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We present the saddle-point approximation for the effective Hamiltonian of the quantum kink in two-
dimensional linear sigma models to all orders in the time-derivative expansion. We show how the effective
Hamiltonian can be used to obtain semiclassical soliton form factors, valid at momentum transfers of order
the soliton mass. Explicit results, however, hinge on finding an explicit solution to a new wavelike partial
differential equation, with a time-dependent velocity and a forcing term that depend on the solution. In the
limit of small momentum transfer, the effective Hamiltonian reduces to the expected form, namely,

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
, where M is the one-loop corrected soliton mass, and soliton form factors are given in

terms of Fourier transforms of the corresponding classical profiles.

DOI: 10.1103/PhysRevD.102.125002

I. INTRODUCTION AND MOTIVATION

The description of soliton states in quantum field
theory—the foundations of which were laid out in the
mid 1970s—is a beautiful subject where basic notions of
quantum field theory operate in the background of exact
solutions to nonlinear differential equations; for popular
reviews see [1–3]. Two-dimensional models possessing
kink solitons hold a privileged position: one can do more
analytically, owing to the relative simplicity of working in
one spatial dimension and the absence of gauge fields.
For example, in a class of linear sigma models, including

ϕ4 theory and other nonintegrable models, the exact
canonical transformation of phase-space path integration
variables from the perturbative sector to the one-soliton
sector of the theory is known. This is a transformation
ðϕðxÞ; πðxÞÞ ↦ ðX;φðρÞ;P;ϖðρÞÞ, which extracts the sol-
iton collective coordinate X and its conjugate momentum P
as a single degree of freedom in the field theory. The
remaining field-theoretic degrees of freedom are collected
in a field φ and its conjugate ϖ containing fluctuations
around the soliton, in such a way that the transformation

preserves the phase-space measure. The coordinate ρ ¼
x − XðtÞ is comoving with the soliton. The Hamiltonian,
when expressed in the new variables, is nonlocal in space
and possesses an infinite set of higher-order vertices for the
fluctuation field, depending on the background soliton
solution [4–11]. The fluctuations can be expanded in
creation and annihilation operators, and the vacua of the
one-soliton sector, which are annihilated by all of the
annihilation operators and labeled by the eigenvalues of P,
are the one-soliton states of the theory.
In order to make use of the soliton-sector Hamiltonian for

practical computations, one typically employs two approx-
imations: the semiclassical approximation and the adiabatic
approximation. The semiclassical approximation is the
usual small coupling expansion, where the coupling, g, is
a parameter in the potential controlling cubic and higher-
order interaction terms. By a scaling argument, g2 can be
identified with ℏ. The adiabatic approximation, meanwhile,
treats time derivatives of the soliton collective coordinate as
small. It is the implementation in quantum field theory of
Manton’s approximation for time-dependent soliton solu-
tions [12] of classical field theory. In fact, it is common to tie
these two approximations together by assigning a particular
g scaling to time derivatives, ∂t ∼OðgÞ.1*melnikix@jmu.edu
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1There is good reason to do so. The static-soliton profile with a
time-dependent collective coordinate does not solve the time-
dependent field theory equations of motion. Keeping ∂t ∼OðgÞ
ensures that the resulting tadpole for the quantum fluctuation field
can be grouped with the interaction Hamiltonian and treated
perturbatively.
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One can formally define the soliton effectiveHamiltonian
Heff ½P� by path integrating over the field-theoretic fluctua-
tions. In principle the Hamiltonian can then be computed
perturbatively in both expansion parameters. At lowest order
in both, one recovers the standard relativistic energyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

0

p
, whereM0 is the classical soliton mass.2 In this

language the adiabatic expansion is a small momentum
transfer expansion, _P ≪ 1, while the small g expansion
provides quantum field-theoretic corrections.
With a few notable exceptions [13–15], and excluding

integrable theories where other techniques are available,
almost all work on solitons in quantum field theory has
been in the adiabatic or small momentum transfer limit. For
example, in supersymmetric theories where the solitons are
Bogomol’nyi-Prasad-Sommerfield states one can some-
times use nonperturbative techniques in g to recover the
quantum-exact mass MðgÞ ¼ M0 þOðg2Þ. Classic refer-
ences include [16,17], and a recent review may be found in
[18]. However, very little is known about solitons in
nonintegrable theories in the opposite limit of high
momentum transfer but small g.
Understanding the behavior of solitons in the high

momentum transfer regime, ΔP ∼M0, is extremely
important for certain foundational questions in quantum
field theory. For example, should one consider soliton-
antisoliton virtual pairs running in loops when one com-
putes quantum corrections to ordinary processes involving
perturbative particles? Naively the answer is yes, since
the optical theorem instructs one to sum over all inter-
mediate states. Less naively the answer is no, since
arguments based on a coherent-state picture of the sol-
iton-antisoliton pair indicate such contributions will be
exponentially suppressed in the coupling and hence
beyond the regime of applicability of the asymptotic series
in g, which perturbation theory provides for any given
observable.
However, other arguments [19,20] suggest that the

exponential suppression is governed not by the coupling
g2 per se, but by the ratio of the soliton’s Compton
wavelength to its size. For many theories this ratio is
essentially the same as g2, but there are notable exceptions
such as instanton solitons in five-dimensional gauge
theories and small black holes in supergravity. In such
cases one should ask: Is it possible that the contributions of
small-sized solitons running in loops are important for
perturbative processes? Recent computations suggest that
this is indeed the case [21,22].
The idea of [19] is to employ crossing symmetry to relate

the creation of a virtual soliton-antisoliton pair to an (off-
shell) process in the one-soliton sector of the theory in
which a soliton absorbs or emits a high momentum

perturbative particle.3 The amplitude for the latter process
is captured by a form factor—that is, a matrix element of
the scalar field between soliton states, ⟪PfjϕjPi⟫.
Reference [20] improved on previous work by making
the Lorentz invariance of the form factor manifest, a result
achieved by working with the boosted-soliton profile and
the relativistic effective Hamiltonian,Heff ½P�. However, the
computation in [20] still assumed a small momentum
transfer compared to the soliton mass, thus leaving specu-
lation about the regime of high momentum transfer open.4

In this paper we demonstrate that one can access the high
momentum transfer regime of solitons in two-dimensional
linear sigma models by working directly with the exact
field-theoretic soliton-sector Hamiltonian obtained in
[10,11]. By carrying out a saddle-point approximation of
the path integral over ðφ;ϖÞ in g—but working exactly
with the nonlocal terms—we will obtain a saddle-point
equation for the fluctuation field φ in the soliton sector.
With VðϕÞ the field theory potential, this reads

ð∂t − β½P;φ�∂ρÞ2φ − ∂2
ρφþ dV

dϕ

����
φ

¼ f½ _P;φ�; ð1:1Þ

where the generalized velocity β and forcing term f are
functionals of the soliton momentum P and the field φ:

β½P;φ�≔Pþ R
dρ _φφ0R

dρφ02 ; f½ _P;φ�≔−
_Pψ0R
dρψ0φ

0 : ð1:2Þ

Here ψ0 ¼ 1ffiffiffiffiffi
M0

p ϕ0
0 is the normalized zero-mode fluctuation

around the static-soliton solution, ϕ0ðρÞ, while dots and
primes are used to denote derivatives with respect to t and
ρ, respectively. In the limit of zero momentum transfer, in
which P is constant, the forcing term vanishes, and this
integrodifferential equation reduces to one obtained already
in [10]. It is solved by the boosted-soliton profile,
φ ¼ ϕ0ðρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
Þ, with β the soliton velocity related

to the momentum via P ¼ M0β=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
.

In Eq. (1.1), which we will refer to as the forced soliton
equation, PðtÞ should be viewed as a given function of
time, and therefore the solution φ is a functional of P.
Inserting this solution back into the field-theoretic soliton-
sector Hamiltonian then yields Heff ½P� at tree level in the
coupling g, but to all orders in the time-derivative expan-
sion. A solution φ to Eq. (1.1) can be thought of as a

2This is the result in the simplest two-dimensional models
where the only soliton collective coordinate is the position degree
of freedom, X.

3A cautionary remark is in order. Crossing symmetry is a
symmetry of the exact quantum field theory. Owing to the
possibility of Stokes phenomena, the semiclassical limit might
not commutewith the analytic continuation to the crossed channel.

4Indeed, Papageorgakis and Royston [20] did not fully realize
this in the earlier versions of the work. Clarifying this point has
been a significant motivation for this paper. Papageorgakis and
Royston [20] thank Sergei Demidov, Dmitry Levkov, and Edward
Witten for early related discussions.
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nonlinear soliton analog of the Liénard-Wiechert potential
in electromagnetism. A key difference is that the soliton
degree of freedom XðtÞ is not external to the full theory but
is governed by the effective Hamiltonian Heff ½P�.
Quantum fluctuations around a solution to Eq. (1.1) can

be treated in the usual perturbative manner.5 Integrating out
these degrees of freedom results in the one-loop and higher-
order contributions to the soliton effective Hamiltonian,
viewed as an expansion in g. In this paper we restrict
ourselves to the one-loop analysis. We manage to carry out
the relevant path integral over fluctuations in closed form,
giving the result in terms of classical data associated to the
quadratic fluctuation Hamiltonian. However, we eventually
must restrict to the case of constant P, where the saddle-
point solution to Eq. (1.1) is known, to carry the compu-
tation to completion.
Even in this case, we find a rather nontrivial quadratic

Hamiltonian to diagonalize for the fluctuations. Doing so
requires an extension to an approach presented in the
Appendix of the classic paper by Christ and Lee [9], and we
couch the analysis in the language of Williamson’s theorem
[23]. One output, which will be useful for higher-order
perturbative computations, is the explicit form of the
normal-mode fluctuations around the boosted soliton; these
satisfy an orthogonality condition with respect to the zero
mode of the static soliton.
Finally, we use the soliton effective Hamiltonian to

define semiclassical soliton form factors. These capture
the leading-in-g behavior of the corresponding soliton form
factors and are valid at arbitrary momentum transfer. We are
able to carry out the quantum mechanical path integral for
these semiclassical form factors and express the result in
terms of a generating functional. The generating functional
uses the soliton effective Hamiltonian, evaluated on a time-
dependent solution to the forced soliton equation deter-
mined by a source. The differential operator that acts on the
generating functional to produce the semiclassical soliton
form factor is constructed from a constant P background
solution and is thus known in terms of the classical soliton
profile. We demonstrate that our formula reduces to the
expected result, in terms of a Fourier transform of the
classical profile, in the low momentum transfer regime.
The rest of this paper is organized as follows. In Sec. II

we recall the canonical transformation of the phase-space
path integral that separates the soliton collective coordinate
and its conjugate momentum from the remaining set of
field-theoretic degrees of freedom, and we recall the form-
factor computations that motivated this investigation. The
resulting soliton-sector Hamiltonian is analyzed in Sec. III,
where it is shown that Eq. (1.1) arises as the saddle-point
equation for the fluctuation field around an accelerating

soliton with phase-space trajectory ðXðtÞ; PðtÞÞ. In Sec. IV
we set up and evaluate the saddle-point approximation for
the path integral over the field-theoretic fluctuations around
a solution to Eq. (1.1). In Sec. V we apply our machinery to
semiclassical soliton form factors. An investigation of
solutions to Eq. (1.1) beyond small momentum transfer
is left to future work, and we outline some potential
approaches at the end of Sec. V.
A summary of the results presented here appears in [24].

II. CANONICAL TRANSFORMATION TO THE
ONE-SOLITON SECTOR

We begin our discussion by setting up notation and
conventions, as well as briefly reviewing some of the
necessary background material.

A. Preliminaries

We consider the class of 2D linear sigma models with
classical action

S ¼
Z

d2x

�
−
1

2
∂μϕ∂μϕ − V0ðm0;ϕÞ

�
: ð2:1Þ

We assume that the minima of V0ðm0;ϕÞ are gapped and
associated with a spontaneously broken discrete symmetry.
The parameter m0 controls the mass gap to the perturbative
spectrum. Spacetime points are labeled by xμ ¼ ðt; xÞ, and
we work in signature ð−;þÞ.
If Mvac ≔ fϕjV0ðm0;ϕÞ ¼ Vming has multiple compo-

nents then there exist classical solitons called kinks. These
are finite-energy time-independent solutions to the equation
of motion,

∂2ϕ

∂x2 −
dV0ðm0;ϕÞ

dϕ
¼ 0; ð2:2Þ

that asymptote to different vacua as x → �∞. We denote
such a solution by

ϕ ¼ ϕ0ðm0; x − XÞ: ð2:3Þ

The free parameter X is the center-of-mass position of the
kink. Prototypical examples within this class, along with
their static classical solutions, are cf. [3]

ϕ4 theory∶ V0 ¼
1

g2

�
g2ϕ2 −

1

4
m2

0

�
2

;

ϕ0 ¼
m0

2g
tanh

�
m0ffiffiffi
2

p ðx − XÞ
�
;

sine-Gordon∶ V0 ¼
m2

0

g2
ð1 − cosðgϕÞÞ;

ϕ0 ¼
4

g
arctanðem0ðx−XÞÞ: ð2:4Þ

5It is necessary to eliminate 1 degree of freedom associated
with the zero mode from the fluctuation field δφ. There are
standard techniques for doing so, as we will review.
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In the ϕ4 model there are two classical vacua at
ϕ ¼ �m0=2g, while in the sine-Gordon model there is
an infinite sequence at ϕ ¼ 2πn

g , n ∈ Z. Expanding around
these vacua, one finds that the tree-level masses of the
fundamental particles, the “mesons,” are

ffiffiffi
2

p
m0 and m0 in

the ϕ4 and sine-Gordon models, respectively.
Note that both of the above potentials have the scaling

property V0ðm0;ϕÞ ¼ 1
g2 Ṽ0ðm0; ϕ̃Þ, where the function

Ṽ0ðm0; xÞ does not depend on g, and ϕ̃ ¼ gϕ. It is common
in the soliton literature [1,3,6] to make the additional
assumption that the potential is of this form, in which
case the action can be written

S ¼ 1

g2

Z
d2x

�
−
1

2
∂μϕ̃∂μϕ̃ − Ṽ0ðm0; ϕ̃Þ

�
: ð2:5Þ

Thus, the g expansion can be thought of as the (semi-
classical) ℏ expansion. We assume that the potentials we
work with in this paper have this scaling property.
In the quantum theory, bare and renormalized parameters

must be related through appropriate counterterms.
Perturbative-sector computations in these models reveal
logarithmic divergences only, which can be eliminated
through mass renormalization. The coefficient of the mass
counterterm, Δm2, can be computed order by order in
perturbation theory once a renormalization prescription is
given, and the one-loop contribution, δm2, participates in
the evaluation of the one-loop correction to the soliton
effective Hamiltonian.
A standard renormalization prescription can be made for

the class of linear sigma models discussed above where the
effect of the counterterms is such that the renormalized
potential, VðϕÞ ¼ V0ðϕÞ þ Vc:t:ðϕÞ, has the same form as
V0, but withm2

0 replaced bym
2 þ Δm2, wherem2 is a finite

renormalized mass, and the condition fixing Δm2 is that the
tadpole for the fluctuation field around the vacuum van-
ishes to all orders in perturbation theory. See [25] for a
fuller discussion. In the case of ϕ4 theory, for example,
this condition implies that the quantum vacua are at
⟪ϕ⟫ ¼ �m=2g. Using this condition, we will write the
renormalized potential as

VðϕÞ ≔ V0ðm0;ϕÞ þ Vc:t:ðϕÞ
¼ V0ðm;ϕÞ þ VΔm2ðϕÞ
¼ V0ðm;ϕÞ þ Vδm2ðϕÞ þ � � � ; ð2:6Þ

where the ellipsis denotes two-loop and higher contribu-
tions. Thus, the relevant background configuration for a
perturbative analysis of the quantum kink is

ϕ ¼ ϕ0ðm; x − XÞ: ð2:7Þ

This is the classical kink solution where the bare mass
parameter, m0, has been replaced by the renormalized

parameter, m. Henceforth, any appearance of V0ðϕÞ or
ϕ0ðx − XÞ without the mass parameter made explicit will
refer to V0ðm;ϕÞ and ϕ0ðm; x − XÞ.

B. Soliton states

Soliton states are elements of the one-particle Hilbert
space and are labeled by momentum P [6]. They carry a
conserved topological charge, associated with the current
Jμ ¼ ϵμν∂νϕ, and are orthogonal to the perturbative-sector
states. They are defined through a three-step process.

1. Step 1

One begins with the renormalized Hamiltonian arising
from Eq. (2.1), corrected by perturbative-sector counter-
terms and given by

H ¼
Z

dx

�
1

2
π2 þ 1

2
ð∂xϕÞ2 þ VðϕÞ

�
: ð2:8Þ

In terms of this Hamiltonian, the phase-space path integral
for the transition amplitude takes the form

Zfi ¼
Z

½DϕDπ�Ψf½ϕðtf; xÞ��Ψi½ϕðti; xÞ�

× exp

�
i
Z

tf

ti

dt

�Z
dx _ϕπ −H

	�
: ð2:9Þ

Here Ψi;f½ϕ� are wave functionals for the initial and final
states of the field at times ti and tf ¼ ti þ T, and Zfi ≡
⟪ΨfjZjΨi⟫ is the matrix element of the evolution operator.

