, depending on the background soliton
solution [4-11]. The fluctuations can be expanded in
creation and annihilation operators, and the vacua of the
one-soliton sector, which are annihilated by all of the
annihilation operators and labeled by the eigenvalues of P,
are the one-soliton states of the theory.

In order to make use of the soliton-sector Hamiltonian for
practical computations, one typically employs two approx-
imations: the semiclassical approximation and the adiabatic
approximation. The semiclassical approximation is the
usual small coupling expansion, where the coupling, g, is
a parameter in the potential controlling cubic and higher-
order interaction terms. By a scaling argument, g> can be
identified with 7. The adiabatic approximation, meanwhile,
treats time derivatives of the soliton collective coordinate as
small. It is the implementation in quantum field theory of
Manton’s approximation for time-dependent soliton solu-
tions [12] of classical field theory. In fact, it is common to tie
these two approximations together by assigning a particular
g scaling to time derivatives, 9, ~ O(g)."

"There is good reason to do so. The static-soliton profile with a
time-dependent collective coordinate does not solve the time-
dependent field theory equations of motion. Keeping 9, ~ O(g)
ensures that the resulting tadpole for the quantum fluctuation field
can be grouped with the interaction Hamiltonian and treated
perturbatively.

Published by the American Physical Society
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One can formally define the soliton effective Hamiltonian
H_i[P] by path integrating over the field-theoretic fluctua-
tions. In principle the Hamiltonian can then be computed
perturbatively in both expansion parameters. At lowest order
in both, one recovers the standard relativistic energy

\/ P? + MZ, where M, is the classical soliton mass.” In this
language the adiabatic expansion is a small momentum
transfer expansion, P < 1, while the small g expansion
provides quantum field-theoretic corrections.

With a few notable exceptions [13—15], and excluding
integrable theories where other techniques are available,
almost all work on solitons in quantum field theory has
been in the adiabatic or small momentum transfer limit. For
example, in supersymmetric theories where the solitons are
Bogomol’'nyi-Prasad-Sommerfield states one can some-
times use nonperturbative techniques in g to recover the
quantum-exact mass M(g) = My + O(g?). Classic refer-
ences include [16,17], and a recent review may be found in
[18]. However, very little is known about solitons in
nonintegrable theories in the opposite limit of high
momentum transfer but small g.

Understanding the behavior of solitons in the high
momentum transfer regime, AP ~ M, is extremely
important for certain foundational questions in quantum
field theory. For example, should one consider soliton-
antisoliton virtual pairs running in loops when one com-
putes quantum corrections to ordinary processes involving
perturbative particles? Naively the answer is yes, since
the optical theorem instructs one to sum over all inter-
mediate states. Less naively the answer is no, since
arguments based on a coherent-state picture of the sol-
iton-antisoliton pair indicate such contributions will be
exponentially suppressed in the coupling and hence
beyond the regime of applicability of the asymptotic series
in g, which perturbation theory provides for any given
observable.

However, other arguments [19,20] suggest that the
exponential suppression is governed not by the coupling
g* per se, but by the ratio of the soliton’s Compton
wavelength to its size. For many theories this ratio is
essentially the same as ¢, but there are notable exceptions
such as instanton solitons in five-dimensional gauge
theories and small black holes in supergravity. In such
cases one should ask: Is it possible that the contributions of
small-sized solitons running in loops are important for
perturbative processes? Recent computations suggest that
this is indeed the case [21,22].

The idea of [19] is to employ crossing symmetry to relate
the creation of a virtual soliton-antisoliton pair to an (off-
shell) process in the one-soliton sector of the theory in
which a soliton absorbs or emits a high momentum

*This is the result in the simplest two-dimensional models
where the only soliton collective coordinate is the position degree
of freedom, X.

perturbative particle.3 The amplitude for the latter process
is captured by a form factor—that is, a matrix element of
the scalar field between soliton states, (P [¢p|P;).
Reference [20] improved on previous work by making
the Lorentz invariance of the form factor manifest, a result
achieved by working with the boosted-soliton profile and
the relativistic effective Hamiltonian, H[P]. However, the
computation in [20] still assumed a small momentum
transfer compared to the soliton mass, thus leaving specu-
lation about the regime of high momentum transfer open.4

In this paper we demonstrate that one can access the high
momentum transfer regime of solitons in two-dimensional
linear sigma models by working directly with the exact
field-theoretic soliton-sector Hamiltonian obtained in
[10,11]. By carrying out a saddle-point approximation of
the path integral over (¢, w) in g—but working exactly
with the nonlocal terms—we will obtain a saddle-point
equation for the fluctuation field ¢ in the soliton sector.
With V(¢) the field theory potential, this reads

dv
(0, — BIP.9]0,)*p — Dop +—

d¢¢=f[P’(ﬂ],

(1.1)

where the generalized velocity f and forcing term f are
functionals of the soliton momentum P and the field ¢:

PV/O

P+ [ dppg’ B
Jdpyog’

BIP.g) = Tiog” fIP.g) = (1.2)

Here vy = ﬁd){) is the normalized zero-mode fluctuation

around the static-soliton solution, ¢ (p), while dots and
primes are used to denote derivatives with respect to ¢ and
p, respectively. In the limit of zero momentum transfer, in
which P is constant, the forcing term vanishes, and this
integrodifferential equation reduces to one obtained already
in [10]. It is solved by the boosted-soliton profile,

@ = ¢o(p/\/1—p?), with B the soliton velocity related
to the momentum via P = Myf/+/1 — f>.

In Eq. (1.1), which we will refer to as the forced soliton
equation, P(t) should be viewed as a given function of
time, and therefore the solution ¢ is a functional of P.
Inserting this solution back into the field-theoretic soliton-
sector Hamiltonian then yields H.g[P] at tree level in the
coupling g, but to all orders in the time-derivative expan-
sion. A solution ¢ to Eq. (1.1) can be thought of as a

A cautionary remark is in order. Crossing symmetry is a
symmetry of the exact quantum field theory. Owing to the
possibility of Stokes phenomena, the semiclassical limit might
not commute with the analytic continuation to the crossed channel.

*“Indeed, Papageorgakis and Royston [20] did not fully realize
this in the earlier versions of the work. Clarifying this point has
been a significant motivation for this paper. Papageorgakis and
Royston [20] thank Sergei Demidov, Dmitry Levkov, and Edward
Witten for early related discussions.
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nonlinear soliton analog of the Liénard-Wiechert potential
in electromagnetism. A key difference is that the soliton
degree of freedom X (¢) is not external to the full theory but
is governed by the effective Hamiltonian Hg[P].

Quantum fluctuations around a solution to Eq. (1.1) can
be treated in the usual perturbative manner.” Integrating out
these degrees of freedom results in the one-loop and higher-
order contributions to the soliton effective Hamiltonian,
viewed as an expansion in g. In this paper we restrict
ourselves to the one-loop analysis. We manage to carry out
the relevant path integral over fluctuations in closed form,
giving the result in terms of classical data associated to the
quadratic fluctuation Hamiltonian. However, we eventually
must restrict to the case of constant P, where the saddle-
point solution to Eq. (1.1) is known, to carry the compu-
tation to completion.

Even in this case, we find a rather nontrivial quadratic
Hamiltonian to diagonalize for the fluctuations. Doing so
requires an extension to an approach presented in the
Appendix of the classic paper by Christ and Lee [9], and we
couch the analysis in the language of Williamson’s theorem
[23]. One output, which will be useful for higher-order
perturbative computations, is the explicit form of the
normal-mode fluctuations around the boosted soliton; these
satisfy an orthogonality condition with respect to the zero
mode of the static soliton.

Finally, we use the soliton effective Hamiltonian to
define semiclassical soliton form factors. These capture
the leading-in-g behavior of the corresponding soliton form
factors and are valid at arbitrary momentum transfer. We are
able to carry out the quantum mechanical path integral for
these semiclassical form factors and express the result in
terms of a generating functional. The generating functional
uses the soliton effective Hamiltonian, evaluated on a time-
dependent solution to the forced soliton equation deter-
mined by a source. The differential operator that acts on the
generating functional to produce the semiclassical soliton
form factor is constructed from a constant P background
solution and is thus known in terms of the classical soliton
profile. We demonstrate that our formula reduces to the
expected result, in terms of a Fourier transform of the
classical profile, in the low momentum transfer regime.

The rest of this paper is organized as follows. In Sec. Il
we recall the canonical transformation of the phase-space
path integral that separates the soliton collective coordinate
and its conjugate momentum from the remaining set of
field-theoretic degrees of freedom, and we recall the form-
factor computations that motivated this investigation. The
resulting soliton-sector Hamiltonian is analyzed in Sec. III,
where it is shown that Eq. (1.1) arises as the saddle-point
equation for the fluctuation field around an accelerating

It is necessary to eliminate 1 degree of freedom associated
with the zero mode from the fluctuation field d¢. There are
standard techniques for doing so, as we will review.

soliton with phase-space trajectory (X(¢), P(z)). In Sec. IV
we set up and evaluate the saddle-point approximation for
the path integral over the field-theoretic fluctuations around
a solution to Eq. (1.1). In Sec. V we apply our machinery to
semiclassical soliton form factors. An investigation of
solutions to Eq. (1.1) beyond small momentum transfer
is left to future work, and we outline some potential
approaches at the end of Sec. V.

A summary of the results presented here appears in [24].

II. CANONICAL TRANSFORMATION TO THE
ONE-SOLITON SECTOR

We begin our discussion by setting up notation and
conventions, as well as briefly reviewing some of the
necessary background material.

A. Preliminaries

We consider the class of 2D linear sigma models with
classical action

s— | dzx(—% u(ﬁa”(ﬁ—vo(mo;ff’))- 1)

We assume that the minima of V(m; ¢) are gapped and
associated with a spontaneously broken discrete symmetry.
The parameter m, controls the mass gap to the perturbative
spectrum. Spacetime points are labeled by x* = (r, x), and
we work in signature (—, +).

If My, = {p|Vo(mg;p) = Vpint has multiple compo-
nents then there exist classical solitons called kinks. These
are finite-energy time-independent solutions to the equation
of motion,

Pp dVo(me;p)

x> dp 0

(2.2)

that asymptote to different vacua as x — £co. We denote
such a solution by

¢ = Po(mg; x — X). (2.3)
The free parameter X is the center-of-mass position of the

kink. Prototypical examples within this class, along with
their static classical solutions, are cf. [3]

1 1 2
¢* theory: V, = 7 <92¢2 - 4””%) ;

_ " "0y —
¢0—zgtanh(\/§(x X))

2
sine-Gordon: V, = m_20 (1 —cos(gg)).
g

4
¢y = —arctan (e X)),

; (2.4)
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In the ¢* model there are two classical vacua at
¢ = +my/2g, while in the sine-Gordon model there is
an infinite sequence at ¢ = 2”7" n € Z. Expanding around
these vacua, one finds that the tree-level masses of the
fundamental particles, the “mesons,” are \/2m, and m in
the ¢* and sine-Gordon models, respectively.

Note that both of the above potentials have the scaling
property Vo(mg; ) = 2Vo(mo $), where the function
Vo(mo, ) does not depend on g, and ¢ = g¢. It is common
in the soliton literature [1,3,6] to make the additional
assumption that the potential is of this form, in which
case the action can be written

S— %/(px (%aﬂaaﬂq} ~ Vo(mo;ir))- (2.5)

Thus, the g expansion can be thought of as the (semi-
classical) 7 expansion. We assume that the potentials we
work with in this paper have this scaling property.

In the quantum theory, bare and renormalized parameters
must be related through appropriate counterterms.
Perturbative-sector computations in these models reveal
logarithmic divergences only, which can be eliminated
through mass renormalization. The coefficient of the mass
counterterm, Am?, can be computed order by order in
perturbation theory once a renormalization prescription is
given, and the one-loop contribution, §m?, participates in
the evaluation of the one-loop correction to the soliton
effective Hamiltonian.

A standard renormalization prescription can be made for
the class of linear sigma models discussed above where the
effect of the counterterms is such that the renormalized
potential, V(¢) = Vy(¢p) + V.. (@), has the same form as
V., but with m3 replaced by m? + Am?, where m? is a finite
renormalized mass, and the condition fixing Am? is that the
tadpole for the fluctuation field around the vacuum van-
ishes to all orders in perturbation theory. See [25] for a
fuller discussion. In the case of ¢* theory, for example,
this condition implies that the quantum vacua are at
{¢p» = £m/2g. Using this condition, we will write the
renormalized potential as

V() = Vo(mo; §) + Ve ()
= VO(m; ¢) + VAmZ (¢)
= Vo(m;$) + Ve (¢) +

where the ellipsis denotes two-loop and higher contribu-
tions. Thus, the relevant background configuration for a
perturbative analysis of the quantum kink is

¢ = (ﬁo(m;x - X)

This is the classical kink solution where the bare mass
parameter, mg, has been replaced by the renormalized

(2.6)

(2.7)

parameter, m. Henceforth, any appearance of V,(¢) or
¢o(x — X) without the mass parameter made explicit will
refer to V(m; ) and ¢o(m,x — X).

B. Soliton states

Soliton states are elements of the one-particle Hilbert
space and are labeled by momentum P [6]. They carry a
conserved topological charge, associated with the current
J, = €,,0"$, and are orthogonal to the perturbative-sector
states. They are defined through a three-step process.

1. Step 1

One begins with the renormalized Hamiltonian arising
from Eq. (2.1), corrected by perturbative-sector counter-
terms and given by

H= / dx{ (0,4)% +

In terms of this Hamiltonian, the phase-space path integral
for the transition amplitude takes the form

v} @8

25— [ IDODRE 7.2 10 013)

xexp{i[iffdt{/dxqbﬂ—H]}.

Here ¥, ([¢] are wave functionals for the initial and final
states of the field at times 7; and 1, =¢; + T, and Z;; =
(¥r|Z|'¥;) is the matrix element of the evolution operator.

(2.9)

2. Step 2

Next, a canonical transformation on (infinite-dimensional)
phase space (¢; ) — (X, y; P, w) is performed by consid-
ering the coordinate transformation

(1. x)

= olx = X(1) + x(t.x = X(1)).  (2.10)

The modulus X has been promoted to a dynamical variable
(a collective coordinate) and y represents field fluctuations
around the soliton. Then one makes the following ansatz
for the momentum variables:

@|0,po(x = X(1)) + w(t, x — X(1)).
(2.11)

n(t,x) = my[X, x; P

In order to preserve the number of degrees of freedom,
constraints must be imposed on the new fields y, w. Since
0,¢g solves the linearized equation of motion around the
soliton solution, the constraints are chosen to eliminate this
zero-frequency degree of freedom from the new fields

125002-4
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/dx)(@xgbo =0, /dxwaxgbo =0. (2.12)

The quantity 7, is determined by demanding that the
transformation be canonical—i.e., by requiring that the
standard Poisson bracket of ¢, z implies {X, P} =1 and
the standard Dirac bracket for ¢, @, and vice versa. This
leads to [10,11]

P+ [dpwy
— , 2.13
S T (M) [ Y
with
M, = / dpd? (2.14)

the classical soliton mass. Here we have introduced the
kink-comoving coordinate p = x — X(t). Derivatives with
respect to p are denoted with a prime.

