

1 REVIEW

2

3 **The net effect of functional traits on fitness**

4

5 Daniel C. Laughlin^{*1}, Jennifer R. Gremer², Peter B. Adler³, Rachel M. Mitchell⁴, and
6 Margaret M. Moore⁵

7

8 ¹ Department of Botany, University of Wyoming, Laramie, WY 82071 USA

9 ² Department of Evolution and Ecology and Center for Population Biology, University of
10 California, Davis, CA 95616, USA

11 ³ Department of Wildland Resources and the Ecology Center, Utah State University, Logan,
12 UT 84322, USA

13 ⁴ School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86001, USA

14 ⁵ School of Forestry, Northern Arizona University, Flagstaff, AZ 86001, USA

15

16 *Correspondence: Laughlin, D.C. (daniel.laughlin@uwyo.edu)

17 Twitter: @Laughlin_DC

18

19

20

21 **Keywords**

22 Comparative functional ecology, demographic trade-offs, density dependence, intrinsic
23 growth rate, population growth rate, plant community assembly, vital rates

24

25

26

27 **Abstract**

28 Generalizing the effect of traits on performance across species may be achievable if traits
29 explain variation in population fitness. However, testing relationships between traits and vital
30 rates to infer effects on fitness can be misleading. Demographic trade-offs can generate
31 variation in vital rates that yield equal population growth rates, thereby obscuring the net
32 effect of traits on fitness. To address this problem, we describe a diversity of approaches to
33 quantify intrinsic growth rates of plant populations, including experiments beyond range
34 boundaries, density-dependent population models built from long-term demographic data,
35 theoretical models, and methods that leverage widely available monitoring data. Linking
36 plant traits directly to intrinsic growth rates is a fundamental step toward rigorous predictions
37 of population dynamics and community assembly.

38

39

40 **Glossary**

41 **Community assembly:** process by which species arrive, establish, persist, increase or
42 decrease in abundance over time, and go extinct within and across environmental gradients.

43 **Components of fitness:** measures of individual performance including survival, growth, and
44 reproduction; also referred to as vital rates. The integration of fitness components yields an
45 estimate of total fitness and integration of vital rates yields an estimate of population growth
46 rate.

47 **Demographic trade-offs:** negative correlations between two or more vital rates.

48 **Dynamic adaptive landscape:** ecological framework that quantifies how the effects of traits
49 on population fitness within and across species changes across environmental gradients. This
50 framework extends evolutionary models of fitness landscapes where fitness is a function of
51 traits in a fixed environment.

52 **Evolutionarily stable strategy:** strategy in a given environment that cannot be invaded by an
53 alternative strategy.

54 **Fitness:** growth rate of a population, genotype, or phenotype. We focus on population growth
55 rate as a measure of the fitness of a population.

56 **Fitness landscape:** conceptual or mathematical representation of individual or population-
57 level fitness as a function of one or more phenotypic traits or genes.

58 **Functional traits:** morphological, physiological, or phenological attributes of species that
59 impact fitness indirectly through their effects on individual survival, growth, and
60 reproduction.

61 **Fundamental niche:** the environmental conditions and availability of resources where a
62 species can maintain a viable population. In the presence of competitors, the species is further
63 restricted to its realized niche.

64 **Individual growth rate:** rate of expansion or contraction in size of an individual organism
65 over time.

66 **Intrinsic growth rate:** population growth rate at low density, in the absence of either
67 intraspecific density-dependent effects or interspecific competition.

68 **Invasion growth rates:** population growth rate of the focal species at low density when
69 growing with competing species that are at their stochastic equilibrium abundances.

70 **Population fitness (λ):** finite rate of increase of the population. This can be directly
71 quantified for a single time step as N_{t+1}/N_t , where N is number of individuals and t is time. It
72 can also be estimated using population models as the average or asymptotic population
73 growth rate by computing the dominant eigenvalue of the transition matrix. In this paper, we
74 emphasize the importance of quantifying intrinsic growth rates to standardize the measure of
75 fitness at low densities to control for the confounding effects of competition.