2. Step 2

Next, a canonical transformation on (infinite-dimensional)
phase space ðϕ; πÞ ↦ ðX; χ;P;ϖÞ is performed by consid-
ering the coordinate transformation

ϕðt; xÞ ¼ ϕ0ðx − XðtÞÞ þ χðt; x − XðtÞÞ: ð2:10Þ

The modulus X has been promoted to a dynamical variable
(a collective coordinate) and χ represents field fluctuations
around the soliton. Then one makes the following ansatz
for the momentum variables:

πðt; xÞ ¼ π0½X; χ;P;ϖ�∂xϕ0ðx − XðtÞÞ þϖðt; x − XðtÞÞ:
ð2:11Þ

In order to preserve the number of degrees of freedom,
constraints must be imposed on the new fields χ, ϖ. Since
∂xϕ0 solves the linearized equation of motion around the
soliton solution, the constraints are chosen to eliminate this
zero-frequency degree of freedom from the new fields
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Z
dxχ∂xϕ0 ¼ 0;

Z
dxϖ∂xϕ0 ¼ 0: ð2:12Þ

The quantity π0 is determined by demanding that the
transformation be canonical—i.e., by requiring that the
standard Poisson bracket of ϕ; π implies fX;Pg ¼ 1 and
the standard Dirac bracket for φ;ϖ, and vice versa. This
leads to [10,11]

π0 ¼ −
Pþ R

dρϖχ0

M0½1þ ð1=M0Þ
R
dρϕ0

0χ
0� ; ð2:13Þ

with

M0 ¼
Z

dρϕ02
0 ð2:14Þ

the classical soliton mass. Here we have introduced the
kink-comoving coordinate ρ ¼ x − XðtÞ. Derivatives with
respect to ρ are denoted with a prime.

As integrals over ρ, like those in Eq. (2.13), will appear
quite often, we will sometimes employ a bra-ket notation6:

hfjgi ≔
Z

∞

−∞
dρfðt; ρÞ�gðt; ρÞ: ð2:15Þ

Thus, M0 ¼ hϕ0
0jϕ0

0i, and Eq. (2.13) can also be expressed
more compactly as

π0 ¼ −
Pþ hϖjχ0i
hϕ0

0jϕ0
0 þ χ0i : ð2:16Þ

In terms of the new variables, Eqs. (2.10) and (2.11), the
Hamiltonian (2.8) is

H ¼ M0 þ
M0ðPþ hϖjχ0iÞ2
2hϕ0

0jϕ0
0 þ χ0i2

þ
Z

dρ

�
1

2
ϖ2 þ 1

2
χ02 þ

X
n≥2

1

n!
VðnÞ
0 ðϕ0Þχn

þ VΔm2ðϕ0 þ χÞ
�
; ð2:17Þ

where VðnÞ denotes the nth derivative of the potential with
respect to ϕ. We will refer to this as the soliton-sector
Hamiltonian. It is important to note that the canonical
transformation (2.10) and (2.11), with Eq. (2.13), is a
transformation of classical phase-space variables. In the
canonical formalism, though, it is straightforward to extend
it to a transformation of operators that preserves the quantum
commutator [11]. This requires a choice of operator ordering
for Eq. (2.11). Upon choosing the Weyl prescription, for

example, one is led to an additional term in the Hamiltonian
beyond Eq. (2.17).7 This “quantum potential” can also be
obtained from the path integral formalism through a careful
treatment starting from the discretized definition (where
Weyl ordering corresponds to the midpoint prescription for
the momenta) [27]. In terms of scaling in g, the quantum
potential is an Oðg2Þ correction, or two-loop effect, and
hence will not be relevant for us in this paper. However, the
quantum potential should be understood to be included in
any expression appearing below that utilizes the exact
soliton-sector Hamiltonian.
In order to write the transition amplitude (2.9) in the new

variables, we must give a precise description of how the
constraints (2.12) are to be implemented in the path
integral. For this purpose it is useful to introduce an
orthonormal basis of modes for the fluctuations around
the classical static solution, ϕ0ðρÞ. These modes solve the
eigenproblem�

−
∂2

∂ρ2 þ
d2V0

dϕ2

����
ϕ0

�
ψnðρÞ ¼ ω2

nψnðρÞ; ð2:18Þ

which arises from a linearization of Eq. (2.2) around the
static-soliton solution, Eq. (2.3), with the replacement
m0 → m as explained after Eq. (2.6). The modes fψng
are known explicitly for many field theory potentials of
interest, but we will not need their detailed form; we wish to
emphasize only a few key points that hold for the class of
models we consider. The spectrum is positive, and there is a
unique zero mode given by

ψ0 ¼
1ffiffiffiffiffiffiffi
M0

p ϕ0
0: ð2:19Þ

In terms of this zero mode the constraints take the form

hψ0jχi ¼ 0; hψ0jϖi ¼ 0: ð2:20Þ

Depending on the details of the potential there might,
or might not, exist additional discrete L2-normalizable
modes corresponding to excited states of the kink. These
will be followed by a continuum for the theory defined on
ρ ∈ ð−∞;∞Þ, representing perturbative particle states in
the presence of the kink.
For later purposes—especially the one-loop computation

of Sec. IV—it will be essential to regularize the theory by
putting it in a box of size L with appropriate boundary
conditions imposed at ρ ¼ �L=2 so that the spectrum
of fluctuations around the kink is discrete. We make
a brief digression here to explain this in some detail, since
having the basic framework in place now will prove
convenient later.

6To minimize confusion we use a double bra-ket for quantum
field theory inner products.

7See also [26] for a discussion in the context of multi-
component scalar theories.
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The boundary conditions at ρ ¼ �L=2 must ensure that
the operator in Eq. (2.18) is Hermitian and shouldmaintain a
well-defined variational principle for Eq. (2.1). In Sec. IV E
where we review the one-loop computation of [5,28], we
will take periodic boundary conditions and employ mode
number regularization as in the original works. Other
choices are possible and yield the same results provided
that the regulators in the soliton and perturbative sectors are
chosen consistently.8 This point has been nicely emphasized
in recent work by Evslin and Zhang [30].
As long as the size of the box is taken to be much

larger than any length scale in the potential, the square-
normalizable bound states of Eq. (2.18) will continue to
exist with box eigenvalues, ωnðLÞ2, and box wave func-
tions that differ from those of the theory on R by
corrections in L that are exponentially small at large L.
Furthermore, although the spectrum is made discrete by the
box regularization, one can still distinguish those eigen-
functions corresponding to bound states in the theory on R
from those eigenfunctions corresponding to scattering
states by the value of ωnðLÞ2, at least when L is large
enough. Specifically, if ωnðLÞ2 < d2V

dϕ2 ðϕ0ðρÞÞ for all

jρj > L=2, then ψn corresponds to a bound state of the
potential while those modes with ωnðLÞ2 ≥ d2V

dϕ2 ðϕ0ðρÞÞ for
all jρj > L=2 correspond to scattering states. Strictly
speaking, the previous comment assumes that d2V

dϕ2 ðϕ0ðρÞÞ
is a symmetric function of ρ. If it is not, one can easily
modify the statement to account for the different behaviors
of d2V

dϕ2 ðϕ0ðρÞÞ at ρ ¼ �L=2. We thus have the orthonor-

mality and completeness relations for the theory in the box:

hψmjψni ¼ δmn; 1 ¼
X
n

jψnihψnj: ð2:21Þ

Our conventions are that n ¼ 0; 1;…; nb − 1 correspond to
the bound states of −∂2

ρ þ d2V
dϕ2 jϕ0

on R, with n ¼ 0 the

zero mode, while n ¼ nb; nb þ 1;… correspond to the
scattering states.
In the box, the equality (2.19) is no longer true. The

relationship given there will receive corrections that are
exponentially small in L at large L. Furthermore, the

eigenvalue ω2
0 will not be zero. Our goal is to study the

theory onR, andwe are usingL only as a regulator. Thus, we
have some freedom in how we choose to define the trans-
formation to the soliton sector when L is finite. Rather than
using ϕ0

0 for the constraints, we will use ψ0. Again, these
agree when L → ∞. However, the choice ψ0 seems more
appropriate at finite L since this way we are exchanging the
lowest energy eigenmode around the static kink for a
collective coordinate. The phase-space coordinate trans-
formation will be canonical with the ψ0 constraints at finite
L provided that Eqs. (2.11) and (2.16) are written as

πðt; xÞ ¼ −
�
Pþ hϖjϕ0

0 þ χ0i
hψ0jϕ0

0 þ χ0i
�
ψ0ðx − XðtÞÞ

þϖðt; x − XðtÞÞ: ð2:22Þ
Now the soliton-sector Hamiltonian is

H ¼ ðPþ hϖjϕ0
0 þ χ0iÞ2

2hψ0jϕ0
0 þ χ0i2

þ
Z

L=2

−L=2
dρ

�
1

2
ϖ2 þ 1

2
ðϕ0

0 þ χ0Þ2 þ Vðϕ0 þ χÞ
�
;

ð2:23Þ
and it is equivalent to Eq. (2.17) in the L → ∞ limit.
Returning to the main thread of the discussion, then, we

can write mode expansions

χðt; ρÞ ¼
X
n

χnðtÞψnðρÞ;

ϖðt; ρÞ ¼
X
n

πnðtÞψnðρÞ; ð2:24Þ

and the constraints in Eq. (2.20) set χ0ðtÞ; π0ðtÞ to zero. It
will be convenient for us to work with a real basis fψng,
and therefore the modes χn, πn are real valued. We
emphasize that the basis fψng does not diagonalize the
quadratic Hamiltonian in χ, ϖ unless P ¼ 0.
With the soliton-sector Hamiltonian, Eq. (2.23), the tran-

sition amplitude (2.9) is expressed as an integral over the new
variables with delta functionals enforcing the constraints:

Zfi ¼
Z

½DXDP�
Z

½DχDϖ�δðhψ0jχiÞδðhψ0jϖiÞΨf½Xf; χðtf; xÞ��Ψi½Xi; χðti; xÞ� exp
�
i
Z

tf

ti

dtðP _X þ hϖj_χi −HÞ
�

¼
Z

½DXDP�
Z

½DχDϖDλDν�Ψf½Xf; χðtf; xÞ��Ψi½Xi; χðti; xÞ�

× exp

�
i
Z

tf

ti

dtðP _X þ hϖj_χi − λhψ0jχi − νhψ0jϖi −HÞ
�
: ð2:25Þ

8The questions of boundary conditions and regularization are subtler for supersymmetric kink solitons in theories with fermions, and
this led to a flurry of activity on the subject in the late 1990s and early 2000s. See, e.g., [29] for a reviewwith references. In contrast, for the
simple bosonic models of Eq. (2.4), the original approach and results of Dashen et al. [5] have been validated many times.
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In the second form of the expression the delta functionals
have been represented by functional integration over
Lagrange multipliers λðtÞ, νðtÞ. We denote by

HT ¼ H þ λhψ0jχi þ νhψ0jϖi ð2:26Þ

the total Hamiltonian, which includes the Lagrange
multipliers.

3. Step 3

Now that the transition amplitude has been expressed in
appropriate variables, we can define the soliton states.
A soliton state of momentum P has the form jΨP⟫ ¼
jP⟫ ⊗ jΨ0;P⟫ with position-basis wave functional

⟪X; χjΨP⟫ ¼ ΨP½X; χ� ¼
1ffiffiffiffiffiffi
2π

p eiPXΨ0;P½χ�; ð2:27Þ

where Ψ0;P is the normalized ground-state wave functional
of the χ −ϖ theory—that is, the theory defined by the
Hamiltonian (2.26), where P is treated as a (generally time-
dependent) background parameter. The notation Ψ0;P is
meant to emphasize the dependence of this ground-state
wave functional on P, but we will often omit the P
subscript for brevity.
The wave functional Ψ0 can be computed perturbatively

in the semiclassical expansion. If χ ¼ χ̄ þ δχ, where χ̄ is a
solution to the classical equations of motion following from
Eq. (2.26) and δχ is the fluctuation field, then at leading
(one-loop) order the wave functional takes the form of a
Gaussian in the fluctuation field δχ. If the fluctuation field
is written in terms of creation/annihilation operators â† and
â that diagonalize the quadratic part of the Hamiltonian,
then the ground state jΨ0⟫ is the state annihilated by all of
the annihilation operators.
The ground-state wave functional is used to define the

soliton effective Hamiltonian, Heff ½P�, via

e−i
R

dtHeff ½P� ≔
Z

½DχDϖDλDν�Ψ0½χðtf; xÞ��

×Ψ0½χðti; xÞ�ei
R

dtðhϖj_χi−HTÞ: ð2:28Þ

The main goal of this paper is to construct the saddle-
point approximation to Heff ½P� for general time-dependent
PðtÞ; we will present these results in Sec. III. In Sec. IV we
will construct the one loop Ψ0 in terms of a symplectic
transformation that diagonalizes the part of HT that is
quadratic in fluctuations.9 We then use the wave functional
to complete the saddle-point computation of Eq. (2.28).

The construction is fully explicit in the case of constant P.
Before we turn to that technical analysis, we will describe
an important physical application where Heff ½P� will be
useful.

C. Motivation from soliton form factors

One of the main motivations behind this work is the study
of soliton form factors to leading order in the perturbative
expansion and beyond the regime of small momentum
transfer. Soliton form factors are simply matrix elements
of operators between soliton states: ⟪ΨPf

jÔjΨPi
⟫. For

example, one of the most basic and important form factors
is thematrix element of the original scalar field, Ô ¼ ϕ̂ðt; xÞ.
By crossing symmetry, this form factor determines the
amplitude for a perturbative particle to create a soliton-
antisoliton pair [19,20,32].

At leading order in the semiclassical approximation, any
polynomial in the original fields ϕ; π restricts to a function
of X and P obtained by evaluating Eqs. (2.10) and (2.11) on
the saddle-point solution:

O½π;ϕ� ¼ O½π̄½P;X�; ϕ̄½P;X��ð1þOðgÞÞ; ð2:29Þ

where

ϕ̄ ¼ ϕ0ðx − XÞ þ χ̄ðt; x − XÞ;
π̄ ¼ π0½X; χ̄;P; ϖ̄�∂xϕ0ðx − XÞ þ ϖ̄ðt; x − XÞ; ð2:30Þ

with ð χ̄; ϖ̄Þ a solution to the classical equations of motion
stemming from the soliton-sector Hamiltonian, Eq. (2.26).
It follows that the leading semiclassical approximation
to the soliton form factor reduces to a matrix element
in the collective-coordinate quantum mechanics10 with
Hamiltonian Heff ½P�:

⟪ΨPf
jÔjΨPi

⟫¼
Z

½DXDP�
Z

½DχDϖDλDν�

×Ψ�
Pf
ΨPi

ei
R

dtðP _Xþhϖj_χi−HTÞO½π;ϕ�

¼
Z

½DXDP� 1
2π

eiðPiXi−PfXfÞei
R

dtðP _X−Heff ½P�Þ

×O½π̄; ϕ̄�ð1þOðgÞÞ: ð2:31Þ

As we will see, Heff ½P� has an expansion of the form

Heff ¼ Hð−2Þ
eff þHð0Þ

eff þOðgÞ; ð2:32Þ

where the superscripts indicate the order in g. The first
(tree-level) term arises from evaluating HT , given in
Eq. (2.26), on the background solution χ̄; ϖ̄, while the9The wave functional for the static soliton, Ψ0;P¼0, was

discussed recently in [31], where it was obtained by acting on
the perturbative-sector vacuum with an appropriate displacement
operator.

10Corrections can be computed perturbatively in the χ−ϖ field
theory. See, e.g., [10].
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second (one-loop) term comes from integrating out the
fluctuations around this solution via saddle-point approxi-
mation. It follows from Eq. (2.31) that it is sufficient to
keep only these first two terms in order to capture the
leading semiclassical behavior of soliton form factors.
This discussion also allows us to highlight when and

why it is important to go beyond the usual adiabatic/small
momentum transfer limit. First, if there is no X-dependent
insertion in Eq. (2.31), then the soliton momentum is
conserved. This can be seen explicitly from Eq. (2.31) by
first carrying out the path integral over X, resulting in a
delta functional setting P equal to a constant. The overall
matrix element then carries a factor of δðPf − PiÞ. For
example, in the case where there is no insertion one has

⟪ΨPf
jΨPi

⟫ ¼ δðPf − PiÞe−iHeff ½Pf �T

¼ δðPf − PiÞe−iHeff ½Pf �tfþiHeff ½Pi�ti ; ð2:33Þ

where T ¼ tf − ti, and Heff ½Pf� can be evaluated pertur-
batively in g under the restriction that Pf is constant. The
Lorentz invariance of the theory dictates that

Heff ½P� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
; ðconstant PÞ; ð2:34Þ

where M ¼ M0ð1þOðg2ÞÞ is the exact quantum mass of
the soliton. The verification of this relativistic energy to
one-loop accuracy (in nonintegrable models) is a classic
result going back to [9,28]. However, as far as we are aware
it has not been demonstrated directly from the path integral
formalism of [10], as we will do in Sec. IV.
Ultimately, we are interested in matrix elements of

operators that do carry X dependence, which means that
the soliton momentum is not conserved. Let us return to the
example of the scalar-field form factor, ⟪ΨPf

jϕ̂jΨPi
⟫. If

one works to leading order in the derivative expansion of
Heff (by treating P as constant), then to leading order in
both the derivative and semiclassical expansions this form
factor is given by the Fourier transform of the classical
soliton solution, ϕ0, expressed as a function of k ¼ Pf − Pi

[6]. This is the answer if Pi;f are also assumed to satisfy
Pi;f ≪ M. More generally, if Pi;f are relativistic but the
transfer is still small, then the leading semiclassical form
factor at small momentum transfer is given by the Fourier
transform of the boosted-soliton profile, ϕ0ðρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
Þ,

where the velocity β is determined by the usual
relativistic relationship to a momentum P ¼ 1

2
ðPi þ PfÞ:

M0β=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
¼ 1

2
ðPi þ PfÞ [20]. These results, however,

can be trusted only to leading order in k=M, as they
are obtained by dropping the higher-derivative terms
in Heff ½P�.
In order to probe the soliton-antisoliton pair creation

amplitude related to ⟪ΨPf
jϕ̂jΨPi

⟫ by crossing symmetry,

for example, we must understand the behavior of the form
factor for momentum transfers of order the soliton
mass, Pf − Pi ∼OðMÞ. This means that a derivative
expansion of Heff ½P� is not under control and the all-orders
result, obtained from a saddle-point approximation to
Eq. (2.28) for general PðtÞ, is required. We will return
to this discussion in Sec. V, where we will obtain an
expression for semiclassical soliton form factors in terms of
a certain generating functional built from the first two terms
in Eq. (2.32).