As integrals over p, like those in Eq. (2.13), will appear
quite often, we will sometimes employ a bra-ket notation®:

(flg) = / * dpf(t.p)"o(1.p).

(e8]

(2.15)

Thus, My = (¢p|¢},), and Eq. (2.13) can also be expressed
more compactly as
___Pilol)
0 — T T T .
{#olet +2)

In terms of the new variables, Eqgs. (2.10) and (2.11), the
Hamiltonian (2.8) is

(2.16)

Mo(P + (@ly'))’
2(doleo +4)?
1 1 (.
+ / dp{§w2 +54%+ ZmVé (o)"

n>2 """

H:M0+

Ve (o +x>}, (2.17)

where V(") denotes the nth derivative of the potential with
respect to ¢. We will refer to this as the soliton-sector
Hamiltonian. It is important to note that the canonical
transformation (2.10) and (2.11), with Eq. (2.13), is a
transformation of classical phase-space variables. In the
canonical formalism, though, it is straightforward to extend
it to a transformation of operators that preserves the quantum
commutator [11]. This requires a choice of operator ordering
for Eq. (2.11). Upon choosing the Weyl prescription, for

®To minimize confusion we use a double bra-ket for quantum
field theory inner products.

example, one is led to an additional term in the Hamiltonian
beyond Eq. (2.17)." This “quantum potential” can also be
obtained from the path integral formalism through a careful
treatment starting from the discretized definition (where
Weyl ordering corresponds to the midpoint prescription for
the momenta) [27]. In terms of scaling in g, the quantum
potential is an O(g?) correction, or two-loop effect, and
hence will not be relevant for us in this paper. However, the
quantum potential should be understood to be included in
any expression appearing below that utilizes the exact
soliton-sector Hamiltonian.

In order to write the transition amplitude (2.9) in the new
variables, we must give a precise description of how the
constraints (2.12) are to be implemented in the path
integral. For this purpose it is useful to introduce an
orthonormal basis of modes for the fluctuations around
the classical static solution, ¢(p). These modes solve the
eigenproblem

_o L A,
op*  d¢p?

):,un(p) = Gualp). (218)
o

which arises from a linearization of Eq. (2.2) around the
static-soliton solution, Eq. (2.3), with the replacement
my — m as explained after Eq. (2.6). The modes {y,}
are known explicitly for many field theory potentials of
interest, but we will not need their detailed form; we wish to
emphasize only a few key points that hold for the class of
models we consider. The spectrum is positive, and there is a
unique zero mode given by

1
Yo,

In terms of this zero mode the constraints take the form

. (2.19)

wolr) =0, (wolw) =0. (2.20)
Depending on the details of the potential there might,
or might not, exist additional discrete L?-normalizable
modes corresponding to excited states of the kink. These
will be followed by a continuum for the theory defined on
p € (—o0, ), representing perturbative particle states in
the presence of the kink.

For later purposes—especially the one-loop computation
of Sec. [IV—it will be essential to regularize the theory by
putting it in a box of size L with appropriate boundary
conditions imposed at p = +L/2 so that the spectrum
of fluctuations around the kink is discrete. We make
a brief digression here to explain this in some detail, since
having the basic framework in place now will prove
convenient later.

"See also [26] for a discussion in the context of multi-
component scalar theories.
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The boundary conditions at p = +L /2 must ensure that
the operator in Eq. (2.18) is Hermitian and should maintain a
well-defined variational principle for Eq. (2.1). In Sec. IV E
where we review the one-loop computation of [5,28], we
will take periodic boundary conditions and employ mode
number regularization as in the original works. Other
choices are possible and yield the same results provided
that the regulators in the soliton and perturbative sectors are
chosen consistently.® This point has been nicely emphasized
in recent work by Evslin and Zhang [30].

As long as the size of the box is taken to be much
larger than any length scale in the potential, the square-
normalizable bound states of Eq. (2.18) will continue to
exist with box eigenvalues, ,(L)?, and box wave func-
tions that differ from those of the theory on R by
corrections in L that are exponentially small at large L.
Furthermore, although the spectrum is made discrete by the
box regularization, one can still distinguish those eigen-
functions corresponding to bound states in the theory on R
from those eigenfunctions corresponding to scattering
states by the value of w,(L)?, at least when L is large

enough. Specifically, if w,(L)* < %(qﬁo(p)) for all
lp| > L/2, then y, corresponds to a bound state of the

. . . 2
potential while those modes with w,,(L)? > ZTJ‘Z/ (¢o(p)) for

all |p| > L/2 correspond to scattering states. Strictly

speaking, the previous comment assumes that j%’ (¢o(p))
is a symmetric function of p. If it is not, one can easily

modify the statement to account for the different behaviors

of ZZT)‘{ (¢o(p)) at p = £L/2. We thus have the orthonor-

mality and completeness relations for the theory in the box:

1= )l (221)

<l//m|l//n> = 5mn’

Our conventions are that n = 0, 1, ..., n, — 1 correspond to

the bound states of —92 —1-327‘2/ 4, on R, with n =0 the

zero mode, while n = ny, n, + 1, ...
scattering states.

In the box, the equality (2.19) is no longer true. The
relationship given there will receive corrections that are
exponentially small in L at large L. Furthermore, the

|

correspond to the

eigenvalue w3 will not be zero. Our goal is to study the
theory on R, and we are using L only as a regulator. Thus, we
have some freedom in how we choose to define the trans-
formation to the soliton sector when L is finite. Rather than
using ¢, for the constraints, we will use . Again, these
agree when L — co. However, the choice y seems more
appropriate at finite L since this way we are exchanging the
lowest energy eigenmode around the static kink for a
collective coordinate. The phase-space coordinate trans-
formation will be canonical with the y, constraints at finite
L provided that Egs. (2.11) and (2.16) are written as

_ (P {wlgytx)
w6 x) = ( {woldo + ')
+ @ (t,x — X(1)).

)wu—nm
(2.22)

Now the soliton-sector Hamiltonian is

(P + (wlgy+4))*
2woldy +x')*

/ 1 1
+/f2¢{§w%+§wa+/V+vwo+m},

L2

(2.23)

and it is equivalent to Eq. (2.17) in the L — oo limit.
Returning to the main thread of the discussion, then, we
can write mode expansions

2(t.0) = xatwap).

w(t.p) =Y m(wa(p). (2.24)

and the constraints in Eq. (2.20) set yo(t), 7y (¢) to zero. It
will be convenient for us to work with a real basis {,},
and therefore the modes y,, 7, are real valued. We
emphasize that the basis {y,} does not diagonalize the
quadratic Hamiltonian in y, @ unless P = 0.

With the soliton-sector Hamiltonian, Eq. (2.23), the tran-
sition amplitude (2.9) is expressed as an integral over the new
variables with delta functionals enforcing the constraints:

%r/@MW/mw@WWMWWWWM&ﬂ%MWMMMMw%dwwﬂ+Wm—m}

1

= /[DXDP]/[D)(DwD/lDy]‘I’f[Xf,)((tf,x)]*‘Pi[Xi,)((t,-,x)]

>wm%l?m@X+wm—MwM%wwmﬂ—M}

(2.25)

¥The questions of boundary conditions and regularization are subtler for supersymmetric kink solitons in theories with fermions, and
this led to a flurry of activity on the subject in the late 1990s and early 2000s. See, e.g., [29] for a review with references. In contrast, for the
simple bosonic models of Eq. (2.4), the original approach and results of Dashen et al. [5] have been validated many times.
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In the second form of the expression the delta functionals
have been represented by functional integration over
Lagrange multipliers A(7), v(¢). We denote by

Hy = H + Xwolr) + viwo|w) (2.26)

the total Hamiltonian, which includes the Lagrange
multipliers.

3. Step 3

Now that the transition amplitude has been expressed in
appropriate variables, we can define the soliton states.
A soliton state of momentum P has the form |¥p)) =
|P) ® |¥o.p)) with position-basis wave functional

1 .
elPXlPO,P [Z]v
2

(X x|¥p) = Pp[X, 1] = (2.27)

where ¥, p is the normalized ground-state wave functional
of the y — w theory—that is, the theory defined by the
Hamiltonian (2.26), where P is treated as a (generally time-
dependent) background parameter. The notation ¥ p is
meant to emphasize the dependence of this ground-state
wave functional on P, but we will often omit the P
subscript for brevity.

The wave functional ¥ can be computed perturbatively
in the semiclassical expansion. If y = ¥ + dy, where y is a
solution to the classical equations of motion following from
Eq. (2.26) and dy is the fluctuation field, then at leading
(one-loop) order the wave functional takes the form of a
Gaussian in the fluctuation field dy. If the fluctuation field
is written in terms of creation/annihilation operators &' and
a that diagonalize the quadratic part of the Hamiltonian,
then the ground state |¥,)) is the state annihilated by all of
the annihilation operators.

The ground-state wave functional is used to define the
soliton effective Hamiltonian, H.x[P], via

o aHalr) / Dy DwDADU ¥,y (1. x)]"

X Woly (1, x)]e’ J (=t (2.28)

The main goal of this paper is to construct the saddle-
point approximation to H[P] for general time-dependent
P(t); we will present these results in Sec. III. In Sec. IV we
will construct the one loop ¥, in terms of a symplectic
transformation that diagonalizes the part of Hy that is
quadratic in fluctuations.” We then use the wave functional
to complete the saddle-point computation of Eq. (2.28).

°The wave functional for the static soliton, ¥, p_, was
discussed recently in [31], where it was obtained by acting on
the perturbative-sector vacuum with an appropriate displacement
operator.

The construction is fully explicit in the case of constant P.
Before we turn to that technical analysis, we will describe
an important physical application where H..g[P] will be
useful.

C. Motivation from soliton form factors

One of the main motivations behind this work is the study
of soliton form factors to leading order in the perturbative
expansion and beyond the regime of small momentum
transfer. Soliton form factors are simply matrix elements
of operators between soliton states: {¥p f|©|‘PPi ». For
example, one of the most basic and important form factors

is the matrix element of the original scalar field, O = ¢(z, x).
By crossing symmetry, this form factor determines the
amplitude for a perturbative particle to create a soliton-
antisoliton pair [19,20,32].

At leading order in the semiclassical approximation, any
polynomial in the original fields ¢, z restricts to a function
of X and P obtained by evaluating Eqs. (2.10) and (2.11) on
the saddle-point solution:

Oln,¢] = Ola[P,X], p[P, X]|(1 + O(g)),  (2.29)
where
b= dolx = X) + 7(1.x - X),
7 =nmo|X. s P, @)|0cpo(x — X) +@(t,x — X), (2.30)

with (7, @) a solution to the classical equations of motion
stemming from the soliton-sector Hamiltonian, Eq. (2.26).
It follows that the leading semiclassical approximation
to the soliton form factor reduces to a matrix element
in the collective-coordinate quantum mechanics'® with
Hamiltonian H [P]:

(®p,|01%p,) = / [DXDP] / [DyDwDADL]
« T},Tp,ei [ dr(PX+(wli)~Hr) Olr. ¢]

= /[DXDP} 2Lei(P,x,.—Pfxf)eifdz(PX—Heff[P])
n

x Oz, ) (14 0(g)). (2.31)

As we will see, H.[P] has an expansion of the form
-2 0

Her = HGY + HY) + 0(g), (2.32)

where the superscripts indicate the order in g. The first

(tree-level) term arises from evaluating Hp, given in
Eq. (2.26), on the background solution j, @, while the

Corrections can be computed perturbatively in the y—w field
theory. See, e.g., [10].
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second (one-loop) term comes from integrating out the
fluctuations around this solution via saddle-point approxi-
mation. It follows from Eq. (2.31) that it is sufficient to
keep only these first two terms in order to capture the
leading semiclassical behavior of soliton form factors.
This discussion also allows us to highlight when and
why it is important to go beyond the usual adiabatic/small
momentum transfer limit. First, if there is no X-dependent
insertion in Eq. (2.31), then the soliton momentum is
conserved. This can be seen explicitly from Eq. (2.31) by
first carrying out the path integral over X, resulting in a
delta functional setting P equal to a constant. The overall
matrix element then carries a factor of 6(P;— P;). For
example, in the case where there is no insertion one has

(¥p, [Wp ) =o6(Pf - P;)emHeal AT

= S(Pf — Pi)e_iHcff[Pf]rf'+iHcff[Pi]ti’ (233)
where T = t; —t;, and Hy[P;] can be evaluated pertur-
batively in g under the restriction that P is constant. The
Lorentz invariance of the theory dictates that

vV P? 4+ M?,

where M = My(1 + O(g?)) is the exact quantum mass of
the soliton. The verification of this relativistic energy to
one-loop accuracy (in nonintegrable models) is a classic
result going back to [9,28]. However, as far as we are aware
it has not been demonstrated directly from the path integral
formalism of [10], as we will do in Sec. IV.

Ultimately, we are interested in matrix elements of
operators that do carry X dependence, which means that
the soliton momentum is not conserved. Let us return to the
example of the scalar-field form factor, (¥p, |(2>|‘Ppi ». If
one works to leading order in the derivative expansion of
H (by treating P as constant), then to leading order in
both the derivative and semiclassical expansions this form
factor is given by the Fourier transform of the classical
soliton solution, ¢, expressed as a function of k = P, — P;
[6]. This is the answer if P; ; are also assumed to satisfy
P;; <M. More generally, if P, are relativistic but the
transfer is still small, then the leading semiclassical form
factor at small momentum transfer is given by the Fourier

transform of the boosted-soliton profile, ¢y(p/+/1 — ),
where the velocity S is determined by the usual
relativistic relationship to a momentum P = l(P ;+ Pr):

MyB/\/1 =P = 5 (P; 4 Py) [20]. These results, however,
can be trusted only to leading order in k/M, as they
are obtained by dropping the higher-derivative terms
in Hg[P].

In order to probe the soliton-antisoliton pair creation
amplitude related to (‘¥p, |q;§|‘I‘pl_ » by crossing symmetry,

H.[P] = (constantP),  (2.34)

for example, we must understand the behavior of the form
factor for momentum transfers of order the soliton
mass, P;—P;~O(M). This means that a derivative
expansion of H;[P] is not under control and the all-orders
result, obtained from a saddle-point approximation to
Eq. (2.28) for general P(t), is required. We will return
to this discussion in Sec. V, where we will obtain an
expression for semiclassical soliton form factors in terms of
a certain generating functional built from the first two terms
in Eq. (2.32).