76 **Sensitivities:** partial derivatives that quantify how vital rates effect population growth rate.
77 Sensitivities can be relativized, which are called elasticities, to reflect proportional effects on
78 fitness.

79 **Vital rates:** rates of birth, death, and growth of individuals, also called demographic rates
80 and components of fitness.

81 **Demographic trade-offs and population fitness**

82 The alluring prospect that **functional traits** (see Glossary) can explain variation in species
83 performance has invigorated comparative functional ecology, yet identifying the traits that
84 determine **fitness** remains an important empirical challenge [1-6]. Inspired by classic
85 evolutionary theory that linked morphology to performance and fitness [7], ecologists have
86 recently intensified their search for relationships between functional traits and **vital rates**, but
87 have avoided the more challenging links to fitness [8-15]. Analyzing **components of fitness**
88 in isolation is an important step, but testing relationships between traits and vital rates to infer
89 effects on fitness can be misleading without considering **demographic trade-offs** [16-18].

90 We focus our discussion at the population level and define **population fitness** (λ) as
91 the growth rate of a population [19, 20]. This differs from the evolutionary focus on
92 individual-level fitness [7, 21-24], but is analogous since we aim to compare growth rates
93 across populations as one would compare growth rates across genotypes or phenotypes in
94 evolutionary biology. The comparison of traits and fitness across species, not within species,
95 is explicitly directed at ecological rather than evolutionary scales and processes. It has been
96 argued that population growth rates are not the ideal performance currency to test trait-based
97 theory, partly because they are difficult to measure [25]. However, we focus on population
98 growth rates for three reasons: 1) we aim to understand the process of environmental filtering
99 in **community assembly** where it is populations that persist or go extinct in a given
100 environment [26, 27], 2) recent theory suggests that traits have stronger impacts at the
101 population level because individual lifetime reproductive success is governed by random
102 variation, *i.e.*, ‘luck’ [28], and 3) measuring lifetime reproductive success of individuals is
103 difficult or impossible for most long-lived species.

104 Functional ecologists can advance community ecology by embracing population
105 demography [2, 4, 29]. However, failure to account for trade-offs among vital rates has left a

106 significant gap in our understanding of the adaptive value of functional traits (Fig. 1). Filling
107 this knowledge gap is a fundamental step toward understanding the **fundamental niche** of
108 species, and forecasting species and community responses to a rapidly changing world [1, 30,
109 31]. Our discussion draws primarily from examples of plant demography, but the core
110 principles apply more broadly given that birth, growth, and death are affected by phenotypic
111 variation and environmental contexts across the Tree of Life. In this Review, we 1) illustrate
112 how individual vital rates can be misleading proxies for fitness, 2) describe a diversity of
113 approaches to quantify intrinsic growth rates as a measure of population fitness, and 3)
114 explain how to empirically identify the functional traits and environmental conditions that
115 drive variation in population fitness.

116

117 **Vital rates can be misleading proxies for fitness**

118 Individual vital rates can be misleading proxies for fitness without considering
119 demographic trade-offs. For example, species with fast individual growth rates may exhibit
120 low rates of survival. If the growth-survival trade-off can generate co-variation in **individual**
121 **growth rates** and survival rates that yield equal fitness, all else being equal (e.g., equal
122 reproduction rates), then individual growth rates tell us little about fitness [32, 33] (Fig 1).
123 Similarly, populations with high survival and low reproduction could have the same fitness as
124 populations with low survival and high reproduction [17, 34]. Consequently, if a trait is
125 negatively related to survival, then it may be positively related to individual growth or
126 reproduction [21, 35-37]. For example, wood density negatively effects individual growth
127 rates but positively effects survival rates because faster tree diameter growth can be achieved
128 by constructing low density wood, but this comes with a higher risk of damage and death
129 from multiple causes [11, 15, 38]. Consequently, the net effect of traits on fitness is obscured

130 when one vital rate is analyzed in isolation [21]. This knowledge gap can only be resolved by
131 quantifying the net effect of traits on fitness (Fig. 1).