III. SADDLE-POINT EQUATION
FOR GENERAL PðtÞ

We will now evaluate, by saddle-point approximation,
the effective soliton Hamiltonian, Eq. (2.28), for general
soliton momentum PðtÞ. It is worth recalling how this is
done in the small-velocity approximation before tackling
the general analysis.
Small velocity.—If one assumes small soliton velocities,

_X ¼ OðgÞ, then, since M0 ¼ Oðg−2Þ, ϕ0 ¼ Oðg−1Þ, while
χ;ϖ ¼ Oð1Þ, we have the following for the second term in
the Hamiltonian (2.17):

ðPþ hϖjχ0iÞ2
2M0ð1þ 1

M0
hϕ0

0jχ0iÞ2
¼ P2

2M0

þOðgÞ: ð3:1Þ

In this approximation, all field theory interactions contain-
ing fluctuations coming from this term are higher order
in the coupling relative to the quadratic-order terms
coming from the remaining part of the Hamiltonian,11

leading to

H¼M0þ
P2

2M0

þ1

2

Z
dρfϖ2þχ02þVð2Þðφ0Þχ2þVδm2ðϕ0Þg

þOðgÞ: ð3:2Þ

The Oð1Þ part of the Hamiltonian can be diagonalized by
employing the basis of modes (2.24). Inserting these
expansions back into Eq. (2.28) and working perturbatively
in g, one derives explicit Feynman rules for carrying out
field-theoretic computations in the soliton sector [10].
These rules include one-point vertices in the fluctuation
fields contained in Eq. (3.1), as well as an infinite series of
higher-point vertices. The reason the one-point vertices are
present is that ϕ0ðt; x − XðtÞÞ is not a solution to the
classical equations of motion.

11Note also, however, that the quadratic terms coming from the
remaining part of the Hamiltonian are of the same order in g as
P2=2M0 in this approximation. Therefore it is inconsistent to
ignore them while keeping the P2=2M0 term. They lead, in
particular, to the one-loop correction to the soliton mass.
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Constant velocity.—Gervais et al. [10] also demon-
strated how one can find the true saddle point of the
soliton-sector Lagrangian when the soliton velocity is not
small but constant. In that reference it was shown that

χðρÞ ¼ ϕ0

�
ρffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p �

− ϕ0ðρÞ; with P ¼ M0βffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ;

ð3:3Þ

solves the equations of motion following from Eq. (2.26)
when P is time independent. The parameter β is interpreted
as the soliton velocity and has the correct relativistic
relationship with P. The solution (3.3) is quite nontrivial
from the point of view of the equations of motion for ðχ;ϖÞ
following from Eq. (2.26), which are nonlocal. It is
anticipated from Lorentz invariance of the theory, though,
since by Eq. (2.10) it corresponds to the boosted-soliton
profile in terms of the original field theory variable

ϕðt; xÞ ¼ ϕ0

�
x − ðX0 þ βtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p �

: ð3:4Þ

In fact, one could imagine implementing the canonical
transformation from the perturbative-sector variables
directly to variables adapted to the boosted-soliton back-
ground from the very beginning; this has indeed been
carried out in [9,33,34].
Our goal in this section will be to generalize the analysis

of [10] to the case where PðtÞ is a generic time-dependent
function. This will furnish the effective Hamiltonian of the
soliton, Heff ½P�, that is appropriate for processes involving
changes in the soliton momentum that are not small, such as
soliton form factors with arbitrary momentum transfer. Our
approach will follow that of [10]. That is, we will first
transform to static-soliton variables using Eqs. (2.10) and
(2.11) and leading to Eqs. (2.25) and (2.26), then find a
nontrivial saddle-point solution in those variables. It is
natural to ask why we do not directly perform the canonical
transformation using a time-dependent soliton background.
It turns out that one runs into technical difficulties at the
quantum level when attempting to construct a canonical
transformation that utilizes a soliton background depending
on both a time-dependent collective-coordinate position
and momentum. As briefly discussed after Eq. (2.17), the
resolution of operator-ordering ambiguities in a canonical
formalism leads to additional, quantum contributions to the
potential. For a generic ðXðtÞ; PðtÞÞ-dependent soliton
background these might not be under control.

A. Time-dependent equations of motion

We now begin our discussion in earnest. In this sub-
section we are simply analyzing classical equations of
motion and therefore we work with the theory on R.
We find it convenient, however, to use the form of the

soliton-sector Hamiltonian given in Eq. (2.23). This is
identical to Eq. (2.17) for the theory on R, utilizing
Eq. (2.19) and the constraints. We work with the shifted
field12

φðt; ρÞ ≔ χðt; ρÞ þ ϕ0ðρÞ: ð3:5Þ

The transformation ðχ;ϖÞ ↦ ðφ;ϖÞ is canonical, and
Eq. (2.23) takes the form

e−i
R
dtHeff ½P� ¼

Z
½DφDϖDλDν�Ψ0½φðtf;ρÞ��Ψ0½φðti;ρÞ�

× ei
R
dtðhϖj _φi−HTÞ;

HT ¼ λhψ0jφ−ϕ0iþ νhψ0jϖiþ ðPþhϖjφ0iÞ2
2hψ0jφ0i2

þ
Z

dρ
�
1

2
ϖ2þ 1

2
φ02þV0ðφÞþVΔm2ðφÞ

�
:

ð3:6Þ

Treating PðtÞ as a background variable, the equations of
motion following from HT are13

hψ0jφi ¼ hψ0jϕ0i; hψ0jϖi ¼ 0; ð3:7Þ

and

_φ ¼ ϖ þ νψ0 þ
Pþ hϖjφ0i
hψ0jφ0i2 φ0;

_ϖ ¼ −λψ0 þ
Pþ hϖjφ0i
hψ0jφ0i2 ϖ0 þ φ00 − Vð1Þ

0 ðφÞ

−
ðPþ hϖjφ0iÞ2

hψ0jφ0i3 ψ 0
0: ð3:8Þ

At this stage, it is convenient to introduce the “soliton
velocity functional”

β½φ;ϖ;P� ≔ Pþ hϖjφ0i
hψ0jφ0i2 ð3:9Þ

so that the equations of motion (3.8) can be recast into the
form

_φ ¼ ϖ þ νψ0 þ βφ0;

_ϖ ¼ −λψ0 þ βϖ0 þ φ00 − Vð1Þ
0 ðφÞ − ψ 0

0β
2hψ0jφ0i: ð3:10Þ

12It might seem that we are in effect undoing the canonical
transformation. This is not the case. Unlike the original field ϕ,
the field φ satisfies a constraint and is independent of the soliton
collective coordinate.

13We do not vary VΔm2 when constructing the saddle-point
solution because terms in VΔm2 are suppressed by Oðg2Þ relative
to their counterparts in V0.

ACCELERATING SOLITONS PHYS. REV. D 102, 125002 (2020)

125002-9



The quantity β is appropriately named since Hamilton’s
equation for X in the full theory gives _X ¼ ∂HT=∂P ¼ β.
Let ðλ̄; ν̄; φ̄; ϖ̄Þ denote a solution to these equations and

β̄ ≔ β½φ̄; ϖ̄;P� the velocity functional evaluated on the
solution. The ν constraint implies that _̄ϖ is orthogonal to
ψ0, and decay properties of the zero mode imply that ψ 0

0 is
orthogonal to ψ0 as well. Thus, the Lagrange multipliers on
the solution are determined to be

ν̄ ¼ −β̄hψ0jφ̄0i;
λ̄ ¼ β̄hψ0jϖ̄0i þ hψ0jðφ̄00 − Vð1Þ

0 ðφ̄ÞÞi: ð3:11Þ

By inserting the equation for ν̄ back into the _̄φ equation and
integrating both sides against φ̄0, we can solve for the
quantity hϖ̄jφ̄0i and hence determine the velocity β̄ purely
in terms of φ̄:

β̄ ¼ Pþ h _̄φjφ̄0i
hφ̄0jφ̄0i : ð3:12Þ

We can now use the _̄φ equation to solve for ϖ̄ in terms of
φ̄. It is convenient to introduce P⊥, the linear operator that
projects onto functions orthogonal to ψ0,

P⊥ðfÞ ≔ f − ψ0hfjψ0i; ð3:13Þ
in terms of which the solution for ϖ̄ is

ϖ̄ ¼ _̄φ − β̄P⊥ðφ̄0Þ: ð3:14Þ

We note that P⊥ð _̄φÞ ¼ _̄φ, which follows from acting with a
time derivative on the λ constraint. Therefore this expres-
sion for ϖ̄ is indeed orthogonal to ψ0.
With Eq. (3.14) in hand, one can compute _̄ϖ, ϖ̄0 and

express the _̄ϖ equation in terms of φ̄ only. The result can be
put in the form

P⊥ð  ̄φ−2β̄ _̄φ0− _̄βφ̄0− ð1− β̄2Þφ̄00 þVð1Þ
0 ðφ̄ÞÞ¼ 0; ð3:15Þ

which implies that

 φ̄ − 2β̄ _̄φ0 − _̄βφ̄0 − ð1 − β̄2Þφ̄00 þ Vð1Þ
0 ðφ̄Þ ¼ C½φ̄�ðtÞψ0ðρÞ

ð3:16Þ

for some ρ-independent functional C of φ̄. To find an
expression for C, multiply both sides of Eq. (3.16) by φ̄0
and integrate over ρ:

d2

dt2

�
1

2
φ̄2

���∞
−∞

�
− β̄

d
dt
hφ̄0jφ̄0i− _̄βhφ̄0jφ̄0iþ1

2
ð1− β̄2Þφ̄02

���∞
−∞

þV0ðφ̄Þj∞−∞ ¼Chψ0jφ̄0i: ð3:17Þ

We can employ Eq. (3.12) to get some cancellations in the
second and third terms, resulting in

1

2
ð1 − β̄2Þφ̄02j∞−∞ þ V0ðφ̄Þj∞−∞ − _P −

1

2
_̄φ2
���∞
−∞

¼ Chψ0jφ̄0i:
ð3:18Þ

At this point, we impose the usual soliton boundary
conditions on φ: it should approach values in the vacuum
V0ðφ̄Þ ¼ Vmin as ρ → �∞ and should have finite energy.
The latter requires that φ̄0 and _̄φ should go to zero as
ρ → �∞. Armed with this information we arrive at

C ¼ −
_P

hψ0jφ̄0i ; ð3:19Þ

through which Eq. (3.16) takes the form of the forced
soliton equation

ð∂t − β̄∂ρÞ2φ̄ − ∂2
ρφ̄þ Vð1Þ

0 ðφ̄Þ ¼ −
_P

hψ0jφ̄0iψ0: ð3:20Þ

Once a solution to Eq. (3.20) is found, we still must ensure
that it satisfies the λ constraint

hψ0jφ̄i ¼ hψ0jϕ0i ¼
1

2
ffiffiffiffiffiffiffi
M0

p ϕ2
0

���∞
−∞

; ð3:21Þ

where we use Eq. (2.19) in the second step.
Given a solution φ̄ to Eqs. (3.20) and (3.21), Eqs. (3.11)

and (3.14) then determine ν̄, λ̄, and ϖ̄. The expression for λ̄
can be further simplified using Eqs. (3.14) and (3.20),
leading to

ϖ̄ ¼ _̄φ − β̄P⊥ðφ̄0Þ; ν̄ ¼ −β̄hψ0jφ̄0i;

λ̄ ¼
_P

hψ0jφ̄0i −
d
dt

ðβ̄hψ0jφ̄0iÞ: ð3:22Þ

As a simple check of these equations, consider the case
of constant P. In that example the forcing term on the right-
hand side of Eq. (3.20) vanishes, and it is consistent to
assume that φ̄ is time independent. From Eq. (3.12) β̄ is
then constant, and Eq. (3.20) reduces to

ð1 − β̄2Þφ̄00 − Vð1Þ
0 ðφ̄Þ ¼ 0 ðconstantP caseÞ: ð3:23Þ

After changing variables to ρ̃ ¼ ρ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β̄2

p
in Eq. (3.20),

one recognizes the standard equation of motion for the
soliton, and a solution is

φ̄ðρÞ ¼ ϕ0

�
ρ − ρ0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β̄2

p �
ðconstantP caseÞ: ð3:24Þ

The integration constant ρ0 must be chosen so that the
constraint (3.21) is satisfied. In ϕ4 theory, for example, one
can take ρ0 ¼ 0. Remembering from Eq. (2.14) that
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hϕ0
0jϕ0

0i ¼ M0, we deduce that hφ̄0jφ̄0i ¼ M0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β̄2

p
.

Replacing the latter in Eq. (3.12) yields the expected
relativistic relationship between momentum and velocity,
as in Eq. (3.3). Since the solution is time independent, we
see from Eq. (3.22) that λ̄ ¼ 0. Meanwhile, ν̄ and ϖ̄ can be
expressed in terms of φ̄0 and the integral hψ0jφ̄0i. We are
unaware of any simple expression for the value of this
integral, which is essentially an overlap between the static
zero mode and the boosted zero mode.

B. Tree-level Heff½P�
Having established the saddle-point equations for gen-

eral PðtÞ, and the corresponding background solutions as
functionals of φ̄, we next expand in fluctuations by writing

ðλ; ν;φ;ϖÞ ¼ ðλ̄þ δλ; ν̄þ δν; φ̄þ δφ; ϖ̄ þ δϖÞ ð3:25Þ

and Z
½DλDνDφDϖ� ¼

Z
½DδλDδνDδφDδϖ�: ð3:26Þ

Before pressing on, let us first verify that this expansion
is under control when g is small by arguing that all
background fields are Oðg−1Þ. We begin by noting that
Eq. (3.20) is consistent with φ̄ ¼ Oð1=gÞ. Since the soliton
mass (i.e., the on-shell Hamiltonian) is Oð1=g2Þ by the
scaling argument prior to Eq. (2.5) and we are not assuming
that the velocity is small, both P and _P are Oðg−2Þ. Then
every term in Eq. (3.20) will scale as Oð1=gÞ as long as φ̄
does, implying that β̄ ¼ Oð1Þ. It then follows from
Eq. (3.22) and the fact that ψ0 is normalized that ϖ̄, ν̄,
and λ̄ are also Oðg−1Þ. Thus, by treating the fluctuations in
Eq. (3.25) as Oð1Þ variables, the expansion of the field
theory action in fluctuations is an expansion in g.
Having established the consistency of the expansion

(3.25), we can now revisit Eq. (3.6). The leading-order
effective Hamiltonian for the soliton,Hð−2Þ

eff ½P� ¼ Oðg−2Þ, is
given by

Hð−2Þ
eff ½P� ¼

�
HT −

Z
dρVΔm2 − hϖj _φi

�����
ðλ̄;ν̄;φ̄;ϖ̄Þ

¼ ðPþhϖ̄jφ̄0iÞ2
2hψ0jφ̄0i2

þ
Z

dρ

�
1

2
ϖ̄2þ1

2
φ̄02þV0ðφ̄Þ−ϖ _̄φ

�
; ð3:27Þ

where the Lagrange-multiplier terms on the first line of
Eq. (3.6) vanish since the solution satisfies the constraints.
We have explicitly subtracted out the mass counterterm
from HT in the first equality of Eq. (3.27) since it carries a
coefficient that is Oðg2Þ and therefore begins contributing
to Heff ½P� only at Oðg0Þ. Utilizing Eqs. (3.9) and (3.14) as

well as the fact that hψ0j _̄φi ¼ 0, we obtain the following
expressions for the various terms in Eq. (3.27):

ðPþ hϖ̄jφ̄0iÞ2
2hψ0jφ̄0i2 ¼ 1

2
β̄2hψ0jφ̄0i2;

1

2
hϖ̄jϖ̄i ¼ 1

2
h _̄φ − β̄P⊥ðφ̄0Þj _̄φ − β̄P⊥ðφ̄0Þi

¼ 1

2
h _̄φj _̄φi − β̄h _̄φjφ̄0i þ 1

2
β̄2hφ̄0jφ̄0i

−
1

2
β̄2hψ0jφ̄0i2;

hϖ̄j _̄φi ¼ h _̄φ − P⊥ðφ̄0Þj _̄φi ¼ h _̄φj _̄φi − β̄h _̄φjφ̄0i:
ð3:28Þ

Hence the tree-level soliton effective Hamiltonian takes the
form

Hð−2Þ
eff ½P� ¼

Z
dρ

�
1

2
ð1þ β̄2Þφ̄02−

1

2
_̄φ2þV0ðφ̄Þ

�
; ð3:29Þ

where β̄ is given by Eq. (3.12) and φ̄ should be viewed as a
functional of P, defined by the solution to Eqs. (3.20) and
(3.21), in which PðtÞ appears to be a background variable.
Without a time-dependent solution to these equations

we cannot be more explicit regarding the form of the
tree-level Heff , but we can check to see that our result
reduces to the correct expression for the case of constant P
where the solution for φ̄ is given by Eq. (3.24). This
follows from two results. First, Eq. (3.23) implies a

virial theorem
R
V0ðφ̄Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β̄2

p
M0. Second, hφ̄0jφ̄0i ¼

M0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β̄2

p
, and putting these observations together we

obtain

Hð−2Þ
eff ½P� ¼ 1

2
ð1þ β̄2Þ M0ffiffiffiffiffiffiffiffiffiffiffiffi

1− β̄2
p þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1− β̄2

q
M0 ¼

M0ffiffiffiffiffiffiffiffiffiffiffiffi
1− β̄2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

0

q
ðconstantPcaseÞ; ð3:30Þ

as expected.