I1I. SADDLE-POINT EQUATION
FOR GENERAL P(¢)

We will now evaluate, by saddle-point approximation,
the effective soliton Hamiltonian, Eq. (2.28), for general
soliton momentum P(7). It is worth recalling how this is
done in the small-velocity approximation before tackling
the general analysis.

Small velocity—If one assumes small soliton velocities,
X = 0(g), then, since My = O(g72), ¢y = O(g™"), while
x,w = O(1), we have the following for the second term in
the Hamiltonian (2.17):

P+ (wl))? P
2Mo(1 + 37 (bolr'))? - 2M

+ O0(g). (3.1)

In this approximation, all field theory interactions contain-
ing fluctuations coming from this term are higher order
in the coupling relative to the quadratic-order terms
coming from the remaining part of the Hamiltonian,"
leading to

2

HeMy+—— &
"M,

+0(g).

1
E/dp{w2 12+ VO (o)1 + Vs (o) }

(3.2)

The O(1) part of the Hamiltonian can be diagonalized by
employing the basis of modes (2.24). Inserting these
expansions back into Eq. (2.28) and working perturbatively
in g, one derives explicit Feynman rules for carrying out
field-theoretic computations in the soliton sector [10].
These rules include one-point vertices in the fluctuation
fields contained in Eq. (3.1), as well as an infinite series of
higher-point vertices. The reason the one-point vertices are
present is that ¢(¢,x — X(¢)) is not a solution to the
classical equations of motion.

"'Note also, however, that the quadratic terms coming from the
remaining part of the Hamiltonian are of the same order in g as
P?/2M,, in this approximation. Therefore it is inconsistent to
ignore them while keeping the P?/2M, term. They lead, in
particular, to the one-loop correction to the soliton mass.

125002-8



ACCELERATING SOLITONS

PHYS. REV. D 102, 125002 (2020)

Constant velocity—Gervais et al. [10] also demon-
strated how one can find the true saddle point of the
soliton-sector Lagrangian when the soliton velocity is not
small but constant. In that reference it was shown that

_ p _ wi __Mp
Z(P)—Q{’o(—m) doip). it P =2
(3.3)

solves the equations of motion following from Eq. (2.26)
when P is time independent. The parameter £ is interpreted
as the soliton velocity and has the correct relativistic
relationship with P. The solution (3.3) is quite nontrivial
from the point of view of the equations of motion for ( y, @)
following from Eq. (2.26), which are nonlocal. It is
anticipated from Lorentz invariance of the theory, though,
since by Eq. (2.10) it corresponds to the boosted-soliton
profile in terms of the original field theory variable

x = (X +ﬂ1)>

In fact, one could imagine implementing the canonical
transformation from the perturbative-sector variables
directly to variables adapted to the boosted-soliton back-
ground from the very beginning; this has indeed been
carried out in [9,33,34].

Our goal in this section will be to generalize the analysis
of [10] to the case where P(¢) is a generic time-dependent
function. This will furnish the effective Hamiltonian of the
soliton, H[P], that is appropriate for processes involving
changes in the soliton momentum that are not small, such as
soliton form factors with arbitrary momentum transfer. Our
approach will follow that of [10]. That is, we will first
transform to static-soliton variables using Eqgs. (2.10) and
(2.11) and leading to Eqgs. (2.25) and (2.26), then find a
nontrivial saddle-point solution in those variables. It is
natural to ask why we do not directly perform the canonical
transformation using a time-dependent soliton background.
It turns out that one runs into technical difficulties at the
quantum level when attempting to construct a canonical
transformation that utilizes a soliton background depending
on both a time-dependent collective-coordinate position
and momentum. As briefly discussed after Eq. (2.17), the
resolution of operator-ordering ambiguities in a canonical
formalism leads to additional, quantum contributions to the
potential. For a generic (X(z), P(¢))-dependent soliton
background these might not be under control.

plt.x) = ¢0< (3.4)

A. Time-dependent equations of motion

We now begin our discussion in earnest. In this sub-
section we are simply analyzing classical equations of
motion and therefore we work with the theory on R.
We find it convenient, however, to use the form of the

soliton-sector Hamiltonian given in Eq. (2.23). This is
identical to Eq. (2.17) for the theory on R, utilizing
Eq. (2.19) and the constraints. We work with the shifted
field"?

@(t.p) = x(t.p) + ¢do(p). (3.5)

The transformation (y, @)+ (¢, w) is canonical, and
Eq. (2.23) takes the form

o JatlP] / [DDwDADU Y p(t.p)|" Yo p(t:,p)]

x ¢! J dimg)=Hr)

- (P+ (wlg'))?

HT—/1<W0|€0—¢0>+V<W0|W>+W
+/dp{%wz‘f'%(ﬂ/z‘f'Vo(fﬂ)"‘VAmz(C”)}-
(3.6)

Treating P(¢) as a background variable, the equations of
motion following from Hyp are'’

(wolp) = (woldo). (wolm) =0, (3.7)

and

P+ {(oly) ,
<ll/0|(ﬂl>2

P+ (wl¢’)
(lI/0|fP'>2

(P+ (wl¢)”

Tl Y 3:8)

¢ =w+uvyy+

@ =~y + R e )

At this stage, it is convenient to introduce the “soliton
velocity functional”

P+ (wl¢)

Plo o Pl = o

(3.9)

so that the equations of motion (3.8) can be recast into the
form

¢ =w+wyy+ g,
@ = =y + f’ + ¢ =V (@) —wifwole'). (3.10)

1 might seem that we are in effect undoing the canonical
transformation. This is not the case. Unlike the original field ¢,
the field ¢ satisfies a constraint and is independent of the soliton
collective coordinate.

We do not vary V,,» when constructing the saddle-point
solution because terms in V,,,» are suppressed by O(g?) relative
to their counterparts in V.
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The quantity S is appropriately named since Hamilton’s
equation for X in the full theory gives X = dHy/OP = f.

Let (Z, U, @, @) denote a solution to these equations and
B = B|p, @; P] the velocity functional evaluated on the
solution. The v constraint implies that @ is orthogonal to
W, and decay properties of the zero mode imply that v, is
orthogonal to v as well. Thus, the Lagrange multipliers on
the solution are determined to be

U= —plyol®),
+ wol (@ =V (@))).

By inserting the equation for & back into the ¢ equation and
integrating both sides against ¢/, we can solve for the
quantity (@|®') and hence determine the velocity 3 purely
in terms of @:

7= Blwole) (3.11)

5P @leh

@) (3.12)

We can now use the ¢ equation to solve for @ in terms of
@. It is convenient to introduce P |, the linear operator that
projects onto functions orthogonal to ,

PL(f) =f—=wolflwo). (3.13)
in terms of which the solution for @ is
5 =p— PP () (3.14)

We note that P, (%) = ¢, which follows from acting with a
time derivative on the A constraint. Therefore this expres-
sion for @ is indeed orthogonal to .

With Eq. (3.14) in hand, one can compute @, @ and
express the @ equation in terms of @ only. The result can be
put in the form
=255 ~Ba - (1= )3+ V{ (@) =0,

PL(p (3.15)

which implies that
_Bz>—// + V(l)(—)
@ o \@

b—285 - By — (1 = Cl@](Dwolp)

(3.16)
for some p-independent functional C of @. To find an

expression for C, multiply both sides of Eq. (3.16) by @’
and integrate over p:

d* (1 _, e _d 2 1 -
(G ) P @) b+

+Vo(@)|2 = Clwol@'). (3.17)

—00

We can employ Eq. (3.12) to get some cancellations in the
second and third terms, resulting in

(1= F)9"[2% + Vo(@)[% = P =577 ZZCWOI@’)-

N —

At this point, we impose the usual soliton boundary
conditions on ¢: it should approach values in the vacuum
V(@) = Vpin s p — too and should have finite energy.
The latter requires that ¢’ and ¢ should go to zero as
p — Foo. Armed with this information we arrive at
P
€= o) (-19)

through which Eq. (3.16) takes the form of the forced
soliton equation

P

(8t _Bap)z W

o + V ((p) (3.20)

Once a solution to Eq. (3.20) is found, we still must ensure
that it satisfies the A constraint

1 ™
= <l//0|¢0> = 2\/]WO¢(2) e

where we use Eq. (2.19) in the second step.

Given a solution ¢ to Egs. (3.20) and (3.21), Egs. (3.11)
and (3.14) then determine 7, A, and @. The expression for 1
can be further simplified using Egs. (3.14) and (3.20),
leading to

{wol®) (3.21)

w=p-PPL§).  D=—pwld).
. P d -,
A :W—%(ﬂ@ﬁokﬂ)- (3.22)

As a simple check of these equations, consider the case
of constant P. In that example the forcing term on the right-
hand side of Eq. (3.20) vanishes, and it is consistent to
assume that ¢ is time independent. From Eq. (3.12) f is
then constant, and Eq. (3.20) reduces to

(1=5)3" = V(@) =0 (constant Pcase). (3.23)
After changing variables to p = p/+/1 — % in Eq. (3.20),
one recognizes the standard equation of motion for the
soliton, and a solution is

P(p) = ¢y (%) (constant Pcase).  (3.24)

The integration constant p, must be chosen so that the
constraint (3.21) is satisfied. In ¢* theory, for example, one
can take py=0. Remembering from Eq. (2.14) that
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(Byly) = Mo, we deduce that (7/]3) = Mo//T— 2.
Replacing the latter in Eq. (3.12) yields the expected
relativistic relationship between momentum and velocity,
as in Eq. (3.3). Since the solution is time independent, we
see from Eq. (3.22) that A = 0. Meanwhile, 7 and @ can be
expressed in terms of @' and the integral (y|@'). We are
unaware of any simple expression for the value of this
integral, which is essentially an overlap between the static
zero mode and the boosted zero mode.

B. Tree-level H . [P]
Having established the saddle-point equations for gen-
eral P(r), and the corresponding background solutions as
functionals of @, we next expand in fluctuations by writing

(A v, @) = (A+ 640+ v, 9+ ¢, @+ 6w)  (3.25)

and
/ [DADvD@Dw] = / [DSADSvDSpDéw|.  (3.26)

Before pressing on, let us first verify that this expansion
is under control when ¢ is small by arguing that all
background fields are O(g~'). We begin by noting that
Eq. (3.20) is consistent with » = O(1/g). Since the soliton
mass (i.e., the on-shell Hamiltonian) is O(1/¢*) by the
scaling argument prior to Eq. (2.5) and we are not assuming
that the velocity is small, both P and P are O(g~2). Then
every term in Eq. (3.20) will scale as O(1/g) as long as @
does, implying that f = O(1). It then follows from
Eq. (3.22) and the fact that y is normalized that @, 7,
and 4 are also O(g~"). Thus, by treating the fluctuations in
Eq. (3.25) as O(1) variables, the expansion of the field
theory action in fluctuations is an expansion in g.

Having established the consistency of the expansion
(3.25), we can now revisit Eq. (3.6). The leading-order
effective Hamiltonian for the soliton, H, é;fz [P] = 0(g72),is
given by

1P|~ (1= [ apV el

(A.0.p,@)
_(P+(@]9")?
2(yol@')?
1 1 i
+/dp{5®2+5¢’2+vo<c‘o)—w¢}, (3.27)

where the Lagrange-multiplier terms on the first line of
Eq. (3.6) vanish since the solution satisfies the constraints.
We have explicitly subtracted out the mass counterterm
from Hy in the first equality of Eq. (3.27) since it carries a
coefficient that is O(g?) and therefore begins contributing
to Hg[P] only at O(g°). Utilizing Egs. (3.9) and (3.14) as

well as the fact that (y|@) = 0, we obtain the following
expressions for the various terms in Eq. (3.27):

@l 2 _
i R
3 (@1) =3~ BPL@ o~ PPL(@)
= 2 {ilo) ~ B3l + 5P

Pl
(@19) = o= P@)5) = (@15) — Bloa).
(3.28)

Hence the tree-level soliton effective Hamiltonian takes the
form

Hif_fz)[P]—/dp{%(l+B2)¢’2—%¢2+v0(¢)}, (3.29)

where f is given by Eq. (3.12) and & should be viewed as a
functional of P, defined by the solution to Egs. (3.20) and
(3.21), in which P(t) appears to be a background variable.

Without a time-dependent solution to these equations
we cannot be more explicit regarding the form of the
tree-level H.y, but we can check to see that our result
reduces to the correct expression for the case of constant P
where the solution for ¢ is given by Eq. (3.24). This
follows from two results. First, Eq. (3.23) implies a

virial theorem [ V(@) = 1+/1 — f*M,. Second, (¢'|¢) =

M,/+/1— %, and putting these observations together we
obtain

(-2) 1 2y Mo ! 52 My
Hy' [Pl=z(1+p)—=+5\/1 - My =——
i [P]=5( )m 2 IR
=4/P?>+ M} (constantPcase), (3.30)

as expected.

C. The semiclassical correction

Our next task is to expand Eq. (3.6) in the fluctuations
introduced in Eq. (3.25). The linear terms vanish' by virtue
of (1,7.p,®) extremizing the action [ di({(w|p) — Hr).
We therefore examine the quadratic-order terms, setting the
stage for the one-loop computation in Sec. IV.

14VAmz was not included in the extremization and therefore
may contain terms linear in the fluctuations. Indeed, the presence
of such terms is necessary to cancel tadpoles generated by cubic
interactions in dy [10]. Such terms will be suppressed in the
coupling expansion and do not affect our one-loop analysis.
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Using Eq. (3.9) and working still on all of R, the quantity
to be expanded can be written as
1 2
- yolw) + —3F (wole')

1 1 _
= [ a3+ 307 + Volo)+ V(o)

+0(g).

(wl9) - Hy = (i) —z(<wO|¢> L

(3.31)

Therefore the terms that are second order in fluctuations are

(=) _HT)|0(52)
= (6w|60) — 51{(wo|dp) — du{wo|dw)

1 -
+=1 (&N {wol@')* +28B| (yold) (wolow)

L il +~3 (swlom) 3 (60|~ Vi (@))60)
(3.32)

where the vertical bar appearing on the right side represents

evaluation on the background solution: | = |3 ;5 - Since

S22 = 2p6%B + 2(5p)>. (3.33)

the greatest challenge in this computation lies in obtaining
the expansion of S to quadratic order in fluctuations.
Equation (3.9) yields

(6w|¢’) + (w|dg')  2(P+ (wl|¢'))

K NP wolg)? Voloe):

2, 200@(00) | 4((6wl¢)) + (wlog)) , ,

A (wole')® wilor)
wolgt Volowr 53

and evaluating the above on the background gives

5p| = 012 + (@loe) 2B(w|59)
(wol@')* (wol@') ~
2o 2(0w|09)  A((0w|@) + (@]o9')) ,
P =l gy Welow)
6p(wolde)?
Wold? (3-33)

With these expressions in hand, the middle line of
Eq. (3.32) can be put in the form

72

— 5 (BB + ()2l + 2B(6B1) ol o)~ wlow)?