132 Fitness is challenging to measure. Annual plant communities have long been used as
133 model systems for studying fitness in relation to traits because lifetime fitness and multiple
134 generations are relatively easy to observe in annual plants. Physiological differences among
135 annual species determine their fitness in response to inter-annual climatic variation [39-42],
136 but concrete evidence that functional traits predict fitness differences among long-lived
137 species is still lacking [24, 31]. It is far more challenging to quantify fitness for long-lived
138 species, but the effort is justified given that they are the dominant life form on the planet.

139 There are several challenges posed by long-lived species. Fitness in long-lived species
140 is driven by rates of individual growth, survival, and reproduction throughout the entire life
141 cycle. These vital rates do not have equal effects on fitness and the relative importance of
142 each may vary across environmental conditions [43-45]. Long-lived species may rely on rare
143 recruitment events [46] and capturing these events can be challenging. However, fitness is
144 often more sensitive to variation in survival and growth than in fecundity in many long-lived
145 species [47-49]. Individuals of long-lived species may experience strong variation in
146 conditions over their lifetime whereas annual species deal with environmental variation
147 across generations. Trait effects on vital rates may also change with size [50] or ontogeny [2,
148 11, 51, 52]. Vital rate **sensitivities** quantify the contribution of each vital rate to population
149 growth rate [16, 53] and can indicate the components of fitness on which natural selection can
150 act (or has acted) the strongest [49, 54]. Some studies have focused on linking traits to the
151 most important vital rate. For example, relating traits to survival rates for long-lived perennial
152 plants [12] may be close to estimating effects on fitness because survival is the most
153 important vital rate for perennials [8, 17]. But the hard truth of the matter is that we do not
154 know unless fitness is measured directly (Fig 1).

155 A further well-known complication is that any effect of traits on fitness will depend
156 on the environmental context because variation in traits is underpinned by ecological trade-
157 offs [21, 23, 29, 55, 56]. As a result, relationships between traits and fitness change along
158 environmental gradients [13, 14, 22, 39, 41, 57, 58]. Ignoring variation in trait-fitness
159 relationships across environments has hindered progress toward using traits to make general
160 predictions about how species respond to environmental change.

161

162 **Quantify intrinsic growth rates**

163 Theory predicts that species are sorted along environmental gradients because species
164 only occur in sites 1) to which they can disperse, 2) where their traits are adapted to the local
165 conditions, and 3) where they maintain competitive advantage in multispecies communities
166 [26]. We are focused on the second step in this Review, and so our emphasis is on the
167 difficult task of quantifying the fundamental niche. Many statistical approaches test if traits
168 predict species occurrences and abundances in a given environment [59-61], but analyses of
169 observational abundance data cannot control for the confounding effects of competition [27,
170 40, 42].

171 The ideal metric of population response to the environment alone is estimated when
172 the focal species is growing by itself at low density, which we define as the **intrinsic growth**
173 **rate**, because it is least affected by either intraspecific negative density-dependence or
174 interspecific competition. Modern coexistence theory emphasizes a similar but distinct
175 quantity, the **invasion growth rate** [62-65], which is the population growth rate when
176 competing species are at their equilibrium abundances. Invasion growth rates will ultimately
177 be needed to integrate species interactions into predictions of community dynamics, but
178 invasion growth rates are less practical to meet our objectives because they are computed
179 using either 1) empirical multispecies models that are difficult to parameterize, or 2)

180 experiments that run long enough for establishment of a resident community at equilibrium
181 abundances, which could take many generations. Here we focus on the intrinsic growth rate
182 as a key first step to identify the net effect of traits on fitness.

183 We have identified several approaches to quantify population fitness that span a trade-
184 off of empirical rigor and logistical ease (Fig. 2). Confronting trait-based theory with
185 empirical demographic data will yield the most transformative results. But, as pragmatists,
186 we describe a variety of approaches that vary in the difficulty of data collection and the
187 precision of empirically estimating intrinsic growth rates to galvanize progress in this field.