C. The semiclassical correction

Our next task is to expand Eq. (3.6) in the fluctuations
introduced in Eq. (3.25). The linear terms vanish14 by virtue
of ðλ̄; ν̄; φ̄; ϖ̄Þ extremizing the action

R
dtðhϖj _φi −HTÞ.

We therefore examine the quadratic-order terms, setting the
stage for the one-loop computation in Sec. IV.

14VΔm2 was not included in the extremization and therefore
may contain terms linear in the fluctuations. Indeed, the presence
of such terms is necessary to cancel tadpoles generated by cubic
interactions in δχ [10]. Such terms will be suppressed in the
coupling expansion and do not affect our one-loop analysis.
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Using Eq. (3.9) and working still on all ofR, the quantity
to be expanded can be written as

hϖj _φi−HT ¼ hϖj _φi− λ

�
hψ0jφi−

1

2
ffiffiffiffiffiffiffi
M0

p ϕ2
0

����∞
−∞

�

− νhψ0jϖi þ−
1

2
β2hψ0jφ0i2

−
Z

dρ

�
1

2
ϖ2 þ 1

2
φ02 þV0ðφÞ þVδm2ðφ̄Þ

�
þOðgÞ: ð3:31Þ

Therefore the terms that are second order in fluctuations are

ðhϖj _φi−HTÞjOðδ2Þ

¼ hδϖj _δφi−δλhψ0jδφi−δνhψ0jδϖi

þ−
1

4
ðδ2β2jÞhψ0jφ̄0i2þ2β̄δβjhψ0jφ̄0ihψ 0

0jδφi

−
β̄2

2
hψ 0

0jδφi2þ−
1

2
hδϖjδϖi−1

2
hδφjð−∂2

ρþVð2Þ
0 ðφ̄ÞÞδφi

þOðgÞ; ð3:32Þ

where the vertical bar appearing on the right side represents
evaluation on the background solution: j≡ jðλ̄;ν̄;φ̄;ϖ̄Þ. Since

δ2β2 ¼ 2βδ2β þ 2ðδβÞ2; ð3:33Þ

the greatest challenge in this computation lies in obtaining
the expansion of β to quadratic order in fluctuations.
Equation (3.9) yields

δβ ¼ hδϖjφ0i þ hϖjδφ0i
hψ0jφ0i2 þ 2ðPþ hϖjφ0iÞ

hψ0jφ0i3 hψ 0
0jδφi;

δ2β ¼ 2hδϖjδφ0i
hψ0jφ0i2 þ 4ðhδϖjφ0i þ hϖjδφ0iÞ

hψ0jφ0i3 hψ 0
0jδφi

þ 6ðPþ hϖjφ0iÞ
hψ0jφ0i4 hψ 0

0jδφi2; ð3:34Þ

and evaluating the above on the background gives

δβj ¼ hδϖjφ̄0i þ hϖ̄jδφ0i
hψ0jφ̄0i2 þ 2β̄hψ 0

0jδφi
hψ0jφ̄0i ;

δ2βj ¼ 2hδϖjδφ0i
hψ0jφ̄0i2 þ 4ðhδϖjφ̄0i þ hϖ̄jδφ0iÞ

hψ0jφ̄0i3 hψ 0
0jδφi

þ 6β̄hψ 0
0jδφi2

hψ0jφ̄0i2 : ð3:35Þ

With these expressions in hand, the middle line of
Eq. (3.32) can be put in the form

−
1

2
ðβ̄δ2βj þ ðδβjÞ2Þhψ0jφ̄0i2 þ 2β̄ðδβjÞhψ0jφ̄0ihψ 0

0jδφi −
β̄2

2
hψ 0

0jδφi2

¼ −
1

2

�ðhδϖjφ̄0i þ hϖ̄jδφ0iÞ2
hψ0jφ̄0i2 þ 2β̄hδϖjδφ0i þ 4β̄ðhδϖjφ̄0i þ hϖ̄jδφ0iÞ

hψ0jφ̄0i hψ 0
0jδφi þ 3β̄2hψ 0

0jδφi2
�
: ð3:36Þ

Inserting this back into Eq. (3.32) and collecting terms, we find that

ðhϖj _φi −HTÞjδð2Þ ¼ hδϖj _δφi − δλhψ0jδφi − δνhψ0jδϖi þ −
1

2
hδϖjMδϖi − hδϖjBδφi − 1

2
hδφjKδφi þOðgÞ; ð3:37Þ

where the linear operators M, B, and K are given by

M ≔ 1þ jφ̄0ihφ̄0j
hψ0jφ̄0i2 ;

B ≔ β̄∂ρ þ
jφ̄0ihβ̄φ̄00 − _̄φ0j

hψ0jφ̄0i2 þ β̄jφ̄0ihψ 0
0j

hψ0jφ̄0i ;

K ≔ −∂2
ρ þ Vð2Þ

0 ðφ̄Þ þ jβ̄φ̄00 − _̄φ0ihβ̄φ̄00 − _̄φ0j
hψ0jφ̄0i2 þ β̄ðjβ̄φ̄00 − _̄φ0ihψ 0

0j þ jψ 0
0ihβ̄φ̄00 − _̄φ0jÞ

hψ0jφ̄0i : ð3:38Þ

Here we used Eq. (3.22) to set ϖ̄0 ¼ _̄φ0 − β̄φ̄00 þ β̄ψ 0
0hψ0jφ̄0i in several places.
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In order to arrive at Eq. (3.38) we integrated by parts on
various terms in Eq. (3.36) that involve φ̄0 integrated
against the fluctuations. Thus, for the theory in the box,
we have neglected terms in Eq. (3.38) of order φ̄0ðt;�L=2Þ.
We expect, for all t, this quantity to be exponentially

suppressed inmLwhen L is large, and therefore we will not
concern ourselves with these terms.
We can now use Eq. (3.37) to determine the Oð1Þ

semiclassical correction to Heff ½P�, Eq. (3.6), which we

denote by Hð0Þ
eff ½P�. We find

e
−i
R

tf
ti

dtHð0Þ
eff ½P� ¼

Z
½DδλDδνDδφDδϖ�Ψ0½δφðtf; ρÞ��Ψ0½δφðti; ρÞ�

× exp

�
i
Z

tf

ti

dt

�
hδϖj _δφi − δλhψ0jδφi − δνhψ0jδϖi

þ −
1

2
hδϖjMδϖi − hδϖjBδφi − 1

2
hδφjKδφi − Vδm2ðφ̄Þ

��
: ð3:39Þ

The form of the Lagrange-multiplier terms in this expres-
sion strongly suggests that we should expand the fluc-
tuation fields in the orthonormal basis fψng:

δφðt; ρÞ ¼
X
n

qnðtÞψnðρÞ;

δϖðt; ρÞ ¼
X
n

pnðtÞψnðρÞ: ð3:40Þ

We recall from (2.18) that these modes diagonalize the
fluctuation operator around the static soliton. While they
certainly do not diagonalize the quadratic Hamiltonian
under current investigation (unless P ¼ 0), they do allow us
to cleanly dispose of the constraints: integrating over δλ
and δν produces the product of Dirac delta functionals
δðq0ðtÞÞδðp0ðtÞÞ. Since

½DδφDδϖ� ¼
Y
n¼0

½DqnDpn�; ð3:41Þ

one can then soak up the delta functionals by integrating
over q0 and p0. This effectively removes q0, p0 from the
mode expansions (3.40) so that the problem depends
only on the restriction of the operators M, B, K to the
orthogonal complement of Spanfjψ0ig.

It will be useful to put the remaining integrations
into a standard form. We define column vectors q, p with
components qn, pn and matrices M;B;K with real
components15

Mmn ≔ hψmjMψni; Bmn ≔ hψmjBψni;
Kmn ≔ hψmjKψni; ð3:42Þ

for m; n ¼ 1;…; N, where N is the total number of modes
that we consider.16 We also collect these matrices into a
2N × 2N symmetric real block matrix

H ≔
�
M B

BT K

�
; ð3:43Þ

and we write ½DqDp� ¼ Q
N
n¼1½DqnDpn� for the phase

space measure. Then

exp

�
−i

Z
tf

ti

dtHð0Þ
eff ½P�

�

¼ exp

�
−i

Z
tf

ti

dtVδm2ðφ̄Þ
�
I ½P; tf; ti�; ð3:44Þ

where

I ½P; tf; ti�≔
Z

½DqDp�Ψ0ðqfÞ�Ψ0ðqiÞ

×exp

�
i
Z

tf

ti

dt

�
pT _q−

1

2
ðpT qT ÞH

�
p

q

���
;

ð3:45Þ

with qi;f ≡ qðti;fÞ. The P dependence of I comes through
the quadratic form H, which depends on P through the
background solution φ̄. Section IV is concerned with
analyzing this quadratic path integral in detail.
Recall that Vδm2ðφ̄Þ is the one-loop mass counterterm

from the perturbative sector, evaluated on the soliton
background. In the case of constant P it was shown in
[28], generalizing the classic computation of [5], how this
counterterm renders the one-loop correction to the relativ-
istic soliton energy finite in ϕ4 theory. We will review,

15In the following, boldfaced quantities will always refer to the
matrix representation of that quantity with respect to the basis
fjψnign≠0.

16The relationship between N and the UV cutoff employed for
mass renormalization in the perturbative sector will be discussed
in Sec. IV E.
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clarify, and expand on this computation at the end of
Sec. IV.

IV. ONE-LOOP CORRECTION

Starting with the field theory path integral of the
previous section, we obtained a finite-dimensional quantum
mechanics by working in a system of fixed spatial size L
and imposing a cutoff on the mode number. Since the
resulting action is quadratic in coordinates and momenta,
the path integral can be evaluated explicitly. However, the
Hamiltonian we have obtained is slightly unusual: it has a
term linear in coordinates and momenta. Fortunately, much
of the technology, even if unfamiliar, was developed long
ago. We will collect and review the pertinent results and
then apply them to the quantum mechanics of the dis-
cretized fluctuation path integral of our field theory.
The quantum mechanical path integral we are after,

Eq. (3.45), can be expressed in terms of the standard
transition amplitude, or propagator,

Zðqf; qi; tf; tiÞ

≔
Z

qðtfÞ¼qf

qðtiÞ¼qi

½DqDp�

× exp
�
i
Z

tf

ti

dt
�
pT _q −

1

2
ð pT qT ÞH

�
p

q

���
ð4:1Þ

via

I ½P; tf; ti� ¼
Z

dNqfdNqiΨ0ðqfÞ�Zðqf; qi; tf; tiÞΨ0ðqiÞ:

ð4:2Þ
Hence there are two pieces to the calculation: the propa-
gator and the initial and final state wave functions. In
Secs. IVA–IV C we will reduce Eq. (4.2) to a finite-
dimensional determinant. The result is quite general and
does not utilize the detailed form of H. In Sec. IV D we
diagonalize our explicitH in the case of constant P, and in
Sec. IV E we put all these results together to obtain the
expected form of the one-loop correction to the relativistic
soliton energy.

A. The propagator

Consider the quantum mechanics of the N degrees of
freedom with conjugate momentum and position operators
p̂ and q̂ and quadratic Hamiltonian17

Ĥ ¼ 1

2
ð p̂T q̂T ÞH

�
p̂

q̂

�
; ð4:3Þ

and corresponding time evolution operator

Ûðtf; tiÞ ¼ T

�
exp

�
−i

Z
tf

ti

dtĤðtÞ
	�

; ð4:4Þ

with T the time-ordering operator.
We will need to recall some details of the path integral

computation of the propagator for this system, i.e., the
matrix element

Zðqf; qi; tf; tiÞ ¼ ⟪qfjÛðtf; tiÞjqi⟫

¼
Z

qðtfÞ¼qf

qðtiÞ¼qi

½DqDp�eiS: ð4:5Þ

We will implicitly work with the midpoint prescription
for the phase-space path integral, where the time interval
ti ≤ t ≤ tf ¼ ti þ T is divided into T=ϵ segments of step
size ϵ, with the coordinate variables defined on the end
points of the intervals, while the momenta are defined at the
midpoints of the intervals. We refer the reader to standard
references such as the modern and thorough text [35] for
results, history, and references on quantummechanical path
integrals. In particular, for any action S quadratic in q and p,
possibly with time-dependent coefficients, the path integral
can be evaluated in closed form as

Zðqf; qi; tf; tiÞ ¼
�

1

2πi

�
N=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detm;n

�
−

∂2S
∂qmf ∂qni

�s
eiS;

ð4:6Þ

where S ¼ Sðqf; qi; tf; tiÞ is the action evaluated on the
classical solution to the boundary value problem qðtiÞ ¼ qi
and qðtfÞ ¼ qf. (See Sec. 6.2 of [35] for an extensive list of
references.)
To evaluate the classical action in a useful form, we recall

some key points from classical mechanics with quadratic
Hamiltonians. Letting

J ¼
�
0 −1
1 0

�
ð4:7Þ

denote the symplectic structure, the equations of motion for
the quadratic Hamiltonian,

H ¼ 1

2
ð pT qT ÞH

�
p

q

�
; ð4:8Þ

are �
_p

_q

�
¼ JH

�
p

q

�
: ð4:9Þ

Given some initial data qi ¼ qðtiÞ and pi ¼ pðtiÞ, the
solution takes the form

17We will use hats to distinguish quantum mechanical oper-
ators from the corresponding classical quantities.
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�
pf
qf

�
¼ T

�
exp

�Z
tf

ti

dtJHðtÞ
	��

pi
qi

�
: ð4:10Þ

We note that all the usual Hamilton-Jacobi manipula-
tions simplify for quadratic H. Quite generally, we have

pT _q ¼ 1

2

d
dt

ðpTqÞ − 1

2
ð pT qT ÞJ

�
_p

_q

�

¼ 1

2

d
dt

ðpTqÞ þ 1

2

XN
j¼1

�
pj ∂H

∂pj þ qa
∂H
∂qj

�
: ð4:11Þ

We used the equations of motion in the second equality.
Thus,

pT _q −H ¼ 1

2

d
dt

ðpTqÞ þ 1

2

XN
j¼1

�
pj ∂H

∂pj þ qj
∂H
∂qj

�
−H;

ð4:12Þ

and the last two terms cancel when H is homogeneous of
degree 2 in the p and q. The classical action is therefore
simply

S ¼
Z

tf

ti

dtðpT _q −HÞ ¼ 1

2
ðpTfqf − pTi qiÞ: ð4:13Þ

To apply this to the path integral in Eq. (4.6), we need to
use the general solution (4.10) to express the pf and pi
variables in terms of the qf and qi. Writing the classical
evolution operator in N × N block form as

T

�
exp

�Z
tf

ti

dtJHðtÞ
	�

¼
�
M1 M2

M3 M4

�
; ð4:14Þ

we have

pf ¼ M1pi þM2qi; qf ¼ M3pi þM4qi: ð4:15Þ

Assuming that M3 is invertible,18 we obtain

�
pf
pi

�
¼

�
M1M−1

3 M2 −M1M−1
3 M4

M−1
3 −M−1

3 M4

��
qf
qi

�
: ð4:16Þ

Plugging this into the action, we obtain

Sðqf; qi; tf; tiÞ ¼
1

2
ð qTf qTi ÞS

�
qf
qi

�
;

where S ¼
�Sff Sfi

ST
fi Sii

�
; ð4:17Þ

and the blocks of the 2N × 2N symmetric matrix S are

Sff ¼
1

2
ðM1M−1

3 þ ðM−1
3 ÞTMT

1 Þ;

Sfi ¼
1

2
ðM2 −M1M−1

3 M4 − ðM−1
3 ÞTÞ;

Sii ¼
1

2
ðM−1

3 M4 þMT
4 ðM−1

3 ÞTÞ: ð4:18Þ

Then the Morette–Van Hove determinant is read off as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detm;n

�
−

∂2S
∂qmf ∂qni

�s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−SfiÞ

q
: ð4:19Þ

The classical time evolution operator is a symplectic
transformation on the phase space (this holds even when
the Hamiltonian is time dependent), so the matrices M1,
M2, M3, and M4 satisfy the Spð2N;RÞ identities that the
products MT

1M3, M1MT
2 , M

T
2M4, and M4MT

3 are symmet-
ric, and

MT
4M1 −MT

2M3 ¼ 1; M4MT
1 −M3MT

2 ¼ 1: ð4:20Þ

This leads to

Sii ¼ M−1
3 M4 ¼ MT

4 ðM−1
3 ÞT;

Sff ¼ M1M−1
3 ¼ ðM−1

3 ÞTMT
1 ; ð4:21Þ

and we also obtain

Sfi ¼
1

2
ðM2 −M1M−1

3 M4 − ðM−1
3 ÞTÞ

¼ 1

2
ðM2MT

3 −M1M−1
3 M4MT

3 − 1ÞðM−1
3 ÞT

¼ 1

2
ðM2MT

3 −M1MT
4 − 1ÞðM−1

3 ÞT

¼ −ðM−1
3 ÞT: ð4:22Þ

Putting these results together, we obtain

Zðqf; qi; tf; tiÞ ¼
�

1

2πi

�
N=2 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

detM3

p eiSðqf;qi;tf;tiÞ; ð4:23Þ

with the classical action given in Eq. (4.17).