2

1 [((wlg') + (@|5¢))* - 4p((6w|@') + (@]6¢")) -
=-3 - + 2B(5w6¢') + - woldp) + 307 (wilsp)* v (3.36
L (6l30) DTN o)+ o2 . (330
Inserting this back into Eq. (3.32) and collecting terms, we find that
. : 1 1
({@l@) = Hr)lyo) = (6w160) — 52(wo|6p) — buiwolow) + 5 (§w|Méw) — (6w|Bdp) — = (5p|Kop) + O(g).  (3.37)
where the linear operators M, B, and K are given by
") (@'
M:=1+ 7
(wol@')?
a9 = 9| Bl@) (vl
B := ﬂa) —+ — —+ — R
’ (wol@')? (wol@)
I SINIRAN BB _ 5 / / "o =
K _—a,%+vf)2>(-)+|ﬁ(” co><ﬁrp2 |, PUPG" = &) (wol + lwo) (Bo" — &'l) (3.38)

Here we used Eq. (3.22) to set @' = @' — p@" + Pwh(wo|@') in several places.
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In order to arrive at Eq. (3.38) we integrated by parts on
various terms in Eq. (3.36) that involve ¢’ integrated
against the fluctuations. Thus, for the theory in the box,
we have neglected terms in Eq. (3.38) of order @' (¢, +L/2).
We expect, for all 7, this quantity to be exponentially

_i [t d 0)
i tH
i

suppressed in mL when L is large, and therefore we will not
concern ourselves with these terms.

We can now use Eq. (3.37) to determine the O(1)
semiclassical correction to H.x[P], Eq. (3.6), which we

denote by Hé(f)f) [P]. We find

" — [ (DsrDauDsuDI ¥y sty ) Wolon(s. )

t .
<exp i [ an((6aldip) - 52tyolon) - ov o)
t;

+ —%<5w|/\/l5m> — (6w|Bby) — % (6| o) — Vﬁmz((ﬁ)) }

The form of the Lagrange-multiplier terms in this expres-
sion strongly suggests that we should expand the fluc-
tuation fields in the orthonormal basis {y,, }:

5p(t.p) = _au(thwa(p),

sw(t.p) = > pu(Owalp). (3.40)

We recall from (2.18) that these modes diagonalize the
fluctuation operator around the static soliton. While they
certainly do not diagonalize the quadratic Hamiltonian
under current investigation (unless P = 0), they do allow us
to cleanly dispose of the constraints: integrating over 64
and v produces the product of Dirac delta functionals

5(q0(1))3(po(t)). Since

[DspDsw] = [ [[Dg,Dp.),
n=0

(3.41)

one can then soak up the delta functionals by integrating
over g, and p,. This effectively removes ¢, p, from the
mode expansions (3.40) so that the problem depends
only on the restriction of the operators M, B, K to the
orthogonal complement of Span{|y)}.

It will be useful to put the remaining integrations
into a standard form. We define column vectors ¢, p with
components ¢,, p, and matrices M, B, K with real
components

My = (W[ Mys,),
Konn = (W Kwr,y),

By = (w|By,),
(3.42)

"In the following, boldfaced quantities will always refer to the
matrix representation of that quantity with respect to the basis

{|l//n>}n#0'

(3.39)

form,n =1, ..., N, where N is the total number of modes
that we consider.'® We also collect these matrices into a
2N x 2N symmetric real block matrix

M B
H = :
(BT K;)

N [Dg,Dp,] for the phase

(3.43)

and we write [DgDp] =
space measure. Then

t
exp {—i/ fdtHgf)f)[P]}
14
t
= exp {—i / ! dtvémz(@)}I[P; 1 1], (3.44)
1

where

TiPity.t)= [ 1DaDp¥o(ay) Wola)
xexp{ilf”dl(p%—%(;ﬁ qT>H<’;>)},

with gq; ; = q(t; ;). The P dependence of 7 comes through
the quadratic form 7H, which depends on P through the
background solution ¢. Section IV is concerned with
analyzing this quadratic path integral in detail.

Recall that V() is the one-loop mass counterterm
from the perturbative sector, evaluated on the soliton
background. In the case of constant P it was shown in
[28], generalizing the classic computation of [5], how this
counterterm renders the one-loop correction to the relativ-
istic soliton energy finite in ¢* theory. We will review,

"“The relationship between N and the UV cutoff employed for
mass renormalization in the perturbative sector will be discussed
in Sec. IVE.
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clarify, and expand on this computation at the end of
Sec. IV.

IV. ONE-LOOP CORRECTION

Starting with the field theory path integral of the
previous section, we obtained a finite-dimensional quantum
mechanics by working in a system of fixed spatial size L
and imposing a cutoff on the mode number. Since the
resulting action is quadratic in coordinates and momenta,
the path integral can be evaluated explicitly. However, the
Hamiltonian we have obtained is slightly unusual: it has a
term linear in coordinates and momenta. Fortunately, much
of the technology, even if unfamiliar, was developed long
ago. We will collect and review the pertinent results and
then apply them to the quantum mechanics of the dis-
cretized fluctuation path integral of our field theory.

The quantum mechanical path integral we are after,
Eq. (3.45), can be expressed in terms of the standard
transition amplitude, or propagator,

Z(qr.qi3t5 ;)

q(tr)=q,
= [""" " ipgop
q(tl):qf

xexp{i/titfdt<qu_%(pT qT)’H<I;))}
(4.1)

via

I[Pty ;] = /qudeqilPO(qf>*Z<qqui;tf’ t;)¥o(q;)-
(4.2)

Hence there are two pieces to the calculation: the propa-
gator and the initial and final state wave functions. In
Secs. IVA-IVC we will reduce Eq. (4.2) to a finite-
dimensional determinant. The result is quite general and
does not utilize the detailed form of . In Sec. IVD we
diagonalize our explicit H in the case of constant P, and in
Sec. IVE we put all these results together to obtain the
expected form of the one-loop correction to the relativistic
soliton energy.

A. The propagator

Consider the quantum mechanics of the N degrees of
freedom with conjugate momentum and position operators
p and § and quadratic Hamiltonian'’

n 1 p
H==(p" qT)H(’f)
2 g

(4.3)

"We will use hats to distinguish quantum mechanical oper-
ators from the corresponding classical quantities.

and corresponding time evolution operator

0(1y.1,) :T{exp [—i / v dtf{(t)}}, (4.4)

with T the time-ordering operator.

We will need to recall some details of the path integral
computation of the propagator for this system, i.e., the
matrix element

Z(qp.qistp. t;) = LaslO(tp. 1) la:)

q(tr)=q )
= / " " [DgDple’s.
q(t;)=q;

(4.5)

We will implicitly work with the midpoint prescription
for the phase-space path integral, where the time interval
t; <t<t;=1t;+Tis divided into T/e segments of step
size ¢, with the coordinate variables defined on the end
points of the intervals, while the momenta are defined at the
midpoints of the intervals. We refer the reader to standard
references such as the modern and thorough text [35] for
results, history, and references on quantum mechanical path
integrals. In particular, for any action S quadratic in g and p,
possibly with time-dependent coefficients, the path integral
can be evaluated in closed form as

1 \N/2 %S 4
Z(qf’ qi; tf? ti) = <27Z'l> \/detm,n <_ W) 6157

(4.6)

where S = S(q;.q;;1;.1;) is the action evaluated on the
classical solution to the boundary value problem ¢(7;) = ¢;
and g(¢;) = q;. (See Sec. 6.2 of [35] for an extensive list of
references.)

To evaluate the classical action in a useful form, we recall
some key points from classical mechanics with quadratic
Hamiltonians. Letting

7 <0 -1 >
“\1 o0
denote the symplectic structure, the equations of motion for
the quadratic Hamiltonian,

(4.7)

H :%(pT q" )M <I;>’ (4.8)
are
)

Given some initial data ¢; = ¢(#;) and p; = p(t;), the
solution takes the form
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() ool ] ).

We note that all the usual Hamilton-Jacobi manipula-
tions simplify for quadratic H. Quite generally, we have

. 1d 1 p
plg=-—@p"q)—5(p" qT)J<.>
2dt 2 q

ld 1 & aH OH
032 (P ey) @

We used the equations of motion in the second equality.
Thus,

1 OH . OH
H:—— — ]— _H’
pla-H=55® +2;1 (p aqj)

(4.12)

and the last two terms cancel when H is homogeneous of
degree 2 in the p and q. The classical action is therefore
simply

y . 1
s— ["aw'a- 1) = wia -pla).  (413)

7

To apply this to the path integral in Eq. (4.6), we need to
use the general solution (4.10) to express the p, and p;
variables in terms of the g, and g;. Writing the classical
evolution operator in N x N block form as

T{exp [/t,.tf dtJ’H(t)} } = (Z; AAZ) (4.14)

we have

pr=Mp; +Myq,, gy =M:sp; + M,uq;.  (4.15)

Assuming that M5 is invertible,"® we obtain

<Pf> _ <M1M§1 Mz—M1M§1M4>(¢If> (4.16)
pi M5! -M3'M, ¢/

Plugging this into the action, we obtain

'8We expect this to hold for generic T and will, at any rate, see
that the expressions we obtain for our path integral will not be
affected by this assumption: all factors of M5! will cancel in the
final expressions.

1 q
S(qr.qists.t;) = E(q,? q?)8<qf>,

i

S, S
where & = (ij;{ Sfii ) (4.17)

and the blocks of the 2N x 2N symmetric matrix S are

1
Sir=5

1
Spi = E(Mz -M\M;'M, — (M3")T),

(M M3 + (M35")"™MT),

1
81 =5 (M5'M, -+ MI(M3)7). (4.18)

Then the Morette—Van Hove determinant is read off as

82
e (~ai75) -

The classical time evolution operator is a symplectic
transformation on the phase space (this holds even when
the Hamiltonian is time dependent), so the matrices M|,
M,, M5, and M, satisfy the Sp(2N, R) identities that the
products MTM;, M\M%, MM, and M,;M? are symmet-
ric, and

det(-S;).  (4.19)

This leads to
Sii=M;'"M, =M{(M5")",
S = M M5 = (M3Y)T™™T, (4.21)
and we also obtain
Spi= E(Mz—MM ‘M, —- (M3")T)
1
E(MZM -MM;'M M - 1) (M)
1
E(MQM -MMI -1) (M)
= —(M3")T. (4.22)
Putting these results together, we obtain
Z( 0o t) LA\NZ 1 iSlapaiirt) | (4.23)
qiste li) = | ey 4 SRR .
qf 1 ! 2ri detM3

with the classical action given in Eq. (4.17).
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B. The fluctuation path integral for constant P

The next step is to determine the ground-state wave
functions, ¥y (q; ¢), and use them with Eq. (4.23) to compute
Eq. (4.2). Itis useful to do this for the case of constant P first,
before tackling the general case in Sec. IV C.

We are assisted by one more piece of machinery from the
classical mechanics of quadratic Hamiltonians. (See, for
instance, Appendix 6 of [36] for a discussion of normal
forms of quadratic Hamiltonians.) Assuming that H is
positive definite,'” it was shown by Williamson in [23] that
there exists a symplectic transformation C € Sp(2N, R)
such that

v O
CTHC =N = ( ) (4.24)
0 v
where v is a diagonal matrix, v = diag(v;,v,, ..., v, ), with

v, > 0.%° In general both v and C will be functions of time,
and in this case it is still not straightforward to evaluate the
evolution operator, Eq. (4.14), in a more explicit form.
However, when ‘H is time independent, as is the case for
constant P, we can use the symplectic transformation to
recast the initial value problem in terms of the new
variables p’, ¢’ defined by

(2)-(2)

Given initial values p} = p’(t;) and ¢q; = ¢'(¢;), we find at

time 7,
(p’(tf)) - (cosvT —sian) (pj)
q'(tr) sineT  cosvT q.)

=R

Finding either the explicit form of C or of v is not
straightforward, even if one has a complete solution to
the problem, Eq. (3.43), with B = O,21 but these results will
allow us to evaluate Eq. (4.2) in a simple and useful
closed form.

The Williamson transformation gives us a simple way to
describe the soliton ground state |¥,)). The Williamson
transformation

(4.25)

(4.26)

"The explicit diagonalization in Sec. IV D will justify this

assumption.
An elegant proof of this result is given in [37]: the matrix

M =H'"2TH 2 is invertible and antisymmetric, and
therefore there exists a transformation R € SO(2n,R) and a
positive diagonal matrix A" such that RT MR = N~'T;
C="H""*RN'/? is the desired symplectic transformation.

2t is easy to see that detr = /detH, but the individual
eigenvalues are not related to those of H in any transparent
fashion.

¢, C
c=("' 7" (4.27)
c; C,
relates momentum and position operators in the quantum
mechanics to canonically conjugate operators p’ and ¢’ via

p=Cp' +Cf., qg=0Cp' +Cof, (4.28)
with the Hamiltonian operator given by
N | p
H=>(5" AT)H(’f)
2 q
1 = Nla nla ~lanla
:EZ;””(” P+, (4.29)
The creation and annihilation operators
a0 -i). &= i) (430
V2 ’ V2
satisfy the usual relations
[a%,ab] = 0, [a%, a’™] = 5,
N 1
= afeat + 4.31
Eafewsd

The ground state |¥y)) is then defined as the normalized
state annihilated by all a“.

With that preparation, we interpret the fluctuation path
integral, Eq. (4.2), as a matrix element of the time evolution
operator in the quantum mechanics and conclude that

(T) :/qudeqilPO(qf)*lPO(qi)Z(qfaqi;tfati)

:/qudeqi«\{‘0|qf»«qf|0(tf’ ti)|‘1i>>«¢1i|‘{'0»

= (WolU(T)|Pp) = (Pole =) ¥,
. N
= exp {—%T;va}.

The eigenvalues v, will be determined in Sec. IV D.

(4.32)

C. The fluctuation path integral for general P(¢)

More generally, when P # 0, we face a more compli-
cated evolution problem, but we can nevertheless reduce
Eq. (4.2) by applying the ideas developed above.