188 First, intrinsic growth rates can be observed experimentally (Fig. 2A). Multiple
189 species can be introduced to multiple vacant sites across an environmental gradient.
190 Demographic monitoring of these long-lived species over time can precisely estimate
191 intrinsic growth rates because competition is experimentally controlled. Population models
192 do not need extra parameters to account for density dependence; it is intrinsic to the data.
193 Models of perennial plants will still require adequate annual transitions across the range of
194 stages, which could be alleviated by planting a range of ages and stages (*e.g.*, seeds,
195 seedlings, vegetative plants, flowering plants) from the beginning of the experiment to start
196 multiple cohorts simultaneously. Planting species beyond their range boundaries provides
197 especially robust assessments of the effects of traits on population fitness across
198 environmental gradients [5, 66, 67] because it tests whether a species can recruit, grow, and
199 survive outside its current range of environmental conditions. Importantly, syntheses of
200 transplant studies beyond the range concluded that integrative measures of fitness were
201 superior over individual vital rates at detecting reductions in performance beyond species
202 ranges [67]. Forestry, in particular, has a long tradition of common garden experiments where
203 multiple provenances of tree species are planted to evaluate genetic and environmental
204 effects on species performance [68, 69]. Such common gardens are perhaps the gold standard

205 [40, 42, 70, 71], yet they are often prohibitively expensive in both time and money. We
206 recommend that funding agencies develop international collaborative opportunities to fund
207 the difficult work of establishing common gardens beyond range boundaries.

208 Second, intrinsic growth rates can be estimated using population models
209 parameterized from observational data on individuals over time (Fig. 2B). Most published
210 population models report asymptotic population growth rates, which ignore density-
211 dependence [53, 72]. However, density-dependent models of vital rates that incorporate the
212 effects of population size can be used to calculate intrinsic growth rates [53, 73, 74]. Integral
213 Projection Models (IPMs) can be especially powerful in this context because they harness the
214 strength of regression analysis to build models of vital rates as functions of organism size and
215 any other covariate, including the density of neighbors [75]. This method requires that
216 adequate variation in neighborhood density is observed. Once vital rate regression models are
217 parameterized, intrinsic growth rates can be estimated by setting neighborhood density in the
218 vital rate regressions to a fixed low value. This technique statistically controls for the effects
219 of competition [12, 15], but it assumes that neighbor density is a good proxy for resource
220 competition [76]. Moreover, observational datasets often lack measurements of population
221 declines outside their natural range of environmental conditions precisely because the species
222 cannot live in those conditions. Experiments are required to identify the environments in
223 which populations decline. Demographic models of plants and animals have been synthesized
224 for widespread use [77], but we encourage new demographic datasets to be measured across
225 multiple species across environmental gradients.

226 Third, theoretical demographic models explore the consequences of ecophysiological
227 and demographic theory on trait optimization (Fig. 2C). Game-theoretic models of **fitness**
228 **landscapes** implicitly account for density dependence to identify functional trait
229 combinations that are **evolutionarily stable strategies** in a given environment. Game theory

230 offers a rather different approach since the relationships between traits and vital rates are
231 embedded in the model. Individual-based demographic models of competition for resources
232 have been used to predict the coexistence of dominant functional strategies in forests [78,
233 79], and demographic models are also being integrated into global-scale dynamic vegetation
234 models to improve trait-based predictions of ecosystem states and fluxes of carbon dioxide
235 [80, 81]. These computationally rigorous approaches are located toward the middle of our
236 trade-off of empirical rigor and logistical ease because they are neither empirical nor easy.
237 Theoretical demographic models do not empirically estimate intrinsic growth rates of real
238 species in real environments, but they generate testable hypotheses and demonstrate the
239 relevance of demography in forest assembly and global scale vegetation dynamics.