18We expect this to hold for generic T and will, at any rate, see
that the expressions we obtain for our path integral will not be
affected by this assumption: all factors of M−1

3 will cancel in the
final expressions.
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B. The fluctuation path integral for constant P

The next step is to determine the ground-state wave
functions,Ψ0ðqi;fÞ, and use themwith Eq. (4.23) to compute
Eq. (4.2). It is useful to do this for the case of constantP first,
before tackling the general case in Sec. IV C.
We are assisted by one more piece of machinery from the

classical mechanics of quadratic Hamiltonians. (See, for
instance, Appendix 6 of [36] for a discussion of normal
forms of quadratic Hamiltonians.) Assuming that H is
positive definite,19 it was shown by Williamson in [23] that
there exists a symplectic transformation C ∈ Spð2N;RÞ
such that

CTHC ¼ N ¼
�
ν 0

0 ν

�
; ð4:24Þ

where ν is a diagonal matrix, ν ¼ diagðν1; ν2;…; νnÞ, with
νa > 0.20 In general both ν and C will be functions of time,
and in this case it is still not straightforward to evaluate the
evolution operator, Eq. (4.14), in a more explicit form.
However, when H is time independent, as is the case for
constant P, we can use the symplectic transformation to
recast the initial value problem in terms of the new
variables p0, q0 defined by

�
p0

q0

�
¼ C−1

�
p

q

�
: ð4:25Þ

Given initial values p0i ¼ p0ðtiÞ and q0i ¼ q0ðtiÞ, we find at
time tf

�
p0ðtfÞ
q0ðtfÞ

�
¼

�
cos νT − sin νT

sin νT cos νT

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼R

�
p0i
q0i

�
: ð4:26Þ

Finding either the explicit form of C or of ν is not
straightforward, even if one has a complete solution to
the problem, Eq. (3.43), withB ¼ 0,21 but these results will
allow us to evaluate Eq. (4.2) in a simple and useful
closed form.
The Williamson transformation gives us a simple way to

describe the soliton ground state jΨ0⟫. The Williamson
transformation

C ¼
�
C1 C2

C3 C4

�
ð4:27Þ

relates momentum and position operators in the quantum
mechanics to canonically conjugate operators p̂0 and q̂0 via

p̂ ¼ C1p̂0 þ C2q̂0; q̂ ¼ C3p̂0 þ C4q̂0; ð4:28Þ

with the Hamiltonian operator given by

Ĥ ¼ 1

2
ð p̂T q̂T ÞH

�
p̂

q̂

�

¼ 1

2

XN
a¼1

νaðp̂0ap̂0a þ q̂0aq̂0aÞ: ð4:29Þ

The creation and annihilation operators

â ¼ 1ffiffiffi
2

p ðp̂0 − iq̂0Þ; â† ¼ 1ffiffiffi
2

p ðp̂0 þ iq̂0Þ ð4:30Þ

satisfy the usual relations

½âa; âb� ¼ 0; ½âa; â†b� ¼ δab;

Ĥ ¼
XN
a¼1

νa

�
â†aâa þ 1

2

�
: ð4:31Þ

The ground state jΨ0⟫ is then defined as the normalized
state annihilated by all âa.
With that preparation, we interpret the fluctuation path

integral, Eq. (4.2), as a matrix element of the time evolution
operator in the quantum mechanics and conclude that

IðTÞ ¼
Z

dNqfdNqiΨ0ðqfÞ�Ψ0ðqiÞZðqf; qi; tf; tiÞ

¼
Z

dNqfdNqi⟪Ψ0jqf⟫⟪qfjÛðtf; tiÞjqi⟫⟪qijΨ0⟫

¼ ⟪Ψ0jÛðTÞjΨ0⟫ ¼ ⟪Ψ0je−iĤðtf−tiÞjΨ0⟫

¼ exp

�
−
i
2
T
XN
a¼1

νa

�
: ð4:32Þ

The eigenvalues νa will be determined in Sec. IV D.

C. The fluctuation path integral for general PðtÞ
More generally, when _P ≠ 0, we face a more compli-

cated evolution problem, but we can nevertheless reduce
Eq. (4.2) by applying the ideas developed above.
First, we observe that the Williamson transformation that

allowed us to recast the Hamiltonian operator in diagonal
form can still be performed in the time-dependent case: the
results in Eqs. (4.28), (4.29), (4.30), and (4.31) continue to
hold, with the crucial difference that now CðtÞ, p̂0ðtÞ, q̂0ðtÞ,

19The explicit diagonalization in Sec. IV D will justify this
assumption.

20An elegant proof of this result is given in [37]: the matrix
M ¼ H−1=2JH−1=2 is invertible and antisymmetric, and
therefore there exists a transformation R ∈ SOð2n;RÞ and a
positive diagonal matrix N such that RTMR ¼ N −1J ;
C ¼ H−1=2RN 1=2 is the desired symplectic transformation.

21It is easy to see that det ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
detH

p
, but the individual

eigenvalues are not related to those of H in any transparent
fashion.
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as well as the creation and annihilation operators, are time
dependent,22 as are the corresponding eigenkets, e.g., the
“position” eigenkets jξ0q0 ðtÞ⟫ that satisfy

q̂0jξ0q0 ðtÞ⟫ ¼ q0jξ0q0 ðtÞ⟫: ð4:33Þ

As explained in [38], since the symplectic transformation
(4.28) preserves the commutation relations of the q̂0 and p̂0,
there must be a unitary transformation V̂ that relates the
operators,

p̂0 ¼ V̂†p̂ V̂; q̂0 ¼ V̂†q̂ V̂; ð4:34Þ

so that the time-dependent eigenkets jξ0q0 ðtÞ⟫ can be
expressed in terms of the eigenkets of q̂, which we denote
as jq⟫:

jξ0q0 ðtÞ⟫ ¼ V̂jq0⟫: ð4:35Þ

Similarly, we can still define the ground state of the time-
dependent Hamiltonian as the normalized state annihilated
by all the âaðtÞ:

âaðtÞjΨ0ðtÞ⟫ ¼ 0: ð4:36Þ

This state is no longer time independent, nor does it solve
the Schrödinger equation, but it does minimize the energy
expectation value, and we can write it explicitly in terms of
the eigenkets jξ0q0 ðtÞ⟫ of q̂0ðtÞ:

jΨ0ðtÞ⟫ ¼
Z

dNq0Ψ0ðq0Þjξq0 ðtÞ⟫;

Ψ0ðq0Þ ¼ π−N=4 exp ½−q0Tq0=2�; ð4:37Þ

where the latter expression is the normalizedN-dimensional
Gaussian. The fluctuation path integral, Eq. (4.2), can nowbe
expressed as

I ½P; tf; ti� ¼
Z

dNqfdNqi⟪Ψ0ðtfÞjqf⟫Zðqf; qi; tf; tiÞ

× ⟪qijΨ0ðtiÞ⟫: ð4:38Þ

The general form of the propagator Zðqf; qi; tf; tiÞ is
given in Eq. (4.23), but to use it to evaluate I ½P; tf; ti� we
need to express the states jΨ0ðti;fÞ⟫ in the position basis

of the q̂. This is accomplished by using the unitary
transformation V̂:

Ψ0ðq; tÞ ¼ ⟪qjΨ0ðtÞ⟫ ¼
Z

dNq0⟪qjξ0q0 ðtÞ⟫Ψ0ðq0Þ

¼
Z

dNq0i⟪qjV̂†jq0⟫Ψ0ðq0Þ: ð4:39Þ

The matrix element ⟪qjV†jq0⟫ can be evaluated explicitly
in terms of the symplectic transformation relating the two
sets of variables [38]. When the C3 block of the Williamson
transformation is invertible, the relation is23

⟪qjξ0q0 ðtÞ⟫ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πiÞN detC3

p
× exp

�
i
2
ðq0TCT

4 ðCT
3 Þ−1q0

− 2qTðCT
3 Þ−1q0 þ qTðCT

3 Þ−1CT
1qÞ

�
: ð4:40Þ

Carrying out the Gaussian integral, we then obtain

Ψ0ðq; tÞ ¼
expð− 1

2
qTBqÞ

πn=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðiC3AÞ

p ; ð4:41Þ

where

A≔ 1− iC−1
3 C4; B≔ ðCT

3 Þ−1A−1C−1
3 − iC1C−1

3 : ð4:42Þ

Since C is symplectic, A and B are both symmetric (in
general time-dependent) matrices.
Applying this to our matrix element, and using the wave

functions (4.41) and the propagator (4.23), we find that

I ½P; tf; ti� ¼
π−n=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðC3iC3fAiA
†
fÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πiÞN detM3

p
×
Z

dNqidNqf expfiS0ðqf;qi; tf; tiÞg; ð4:43Þ

where M3 is a block of the classical evolution operator,
Eq. (4.14), and S0 is a modification of the action
Sðqf; qi; tf; tiÞ from Eq. (4.17):

S0ðqf; qi; tf; tiÞ ¼
1

2
ð qTf qTi ÞS0

�
qf
qi

�
; ð4:44Þ

where the 2N × 2N matrix S0 is analogous to the S matrix
we met before. A convenient expression for it is

22In the general case it is difficult to assess whether HðtÞ is
positive definite at generic t. However, the final result we obtain
will depend on the Williamson transformation only at initial and
final times. Restricting to PðtÞ that is constant at early and late
times, the background φ̄will be constant at early times, and hence
the results of Sec. IV D will demonstrate that HðtiÞ is positive
definite. At late times, the background solution will approach a
superposition of the kink and a spectrum of traveling waves [2].
We also expect positive definiteness in this case.

23We will see shortly that the invertibility assumption will not
affect our final result for I ½P; tf; ti�.
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S0 ¼ −J
� 1 −ðMT

4 þ iBiMT
3 Þ

M1 þ iB†
fM3 −1

�

×

�
M−1

3 0

0 ðMT
3 Þ−1

�
: ð4:45Þ

Carrying out this Gaussian integral, we conclude

I ½P; tf; ti� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G½P; tf; ti�
p ; where

G½P; tf; ti� ≔ det

�
−
i
2
C3iC3fM3AiA

†
f

�
detS0: ð4:46Þ

The convenient form of S0 together with C ∈ Spð2N;RÞ
allows us to reduce detS0 to an N × N determinant,

detS0 ¼ detðM2þ iB†
fM4þ iM1Bi−B†

fM3BiÞðdetM3Þ−1;
ð4:47Þ

so that

G ¼ det

�
−
i
2
A†
fC

T
3fðM2 þ iB†

fM4

þ iM1Bi − B†
fM3BiÞC3iAi

�
: ð4:48Þ

We observe that C ∈ Spð2N;RÞ implies

C3iAi ¼ C3i − iC4i; A†
fC

T
3f ¼ CT

3f þ iCT
4f;

BiC3iAi ¼ −ðC2i þ iC1iÞ; A†
fC

T
3fB

†
f ¼ −ðCT

2f − iCT
1fÞ;

ð4:49Þ

so, as promised above, all factors of C−1
3 andM−1

3 disappear
from the final expression.
The final result can be elegantly written in terms of the

complex time-dependent matrices

D12 ¼ C1 þ iC2; D34 ¼ C3 þ iC4; ð4:50Þ

which are invertible and satisfy

DT
34D12 − DT

12D34 ¼ 0;

DT
34D

�
12 − DT

12D
�
34 ¼ 2i1: ð4:51Þ

The result is

G ¼ det

�
−
i
2
ðDT

34fM2D�
34i − DT

12fM4D�
34i

þ DT
34fM1D�

12i − DT
12fM3D�

12iÞ
�
: ð4:52Þ

This N × N determinant is then a complete solution to the
regularized path integral over the fluctuations around the
soliton in the time-dependent case. Notice that it depends
only on the blocks of the classical evolution operator,
Eq. (4.14), and on the blocks of the Williamson trans-
formation at the initial and final times, Cðti;fÞ.
We can give a nontrivial check of the result by consid-

ering the _P ¼ 0 limit. In this case the symplectic trans-
formation is time independent, and the components of the
evolution operator are determined in terms of the matrixR
appearing in Eq. (4.26):

�
M1 M2

M3 M4

�
¼ CRC−1 ¼ C

�
cos νT − sin νT

sin νT cos νT

�
C−1:

ð4:53Þ

Writing these out explicitly in terms of e�iνT , we find that

2iM2 ¼ −D�
12e

iνTDT
12 þ D12e−iνTD

†
12;

2iM4 ¼ −D�
34e

iνTDT
12 þ D34e−iνTD

†
12;

2iM1 ¼ þD�
12e

iνTDT
34 − D12e−iνTD

†
34;

2iM3 ¼ þD�
34e

iνTDT
34 − D34e−iνTD

†
34: ð4:54Þ

Finally, plugging these expressions into G and using
Eq. (4.51), we find that G ¼ eiðtrνÞT , which is in agreement
with Eq. (4.32).

D. Computation of the spectrum for constant P

In Secs. IVA–IV C we reduced the regulated path
integral over the fluctuations to a finite-dimensional deter-
minant. We were able to obtain fairly general results that
did not rely on the particular properties of the quadratic
action. In this subsection, after some preliminary discus-
sion, we will restrict to the case of constant P, where we can
get an explicit solution to the spectrum of the νa and
therefore give a complete solution for the regulated one-
loop effective Hamiltonian.24 This computation serves as a
check of our methods and will also be of great utility when
these methods are extended to computations of nontrivial
matrix elements that contain insertions of the fields.
The computation is based on applying the ansatz given in

the Appendix of [9] to our quadratic Hamiltonian, and it
hinges on finding the normal modes of the generator of
the classical evolution operator, which appears in the
equations of motion, Eq. (4.9). Thus, we are interested
in the eigenproblem

24As discussed after Eq. (3.38), we are neglecting terms in H
that are exponentially suppressed in mL at large L. Thus, the
spectrum we obtain here is expected to receive corrections that
are analogously suppressed at large L.
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ðJHÞηa ¼ −iνaηa ð4:55Þ

for the eigenvectors ηa with normal-mode frequencies νa.
We begin with some general observations on the eigen-

value problem for the operator

A 0 ≔ iJH; ð4:56Þ
for a positive-definite symmetric H. As the Williamson
transformation shows explicitly, this operator is similar to
the invertible Hermitian operator

A ≔ C−1A 0C ¼
�

0 −iν
iν 0

�
: ð4:57Þ

Thus, the eigenvalues ofA 0 are real and come in pairs�νa,
νa > 0, with complex conjugate eigenvectors η0a and η0a�,
where η0a is the eigenvector corresponding to þνa. These
eigenvectors are given by η0a ¼ Cηa and η0a� ¼ Cηa�,
where ηa is the eigenvector of A with eigenvalue þνa.
The monic polynomial QðνÞ ¼ detðν − iJHÞ can be

factored as QðνÞ ¼ RðνÞRð−νÞ, where RðνÞ has positive
real roots νa. While QðνÞ is obtained algebraically once H
is known, it is not so simple to determine RðνÞ. So, even
though our path integral depends only on the sum of the
eigenvalues Trν, we cannot evaluate this sum in a simple
algebraic fashion from QðνÞ.
Moreover, we saw that in the time-dependent case the

form of GðTÞ in Eq. (4.52) explicitly depends on the details
of the symplectic transformation (at initial and final times,
in neighborhoods of which P is assumed to be constant), so
it would be useful to have expressions for components of C
in terms of the solution to this eigenvalue problem. To
obtain such an expression, we note that our original
coordinates on the phase space use the real basis vectors
πn and ξn, given explicitly by