First, we observe that the Williamson transformation that
allowed us to recast the Hamiltonian operator in diagonal
form can still be performed in the time-dependent case: the
results in Egs. (4.28), (4.29), (4.30), and (4.31) continue to
hold, with the crucial difference that now C(¢), p' (1), §'(¢),
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as well as the creation and annihilation operators, are time
dependent,” as are the corresponding eigenkets, e.g., the
“position” eigenkets |/, (¢))) that satisfy
1,00 = ¢12, (). (4.33)
As explained in [38], since the symplectic transformation
(4.28) preserves the commutation relations of the §’ and p’,
there must be a unitary transformation V that relates the
operators,
§ = VigV
q - q ’

P=VpVv, (4.34)

so that the time-dependent eigenkets \é;,(t))) can be
expressed in terms of the eigenkets of ¢, which we denote
as |q):

1£,(0)) = VIa'). (435)

Similarly, we can still define the ground state of the time-

dependent Hamiltonian as the normalized state annihilated
by all the a“(r):

a“(0)|¥o(1)) = 0. (4.36)

This state is no longer time independent, nor does it solve

the Schrodinger equation, but it does minimize the energy

expectation value, and we can write it explicitly in terms of
the eigenkets |£,(1))) of §'(1):

(1)) = / gy (q) € (1),

¥o(q') = n7"*exp[~q"q'/2], (4.37)
where the latter expression is the normalized N-dimensional
Gaussian. The fluctuation path integral, Eq. (4.2), can now be
expressed as

I[Pty 1;] = /qudeqi«‘PO(tf)|qf»Z(qqui; tr.t;)
x {q:|Po(:)). (4.38)

The general form of the propagator Z(qs,q;;ts.1;) is
given in Eq. (4.23), but to use it to evaluate Z[P; 17, 1;] we
need to express the states [¥((z; 7)) in the position basis

*In the general case it is difficult to assess whether (1) is
positive definite at generic 1. However, the final result we obtain
will depend on the Williamson transformation only at initial and
final times. Restricting to P(r) that is constant at early and late
times, the background ¢ will be constant at early times, and hence
the results of Sec. IV D will demonstrate that H(7;) is positive
definite. At late times, the background solution will approach a
superposition of the kink and a spectrum of traveling waves [2].
We also expect positive definiteness in this case.

of the ¢. This is accomplished by using the unitary
transformation V:

Wola.) = (@) = [ 'l (0)¥o(a)

- / gV g ) ¥olq). (4.39)

The matrix element ({g|V'|q’)) can be evaluated explicitly
in terms of the symplectic transformation relating the two
sets of variables [38]. When the C; block of the Williamson
transformation is invertible, the relation is?

1
(27i)" det C;

i
x eXP{E (gTCi(Ch) g

(ale, (1) =

-2 (€1 +q(C)Ca) | (440
Carrying out the Gaussian integral, we then obtain

exp(—34"Bq)

Po(q.t) = — 29 4 4.41
old-) 74\ /det(iC;A) (4:41)
where
A=1-iC5'C,,  B:=(C})'A7IC5' —iC\C5'.  (4.42)

Since C is symplectic, A and B are both symmetric (in
general time-dependent) matrices.

Applying this to our matrix element, and using the wave
functions (4.41) and the propagator (4.23), we find that

ﬂ.—n/Z

I[P;tf,ti} = -
det(C3,CsA;A})/ (2ri) Y detM

x / N gidV g expliS'(qpqity 1)}, (443)

where M3 is a block of the classical evolution operator,
Eq. (4.14), and S is a modification of the action
S(qf.q;:t.1;) from Eq. (4.17):

1 q
Sapain) =y e d)s(). @

l

where the 2N x 2N matrix &' is analogous to the & matrix
we met before. A convenient expression for it is

We will see shortly that the invertibility assumption will not
affect our final result for Z[P; 1, 1,].
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R 1 (M + iBMY)
o <M1+iB;M3 -1 )

. (MOS1 (Mg)“ )

Carrying out this Gaussian integral, we conclude

(4.45)

1

Z[P; 1y, 1] ZW

., where
g[P, tf’ ti] := det (—%C3iC3fM3AiA;> detS'. (446)

The convenient form of 8’ together with C € Sp(2N, R)
allows us to reduce detS’ to an N x N determinant,

detS' =det(M, + iB}M, + iMB; - BM3B;)(detM;) ™",
(4.47)
so that
i .
g= det{—EA 1CY(M, + B} M,
+iMB; — BjM;B,)C5,A; } (4.48)

We observe that C € Sp(2N, R) implies

C3A; = C3; = iCy;,
B,C3A; = —(Cy; + iCy;),

ALCT = CY, +iCh,,
AlCT B}, = —(CL, —iCT)),
(4.49)

s0, as promised above, all factors of C5' and M3 disappear
from the final expression.

The final result can be elegantly written in terms of the
complex time-dependent matrices

D12 = Cl + iCz, D34 == C3 + iC4, (450)
which are invertible and satisfy
D§4D12 —D{2D34 - O,
D3T4D’1‘2 —D1T2D§4 = 2il. (4.51)
The result is
i
g= det{— ) (D3T4fM D3y — D1T2fM D3y
+D3T4fM1DTzi - D1T2fM3DTZi)}- (452)

This N x N determinant is then a complete solution to the
regularized path integral over the fluctuations around the
soliton in the time-dependent case. Notice that it depends
only on the blocks of the classical evolution operator,
Eq. (4.14), and on the blocks of the Williamson trans-
formation at the initial and final times, C(1; ;).

We can give a nontrivial check of the result by consid-
ering the P =0 limit. In this case the symplectic trans-
formation is time independent, and the components of the
evolution operator are determined in terms of the matrix R
appearing in Eq. (4.26):

M, M cosvT
(1 2)—cnc—l—c(

—sian>
c.
M; M, sinvT

cosvT
(4.53)

Writing these out explicitly in terms of e**7 we find that

2iM, = —D},e™" D1, +D12€_WTDI—2’
2iM, = —-Dj,e" DT, + D3,e~*'D1,,
2iM, = +D},e* D}, — Dy,e~*TD},,

2iM5 = +D%,e”"D}, — D34~ *TD},. (4.54)
Finally, plugging these expressions into G and using
Eq. (4.51), we find that G = ¢/")T_ which is in agreement
with Eq. (4.32).

D. Computation of the spectrum for constant P

In Secs. IVA-IVC we reduced the regulated path
integral over the fluctuations to a finite-dimensional deter-
minant. We were able to obtain fairly general results that
did not rely on the particular properties of the quadratic
action. In this subsection, after some preliminary discus-
sion, we will restrict to the case of constant P, where we can
get an explicit solution to the spectrum of the v, and
therefore give a complete solution for the regulated one-
loop effective Hamiltonian.** This computation serves as a
check of our methods and will also be of great utility when
these methods are extended to computations of nontrivial
matrix elements that contain insertions of the fields.

The computation is based on applying the ansatz given in
the Appendix of [9] to our quadratic Hamiltonian, and it
hinges on finding the normal modes of the generator of
the classical evolution operator, which appears in the
equations of motion, Eq. (4.9). Thus, we are interested
in the eigenproblem

*As discussed after Eq. (3.38), we are neglecting terms in
that are exponentially suppressed in mL at large L. Thus, the
spectrum we obtain here is expected to receive corrections that
are analogously suppressed at large L.
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(TH)* = —iv.y* (4.55)
for the eigenvectors #* with normal-mode frequencies v,,.
We begin with some general observations on the eigen-
value problem for the operator
A =iJH, (4.56)
for a positive-definite symmetric H. As the Williamson
transformation shows explicitly, this operator is similar to
the invertible Hermitian operator

0 -—-w
A:=ClAC= ( ) 0 > (4.57)

w

Thus, the eigenvalues of A’ are real and come in pairs +v,,
v, > 0, with complex conjugate eigenvectors #’“ and 5'“*,
where #/ is the eigenvector corresponding to +v,. These
eigenvectors are given by #* =Cny* and #'** = Cny*,
where 7 is the eigenvector of A with eigenvalue +v,,.

The monic polynomial Q(v) = det(v — iJH) can be
factored as Q(v) = R(v)R(—v), where R(v) has positive
real roots v,. While Q(v) is obtained algebraically once H
is known, it is not so simple to determine R(v). So, even
though our path integral depends only on the sum of the
eigenvalues Trv, we cannot evaluate this sum in a simple
algebraic fashion from Q(v).

Moreover, we saw that in the time-dependent case the
form of G(T') in Eq. (4.52) explicitly depends on the details
of the symplectic transformation (at initial and final times,
in neighborhoods of which P is assumed to be constant), so
it would be useful to have expressions for components of C
in terms of the solution to this eigenvalue problem. To
obtain such an expression, we note that our original
coordinates on the phase space use the real basis vectors
" and &', given explicitly by

" 0
7 = ("’ ) g = < ) (4.58)
0 w"
where y" are our orthonormal basis vectors: (y"),, = &7,.
Then any vector z € R?V can be written as
N
2= (pa" + q."). (4.59)

n=1

This is simply a rephrasing of Eq. (3.40) with the mode sum
restricted to 1 <n < N. The phase-space basis vectors
satisfy

Jn" =§&, JE = —-n", (4.60)
and (x")Tn" = (&")T€ = 5™, while (x")7€" =0. In
terms of this real basis, the normalized eigenmodes of
A, Eq. (4.57), are simply

1
TOHIE). = (=), (461)

a_l(
"=

corresponding to eigenvalues +v, and —v,,, respectively.
The eigenvectors of A’, Eq. (4.56), are then given by the

Williamson transformation: #'* = Cy* and #'** = Cy**.

Introducing the new basis 7/* and €“ such that

n/a — L (”/a _|_ ig/a) n/a* — i (n/a _ itg—/a) (462)
V2 V2

we have

7t = (Clwa > ,
Gy
in terms of the block components of the Williamson

transformation. Since the Williamson transformation is
symplectic, it follows from Eq. (4.62) that

. C21//”>
4@ — 4.63
& < Cap (4.63)

(E/a)Tjn./b — 5ab’ (g/a)Tjg/b =0 (n./a)Tjﬂ/b — 07
(4.64)

as well as

(f/“)THE/b — (”/a)TH”/b — Vaéab’ (g/a)THn./h =0.
(4.65)

Hence the transformed basis diagonalizes the Hamiltonian,
as displayed in Eq. (4.24).

Conversely, if we obtain the complete set of normalized
eigenvectors of A’ = iJH, we can extract the compo-
nents of the Williamson transformation. First, we take real
and imaginary parts to get 7’ and € according to
Eq. (4.62), and then from Eq. (4.63) we infer

Crlta — ( )Tn./a’
Cfm _ (En)T /a’

Cga — (n.n)Tg/a’
Cza — (§n)T§/a'
The normalization condition that must hold on the primed

vectors is Eq. (4.64), which is equivalent to the following
for the eigenvectors of A’:

)T m”

In order to compute the combinations D, and D5, that
appear in G, Eq. (4.52), it is more convenient to work with
the complex vectors 7/*. Comparing Egs. (4.50) and (4.66)
we find that

(D) = (@), Dy = (€)',

Having reviewed the setup of the eigenproblem for a
general Hamiltonian, we now turn to our main interest, the
Hamiltonian in Eq. (3.43). The operator A’ takes the form

(4.66)

— 5ab, (n/a)T(ij)n/b* =0. (467)

(4.68)
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A= i(fj _;C > (4.69)

so that the eigenvalue problem is

__ZgT '—’C Ja Ja
(B () ().
M B m m

Using the second row, we solve for #/?,

7' =-MT1B+iv, 1)y, (4.71)

and we plug this result into the first row to obtain

Adgls =0, (4.72)

where the operator A? is

A=K -B" M 'B+iv,( M B-B' M) -12ZM"L.
(4.73)

The computation of (A%),,, is straightforward, remem-
bering that IC,,,,, = (w,,|Kw,,), etc., where M, BB, and K are
as given in Eq. (3.38). We make repeated use of the
completeness of the {|y,)} in the form ) o [w,){w,| =
T — |wo)(wol, and there are several remarkable simplifica-
tions. For example, one finds that

=/ =/
(M) = Sun = %. (4.74)
Notice the lack of any dependence on the static zero
mode |y). We also drop boundary terms from integration
by parts involving @' (+L/2) for the same reasons as
were discussed after Eq. (3.38). We find that (A%),,, =
(Wil A%ly,), with

Aa — Aa +

loc

’

260" = ' + i, @) (287" — &' + iv,§|
(@'@")

(4.75)
where the local part of the operator takes the form
A = —(1=P)VR + V(@) + 2ipr,0, — 12 (4.76)
In order to find an 77" that solves Eq. (4.72), it is sufficient

to find |#75) satisfying A“|r5") = Oand (w,|1y') = Obecause
such a vector satisfies

s =Y () alwn)

n#0

(4.77)

and

0= (Wl As) = (Wl Aw) (), = (AD),,,, (1) .-
n#0

(4.78)

with (175"),, the components of 775*. Note that (1), and (75"),
are precisely the matrix components (D1,)"* and (D34)"*
appearing in Eq. (4.68).

To proceed further we now restrict ourselves to the case
of constant P, where ¢’ is time independent and

260" + iv, @) (2P + v, |

AC = AC 4 A
(@'19")

loc

(4.79)

Inspired by [9], we will now find the requisite |175") and
v, explicitly. To get to the result, it helps to consider the
fp — 0 limit in which there are three simplifications:

. = . . . . .. -/ _ #
(1) ¢ = ¢y is the static soliton solution, (ii) @' = N4l
and (iii)
a 2
At = =3+ Vi) (o) A1 = lyo) wol). (4.80)
Comparing this to Eq. (2.18) we recognize a familiar
problem, and the solution is simple: |#}') = |y,) for

B #0, and v, = w,. Notice also that A% annihilates |y)
for all v,. Indeed, viewing the operator as a rank-1 modi-

fication of the local operator, AL = —32 + Vi (¢hy) — 12,
we find that the vector providing the modification is in the
image of the local operator. Specifically, Af |yq) =
—v2 ). Using this and (yo|AL |wo) = —v2, we can write

Eq. (4.80) as

_ Afloch//0> <WO|Alaoc

A = A¢
(wol Afoe lwo)

loc

, (4.81)

This makes it clear that the general solution is [y,) + ¢,|yo),
but orthogonality to [y) sets ¢, = 0.
Remarkably, even in the case S # 0, the ket that

appears in A¢ — Af _is in the image of A{! .. Namely, since

—(1=)" + V(@) =0,

iv,|2B8" + iv,@') = AL |@'). (4.82)

and therefore

(@|Afel?") = —vi@'19"), (4.83)

where again we drop boundary terms involving @' (£+L/2).
Hence, up to terms exponentially small at large L,

A? = AG — Alaoc|(t_01> <¢/|Aﬁ)c

P ARle)

making it clear that A“ annihilates |@') for any v,,.