240 Fourth, intrinsic growth rates can be estimated using widely available monitoring data
241 (Fig. 2D). Rather than integrating vital rates across individuals, one can compute the annual
242 growth rate of a population by dividing population size in one year by size in the previous
243 year (*i.e.*, $\lambda = N_{t+1} / N_t$). When studying organisms where individual genets are rarely counted,
244 as is often the case when monitoring plant or coral reef communities, then cover or biomass
245 of the population could be substituted for population counts (*i.e.*, $\lambda = Cover_{t+1} / Cover_t$).
246 Quantifying the ratio of cover in successive years to estimate λ has been applied to model
247 dynamics of multiple coexisting species [82], and this population-level data can be used to
248 estimate density dependence and project population growth rates at low densities [83].
249 Negative relationships that are fit to empirical measurements of $\log(Cover_{t+1} / Cover_t)$ and
250 density (*i.e.*, $\log(Cover_t)$) are indicative of negative density-dependence [48]. Intrinsic growth
251 rate can be computed as the exponentiated value of $\log(\lambda)$ when total density is low (Fig.
252 2C). We urge caution when using this method for three reasons. First, this approach does not
253 account for age or size structure, which are important drivers of population dynamics.
254 Second, comparisons of population growth rates across species using changes in total cover

255 may be affected by the fact that species vary in maximum size. Third, statistical artefacts can
256 affect the estimates of density dependence given that $Cover_t$ is in the denominator of λ , and
257 so it is important to account for census error when using this approach [76, 84].

258 The fifth method is distinct from the others because it ignores the dynamics of
259 populations and examines the occurrence or abundance of species across environmental
260 gradients (Fig. 2E). Occurrence is not fitness. Indeed, the link between intrinsic growth rate
261 and probability of occurrence is not even strictly positive [85, 86]. Populations may be
262 present at a site but they may be experiencing negative population growth rates, and absences
263 of a population from a site could be driven by dispersal limitation or competition rather than
264 abiotic environmental filtering [27]. However, we include the analysis of occurrence and
265 abundance data here because we stand to gain tremendous insight by analyzing large datasets
266 of thousands of species spanning global environmental gradients. In contrast, fitness data will
267 be limited to local and landscape scales for the foreseeable future. Ecologists have been
268 modeling species occurrence data for decades, but model-based frameworks can provide
269 strong tests to determine if trait-environment interactions explain species occurrences beyond
270 what the environment explains by itself [60, 87]. Moreover, this approach can generate
271 hypotheses that can be empirically tested in common gardens and can potentially identify the
272 most important traits to use in models of fitness. One drawback is that this approach cannot
273 account for density dependence. New techniques that estimate metrics of colonization and
274 survival from repeated measurements of occupancy along transects hold promise for
275 leveraging long-term monitoring data to estimate demographic rates [88-90]. Modeling
276 species occurrences will without a doubt continue to be a widely used method, but we
277 especially encourage their application to large spatial scales that surpass those that are
278 currently possible for demographic models.

279

280 **Identify the traits that drive intrinsic growth rates**

281 The next step is to model fitness as a function of trait-by-environment interactions
282 [12, 55, 91]. This tests the **dynamic adaptive landscape** model to determine how the effects
283 of traits on population fitness across species depends on the environment [92]. The question
284 is not whether population fitness among species varies along environmental gradients; this
285 has been known for centuries (Fig 3A). The question is whether traits explain variation in
286 population fitness (or occurrence) among species through an interaction with the environment
287 (Fig. 3B). One can compare the empirical support for a model where population fitness of
288 multiple species is a function of the environment only, versus a second model that adds traits
289 and a trait-by-environment interaction. The strongest ecological trade-offs will be seen when
290 two conditions are met: the trait-by-environment interaction is both statistically supported
291 and the effect of the environment on fitness changes sign along the range of the trait [12, 60,
292 87]. Computing the first partial derivative of fitness with respect to the environment isolates
293 the fitness response to an environmental condition as a function of traits (Fig. 3C). This
294 model can then be used to test predictions experimentally by using new species outside the
295 training dataset, which is a necessary and powerful way to test the generality of traits.

296 This model often assumes that observed traits in a given environment reflect 1)
297 adaptation to local conditions and 2) the existence of an optimum trait value. Ideally,
298 intraspecific trait variation is measured to account for local adaptation rather than using only
299 an average trait value [6, 29, 58]. However, it is important to be aware that many processes
300 can influence the observed phenotype, perhaps even resulting in a maladapted phenotype.
301 Rapidly changing environments could cause lags in the ability of a phenotype to adapt,
302 leading to negative consequences for some fitness components. In these cases, the adaptive
303 value of a trait can be overestimated when focusing on single fitness components [6].
304 Moreover, multiple trait optima may exist in environments where multiple functional

305 strategies maintain species coexistence or where the trait distribution is multimodal [93].
306 Comparing models that include interactions with more than one trait to determine whether the
307 effects of a trait on fitness in a given environment depends on other traits is a promising line
308 of enquiry [14, 55, 92].