πn ¼
�
ψn

0

�
; ξn ¼

�
0

ψn

�
; ð4:58Þ

where ψn are our orthonormal basis vectors: ðψnÞm ¼ δnm.
Then any vector z ∈ R2N can be written as

z ¼
XN
n¼1

ðpnπn þ qnξnÞ: ð4:59Þ

This is simply a rephrasing of Eq. (3.40) with the mode sum
restricted to 1 ≤ n ≤ N. The phase-space basis vectors
satisfy

J πn ¼ ξn; J ξn ¼ −πn; ð4:60Þ

and ðπmÞTπn ¼ ðξmÞTξn ¼ δmn, while ðπmÞTξn ¼ 0. In
terms of this real basis, the normalized eigenmodes of
A, Eq. (4.57), are simply

ηa ¼ 1ffiffiffi
2

p ðπa þ iξaÞ; ηa� ¼ 1ffiffiffi
2

p ðπa − iξaÞ; ð4:61Þ

corresponding to eigenvalues þνa and −νa, respectively.
The eigenvectors ofA 0, Eq. (4.56), are then given by the

Williamson transformation: η0a ¼ Cηa and η0a� ¼ Cηa�.
Introducing the new basis π0a and ξ0a such that

η0a ¼ 1ffiffiffi
2

p ðπ0a þ iξ0aÞ; η0a� ¼ 1ffiffiffi
2

p ðπ0a − iξ0aÞ; ð4:62Þ

we have

π0a ¼
�
C1ψa

C3ψa

�
; ξ0a ¼

�
C2ψa

C4ψa

�
ð4:63Þ

in terms of the block components of the Williamson
transformation. Since the Williamson transformation is
symplectic, it follows from Eq. (4.62) that

ðξ0aÞTJ π0b ¼ δab; ðξ0aÞTJ ξ0b ¼ 0; ðπ0aÞTJ π0b ¼ 0;

ð4:64Þ

as well as

ðξ0aÞTHξ0b ¼ ðπ0aÞTHπ0b ¼ νaδ
ab; ðξ0aÞTHπ0b ¼ 0:

ð4:65Þ

Hence the transformed basis diagonalizes the Hamiltonian,
as displayed in Eq. (4.24).
Conversely, if we obtain the complete set of normalized

eigenvectors of A 0 ¼ iJH, we can extract the compo-
nents of the Williamson transformation. First, we take real
and imaginary parts to get π0a and ξ0a according to
Eq. (4.62), and then from Eq. (4.63) we infer

Cna
1 ¼ ðπnÞTπ0a; Cna

2 ¼ ðπnÞTξ0a;
Cna
3 ¼ ðξnÞTπ0a; Cna

4 ¼ ðξnÞTξ0a: ð4:66Þ
The normalization condition that must hold on the primed
vectors is Eq. (4.64), which is equivalent to the following
for the eigenvectors of A0:

ðη0aÞTðiJ Þη0b ¼ δab; ðη0aÞTðiJ Þη0b� ¼ 0: ð4:67Þ
In order to compute the combinations D12 and D34 that
appear in G, Eq. (4.52), it is more convenient to work with
the complex vectors η0a. Comparing Eqs. (4.50) and (4.66)
we find that

ðD12Þna ¼ ðπnÞTη0a; ðD34Þna ¼ ðξnÞTη0a: ð4:68Þ
Having reviewed the setup of the eigenproblem for a

general Hamiltonian, we now turn to our main interest, the
Hamiltonian in Eq. (3.43). The operator A 0 takes the form
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A 0 ¼ i

�
−BT −K
M B

�
ð4:69Þ

so that the eigenvalue problem is�
−BT −K
M B

��
η0a1
η0a2

�
¼ −iνa

�
η0a1
η0a2

�
: ð4:70Þ

Using the second row, we solve for η0a1 ,

η0a1 ¼ −M−1ðBþ iνa1Þη0a2 ; ð4:71Þ

and we plug this result into the first row to obtain

Δaη0a2 ¼ 0; ð4:72Þ

where the operator Δa is

Δa¼K−BTM−1Bþ iνaðM−1B−BTM−1Þ−ν2aM
−1:

ð4:73Þ

The computation of ðΔaÞmn is straightforward, remem-
bering that Kmn ¼ hψmjKψni, etc., whereM, B, and K are
as given in Eq. (3.38). We make repeated use of the
completeness of the fjψnig in the form

P
n≠0 jψnihψnj ¼

1 − jψ0ihψ0j, and there are several remarkable simplifica-
tions. For example, one finds that

ðM−1Þmn ¼ δmn −
hψmjφ̄0ihφ̄0jψni

hφ̄0jφ̄0i : ð4:74Þ

Notice the lack of any dependence on the static zero
mode jψ0i. We also drop boundary terms from integration
by parts involving φ̄0ð�L=2Þ for the same reasons as
were discussed after Eq. (3.38). We find that ðΔaÞmn ¼
hψmjΔajψni, with

Δa ¼ Δa
loc þ

j2β̄φ̄00 − _̄φ0 þ iνaφ̄0ih2β̄φ̄00 − _̄φ0 þ iνaφ̄0j
hφ̄0jφ̄0i ;

ð4:75Þ

where the local part of the operator takes the form

Δa
loc ¼ −ð1 − β̄2Þ∂2

ρ þ Vð2Þ
0 ðφ̄Þ þ 2iβ̄νa∂ρ − ν2a: ð4:76Þ

In order to find an η0a2 that solves Eq. (4.72), it is sufficient
to find jη0a2 i satisfyingΔajη0a2 i ¼ 0 and hψ0jη0a2 i ¼ 0 because
such a vector satisfies

jη0a2 i ¼
X
n≠0

ðη0a2 Þnjψni ð4:77Þ

and

0 ¼ hψmjΔajη0a2 i ¼
X
n≠0

hψmjΔajψniðη0a2 Þn ¼ ðΔaÞmnðη0a2 Þn;

ð4:78Þ

with ðη0a2 Þn the components of η0a2 . Note that ðη0a1 Þn and ðη0a2 Þn
are precisely the matrix components ðD12Þna and ðD34Þna
appearing in Eq. (4.68).
To proceed further we now restrict ourselves to the case

of constant P, where φ̄0 is time independent and

Δa ¼ Δa
loc þ

j2β̄φ̄00 þ iνaφ̄0ih2β̄φ̄00 þ iνaφ̄0j
hφ̄0jφ̄0i : ð4:79Þ

Inspired by [9], we will now find the requisite jη0a2 i and
νa explicitly. To get to the result, it helps to consider the
β̄ → 0 limit in which there are three simplifications:
(i) φ̄ ¼ ϕ0 is the static soliton solution, (ii) φ̄0 ¼ 1ffiffiffiffiffi

M0

p ψ0,

and (iii)

Δa ¼ −∂2
ρ þ Vð2Þ

0 ðϕ0Þ − ν2að1 − jψ0ihψ0jÞ: ð4:80Þ

Comparing this to Eq. (2.18) we recognize a familiar
problem, and the solution is simple: jη0a2 i ¼ jψai for
β ≠ 0, and νa ¼ ωa. Notice also that Δa annihilates jψ0i
for all νa. Indeed, viewing the operator as a rank-1 modi-

fication of the local operator, Δa
loc ¼ −∂2

ρ þ Vð2Þ
0 ðϕ0Þ − ν2a,

we find that the vector providing the modification is in the
image of the local operator. Specifically, Δa

locjψ0i ¼
−ν2ajψ0i. Using this and hψ0jΔa

locjψ0i ¼ −ν2a, we can write
Eq. (4.80) as

Δa ¼ Δa
loc −

Δa
locjψ0ihψ0jΔa

loc

hψ0jΔa
locjψ0i

; ð4:81Þ

Thismakes it clear that the general solution is jψai þ cajψ0i,
but orthogonality to jψ0i sets ca ¼ 0.

Remarkably, even in the case β̄ ≠ 0, the ket that
appears in Δa − Δa

loc is in the image of Δa
loc. Namely, since

−ð1 − β̄2Þφ̄00 þ Vð2Þ
0 ðφ̄Þφ̄0 ¼ 0,

iνaj2β̄φ̄00 þ iνaφ̄0i ¼ Δa
locjφ̄0i; ð4:82Þ

and therefore

hφ̄0jΔa
locjφ̄0i ¼ −ν2ahφ̄0jφ̄0i; ð4:83Þ

where again we drop boundary terms involving φ̄0ð�L=2Þ.
Hence, up to terms exponentially small at large L,

Δa ¼ Δa
loc −

Δa
locjφ̄0ihφ̄0jΔa

loc

hφ̄0jΔa
locjφ̄0i ; ð4:84Þ

making it clear that Δa annihilates jφ̄0i for any νa.
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Hence our task is now clear. If we can find modes jψai
that are annihilated by Δa

loc, then they are annihilated by Δa

as well. Furthermore, we can then subtract off a multiple of
jφ̄0i and still have a solution: jη0a2 i ¼ jψai − cajφ̄0i will be
annihilated by Δa for any constant ca. The coefficient ca is
fixed by requiring orthonormality of jη0a2 i with jψ0i. Hence
our solution will take the form

jn0a2 i ¼ jψai −
hψ0jψai
hψ0jφ̄0i jφ̄

0i; ð4:85Þ

where jψai must satisfy Δa
locjψai ¼ 0 with appropriate

boundary conditions at ρ ¼ �L=2.
Since Δa

loc, Eq. (4.76), is a natural generalization of the
corresponding operator with β̄ ¼ 0, the spectrum will vary
smoothly with β̄ and it makes sense to seek an ansatz for
jψai that is based on eigenmodes of the static fluctuation
operator, Eq. (2.18). We define a boosted and plane-wave
dressed function

ψaðρÞ ¼ Naψ̃a

�
ρ − ρ0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β̄2

p �
exp

�
iβ̄μaðρ − ρ0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β̄2
p 	

; ð4:86Þ

where Na is a normalization constant, and we remind the
reader that the parameter ρ0 is fixed by the constraint on the
background solution: hψ0jφ̄ − ϕ0i ¼ 0. Here ψ̃aðρÞ solves
Eq. (2.18) with frequency ω̃a. We have introduced the tilde
(ψ̃ ’s and ω̃’s) since we do not assume that the ψ̃a satisfy the
same boundary conditions as the ψn at the edges of the box.
The questions of boundary conditions and normalization
will be addressed momentarily. We then observe that
Δa

locψan ¼ 0 if we choose μa ¼ ω̃a, and we set

νa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β̄2

q
ω̃a: ð4:87Þ

The boundary conditions on ψa and the normalization
constant Na must be determined from the orthonormality
condition (4.67). From Eqs. (4.71) and (4.85) we find that
ðη0a1 Þm ¼ hψmjηa1i, with

jη0a1 i ¼ −ðβ̄∂ρ þ iνaÞjψai þ
β̄jφ̄00ihψ0jψai

hψ0jφ̄0i
¼ −β̄∂ρjη0a2 i − iνajψai; ð4:88Þ

where we use h2β̄φ̄00 þ iνaφ̄0jψai ∝ hΔa
locφ̄

0jψai ¼ 0. Then,
on the one hand,

ðη0aÞTðiJ Þη0b ¼ −iðhη0a1 jη0b2 i − hη0a2 jη0b1 iÞ

¼
Z

L=2

−L=2
dρfðνa þ νbÞψ�

aψb

þ iβ̄ðð∂ρψ
�
aÞψb − ψ�

a∂ρψbÞg; ð4:89Þ

while, on the other hand,

0 ¼
Z

L=2

−L=2
dρfψ�

aðΔb
locψbÞ − ðΔa

locψaÞ�ψbg

¼ ðνa − νbÞ
Z

L=2

−L=2
dρfðνa þ νbÞψ�

aψb

þ iβ̄ðð∂ρψ
�
aÞψb − ψ�

a∂ρψbÞg
þ −fð1 − β̄2Þðψ�

a∂ρψb − ð∂ρψ
�
aÞψbÞ

− iβ̄ðνa þ νbÞðψ�
aψbÞg

���L=2
−L=2

: ð4:90Þ

Here, as usual, we drop boundary terms in Eq. (4.89) that are
exponentially small in L, but we cannot drop the boundary
terms in Eq. (4.90): for those ψ̃a with a corresponding to
scattering states, the ψa behave asymptotically as plane
waves, and these boundary terms are Oð1Þ.
Comparing the two results, we see that if a ≠ b,

ðη0aÞTðiJ Þη0b ¼ 1

ðνa − νbÞ
fð1 − β̄2Þðψ�

a∂ρψb − ð∂ρψ
�
aÞψbÞ

− iβ̄ðνa þ νbÞðψ�
aψbÞg

���L=2
−L=2

: ð4:91Þ

Hence theJ orthogonality condition for the η0a will hold if
we choose, e.g., periodic boundary conditions for ψaðρÞ.
Given the plane-wave dressing factor in Eq. (4.86), this
translates into the following boundary condition for the ψ̃a:

ψ̃aðρ̃þÞeiβ̄ω̃aρ̃þ ¼ ψ̃aðρ̃−Þeiβ̄ω̃aρ̃− ; where ρ̃� ¼ � L
2
− ρ0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β̄2
p :

ð4:92Þ
Note this means that the scattering wave functions ψ̃a will
need to be taken as complex, behaving asymptotically as
plane waves rather than sines and cosines. This result
generalizes and provides a different perspective on the
boundary conditions employed by Jain [28] in his calcu-
lation of the one-loop correction to the relativistic soliton
energy for ϕ4 theory. That calculation will be revisited in
Sec. IV E. Here we see that the boundary conditions arise
from demanding that the transformation from old to new
phase-space coordinates is symplectic.
Since the boundary conditions on the ψ̃a are different

from those on the ψn, the spectrum of eigenvalues is
different: fω̃ag ≠ fωng. The ω̃a depend on β̄ through the
boundary conditions and as β̄ → 0 the boundary conditions
coincide. Hence we may write ω̃a¼ ω̃aðβ̄Þ, with
ω̃að0Þ ¼ ωa. An analogous statement holds for the wave
functions. The bound state spectra will be practically
identical at large L, differing by terms of Oðe−mLÞ.
Returning to Eq. (4.89), if a ¼ b, then we find that

ðη0aÞTðiJ Þη0a¼ 2νan

Z
dρψaðρÞ�ψaðρÞ

¼ 2νa

ffiffiffiffiffiffiffiffiffiffiffiffi
1− β̄2

q
N2

a ¼ 2ω̃að1− β̄2ÞN2
a: ð4:93Þ
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Hence the normalization constant is taken to be

Na ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ω̃að1 − β̄2Þ
p : ð4:94Þ

In summary, we have provided a complete solution to the
diagonalization problem in the constant P case, up to
corrections to the spectrum and eigenvectors that will
vanish exponentially fast in mL as the box size L → ∞.
The eigenvalues are Eq. (4.87), and the eigenvectors are
Eqs. (4.85) and (4.88) with Eqs. (4.86), (4.92), and (4.94).
The relativistic spectrum is a classic result going back to
[9]. However, as far as we are aware, this is the first time the
normal modes have been obtained within the constraint
formalism of [10]. The two most important results for the
final subsection are the spectrum (4.87) determined through
the boundary conditions (4.92).

E. The one-loop correction for constant P

The results of Secs. IV C and IV D can be summarized
by saying that the one-loop correction to the soliton
effective Hamiltonian in the case of constant P is

Hð0Þ
eff ½P� ¼

1

2γ̄

XN
a¼1

ω̃a þ
Z

dρVδm2ðφ̄Þ; ð4:95Þ

where γ̄ ¼ ð1 − β̄2Þ−1=2 is the Lorentz factor and the ω̃a are

N nonzero-mode eigenvalues of −∂2
ρ þ Vð2Þ

0 ðϕ0ðρÞÞ, acting
on functions ψ̃a of ρ ∈ ð−L=2; L=2Þ that satisfy the
boundary conditions (4.92). This result holds for the theory
in the box, up to corrections of order e−mL. Vδm2ðφ̄Þ is the
one-loop mass counterterm, obtained from renormalization
in the perturbative sector, evaluated on the boosted-soliton
solution φ̄ðρÞ ¼ ϕ0ðγ̄ρÞ.
If our goal were to study the cutoff theory in the box,

then the remaining tasks would be to relate the total number
of modes, N, to the momentum cutoff implicit in Vδm2 ,
specify which modes we are including, and say something
more precise about the Oðe−mLÞ corrections. Our goal,
however, is not to study the cutoff theory in the box; rather,
it is to study the continuum theory on R. In this case we
need not worry about theOðe−mLÞ corrections, but we have
a different problem: neither the L → ∞ norN → ∞ limit of
Eq. (4.95) exists. The trained quantum field theorist is not
perplexed. This is to be expected since we are accounting
for the ground-state energies of infinitely many degrees of
freedom. This overall energy is meaningless in quantum
field theory. In contrast, only the differences between each
mode’s contribution to the energy in Eq. (4.95) and that
mode’s contribution to the unobservable vacuum energy are
meaningful.
The latter arise from the vacuum to vacuum transition

amplitude, ⟪ΩjZjΩ⟫, which the matrix elements in
Eq. (2.9) should have been normalized by. Having

suppressed this factor in Eq. (2.9), we also suppress it in
our definition of the soliton effective Hamiltonian,
Eq. (2.28). Now we make it explicit, rewriting Eq. (3.6) as

e−i
R

dtHeff ½P� ≔
1

⟪ΩjZjΩ⟫
Z

½DφDϖDλDν�Ψ0½φðtf; ρÞ��

×Ψ0½φðti; ρÞ�ei
R

dtðhϖj _φi−HTÞ; ð4:96Þ

with HT still given by Eq. (3.6). At one loop, the vacuum
jΩ⟫ is the state annihilated by all of the annihilation
operators in the perturbative sector. Hence a computation
analogous to Eq. (4.32) shows that

⟪ΩjZjΩ⟫ ¼ exp

�
−
i
2
T
XN
n¼0

ωð0Þ
n þOðg2Þ

�
; ð4:97Þ

where the ωð0Þ
n , 0 ≤ n ≤ N, are the lowest N þ 1 frequen-

cies of the perturbative modes in the box. Specifically, the

ðωð0Þ
n Þ2 are the eigenvalues of −∂2

x þ Vð2Þ
0 ð⟪ϕ⟫Þ acting on

functions satisfying periodic boundary conditions at
x ¼ �L=2. We consider N þ 1 degrees of freedom in
the perturbative sector because that is how many we are
considering in the soliton sector: one collective coordinate
and N perturbative fluctuations around the soliton. Our
conventions are that modes are uniquely labeled by their
index, so for the free modes there is a twofold degeneracy

in the spectrum for n > 0: ωð0Þ
0 < ωð0Þ

1 ¼ ωð0Þ
2 < ωð0Þ

3 ¼
ωð0Þ
4 � � �. Hence instead of Eq. (4.95) what we really have is

Hð0Þ
eff ½P� ¼

1

2

XN
n¼0

ðγ̄−1ω̃an − ωð0Þ
n Þ þ

Z
dρVδm2ðφ̄Þ; ð4:98Þ

and the notation ω̃an indicates that there is an identification
between the two sets of modes that remains to be
determined. In particular, one of the ω̃’s will be the zero
mode (or what becomes the zero mode as L → ∞), and we
have freely extended the sum over the ω̃’s to include the
would-be zero mode since its value is Oðe−mLÞ.
The N → ∞ limit, followed by the L → ∞ limit, of

Eq. (4.98) should now exist. In fact, this computation was
carried out for the relativistic kink in ϕ4 theory in [28]. We
revisit the calculation here since some steps are different.
The reason is that [28] is based on the operator formalism
of [9], which does not obtain the soliton-sector Hamiltonian
through a quantum canonical transformation as in [10,11],
and so treats the soliton momentum differently.25 For
brevity we restrict ourselves to ϕ4 theory. A more general
analysis will appear elsewhere.