(4.84)
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Hence our task is now clear. If we can find modes |y, )
that are annihilated by A{ , then they are annihilated by A¢
as well. Furthermore, we can then subtract off a multiple of
|¢') and still have a solution: |175") = |y,) — ¢,|@’) will be
annihilated by A“ for any constant ¢,. The coefficient c,, is
fixed by requiring orthonormality of |#5') with |y). Hence
our solution will take the form

<W0|Wa> |§_0/>,

ol (4.83)

n5') = lwa) =

where |y,) must satisfy A{ |y,) =0 with appropriate
boundary conditions at p = +L/2.

Since Af ., Eq. (4.76), is a natural generalization of the
corresponding operator with # = 0, the spectrum will vary
smoothly with $ and it makes sense to seek an ansatz for
lyw,) that is based on eigenmodes of the static fluctuation
operator, Eq. (2.18). We define a boosted and plane-wave

dressed function

valp) = Nal/?a( %) exp {iﬁ ’\%ﬁ___ﬁ’;")}, (4.86)

where N, is a normalization constant, and we remind the
reader that the parameter p, is fixed by the constraint on the
background solution: (y|@ — ¢pg) = 0. Here y,(p) solves
Eq. (2.18) with frequency @,. We have introduced the tilde
(@’s and @’s) since we do not assume that the i, satisfy the
same boundary conditions as the y,, at the edges of the box.
The questions of boundary conditions and normalization
will be addressed momentarily. We then observe that
Ajw,, = 0 if we choose p, = @,, and we set

v, =1\/1-pw,.

The boundary conditions on y, and the normalization
constant N, must be determined from the orthonormality
condition (4.67). From Egs. (4.71) and (4.85) we find that

() = (Walnt), with

(4.87)

o — (35 41 Pl o)
|771 > - (ﬂap + a)|l//a> + <l//0|§_0,>

= _Bap"]lza> - il/a|‘//a>v (488)

where we use (289" + iv,@'|y,) « (AL @ |w,) = 0. Then,
on the one hand,
W) I " = —i((n ) = (5 n))

L/2
= / dp{(vy + vp)wiws
L2

+iB(Owi)ws —widws)},  (4.89)

while, on the other hand,

L/2
0= / » dp{wi (AL wy) — (AL ) Wi}

L2
— (va—w3) / dp{(va + vy)Wiws
—L)2

+iB((Owi)ws —wadwy)}
+ = {(1 =) (a0 — (O )ws)

= B+ ) i)}

o (4.90)

Here, as usual, we drop boundary terms in Eq. (4.89) that are
exponentially small in L, but we cannot drop the boundary
terms in Eq. (4.90): for those y, with a corresponding to
scattering states, the y, behave asymptotically as plane
waves, and these boundary terms are O(1).

Comparing the two results, we see that if a # b,

G W = s (1= )0 = (D)
=Bt @91

Hence the J orthogonality condition for the #'* will hold if
we choose, e.g., periodic boundary conditions for y,(p).
Given the plane-wave dressing factor in Eq. (4.86), this
translates into the following boundary condition for the ,,:

o P +L—
=y Whereﬁizzipo

V-3

(4.92)

Note this means that the scattering wave functions 7, will
need to be taken as complex, behaving asymptotically as
plane waves rather than sines and cosines. This result
generalizes and provides a different perspective on the
boundary conditions employed by Jain [28] in his calcu-
lation of the one-loop correction to the relativistic soliton
energy for ¢* theory. That calculation will be revisited in
Sec. IV E. Here we see that the boundary conditions arise
from demanding that the transformation from old to new
phase-space coordinates is symplectic.

Since the boundary conditions on the vy, are different
from those on the y,, the spectrum of eigenvalues is
different: {@,} # {®,}. The @, depend on f through the
boundary conditions and as # — 0 the boundary conditions
coincide. Hence we may write @&,=d,(f), with
@,(0) = w,. An analogous statement holds for the wave
functions. The bound state spectra will be practically
identical at large L, differing by terms of O(e="%).

Returning to Eq. (4.89), if a = b, then we find that

) (T )M =2w,, / dpy . (p) wa(p)

=2u,0\/1=N%2=2a,(1-F*)N3. (4.93)
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Hence the normalization constant is taken to be

1
V20,(1-F7)

In summary, we have provided a complete solution to the
diagonalization problem in the constant P case, up to
corrections to the spectrum and eigenvectors that will
vanish exponentially fast in mL as the box size L — oo.
The eigenvalues are Eq. (4.87), and the eigenvectors are
Eqgs. (4.85) and (4.88) with Eqs. (4.86), (4.92), and (4.94).
The relativistic spectrum is a classic result going back to
[9]. However, as far as we are aware, this is the first time the
normal modes have been obtained within the constraint
formalism of [10]. The two most important results for the
final subsection are the spectrum (4.87) determined through
the boundary conditions (4.92).

N, = (4.94)

E. The one-loop correction for constant P

The results of Secs. IV C and IV D can be summarized
by saying that the one-loop correction to the soliton
effective Hamiltonian in the case of constant P is

1 <N .
HOP =23 o, + / dpV s (@), (4.95)

where 7 = (1 — %)~'/2 is the Lorentz factor and the @, are

N nonzero-mode eigenvalues of —92 + V(()z) (¢o(p)), acting
on functions v, of p € (—=L/2,L/2) that satisfy the
boundary conditions (4.92). This result holds for the theory
in the box, up to corrections of order ™. Vs, »(p) is the
one-loop mass counterterm, obtained from renormalization
in the perturbative sector, evaluated on the boosted-soliton
solution @(p) = ¢o(7p).

If our goal were to study the cutoff theory in the box,
then the remaining tasks would be to relate the total number
of modes, N, to the momentum cutoff implicit in V2,
specify which modes we are including, and say something
more precise about the O(e™L) corrections. Our goal,
however, is not to study the cutoff theory in the box; rather,
it is to study the continuum theory on R. In this case we
need not worry about the O(e~"L) corrections, but we have
a different problem: neither the L — oo nor N — oo limit of
Eq. (4.95) exists. The trained quantum field theorist is not
perplexed. This is to be expected since we are accounting
for the ground-state energies of infinitely many degrees of
freedom. This overall energy is meaningless in quantum
field theory. In contrast, only the differences between each
mode’s contribution to the energy in Eq. (4.95) and that
mode’s contribution to the unobservable vacuum energy are
meaningful.

The latter arise from the vacuum to vacuum transition
amplitude, (Q|Z|Q), which the matrix elements in
Eq. (2.9) should have been normalized by. Having

suppressed this factor in Eq. (2.9), we also suppress it in
our definition of the soliton effective Hamiltonian,
Eq. (2.28). Now we make it explicit, rewriting Eq. (3.6) as

e—ifdzHen.[P] — m/[DqDDWDﬂDU]‘PO[(p(If,p)]*

X Wolo(t e /1P 4.96)
with Hy still given by Eq. (3.6). At one loop, the vacuum
|Q2)) is the state annihilated by all of the annihilation
operators in the perturbative sector. Hence a computation
analogous to Eq. (4.32) shows that

(QIZ]1Q) = exp {—%‘TZN:(I);SO) + O(gz)}, (4.97)
n=0

where the a)f,()), 0 <n <N, are the lowest N + 1 frequen-
cies of the perturbative modes in the box. Specifically, the

(o(),(1(]))2 are the eigenvalues of —92 + V(()z)(((qﬁ))) acting on
functions satisfying periodic boundary conditions at
x==+L/2. We consider N+ 1 degrees of freedom in
the perturbative sector because that is how many we are
considering in the soliton sector: one collective coordinate
and N perturbative fluctuations around the soliton. Our
conventions are that modes are uniquely labeled by their
index, so for the free modes there is a twofold degeneracy

in the spectrum for n > 0: a)f)o) < a)(10> = wgo) < a)gO> =

w -+ -. Hence 1nstead o . . what we rea ave 18
{9)'..... Hence instead of Eq. (4.95) wh ly have i

1 3 _
HGIP =53 (7', = 0”) + [ dpVan(@). (498)
n=0

and the notation @, indicates that there is an identification
between the two sets of modes that remains to be
determined. In particular, one of the @’s will be the zero
mode (or what becomes the zero mode as L — o), and we
have freely extended the sum over the @’s to include the
would-be zero mode since its value is O(e™™L).

The N — oo limit, followed by the L — oo limit, of
Eq. (4.98) should now exist. In fact, this computation was
carried out for the relativistic kink in ¢* theory in [28]. We
revisit the calculation here since some steps are different.
The reason is that [28] is based on the operator formalism
of [9], which does not obtain the soliton-sector Hamiltonian
through a quantum canonical transformation as in [10,11],
and so treats the soliton momentum differently.25 For
brevity we restrict ourselves to ¢* theory. A more general
analysis will appear elsewhere.

»The one-loop correction to the relativistic kink energy,
without an account of regularization and renormalization, was
also treated in a Becchi-Rouet-Stora-Tyutin formalism in [39].
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The field theory potential, V(¢), and soliton solution,
¢o(p), are given for ¢* theory in Eq. (2.4), with the
replacement my — m, as discussed around Eq. (2.6). The
potential for the quantum mechanics problem determining

the normal modes, V0 (qbo( )), is the £ = 2 member of the
Poschl-Teller family. For the theory on R, there are two

bound states—one with @ = 0 and one with @ = \/gm

There is a continuum of scattering states, which can be

labeled by k € R, with @(k) = Vk*> + 2m?*. Hence for
k # 0 there is the usual twofold degeneracy in the energy
spectrum. The special scattering state at k = 0 is sometimes
referred to as a “half bound state,” or “resonance.”

The Poschl-Teller potentials are reflectionless, such that
the transmission coefficient is a pure phase, ¢°*). The
phase shift for the £ = 2 model has derivative

d 2f< 2k2m ) (4.99)

For incoming waves from the left, one has y; (p — —o0) =
e and y, (p = +o0) = ek while for incoming
waves from the right, one has yg(p = —o00) = e~k +ok)
and wg(p — +o00) = e~*. If we consider left and right
modes separately, we should restrict ourselves to k > 0, and
then §(k) is uniquely determined by continuity once we
take the conventional boundary condition §(c0) = 0. It is
convenient, however, to define the right-incoming waves as
left-incoming waves with k < 0. Then we define §(—k) =
—6(k) and have a single mode for each k € R with the
phase shift given by

(k) = =27 + 470 (%)

-2 (arctan ( \/gm) + arctan <%) > . (4.100)

where ©(x) =0 for x < 0 and O(x) =1 for x > 0. This
5(k) satisfies 5(k — +o0) = 0. The transmission coeffi-
cient is smooth through k = 0 since the discontinuity of d is
an integer multiple of 2z. Indeed, the value §(0) = 27 is
predicted by Levinson’s theorem.*

For the theory in the box we must impose the boundary
conditions (4.92) on these scattering wave functions. For
large mL such that the above asymptotics apply, this leads
to a quantization condition determining the allowed wave
numbers k = k;:

*Reflectionless potentials in one dimension are special cases
of “exceptional potentials,” defined by the property of having a
resonance at k = 0—a nontrivial solution in the continuous
spectrum. For such exceptional potentials, Levinson’s theorem
gives 5(0) = zny, where ny, is the number of bound states. See
[40,41].

7<ks N 2m2>L +6(k,) = 2zs

for s € Z. The form of this condition can be used to identify
the correspondence between perturbative modes and sol-
iton-sector modes by considering k,>>m so that
5(ks) — 0, and the effects of the potential can be ignored.
We then find that

(4.101)

- 1+p 2rs

LRk =4[5 kT (4.102)

where the top (bottom) sign is chosen for k positive
(negative). The prefactor is precisely the relativistic
Doppler shift due to the fact that we are working in the
moving frame of the soliton. Indeed, the term proportional
to L in Eq. (4.101) is simply the Lorentz transformation of
the momentum back to the lab frame. Hence we see that the
modes labeled by momentum k; should be identified with
the perturbative modes labeled by momentum ¢, = 2”5.

As we decrease k, the effects of the potential become
important, and we know that two of the modes must be
captured by the potential and become the bound states
when L — oo. We plot §(k) and a set of the

vy (k) =275 — 7<k+ﬁx/m)L

for several s, for three different values of the velocity /37 in
Fig. 1. One can see that there are always two neighboring
values of s for which there is no solution to (k) = y,(k).
Let us define s, as the lower of the two integers for which
there is no solution and s; = sy + 1 as the higher of the two
integers. When =0 these integers are s, = —I1 and
s; =0, as pointed out in [42]. As ﬁ changes, however,
the value of s; (and hence sj) can jump. This is natural
since when  # 0 the mode energies are blueshifted or
redshifted, and the modes that have the lowest energies will
depend on 3. We can find an expression for s, by studying
the condition 0 <y, (0) < 2z. This gives

(4.103)

p7mL

rn

where [x] is the least integer greater than or equal to x. We
can conveniently use these two integers to label the bound
states: @, = 0 and @, = \/gm

We can now identify the mode sums appearing in
Eq. (4.98). We set N =2N, + 1, and we assume that
for any  and L, N > |s;| ~ mL. Then we set

s =0, (4.104)

ON,+1 Ny s
Sy =Y o)=Y <L> +2m?, (4.105)
n=0 s=—Njx
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FIG. 1.
f =1/10, and (right panel) § =

<§ Z)y/kg+2m2, (4.106)

s=—N, s=s;+1

where the k,; are the solutions to Eq. (4.101) so that
Eq. (4.98) is

1/1 )
Hé(f)f) [P] = 5 (?SNA - S,(\?/)\> + / dpV s, (@). (4.107)

To understand the meaning of N ,, consider the sum over
the 2N, + 1 lowest perturbative frequencies. The largest

momentum, ¢, in the sum has |g| = 2”N LA Hence we set

27TNA
L

A= (4.108)

and identify this with the UV cutoff from the perturbative
calculation of the mass counterterm. The condition
N, > mL is then simply the condition that A > m. The
one-loop mass counterterm for ¢* theory, evaluated on the
soliton background, is

Sm?

[ doVantoo) =5 [ anl(@y* - doo)).

5m2:—/ —_— 4.109
2 Jo VK* +2m? ( )

Using the explicit soliton solution, one finds that

/ dpV 52 (#(p)) —32{;" / m
:3\f_an<2A2>+0<m) (4.110)

4y m? A?