309 We have focused on the three core vital rates (individual growth, survival, and
310 reproduction) as fundamental fitness components, though many other vital rates in the life
311 cycle influence these components. For example, dispersal and germination rates influence
312 reproduction, and dispersal limitation is a key constraint in community assembly. Traits such
313 as seed mass and height are predictors of seed production and dispersal distance [94], which
314 have been suggested to influence population persistence and species ranges by constraining
315 geographic distributions but extending elevational limits [67, 95]. Greater understanding of
316 the importance of immigration will improve our estimates of intrinsic growth rates and the
317 links between traits and fitness, particularly across spatial environmental gradients (see
318 Outstanding Questions).

319 Discovering how traits affect different vital rates and how these combine to drive
320 fitness is a grand challenge in community ecology that bridges the fields of ecophysiology
321 and evolutionary biology [7, 23, 24]. We anticipate that ecophysiological traits, such as
322 embolism vulnerability, leaf turgor loss point, or chlorophyll *a* florescence, will exhibit the
323 strongest mechanistic links to vital rates given their direct link to resource use [96-98].
324 Determining the physiological mechanisms that drive demographic trade-offs is an important
325 Outstanding Question. We can decompose population fitness into contributions from
326 underlying traits by calculating vital rate elasticities as functions of lower level parameters
327 [99], which would allow us to quantify the extent to which demographic trade-offs obscure
328 the indirect effect of traits on intrinsic growth rate [7]. This synthesis would lead to
329 substantially new understanding of how functional traits affect survival, growth, and

330 reproduction at the scale of individuals, and how these coalesce and propagate into net effects
331 on population fitness [11, 20].

332 More work is needed to discover the physiological mechanisms that drive
333 demographic trade-offs among species. For example, seed mass is positively related to
334 seedling establishment but negatively related to seed production [11]. Specific leaf area is
335 related to the ‘fast-slow’ continuum of life history strategies, where short-lived species
336 construct cheap leaves and exhibit fast rates of photosynthesis [100]. Two independent
337 demographic trade-offs among tropical forest trees were recently identified: the ‘growth-
338 survival’ and ‘stature-recruitment’ trade-offs. The growth-survival trade-off was related to
339 variation in wood density and leaf economics traits, whereas the stature-recruitment trade-off
340 was related to height, seed mass, and leaf area [37]. Not only do traits explain demographic
341 trade-offs, these demographic trade-offs can predict tropical forest dynamics [101].

342 We have emphasized the importance of quantifying intrinsic growth rates in the
343 absence of competition, which is a necessary step for defining the species pool that can
344 tolerate a given environment and for quantifying the fundamental niche of species. There is
345 also an urgent need to develop frameworks for predicting interaction networks among species
346 using functional traits (see Outstanding Questions). Traits can explain niche and fitness
347 differences among interacting annual plant species [40, 42], but understanding how traits
348 relate to invasion growth rates among long-lived species to quantify the realized niche of
349 species is a research frontier [62-64]. Developing mathematical links between traits and
350 interaction coefficients to predict coexistence dynamics for communities across
351 environmental gradients will complement the research program proposed here.

352

353 **Concluding remarks**

354 Predicting fates of populations and communities using traits has often been called the
355 ‘holy grail’ of ecology [1, 102], yet we often lack clear evidence that functional traits live up
356 to the hype [24]. To advance this important research agenda, we encourage studies that link
357 traits directly to intrinsic growth rates to test the generality of traits for predicting species
358 performance. The complexity of population dynamics may have hindered an earlier
359 integration of population demography into trait-based community ecology, but the time is
360 right to bridge the divide. Demographic data are increasingly available [77, 103] and
361 alternative methods for measuring population dynamics can leverage widely available
362 monitoring data [82, 83]. Pursuing answers to these Outstanding Questions will advance our
363 conceptual understanding of how the contours of fitness landscapes across multiple species
364 shift along environmental gradients [92]. In closing, we hearken back to an analogous call for
365 evolutionary biologists to become demographers [104]; we hope this Review provokes more
366 community ecologists to become demographers to test the faculty of functional traits.