25The one-loop correction to the relativistic kink energy,
without an account of regularization and renormalization, was
also treated in a Becchi-Rouet-Stora-Tyutin formalism in [39].
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The field theory potential, V0ðϕÞ, and soliton solution,
ϕ0ðρÞ, are given for ϕ4 theory in Eq. (2.4), with the
replacement m0 → m, as discussed around Eq. (2.6). The
potential for the quantum mechanics problem determining

the normal modes, Vð2Þ
0 ðϕ0ðρÞÞ, is the l ¼ 2member of the

Pöschl-Teller family. For the theory on R, there are two

bound states—one with ω̃ ¼ 0 and one with ω̃ ¼
ffiffi
3
2

q
m.

There is a continuum of scattering states, which can be
labeled by k ∈ R, with ω̃ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2m2

p
. Hence for

k ≠ 0 there is the usual twofold degeneracy in the energy
spectrum. The special scattering state at k ¼ 0 is sometimes
referred to as a “half bound state,” or “resonance.”
The Pöschl-Teller potentials are reflectionless, such that

the transmission coefficient is a pure phase, eiδðkÞ. The
phase shift for the l ¼ 2 model has derivative

dδ
dk

¼ −2
ffiffiffi
2

p �
m

k2 þm2
þ m
2k2 þm2

�
: ð4:99Þ

For incoming waves from the left, one has ψLðρ → −∞Þ ¼
eikρ and ψLðρ → þ∞Þ ¼ eikρþδðkÞ, while for incoming
waves from the right, one has ψRðρ → −∞Þ ¼ e−ikρþδðkÞ

and ψRðρ → þ∞Þ ¼ e−ikρ. If we consider left and right
modes separately, we should restrict ourselves to k ≥ 0, and
then δðkÞ is uniquely determined by continuity once we
take the conventional boundary condition δð∞Þ ¼ 0. It is
convenient, however, to define the right-incoming waves as
left-incoming waves with k < 0. Then we define δð−kÞ ¼
−δðkÞ and have a single mode for each k ∈ R with the
phase shift given by

δðkÞ ¼ −2π þ 4πΘ
�
k
m

�

− 2

�
arctan

�
kffiffiffi
2

p
m

�
þ arctan

� ffiffiffi
2

p
k

m

��
; ð4:100Þ

where ΘðxÞ ¼ 0 for x < 0 and ΘðxÞ ¼ 1 for x ≥ 0. This
δðkÞ satisfies δðk → �∞Þ ¼ 0. The transmission coeffi-
cient is smooth through k ¼ 0 since the discontinuity of δ is
an integer multiple of 2π. Indeed, the value δð0Þ ¼ 2π is
predicted by Levinson’s theorem.26

For the theory in the box we must impose the boundary
conditions (4.92) on these scattering wave functions. For
large mL such that the above asymptotics apply, this leads
to a quantization condition determining the allowed wave
numbers k ¼ ks:

γ̄
�
ks þ β̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s þ 2m2

q �
Lþ δðksÞ ¼ 2πs ð4:101Þ

for s ∈ Z. The form of this condition can be used to identify
the correspondence between perturbative modes and sol-
iton-sector modes by considering ks ≫ m so that
δðksÞ → 0, and the effects of the potential can be ignored.
We then find that

γ̄ð1� β̄Þks ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� β̄

1 ∓ β̄

s
ks ≈

2πs
L

; ð4:102Þ

where the top (bottom) sign is chosen for k positive
(negative). The prefactor is precisely the relativistic
Doppler shift due to the fact that we are working in the
moving frame of the soliton. Indeed, the term proportional
to L in Eq. (4.101) is simply the Lorentz transformation of
the momentum back to the lab frame. Hence we see that the
modes labeled by momentum ks should be identified with
the perturbative modes labeled by momentum qs ¼ 2πs

L .
As we decrease k, the effects of the potential become

important, and we know that two of the modes must be
captured by the potential and become the bound states
when L → ∞. We plot δðkÞ and a set of the

ysðkÞ ≔ 2πs − γ̄
�
kþ β̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2m2

p �
L; ð4:103Þ

for several s, for three different values of the velocity β̄ in
Fig. 1. One can see that there are always two neighboring
values of s for which there is no solution to δðkÞ ¼ ysðkÞ.
Let us define s0 as the lower of the two integers for which
there is no solution and s1 ¼ s0 þ 1 as the higher of the two
integers. When β̄ ¼ 0 these integers are s0 ¼ −1 and
s1 ¼ 0, as pointed out in [42]. As β̄ changes, however,
the value of s1 (and hence s0) can jump. This is natural
since when β̄ ≠ 0 the mode energies are blueshifted or
redshifted, and the modes that have the lowest energies will
depend on β̄. We can find an expression for s1 by studying
the condition 0 ≤ ys1ð0Þ < 2π. This gives

s1 ¼ ⌈
β̄ γ̄mLffiffiffi

2
p

π
⌉; ð4:104Þ

where ⌈x⌉ is the least integer greater than or equal to x. We
can conveniently use these two integers to label the bound

states: ω̃s0 ¼ 0 and ω̃s1 ¼
ffiffi
3
2

q
m.

We can now identify the mode sums appearing in
Eq. (4.98). We set N ¼ 2NΛ þ 1, and we assume that
for any β̄ and L, NΛ ≫ js1j ∼mL. Then we set

Sð0ÞNΛ
≔

X2NΛþ1

n¼0

ωð0Þ
n ¼

XNΛ

s¼−NΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2πs
L

�
2

þ 2m2

s
; ð4:105Þ

26Reflectionless potentials in one dimension are special cases
of “exceptional potentials,” defined by the property of having a
resonance at k ¼ 0—a nontrivial solution in the continuous
spectrum. For such exceptional potentials, Levinson’s theorem
gives δð0Þ ¼ πnb, where nb is the number of bound states. See
[40,41].
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SNΛ
≔

X2NΛþ1

n¼0

ω̃an

¼ ω̃s0 þ ω̃s1 þ
� Xs0−1

s¼−NΛ

þ
XNΛ

s¼s1þ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s þ2m2

q
; ð4:106Þ

where the ks are the solutions to Eq. (4.101) so that
Eq. (4.98) is

Hð0Þ
eff ½P� ¼

1

2

�
1

γ̄
SNΛ

− Sð0ÞNΛ

�
þ
Z

dρVδm2ðφ̄Þ: ð4:107Þ

To understand the meaning of NΛ, consider the sum over
the 2NΛ þ 1 lowest perturbative frequencies. The largest
momentum, q, in the sum has jqj ¼ 2πNΛ

L . Hence we set

Λ ¼ 2πNΛ

L
ð4:108Þ

and identify this with the UV cutoff from the perturbative
calculation of the mass counterterm. The condition
NΛ ≫ mL is then simply the condition that Λ ≫ m. The
one-loop mass counterterm for ϕ4 theory, evaluated on the
soliton background, isZ

dρVδm2ðφ̄ðρÞÞ ¼ δm2

2

Z
∞

−∞
dρð⟪ϕ⟫2 − ϕ0ðγ̄ρÞ2Þ;

δm2 ¼ 3g2

2π

Z
Λ

0

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2m2

p : ð4:109Þ

Using the explicit soliton solution, one finds that

Z
dρVδm2ðφ̄ðρÞÞ¼ 3

ffiffiffi
2

p
m

2πγ̄

Z
Λ

0

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ2m2

p

¼ 3
ffiffiffi
2

p
m

4πγ̄
Ln

�
2Λ2

m2

�
þO

�
m
Λ2

�
: ð4:110Þ

The remaining task is to evaluate the mode sums, at least
to sufficiently high order in m=Λ. We first use the Euler-
Maclaurin formula to convert the sums to integrals

R
ds,

then change variables to turn them into integrals over the
momentum. For the Euler-Maclaurin formula it turns out to
be sufficient to keep the leading boundary terms,

Xs2
s1

fðsÞ →
Z

s2

s1

dsfðsÞ þ 1

2
ðfðs1Þ þ fðs2ÞÞ; ð4:111Þ

as the higher corrections vanish in the limits L;Λ → ∞.
The sum over perturbative sector frequencies is then

Sð0ÞNΛ
¼ Λþ L

2π

�
Λ2 þm2Ln

�
2Λ2

m2

�
þm2

�
þO

�
1

Λ
;
1

L

�
:

ð4:112Þ

For the soliton sector sum we apply the Euler-Maclaurin
formula to each sum in the last line of Eq. (4.106)
separately. The first step is to determine the values of ks
at the four boundary values of s. At large mL the inner
boundary values at s ¼ s0 − 1; s1 þ 1 can be found by
approximating δðkÞ ¼ �2π þOðk=mÞ, for k → 0�, which
results in

ks1þ1¼
2π

γ̄L

�
⌈
β̄ γ̄mLffiffiffi

2
p

π
⌉−

β̄ γ̄mLffiffiffi
2

p
π

�
þO

�
1

mL2

�
;

ks0−1¼
2π

γ̄L

�
⌈
β̄ γ̄mLffiffiffi

2
p

π
⌉−

β̄ γ̄mLffiffiffi
2

p
π
−1

�
þO

�
1

mL2

�
: ð4:113Þ

Meanwhile, for jsj ≫ mL, jksj=m will be large, and we can
solve Eq. (4.101) approximately by using the asymptotic
value of the phase shift:

δðkÞ ¼ 3
ffiffiffi
2

p
m

k
þO

��
m
k

�
3
�
: ð4:114Þ

Defining Λ� ≔ k�NΛ
, we find that

Λ� ¼ �Λ
γ̄ð1� β̄Þ−

γ̄ β̄m2

Λ
∓ 3

ffiffiffi
2

p
m

LΛ
þO

�
1

ðLΛÞ2
�
; ð4:115Þ

FIG. 1. δðkÞ (in red) and ysðkÞ for various s plotted in units where m ¼ 1. We set L ¼ 10 and use (left panel) β̄ ¼ 0, (center panel)
β̄ ¼ 1=10, and (right panel) β̄ ¼ 1=2. The dashed green curve is the s ¼ 0 curve y0ðkÞ.
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where we note the absence of an OðΛ0Þ term. From
Eq. (4.101) we have

ds
dk

¼ γ̄L
2π

�
1þ β̄kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ 2m2
p

�
þ 1

2π

dδ
dk

ð4:116Þ

and thus obtain

SNΛ
¼ I1 þ I2 þ γ̄Λþ

ffiffiffi
2

p
mþ

ffiffiffi
3

2

r
mþO

�
1

Λ
;
1

L

�
;

ð4:117Þ

where

I1 ¼
γ̄L
2π

�Z
ks0−1

Λ−

þ
Z

Λþ

ks1þ1

�
dk

�
β̄kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2m2

p �
;

I2 ¼
1

2π

�Z
ks0−1

Λ−

þ
Z

Λþ

ks1þ1

�
dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2m2

p dδ
dk

: ð4:118Þ

The integrals can be evaluated, using Eq. (4.99) in the
case of I2. The results can be expanded for largeΛ, L using
Eqs. (4.113) and (4.115). The computation of I1 is delicate.
It is quadratic in Λ and proportional to L, so all subleading
terms we have displayed in Eqs. (4.113) and (4.115) are
potentially relevant. The result is

I1 ¼
γ̄L
2π

�
Λ2 þm2Ln

�
2Λ2

m2

�
þm2 −

6
ffiffiffi
2

p
m

γ̄L
−
2π

ffiffiffi
2

p
m

γ̄L

�

þO

�
1

Λ
;
1

L

�
: ð4:119Þ

The evaluation of I2 is more straightforward. Since there is
no overall factor of L and the inner boundaries areOð1=LÞ,
those boundary terms do not contribute and we can
integrate directly from Λ− to Λþ. Since the integral is
logarithmically divergent, we need only the leading behav-
ior of Λ�. The result is

I2 ¼ −
3

ffiffiffi
2

p
m

2π
Ln

�
2Λ2

m2

�
−

ffiffiffi
2

3

r
mþO

�
1

Λ
;
1

L

�
: ð4:120Þ

Hence, at this order in the large Λ and large L expansion,
the soliton-sector mode sum contains two groups of terms—
those proportional to γ̄ and those independent of β̄:

SNΛ
¼ γ̄

�
Λþ L

2π

�
Λ2 þm2Ln

�
2Λ2

m2

�
þm2

��

−
3

ffiffiffi
2

p
m

2π
Ln

�
2Λ2

m2

�
þ
�

1ffiffiffi
6

p −
3

ffiffiffi
2

p

π

�
m

þO

�
1

Λ
;
1

L

�
: ð4:121Þ

The terms proportional to γ̄ are precisely the perturbative
mode sum, so these terms completely cancel out of the

difference γ̄−1SNΛ
− Sð0ÞNΛ

, leaving

1

2
ðγ̄−1SNΛ

− Sð0ÞNΛ
Þ ¼ −

3
ffiffiffi
2

p
m

4πγ̄
Ln

�
2Λ2

m2

�

þ
�

1

2
ffiffiffi
6

p −
3

π
ffiffiffi
2

p
�
m
γ̄
þO

�
1

Λ
;
1

L

�
ð4:122Þ

for the difference that appears in Eq. (4.107). The remaining
logarithmic divergence in Eq. (4.122) cancels against the
mass counterterm. The limits Λ → ∞ and L → ∞ can now
be taken, leaving the finite result

Hð0Þ
eff ½P� ¼ γ̄−1δM ¼ M0δMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þM2
0

p ; ð4:123Þ

where

δM ¼
�

1

2
ffiffiffi
6

p −
3

π
ffiffiffi
2

p
�
m ð4:124Þ

is the one-loop correction to the kink mass first computed in
[5]. This result, together with Eq. (3.30), are consistent with
the expansion to Oðg0Þ of

Heff ½P� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ ðM0 þ δMÞ2

q
: ð4:125Þ

V. APPLICATION AND OUTLOOK

In this paper we carried out the saddle-point approxi-
mation to the soliton effective Hamiltonian, Eq. (4.96).
The novelty of our computation is that we made no
assumptions about the time derivatives of the soliton
momentum. The tree-level, or Oðg−2Þ, contribution to
the effective Hamiltonian is given in Eq. (3.29). The
one-loop, or Oðg0Þ, contribution is given in Eq. (3.44) in
terms of a quadratic fluctuation path integral, Eq. (3.45).
Results for that integral were obtained in Sec. IV C in terms
of classical quantities associated with the quadratic fluc-
tuation Hamiltonian: block components of the classical
evolution operator and of the Williamson transformation
that diagonalizes the quadratic fluctuation Hamiltonian at
initial and final times.
In the absence of insertions or external sources, trans-

lation invariance implies that the soliton momentum is
conserved, _P ¼ 0. Lorentz invariance then guarantees that
the soliton effective Hamiltonian must reduce to the on-
shell relativistic energy,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
, with M the quantum-

corrected soliton mass. We verified that our results,
restricted to the case _P ¼ 0, reproduce the tree-level and
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one-loop contributions to the relativistic energy, where we
specialized to the case of ϕ4 theory for the one-loop
contribution.
In Sec. II C we showed how the leading semiclassical

behavior of soliton form factors—that is, matrix elements
of quantum field theory operators between initial and final
soliton states, jΨPi;f

⟫—reduces to a matrix element in the
collective-coordinate quantum mechanics. The quantum
mechanics is governed by the one-loop approximation to
the soliton effective Hamiltonian,

Heff ½P� → Hsc½P� ≔ Hð−2Þ
eff ½P� þHð0Þ

eff ½P�: ð5:1Þ

If one wishes to obtain results for the semiclassical form
factor that are valid for momentum transfers of order the
soliton mass, Pf − Pi ∼OðMÞ, then it is necessary to work
with the time-dependent Hð−2Þ

eff and Hð0Þ
eff obtained in this

paper.
A shortcoming of the current work is that fully explicit

results for Hð−2Þ
eff ½P� and Hð0Þ

eff ½P� hinge on having an explicit
solution to the forced soliton equation (1.1). This is a
second-order quasilinear hyperbolic integrodifferential
equation. It generalizes the one obtained in [10] for
constant P to the case of arbitrary PðtÞ. We do not currently
have explicit solutions beyond those for constant P.
Nevertheless, Hsc½P� does have one redeeming feature

that enables us to carry out the final quantum mechanical
path integral in Eq. (2.31)—namely, it is independent of X.
This is a consequence of the translation invariance of the
underlying theory, and it allows us to obtain an explicit
expression for the semiclassical soliton form factor in terms
of a generating functional constructed from Hsc½P�. We
describe this result next.