The remaining task is to evaluate the mode sums, at least
to sufficiently high order in m/A. We first use the Euler-
Maclaurin formula to convert the sums to integrals f ds,

AT A

AR

5(k) (in red) and y, (k) for various s plotted in units where m = 1. We set L = 10 and use (left panel) = 0, (center panel)
1/2. The dashed green curve is the s = 0 curve yg(k).

then change variables to turn them into integrals over the
momentum. For the Euler-Maclaurin formula it turns out to
be sufficient to keep the leading boundary terms,

- /} dsf(s) +

as the higher corrections vanish in the limits L, A — oo.
The sum over perturbative sector frequencies is then

L 2A2 11
SE\,)—A—FZ—(AZ—&-man(m )—i—m)—i—O(A L)

(4.112)

(f(s1) + f(s2)), (4.111)

For the soliton sector sum we apply the Euler-Maclaurin
formula to each sum in the last line of Eq. (4.106)
separately. The first step is to determine the values of k;
at the four boundary values of s. At large mL the inner
boundary values at s = sy —1,5; +1 can be found by

approximating 6(k) = £2x + O(k/m), for k — 0., which
results in
27 [ BymL. PymL 1
k - 0| —=),
s+l = <|- fﬂ \/_77,' + mL2

pymL ﬁymL

ko1 =21 ([\f,, Ve 1>+0(ﬁ). (4.113)

Meanwhile, for |s| > mL, |k;|/m will be large, and we can
solve Eq. (4.101) approximately by using the asymptotic
value of the phase shift:

5(k) :@+0(<%)3).

Defining Ay := k., , we find that

(4.114)

+A  7Bm? 2 1

7(1£B) A F A (LA)2>, (4.115)
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where we note the absence of an O(A®) term. From
Eq. (4.101) we have

1 do

—— 4.116
2 dk ( )

ds 7L, Pk
ak 22\ R +tom

and thus obtain

_ 3 11
SNA :Il +Iz+7A+\/§m+\/;m+0<K,z),

(4.117)

where
]_/L k.\-o—] A+ - B B
7, =2 + dk(ﬁkJr\/k +2m),
2m \Ja Koy
1 kg1 A ds
12:_</ ' +/ )dk\/k2+2m2—. (4.118)
27 A_ kx1+l dk

The integrals can be evaluated, using Eq. (4.99) in the
case of Z,. The results can be expanded for large A, L using
Egs. (4.113) and (4.115). The computation of Z; is delicate.
It is quadratic in A and proportional to L, so all subleading
terms we have displayed in Egs. (4.113) and (4.115) are
potentially relevant. The result is

yL 2A? 6v2 272
II:}/— A2+m2Ln 5 +m2—ﬂ— ﬂ:/.m
2n m yL yL

+0]1
A'L)

The evaluation of 7, is more straightforward. Since there is
no overall factor of L and the inner boundaries are O(1/L),
those boundary terms do not contribute and we can
integrate directly from A_ to A,. Since the integral is
logarithmically divergent, we need only the leading behav-
ior of A,. The result is

3V2m . [2A2 \F 11
T _ Ln(220) _ /2 —.2). (4120
: 2r n<m2> 3m+0(1\ L) ( )

Hence, at this order in the large A and large L expansion,
the soliton-sector mode sum contains two groups of terms
those proportional to 7 and those independent of f:

_ L ) ) 2A? 5
Sy, =V {A+ - | A" +mLn(— | +m
A 2r m

) (L)

m
11
o(—.—).

(4.119)

(4.121)

The terms proportional to ¥ are precisely the perturbative

mode sum, so these terms completely cancel out of the

difference 7' Sy, — SE\?A) , leaving

2
F sy, - ) = - 22 (20)
+ (1_3>m+0<1 1)
2V6 V2] 7 AL
(4.122)

for the difference that appears in Eq. (4.107). The remaining
logarithmic divergence in Eq. (4.122) cancels against the
mass counterterm. The limits A — oo and L — oo can now
be taken, leaving the finite result

MM

(0) —1
H[Pl=%"16M = , 4.123
e [Pl =7 P ( )
where
1 3
M=|——-——=|m 4.124
<2\/6 m/i) ( )

is the one-loop correction to the kink mass first computed in
[S]. This result, together with Eq. (3.30), are consistent with
the expansion to O(g°) of

H[P] = \/ P>+ (Mo + 6M)*. (4.125)

V. APPLICATION AND OUTLOOK

In this paper we carried out the saddle-point approxi-
mation to the soliton effective Hamiltonian, Eq. (4.96).
The novelty of our computation is that we made no
assumptions about the time derivatives of the soliton
momentum. The tree-level, or O(g~?), contribution to
the effective Hamiltonian is given in Eq. (3.29). The
one-loop, or O(g"), contribution is given in Eq. (3.44) in
terms of a quadratic fluctuation path integral, Eq. (3.45).
Results for that integral were obtained in Sec. IV C in terms
of classical quantities associated with the quadratic fluc-
tuation Hamiltonian: block components of the classical
evolution operator and of the Williamson transformation
that diagonalizes the quadratic fluctuation Hamiltonian at
initial and final times.

In the absence of insertions or external sources, trans-
lation invariance implies that the soliton momentum is
conserved, P = 0. Lorentz invariance then guarantees that
the soliton effective Hamiltonian must reduce to the on-

shell relativistic energy, v P> + M?, with M the quantum-
corrected soliton mass. We verified that our results,

restricted to the case P = 0, reproduce the tree-level and
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one-loop contributions to the relativistic energy, where we
specialized to the case of ¢* theory for the one-loop
contribution.

In Sec. IIC we showed how the leading semiclassical
behavior of soliton form factors—that is, matrix elements
of quantum field theory operators between initial and final
, )—reduces to a matrix element in the
collective-coordinate quantum mechanics. The quantum
mechanics is governed by the one-loop approximation to
the soliton effective Hamiltonian,

HeulP] = Hy[P] = HG [P+ H[P].  (5.1)
If one wishes to obtain results for the semiclassical form
factor that are valid for momentum transfers of order the

soliton mass, P, — P; ~ O(M), then it is necessary to work

with the time-dependent Hgf) and Hé(f)f) obtained in this
paper.

A shortcomlng of the current work is that fully explicit
results for H, iff )[ P] and HY off [ | hinge on having an explicit
solution to the forced soliton equation (1.1). This is a
second-order quasilinear hyperbolic integrodifferential
equation. It generalizes the one obtained in [10] for
constant P to the case of arbitrary P(r). We do not currently
have explicit solutions beyond those for constant P.

Nevertheless, H [P] does have one redeeming feature
that enables us to carry out the final quantum mechanical
path integral in Eq. (2.31)—namely, it is independent of X.
This is a consequence of the translation invariance of the
underlying theory, and it allows us to obtain an explicit
expression for the semiclassical soliton form factor in terms
of a generating functional constructed from H[P]. We
describe this result next.

A. The generator of semiclassical soliton form factors

Equation (2.31) may be stated in the following way:

(¥, |0 @] Wp ) =(Ps|O[P.X]IPH(1+0(9)). (5:2)

for a Weyl-ordered operator O, [P, X]. The matrix element
on the right is computed by the quantum mechanical path
integral with respect to the Hamiltonian H¢[P] and an
insertion O, [P, X| of phase-space variables

O [P, X] = Olz, $]. (5.3)
The second argument of O on the right-hand side of
Eq. (5.3) is ¢(t.x) = p(t,x — X(t)), where @(t,p) is a
solution to the forced soliton equation, Eq. (3.20), satisfy-
ing the constraint (3.21), and is thus a functional of P.
Meanwhile, the expression for the first argument, 7(7, x),
follows from Eq. (2.22) evaluated on the solution to the
forced soliton equation with the aid of Eq. (3.22):

PR
#(1.x) = (—w@> )w X(0) + (1% - X(1).

(5.4)

with @ (1, p) = p(t.p) — B(@' (t.p) = (wol@ wo(p)).
We thus consider the matrix element

<<Pf|ﬂ X]|P:) —/[DXDP] i(PiXi=PsXy)

<o [ ar(pi-.ie) brie.x,
| (5.5)

for any Weyl-ordered operator f[P,X]. This leads to the
definition of the generating functional

pr,P, (K, {F,x}]

= zi / [DXDP)e!PiXi=PX;)
T

X exp {i[" df'(PX — Hi[P] — KP — F(x — X))},

(5.6)
in terms of which
(P (P.x=X)|P:)
.6 .0
= (f [1(%,1(%] Fp,p, [K,{F,x}]) ‘ro (5.7)

This generating functional will allow us to compute the
leading-order-in-g behavior of matrix elements of local
operators @[fr g?)] in Eq. (5.2) defined at a single spacetime
point (7,x). One can generalize to consider insertions at
multiple points (¢,,x,) by introducing additional pairs
{x,, F,}. We refer to F as the generator of semiclassical
soliton form factors.

The usefulness of this formulation is that the path
integral defining the generating functional can be evalu-
ated. As with the integral over the field theory fluctuations,
we implicitly employ midpoint discretization, dividing the
interval (#;,¢;) into N, subintervals of length e with
N,e =T. X integration variables are defined at the grid
points: X, = X(t; + ke) so that X, = X; and Xy = X,.
Momentum variables are defined at the midpoints: P, =

P(1; + k(e —3)) for k=1,....N,. Then the path integral
measure is

(5.8)

[DXDP] = (H ka> (H dP").

The dependence of the integrand of F on X, is a pure plane
wave, so integrating out all X variables produces N, + 1
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delta functions which can then be used to carry out the P
integrations. Together, the & functions enforce Newton’s

second law: §[P — F]. Since there are N, + 1 X integrations
but only N, P integrations, there will be one delta function
left over, which enforces the impulse-momentum theorem:
S(Pp—P; - f;‘f F(¢)dt'). The latter can be used to sim-
plify the x dependence of the resulting expression. Hence
the result of the phase-space path integration is

te )
Fﬁﬂm%FJH:5QV_E_/nﬂﬂm>fﬂ%Mx
1

i

X exp {—i [f dt' (H[P] + KP)},
| (5.9)

where all F dependence is contained in P(¢) obtained as a
solution to the second law. In the presence of the delta
function imposing the impulse-momentum theorem, we
can give the following useful expression for P(#'):

P() =5 (Pt Py) ([ —[‘f>sz<f). (5.10)

This expression extracts the average value of F from the
integral by utilizing P;. We then note that
SP(t)
SF (1)

(Opn (7' = 1) = O (1 = 1)), (5.11)

N =

where the “half-maximum” step function satisfies®’

0, z<0,
Oum(z) =4 1/2, z=0, (5.12)
1, z > 0.

The key simplification that follows from Eq. (5.11) and is

valid under the impulse-momentum theorem delta function
is that 55 = 0.

In order to apply Eq. (5.9) to evaluate the semiclassical
form factor, Eq. (5.7), we need to investigate the functional
derivatives of F with respect to K and F. The implicit
dependence of F on F contained in H ;. through the solution
to the forced soliton equation with P = P() is complicated.
The dependence of F on K, though, is rather simple and

allows for an explicit evaluation of all K derivatives.
Consider the derivative of the term [ df'K(¢)P(r).
Using Egs. (5.10) and (5.11) we obtain

“"To understand the appearance of ©y,,, note that for any
positive ¢ and some test function f(z) we have [} dt5(r)f(1) =

12, dté ()£ (1) = £(0)/2.

:%/titf dl/K(ﬂ)((Ghm(l/—t)—@hm(t—t/)). (513)

Using either of these we find that the mixed second
derivative vanishes,

i I -
m [ CAUK(NP() =0, (5.14)

as do all other second-and-higher-order derivatives. Hence
we have that

<L/tf dl/K<t/)P(t/)>
SK(1)"5F(t)" /., K=F=0
_{%(P,»—Q—Pf), m=1landn =0,

0, otherwise.

(5.15)

It follows that acting with K derivatives on F simply
brings down powers of %(Pl- + Py) such that Eq. (5.7)
becomes

(PsIf(P.x = X)|P)

= (o il el r.0)

—_—

’

F=0
(5.16)

where

t
fPf,Pj [0’ {F’ x}] = 5<Pf _ Pi _ / ! F(l’)dt,) e—i(P_f—P,')x
14

tr _
X exp {—i/f dt’HSC[P]}.
4

This result is of great practical value since it means that for
phase-space functions of the form f = O[z, ¢b|, we can use
the constant P = %(Pi + Pj) solution for ¢ to construct

7.¢. Thus the differential operator f[}(P; —|—Pf),i%(t>]

appearing on the right-hand side of Eq. (5.16) will be
known explicitly, provided that the standard soliton sol-
ution is known: @(p) = @o(7(p — po)). Here 7 is the
Lorentz factor expressed in terms of the momentum,

[ (P ey
r= M, )

Equation (5.16) is as far as we can go in general without the
explicit solution to the forced soliton equation for
P = P(t). Next, we show that Eq. (5.16) reproduces known

(5.17)

(5.18)
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results in the low momentum transfer limit, with k =
P, — P; satisfying |k| < M,.

B. Semiclassical soliton form factors
at small momentum transfer

Let us consider the P expansion of a solution to the
forced soliton equation, Eq. (3.20). Viewing the forcing
term as a perturbation, the leading-order solution will be
the boosted-soliton profile with a boost parameter given
in terms of the momentum P. (Time derivatives of
this function will be small and can be grouped with the
forcing term as part of the perturbation.) We can then use
our complete knowledge of the diagonalization of the
linearized problem around a constant P solution to deter-
mine the first perturbative correction proportional to P.
This first perturbative correction will contribute to the
soliton effective Hamiltonian starting at O(P?)—either
from quadratic terms in the perturbation or from linear
terms in the perturbation multiplied by the first-order P
correction to the quadratic fluctuation Hamiltonian, 7H.
Therefore

H[P] = \/ P? + M? + O(F?).