367

368 **Acknowledgements**

369 This work was funded by a grant to the authors from the National Science Foundation (DEB-
370 1906243).

371

372 **References**

373

374 1. Funk, J.L. *et al.* (2017) Revisiting the Holy Grail: using plant functional traits to
375 understand ecological processes. *Biological Reviews* 92, 1156-1173

376 2. Salguero-Gómez, R. *et al.* (2018) Delivering the promises of trait-based approaches to the
377 needs of demographic approaches, and vice versa. *Funct. Ecol.* 32 (6), 1424-1435

378 3. Shipley, B. *et al.* (2016) Reinforcing loose foundation stones in trait-based plant ecology.
379 *Oecologia* 180 (4), 923-931

380 4. Pistón, N. *et al.* (2019) Multidimensional ecological analyses demonstrate how interactions
381 between functional traits shape fitness and life history strategies. *J. Ecol.* 107 (5),
382 2317-2328

383 5. Anderson, J.T. (2016) Plant fitness in a rapidly changing world. *New Phytol.* 210 (1), 81-
384 87

385 6. Cotto, O. *et al.* (2019) Maladaptive shifts in life history in a changing environment. *The*
386 *American Naturalist* 194 (4), 558-573

387 7. Arnold, S.J. (1983) Morphology, performance and fitness. *Am. Zool.* 23 (2), 347-361

388 8. Adler, P.B. *et al.* (2014) Functional traits explain variation in plant life history strategies.
389 *Proceedings of the National Academy of Sciences* 111 (2), 740-745

390 9. Ordonez, A. *et al.* (2010) Functional differences between native and alien species: a
391 global-scale comparison. *Funct. Ecol.* 24 (6), 1353-1361

392 10. Poorter, L. and Bongers, F. (2006) Leaf traits are good predictors of plant performance
393 across 53 rain forest species. *Ecology* 87 (7), 1733-1743

394 11. Visser, M.D. *et al.* (2016) Functional traits as predictors of vital rates across the life cycle
395 of tropical trees. *Funct. Ecol.* 30 (2), 168-180

396 12. Laughlin, D.C. *et al.* (2018) Survival rates indicate that correlations between community-
397 weighted mean traits and environments can be unreliable estimates of the adaptive
398 value of traits. *Ecol. Lett.* 21, 411-421

399 13. Blonder, B. *et al.* (2018) Microenvironment and functional-trait context dependence
400 predict alpine plant community dynamics. *J. Ecol.* 106 (4), 1323-1337

401 14. Worthy, S.J. *et al.* (2020) Alternative designs and tropical tree seedling growth
402 performance landscapes. *Ecology* In Press, e03007

403 15. Kunstler, G. *et al.* (2016) Plant functional traits have globally consistent effects on
404 competition. *Nature* 529 (7585), 204-207

405 16. Franco, M. and Silvertown, J. (2004) A comparative demography of plants based upon
406 elasticities of vital rates. *Ecology* 85 (2), 531-538

407 17. Silvertown, J. *et al.* (1993) Comparative plant demography—relative importance of life-
408 cycle components to the finite rate of increase in woody and herbaceous perennials. *J.*
409 *Ecol.* 81 (3), 465-476

410 18. Villegas, J. *et al.* (2015) Demographic compensation among populations: what is it, how
411 does it arise and what are its implications? *Ecol. Lett.* 18 (11), 1139-1152

412 19. Chesson, P. (2000) Mechanisms of maintenance of species diversity. *Annu. Rev. Ecol.*
413 *Syst.* 31, 343-366

414 20. Violle, C. *et al.* (2007) Let the concept of trait be functional! *Oikos* 116 (5), 882-892

415 21. McGraw, J.B. and Caswell, H. (1996) Estimation of individual fitness from life-history
416 data. *The American Naturalist* 147 (1), 47-64