A. The generator of semiclassical soliton form factors

Equation (2.31) may be stated in the following way:

⟪ΨPf
jÔ½π̂;ϕ̂�jΨPi

⟫¼⟪PfjÔsc½P̂;X̂�jPi⟫ð1þOðgÞÞ; ð5:2Þ

for a Weyl-ordered operator Ôsc½P̂; X̂�. The matrix element
on the right is computed by the quantum mechanical path
integral with respect to the Hamiltonian Hsc½P� and an
insertion Osc½P; X� of phase-space variables

Osc½P;X� ≔ O½π̄; ϕ̄�: ð5:3Þ

The second argument of O on the right-hand side of
Eq. (5.3) is ϕ̄ðt; xÞ ¼ φ̄ðt; x − XðtÞÞ, where φ̄ðt; ρÞ is a
solution to the forced soliton equation, Eq. (3.20), satisfy-
ing the constraint (3.21), and is thus a functional of P.
Meanwhile, the expression for the first argument, π̄ðt; xÞ,
follows from Eq. (2.22) evaluated on the solution to the
forced soliton equation with the aid of Eq. (3.22):

π̄ðt; xÞ ¼ −
�
Pþ hϖ̄jφ̄0i
hψ0jφ̄i

�
ψ0ðx − XðtÞÞ þ ϖ̄ðt; x − XðtÞÞ;

ð5:4Þ

with ϖ̄ðt; ρÞ ¼ _̄φðt; ρÞ − β̄ðφ̄0ðt; ρÞ − hψ0jφ̄0iψ0ðρÞÞ.
We thus consider the matrix element

⟪Pfjf̂½P̂; X̂�jPi⟫≔
1

2π

Z
½DXDP�eiðPiXi−PfXfÞ

×exp

�
i
Z

tf

ti

dt0ðP _X−Hsc½P�Þ
�
f½P;X�;

ð5:5Þ
for any Weyl-ordered operator f̂½P̂; X̂�. This leads to the
definition of the generating functional

FPf;Pi
½K; fF; xg�

≔
1

2π

Z
½DXDP�eiðPiXi−PfXfÞ

× exp

�
i
Z

tf

ti

dt0ðP _X −Hsc½P� − KP − Fðx − XÞÞ
�
;

ð5:6Þ
in terms of which

⟪Pfjf̂ðP̂;x−X̂ÞjPi⟫

¼
�
f

�
i

δ

δKðtÞ;i
δ

δFðtÞ
	
FPf;Pi

½K;fF;xg�
�����

K;F¼0

: ð5:7Þ

This generating functional will allow us to compute the
leading-order-in-g behavior of matrix elements of local
operators Ô½π̂; ϕ̂� in Eq. (5.2) defined at a single spacetime
point ðt; xÞ. One can generalize to consider insertions at
multiple points ðtn; xnÞ by introducing additional pairs
fxn; Fng. We refer to F as the generator of semiclassical
soliton form factors.
The usefulness of this formulation is that the path

integral defining the generating functional can be evalu-
ated. As with the integral over the field theory fluctuations,
we implicitly employ midpoint discretization, dividing the
interval ðti; tfÞ into Nt subintervals of length ϵ with
Ntϵ ¼ T. X integration variables are defined at the grid
points: Xk ¼ Xðti þ kϵÞ so that X0 ¼ Xi and XNt

¼ Xf.
Momentum variables are defined at the midpoints: Pk ¼
Pðti þ kðϵ − 1

2
ÞÞ for k ¼ 1;…; Nt. Then the path integral

measure is

½DXDP� ¼
�YNt

k¼0

dXk

��YNt

k¼1

dPk

2π

�
: ð5:8Þ

The dependence of the integrand of F on Xk is a pure plane
wave, so integrating out all X variables produces Nt þ 1
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delta functions which can then be used to carry out the P
integrations. Together, the δ functions enforce Newton’s
second law: δ½ _P − F�. Since there are Nt þ 1 X integrations
but only Nt P integrations, there will be one delta function
left over, which enforces the impulse-momentum theorem:
δðPf − Pi −

R tf
ti Fðt0Þdt0Þ. The latter can be used to sim-

plify the x dependence of the resulting expression. Hence
the result of the phase-space path integration is

FPf;Pi
½K; fF; xg� ¼ δ

�
Pf − Pi −

Z
tf

ti

Fðt0Þdt0
�
e−iðPf−PiÞx

× exp

�
−i

Z
tf

ti

dt0ðHsc½P̄� þ KP̄Þ
�
;

ð5:9Þ

where all F dependence is contained in P̄ðtÞ obtained as a
solution to the second law. In the presence of the delta
function imposing the impulse-momentum theorem, we
can give the following useful expression for P̄ðt0Þ:

P̄ðt0Þ ¼ 1

2
ðPi þ PfÞ þ

1

2

�Z
t0

ti

−
Z

tf

t0

�
dt̃Fðt̃Þ: ð5:10Þ

This expression extracts the average value of F from the
integral by utilizing Pf. We then note that

δP̄ðt0Þ
δFðtÞ ¼ 1

2
ðΘhmðt0 − tÞ − Θhmðt − t0ÞÞ; ð5:11Þ

where the “half-maximum” step function satisfies27

ΘhmðzÞ ¼
8<
:

0; z < 0;

1=2; z ¼ 0;

1; z > 0:

ð5:12Þ

The key simplification that follows from Eq. (5.11) and is
valid under the impulse-momentum theorem delta function

is that δP̄ðtÞ
δFðtÞ ¼ 0.

In order to apply Eq. (5.9) to evaluate the semiclassical
form factor, Eq. (5.7), we need to investigate the functional
derivatives of F with respect to K and F. The implicit
dependence ofF onF contained inHsc through the solution
to the forced soliton equation withP ¼ P̄ðtÞ is complicated.
The dependence of F on K, though, is rather simple and
allows for an explicit evaluation of all K derivatives.
Consider the derivative of the term

R tf
ti dt

0Kðt0ÞP̄ðt0Þ.
Using Eqs. (5.10) and (5.11) we obtain

δ

δKðtÞ
Z

tf

ti

dt0Kðt0ÞP̄ðt0Þ ¼ P̄ðtÞ;

δ

δFðtÞ
Z

tf

ti

dt0Kðt0ÞP̄ðt0Þ

¼ 1

2

Z
tf

ti

dt0Kðt0ÞððΘhmðt0 − tÞ − Θhmðt − t0ÞÞ: ð5:13Þ

Using either of these we find that the mixed second
derivative vanishes,

δ2

δKðtÞFðtÞ
Z

tf

ti

dt0Kðt0ÞP̄ðt0Þ ¼ 0; ð5:14Þ

as do all other second-and-higher-order derivatives. Hence
we have that�

δmþn

δKðtÞmδFðtÞn
Z

tf

ti

dt0Kðt0ÞP̄ðt0Þ
�����

K¼F¼0

¼
� 1

2
ðPi þ PfÞ; m ¼ 1 andn ¼ 0;

0; otherwise:
ð5:15Þ

It follows that acting with K derivatives on F simply
brings down powers of 1

2
ðPi þ PfÞ such that Eq. (5.7)

becomes

⟪Pfjf̂ðP̂; x − X̂ÞjPi⟫

¼
�
f

�
1

2
ðPi þ PfÞ; i

δ

δFðtÞ
	
FPf;Pi

½0; fF; xg�
�����

F¼0

;

ð5:16Þ
where

FPf;Pi
½0; fF; xg� ¼ δ

�
Pf − Pi −

Z
tf

ti

Fðt0Þdt0
�
e−iðPf−PiÞx

× exp

�
−i

Z
tf

ti

dt0Hsc½P̄�
�
: ð5:17Þ

This result is of great practical value since it means that for
phase-space functions of the form f ¼ O½π̄; ϕ̄�, we can use
the constant P ¼ 1

2
ðPi þ PfÞ solution for φ̄ to construct

π̄; ϕ̄. Thus the differential operator f½1
2
ðPi þ PfÞ; i δ

δFðtÞ�
appearing on the right-hand side of Eq. (5.16) will be
known explicitly, provided that the standard soliton sol-
ution is known: φ̄ðρÞ ¼ ϕ0ðγ̄ðρ − ρ0ÞÞ. Here γ̄ is the
Lorentz factor expressed in terms of the momentum,

γ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
Pi þ Pf

2M0

�
2

s
: ð5:18Þ

Equation (5.16) is as far as we can go in general without the
explicit solution to the forced soliton equation for
P ¼ P̄ðtÞ. Next, we show that Eq. (5.16) reproduces known

27To understand the appearance of Θhm, note that for any
positive t and some test function fðtÞ we have

R
t
0 dtδðtÞfðtÞ ¼R

0
−t dtδðtÞfðtÞ ¼ fð0Þ=2.
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results in the low momentum transfer limit, with k ¼
Pf − Pi satisfying jkj ≪ M0.

B. Semiclassical soliton form factors
at small momentum transfer

Let us consider the _P expansion of a solution to the
forced soliton equation, Eq. (3.20). Viewing the forcing
term as a perturbation, the leading-order solution will be
the boosted-soliton profile with a boost parameter given
in terms of the momentum P̄. (Time derivatives of
this function will be small and can be grouped with the
forcing term as part of the perturbation.) We can then use
our complete knowledge of the diagonalization of the
linearized problem around a constant P solution to deter-
mine the first perturbative correction proportional to _P.
This first perturbative correction will contribute to the
soliton effective Hamiltonian starting at Oð _P2Þ—either
from quadratic terms in the perturbation or from linear
terms in the perturbation multiplied by the first-order _P
correction to the quadratic fluctuation Hamiltonian, H.
Therefore

Hsc½P̄� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄2 þM2

p
þOðF2Þ: ð5:19Þ

The
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄2 þM2

p
term can also be expanded in F using

Hsc½F� ¼ Hsc½F ¼ 0� þ
Z

tf

ti

dt1
δHsc

δFðt1Þ
Fðt1Þ

þOðF2Þ: ð5:20Þ

SinceH depends only on F through P̄, and given the forms
of Eq. (5.19) and the derivative (5.11), it is clear that the F
expansion ofHsc½P� is also an expansion inM−1. Hence the
leading order term in the nth F derivative of the generating
functional (5.17), at small momentum transfer, will be
given by allowing all F derivatives to act on the delta
function factor:�

δn

δFðtÞn FPf;Pi
½0; F; x�

�����
F¼0

¼
�

δn

δFðtÞn δ
�
Pf − Pi −

Z
tf

ti

Fðt0Þdt0
������

F¼0

× e−iðPf−PiÞxe−iEiT

�
1þO

�
Pf − Pi

M0

��
; ð5:21Þ

where the final phase came from −i
R tf
ti dt

0Hsc½F ¼ 0� ¼
−iEiT. Since Ei ¼ Ef to leading order in ðPf − PiÞ=M0,
we can write this factor as eiEiti−iEftf , making it clear that it
is the usual normalization associated with asymptotic
states, as likewise appears in Eq. (2.33). Hence we have

⟪Pfjf̂ðP̂; x − X̂ÞjPi⟫ ¼
�
f

�
1

2
ðPi þ PfÞ; i

δ

δFðtÞ
	
δ

�
Pf − Pi −

Z
tf

ti

Fðt0Þdt0
������

F¼0

× e−iðPf−PiÞxe−iEiT

�
1þO

�
Pf − Pi

M0

��
: ð5:22Þ

The form of this result becomes clearer upon considering the Fourier transform with respect to x:Z
dxeikx⟪Pfjf̂ðP̂; x − X̂ÞjPi⟫ ¼

�
f
�
1

2
ðPi þ PfÞ;−i

d
dk

	
δ

�
k −

Z
tf

ti

Fðt0Þdt0
������

F¼0

× ð2πÞe−iEiTδðk − ðPf − PiÞÞ
�
1þO

�
k
M0

��
; ð5:23Þ

where we use δ
δFðtÞ

R tf
ti dt

0Fðt0Þ ¼ 1 so that the δ
δFðtÞ can be replaced with −

d
dk. Now we claim that the quantity in the first line

of the right-hand side is the Fourier transform of f½1
2
ðPi þ PfÞ; x�. To see this, consider its inverse transform:

Z
dk
2π

e−ikx
�
f

�
1

2
ðPiþPfÞ;−i

d
dk

	
δ

�
k−

Z
tf

ti

Fðt0Þdt0
������

F¼0

¼
Z

dk
2π

δ

�
k−

Z
tf

ti

Fðt0Þdt0
�����

F¼0

�
f

�
1

2
ðPiþPfÞ; i

d
dk

	
e−ikx

�

¼
Z

dk
2π

δðkÞf
�
1

2
ðPiþPfÞ;x

	
e−ikx

¼ 1

2π
f

�
1

2
ðPiþPfÞ;x

	
: ð5:24Þ

Transforming both sides back then gives the desired relation. Hence we have arrived at
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Z
dxeikx⟪Pfjf̂ðP̂; x− X̂ÞjPi⟫

¼ δðk− ðPf −PiÞÞe−iEiT

�Z
dxeikxf

�
1

2
ðPi þPfÞ; x

	�

×

�
1þO

�
k
M0

��
: ð5:25Þ

For the case of the basic field variable itself, f½P; x� ¼
ϕ̄ðP; xÞ ¼ φ̄ðγxÞ, with Lorentz factor γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðP=M0Þ2

p
,

the first line on the right side of Eq. (5.25) matches what
was found in [20]. However, the analysis here makes it
clear that this result is only the leading-order result for the
semiclassical form factor in an expansion in k=M0. To
obtain an expression for the semiclassical form factor valid
when k ∼OðM0Þ, one must instead use Eqs. (5.16) and
(5.17), which requires solving the forced soliton equation
with a time-dependent P ¼ P̄ðtÞ.
An interesting output of the result (5.25) is that the same

Fourier transform prescription gives the leading-order
behavior of a semiclassical soliton form factor at small
momentum transfer for any f½P;X� ¼ O½π̄; ϕ̄�.

C. Future directions

There are several interesting directions for future work.
We close by listing some of them:
(a) If we are to gain a deeper understanding of soliton

form factors at arbitrary momentum transfer, then it
seems clear that we must tackle the forced soliton
equation head on. Any progress in this area—exist-
ence of solutions, solutions for a special class of _P,
numerical exploration—would be helpful. Although it
appears to be a difficult problem, as we stressed in the
Introduction, the potential implications for our under-
standing of quantum field theory are deep. Refer-
ence [43] on well-posedness of the initial value
problem for general second-order quasilinear hyper-
bolic PDE’s appears to be promising for addressing the
question of the existence of solutions.

(b) A natural first step in a systematic approach toward
the forced soliton equation would be to examine

perturbative solutions for small but nonzero acceler-
ation. The results of this paper, including the complete
diagonalization of the linearized problem around a
constant P solution, leave one well equipped to
address this problem. Furthermore, the results would
be new and interesting. What is the general form of the
first higher-derivative corrections to Heff ½P� for the
class of linear sigma models considered here? Is
there anything that distinguishes the integrable sine-
Gordon model from the nonintegrable ϕ4 model in this
regard?

(c) In the case of constant P, one could use the explicit
diagonalization of the quadratic fluctuation Hamilto-
nian to set up Feynman rules for perturbative compu-
tations around the boosted soliton. These rules should
yield manifestly Lorentz covariant results for S-matrix
elements in the one-soliton sector, order by order in the
coupling expansion.

(d) Finally, we would like to extend the analysis conducted
here to additional theories admitting solitons, especially
gauge theories. Gauge redundancy presents additional
complications for the analog of the canonical trans-
formation, Eqs. (2.10) and (2.11). However, they are not
insurmountable, as shown in an early work of Tombou-
lis and Woo [44]. This important work needs to be
revisited in light of the more geometric approach to
gauge theoretic moduli spaces that has been firmly
established in the intervening time.
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