(5.19)

(TP =20i) = (1[5 2 2y

%(0] 5(Pf P, - /t,.tf F(t’)dt’))

: . P, —P;
—i(Py—P;)x ,—iE;,T 1 19) f ! .
X e e ( + ( M,

The v/ P?> + M? term can also be expanded in F using

iy 0H,
HSC[F]:HSC[FZO}—F/ dt) —/—

t; 5F(t1) F(tl)

+ O(F?). (5.20)
Since H depends only on F through P, and given the forms
of Eq. (5.19) and the derivative (5.11), it is clear that the F
expansion of H[P] is also an expansion in M~!. Hence the
leading order term in the nth F derivative of the generating
functional (5.17), at small momentum transfer, will be
given by allowing all F derivatives to act on the delta
function factor:

57[
——Fp. p |0, F,
<5F(t)n ol X]> F=0
o /ff ))
=70\ Ps—P;— | F(!)dl
(seqo(ps == [ Fa )|
) ) P,— P,
~i(Pi=P)x o=iET (1 L O f i
X e e ( + (7M0 s

where the final phase came from —i [, df' Hy.[F = 0] =
—iE;T. Since E; = E to leading order in (P, — P;)/M,,
we can write this factor as e'%ii=£'s making it clear that it
is the usual normalization associated with asymptotic
states, as likewise appears in Eq. (2.33). Hence we have

(5.21)

F=0

(5.22)

The form of this result becomes clearer upon considering the Fourier transform with respect to x:

/ dxe™ (Ps|f(P.x = X)|P;) = (f B (P; + Py). —i%] 5<k - [ v F(t’)dt’))
x (22)e"ET5(k — (P; - P,)) (1 Lo <_> > ,

F=0

k
(5.23)
M,

where we use %(:) f,t‘f dr'F(¢') = 1 so that the %(t) can be replaced with — dik. Now we claim that the quantity in the first line

of the right-hand side is the Fourier transform of f [% (P; 4+ P).x]. To see this, consider its inverse transform:

/;i—ie—ikx (f E(P,-%—Pf),—i%]é(k—/irf F(t’)dt’))

%6 k— tht’dt’
fale- [ )

= [ty i pa] e

F=0

1 |1

1 d ‘
— Pi +P;),i— —zkx)
i)

2w 2

(5.24)

Transforming both sides back then gives the desired relation. Hence we have arrived at
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/ dre (P (Pox = )Y

=5(k—(P;— P,-))e—"EfT{/ dxe™ f B (P; + Pf),x} }

(o))

For the case of the basic field variable itself, f[P, x] =
¢(P.x) = p(yx), with Lorentz factor y = \/1 + (P/M,)?,
the first line on the right side of Eq. (5.25) matches what
was found in [20]. However, the analysis here makes it
clear that this result is only the leading-order result for the
semiclassical form factor in an expansion in k/M,. To
obtain an expression for the semiclassical form factor valid
when k ~ O(M,), one must instead use Egs. (5.16) and
(5.17), which requires solving the forced soliton equation
with a time-dependent P = P(t).

An interesting output of the result (5.25) is that the same
Fourier transform prescription gives the leading-order
behavior of a semiclassical soliton form factor at small
momentum transfer for any f[P,X] = Oz, ¢].

(5.25)

C. Future directions

There are several interesting directions for future work.

We close by listing some of them:

(a) If we are to gain a deeper understanding of soliton
form factors at arbitrary momentum transfer, then it
seems clear that we must tackle the forced soliton
equation head on. Any progress in this area—exist-
ence of solutions, solutions for a special class of P,
numerical exploration—would be helpful. Although it
appears to be a difficult problem, as we stressed in the
Introduction, the potential implications for our under-
standing of quantum field theory are deep. Refer-
ence [43] on well-posedness of the initial value
problem for general second-order quasilinear hyper-
bolic PDE’s appears to be promising for addressing the
question of the existence of solutions.

(b) A natural first step in a systematic approach toward
the forced soliton equation would be to examine

perturbative solutions for small but nonzero acceler-
ation. The results of this paper, including the complete
diagonalization of the linearized problem around a
constant P solution, leave one well equipped to
address this problem. Furthermore, the results would
be new and interesting. What is the general form of the
first higher-derivative corrections to Hy[P] for the
class of linear sigma models considered here? Is
there anything that distinguishes the integrable sine-
Gordon model from the nonintegrable ¢* model in this
regard?

(c) In the case of constant P, one could use the explicit
diagonalization of the quadratic fluctuation Hamilto-
nian to set up Feynman rules for perturbative compu-
tations around the boosted soliton. These rules should
yield manifestly Lorentz covariant results for S-matrix
elements in the one-soliton sector, order by order in the
coupling expansion.

(d) Finally, we would like to extend the analysis conducted
here to additional theories admitting solitons, especially
gauge theories. Gauge redundancy presents additional
complications for the analog of the canonical trans-
formation, Egs. (2.10) and (2.11). However, they are not
insurmountable, as shown in an early work of Tombou-
lis and Woo [44]. This important work needs to be
revisited in light of the more geometric approach to
gauge theoretic moduli spaces that has been firmly
established in the intervening time.

ACKNOWLEDGMENTS

We would like to thank Shabnam Beheshti, Jim
Crawford, Sergei Demidov, Jeff Harvey, Dmitry Levkov,
Arick Shao, and Edward Witten for discussions relating to
this work. I. V.M. is supported in part by NSF Grant
No. PHY-1914505. The work of C. P. is supported by Royal
Society University Research Fellowship UF120032 and in
part through STFC Consolidated Grant No. ST/P000754/1.
A.B.R. thanks Queen Mary University of London and
James Madison University for hospitality during various
stages of this project.

[1] R. Jackiw, Quantum meaning of classical field theory, Rev.
Mod. Phys. 49, 681 (1977).

[2] L. Faddeev and V. Korepin, Quantum theory of solitons:
Preliminary version, Phys. Rep. 42, 1 (1978).

[3] R. Rajaraman, Solitons and Instantons (North-Holland
Publishing Co., Amsterdam, 1982).

[4] R.F. Dashen, B. Hasslacher, and A. Neveu, Nonperturbative
methods and extended hadron models in field theory.

I. Semiclassical functional methods, Phys. Rev. D 10,
4114 (1974).

[5] R. F. Dashen, B. Hasslacher, and A. Neveu, Nonperturbative
methods and extended hadron models in field theory. II.
Two-dimensional models and extended hadrons, Phys. Rev.
D 10, 4130 (1974).

[6] J. Goldstone and R. Jackiw, Quantization of nonlinear
waves, Phys. Rev. D 11, 1486 (1975).

125002-29


https://doi.org/10.1103/RevModPhys.49.681
https://doi.org/10.1103/RevModPhys.49.681
https://doi.org/10.1016/0370-1573(78)90058-3
https://doi.org/10.1103/PhysRevD.10.4114
https://doi.org/10.1103/PhysRevD.10.4114
https://doi.org/10.1103/PhysRevD.10.4130
https://doi.org/10.1103/PhysRevD.10.4130
https://doi.org/10.1103/PhysRevD.11.1486

MELNIKOV, PAPAGEORGAKIS, and ROYSTON

PHYS. REV. D 102, 125002 (2020)

[7] J.-L. Gervais and B. Sakita, Extended particles in quantum
field theories, Phys. Rev. D 11, 2943 (1975).

[8] C.G. Callan, Jr. and D.J. Gross, Quantum perturbation
theory of solitons, Nucl. Phys. B93, 29 (1975).

[9]1 N. Christ and T. Lee, Quantum expansion of soliton
solutions, Phys. Rev. D 12, 1606 (1975).

[10] J.-L. Gervais, A. Jevicki, and B. Sakita, Perturbation
expansion around extended particle states in quantum field
theory, Phys. Rev. D 12, 1038 (1975).

[11] E. Tomboulis, Canonical quantization of nonlinear waves,
Phys. Rev. D 12, 1678 (1975).

[12] N. Manton, A remark on the scattering of BPS monopoles,
Phys. Lett. 110B, 54 (1982).

[13] A.K. Drukier and S. Nussinov, Monopole Pair Creation in
Energetic Collisions: Is It Possible?, Phys. Rev. Lett. 49,
102 (1982).

[14] C. Bachas, On the breakdown of perturbation theory,
Teor. Mat. Fiz. 95, 187 (1993) [Theor. Math. Phys. 95,
491 (1993)].

[15] S. V. Demidov and D. G. Levkov, Semiclassical description
of soliton-antisoliton pair production in particle collisions,
J. High Energy Phys. 11 (2015) 066.

[16] S. Cecotti and C. Vafa, On classification of N =2 super-
symmetric theories, Commun. Math. Phys. 158, 569 (1993).

[17] N. Seiberg and E. Witten, Electric-magnetic duality, mo-
nopole condensation, and confinement in N =2 super-
symmetric Yang-Mills theory, Nucl. Phys. B426, 19 (1994).

[18] Y. Tachikawa, N=2 Supersymmetric Dynamics for Pedes-
trians, Lecture Notes in Physics Vol. 890 (Springer, Cham,
Switzerland, 2015).

[19] T. Banks, Arguments against a finite N = 8 supergravity,
arXiv:1205.5768.

[20] C. Papageorgakis and A.B. Royston, Revisiting soliton
contributions to perturbative amplitudes, J. High Energy
Phys. 09 (2014) 128.

[21] G. Bossard and A. Kleinschmidt, Loops in exceptional field
theory, J. High Energy Phys. 01 (2016) 164.

[22] G. Bossard and A. Kleinschmidt, Cancellation of divergen-
ces up to three loops in exceptional field theory, J. High
Energy Phys. 03 (2018) 100.

[23] J. Williamson, On the algebraic problem concerning the
normal forms of linear dynamical systems, Am. J. Math. 58,
141 (1936).

[24] 1. V. Melnikov, C. Papageorgakis, and A.B. Royston,
companion Letter, The Forced Soliton Equation and Semi-
classical Soliton Form Factors, Phys. Rev. Lett. 125, 231601
(2020).

[25] A. Rebhan and P. van Nieuwenhuizen, No saturation
of the quantum Bogomol'nyi bound by two-dimensional
supersymmetric  solitons, Nucl. Phys. BS508, 449
(1997).

[26] C. Papageorgakis and A.B. Royston, Scalar soliton quan-
tization with generic moduli, J. High Energy Phys. 06
(2014) 003.

[27] J.-L. Gervais and A. Jevicki, Point canonical transforma-
tions in path integral, Nucl. Phys. B110, 93 (1976).

[28] P. Jain, Relativistic energy momentum relationship for a
soliton, Phys. Rev. D 41, 3273 (1990).

[29] A.S. Goldhaber, A. Rebhan, P. van Nieuwenhuizen, and
R. Wimmer, Quantum corrections to mass and central
charge of supersymmetric solitons, Phys. Rep. 398, 179
(2004).

[30] J. Evslin and B. Zhang, Well-defined quantum soliton
masses without supersymmetry, Phys. Rev. D 101, 065005
(2020).

[31] J. Evslin, The ground state of the Sine-Gordon soliton,
J. High Energy Phys. 07 (2020) 099.

[32] S.R. Coleman, Crossing symmetry in semiclassical soliton
scattering, Phys. Rev. D 12, 1650 (1975).

[33] J.-L. Gervais, A. Jevicki, and B. Sakita, Collective coor-
dinate method for quantization of extended systems, Phys.
Rep. 23, 281 (1976).

[34] J.-L. Gervais and A. Jevicki, Quantum scattering of solitons,
Nucl. Phys. B110, 113 (1976).

[35] C. Grosche and F. Steiner, Handbook of Feynman Path
Integrals, Springer Tracts in Modern Physics Vol. 145
(Springer, New York, 1998).

[36] V. Arnold, Mathematical Methods of Classical Mechanics
(Springer-Verlag, Berlin, 1989).

[37] R. Simon, S. Chaturvedi, and V. Srinivasan, Congruences
and canonical forms for a positive matrix: Application to the
Schweinler-Wigner extremum principle, J. Math. Phys.
(N.Y.) 40, 3632 (1999).

[38] Arvind, B. Dutta, N. Mukunda, and R. Simon, The real
symplectic groups in quantum mechanics and optics,
Pramana 45, 471 (1995).

[39] E. Aldabe, D. Bes, and N. Scoccola, Relativistic framework
for soliton quantization, Phys. Lett. B 304, 98 (1993).

[40] G. Barton, Levinson’s theorem in one dimension: Heuris-
tics, J. Phys. A 18, 479 (1985).

[41] T. Aktosun and M. Klaus, Small-energy asymptotics for the
Schrodinger equation on the line, Inverse Probl. 17, 619
(2001).

[42] H. Nastase, M. A. Stephanov, P. van Nieuwenhuizen, and A.
Rebhan, Topological boundary conditions, the BPS bound,
and elimination of ambiguities in the quantum mass of
solitons, Nucl. Phys. B542, 471 (1999).

[43] T.J. Hughes, T. Kato, and J. E. Marsden, Well-posed quasi-
linear second-order hyperbolic systems with applications to
nonlinear elastodynamics and general relativity, Arch.
Ration. Mech. Anal. 63, 273 (1977).

[44] E. Tomboulis and G. Woo, Soliton quantization in gauge
theories, Nucl. Phys. B107, 221 (1976).

125002-30


https://doi.org/10.1103/PhysRevD.11.2943
https://doi.org/10.1016/0550-3213(75)90150-9
https://doi.org/10.1103/PhysRevD.12.1606
https://doi.org/10.1103/PhysRevD.12.1038
https://doi.org/10.1103/PhysRevD.12.1678
https://doi.org/10.1016/0370-2693(82)90950-9
https://doi.org/10.1103/PhysRevLett.49.102
https://doi.org/10.1103/PhysRevLett.49.102
https://doi.org/10.1007/BF01017133
https://doi.org/10.1007/BF01017133
https://doi.org/10.1007/JHEP11(2015)066
https://doi.org/10.1007/BF02096804
https://doi.org/10.1016/0550-3213(94)90124-4
https://arXiv.org/abs/1205.5768
https://doi.org/10.1007/JHEP09(2014)128
https://doi.org/10.1007/JHEP09(2014)128
https://doi.org/10.1007/JHEP01(2016)164
https://doi.org/10.1007/JHEP03(2018)100
https://doi.org/10.1007/JHEP03(2018)100
https://doi.org/10.2307/2371062
https://doi.org/10.2307/2371062
https://doi.org/10.1103/PhysRevLett.125.231601
https://doi.org/10.1103/PhysRevLett.125.231601
https://doi.org/10.1016/S0550-3213(97)80021-1
https://doi.org/10.1016/S0550-3213(97)80021-1
https://doi.org/10.1007/JHEP06(2014)003
https://doi.org/10.1007/JHEP06(2014)003
https://doi.org/10.1016/0550-3213(76)90422-3
https://doi.org/10.1103/PhysRevD.41.3273
https://doi.org/10.1016/j.physrep.2004.05.001
https://doi.org/10.1016/j.physrep.2004.05.001
https://doi.org/10.1103/PhysRevD.101.065005
https://doi.org/10.1103/PhysRevD.101.065005
https://doi.org/10.1007/JHEP07(2020)099
https://doi.org/10.1103/PhysRevD.12.1650
https://doi.org/10.1016/0370-1573(76)90049-1
https://doi.org/10.1016/0370-1573(76)90049-1
https://doi.org/10.1016/0550-3213(76)90423-5
https://doi.org/10.1063/1.532913
https://doi.org/10.1063/1.532913
https://doi.org/10.1007/BF02848172
https://doi.org/10.1016/0370-2693(93)91406-D
https://doi.org/10.1088/0305-4470/18/3/023
https://doi.org/10.1088/0266-5611/17/4/304
https://doi.org/10.1088/0266-5611/17/4/304
https://doi.org/10.1016/S0550-3213(98)00773-1
https://doi.org/10.1007/BF00251584
https://doi.org/10.1007/BF00251584
https://doi.org/10.1016/0550-3213(76)90298-4