417 22. Geber, M.A. and Griffen, L.R. (2003) Inheritance and natural selection on functional

418 traits. *Int. J. Plant Sci.* 164 (S3), S21-S42

419 23. Ackerly, D.D. *et al.* (2000) The evolution of plant ecophysiological traits: recent
420 advances and future directions. *Bioscience* 50 (11), 979-995

421 24. Swenson, N.G. *et al.* (2020) A reframing of trait–demographic rate analyses for ecology
422 and evolutionary biology. *Int. J. Plant Sci.* 181 (1), 33-43

423 25. McGill, B.J. *et al.* (2006) Rebuilding community ecology from functional traits. *Trends in
424 Ecology and Evolution* 21 (4), 178-185

425 26. Keddy, P.A. (1992) Assembly and response rules: two goals for predictive community
426 ecology. *Journal of Vegetation Science* 3 (2), 157-164

427 27. Kraft, N.J.B. *et al.* (2015) Community assembly, coexistence and the environmental
428 filtering metaphor. *Funct. Ecol.* 29 (5), 592-599

429 28. Snyder, R.E. and Ellner, S.P. (2018) Pluck or luck: does trait variation or chance drive
430 variation in lifetime reproductive success? *The American Naturalist* 191 (4), E90-
431 E107

432 29. Brady, S.P. *et al.* (2019) Understanding maladaptation by uniting ecological and
433 evolutionary perspectives. *The American Naturalist* 194 (4), 495-515

434 30. Diez, J.M. *et al.* (2014) Probabilistic and spatially variable niches inferred from
435 demography. *J. Ecol.* 102 (2), 544-554

436 31. Bohner, T. and Diez, J. (2020) Extensive mismatches between species distributions and
437 performance and their relationship to functional traits. *Ecol. Lett.* 23, 33-44

438 32. Mangel, M. and Stamps, J. (2001) Trade-offs between growth and mortality and the
439 maintenance of individual variation in growth. *Evol. Ecol. Res.* 3 (5), 611-632

440 33. Steiner, U.K. and Tuljapurkar, S. (2012) Neutral theory for life histories and individual
441 variability in fitness components. *Proceedings of the National Academy of Sciences*
442 109 (12), 4684-4689

443 34. Sheth, S.N. and Angert, A.L. (2018) Demographic compensation does not rescue
444 populations at a trailing range edge. *Proceedings of the National Academy of Sciences*
445 115 (10), 2413-2418

446 35. Metcalf, C. *et al.* (2006) Growth–survival trade-offs and allometries in rosette-forming
447 perennials. *Funct. Ecol.* 20 (2), 217-225

448 36. Stearns, S.C. (1992) The evolution of life histories, Oxford University Press

449 37. Rüger, N. *et al.* (2018) Beyond the fast–slow continuum: demographic dimensions
450 structuring a tropical tree community. *Ecol. Lett.* 21 (7), 1075-1084

451 38. Wright, S.J. *et al.* (2010) Functional traits and the growth–mortality trade-off in tropical
452 trees. *Ecology* 91 (12), 3664-3674

453 39. Kimball, S. *et al.* (2012) Fitness and physiology in a variable environment. *Oecologia*
454 169 (2), 319-329

455 40. Kraft, N.J.B. *et al.* (2015) Plant functional traits and the multidimensional nature of
456 species coexistence. *Proceedings of the National Academy of Sciences* 112 (3), 797-
457 802

458 41. Angert, A.L. *et al.* (2010) Phenotypic plasticity and precipitation response in Sonoran
459 Desert winter annuals. *Am. J. Bot.* 97 (3), 405-411

460 42. Pérez-Ramos, I.M. *et al.* (2019) Functional traits and phenotypic plasticity modulate
461 species coexistence across contrasting climatic conditions. *Nature Communications*
462 10 (1), 2555

463 43. Silvertown, J. and Franco, M. (1993) Plant demography and habitat: a comparative
464 approach. *Plant Species Biol.* 8, 67-73

465 44. Frederiksen, M. *et al.* (2005) Inter-population variation in demographic parameters: a
466 neglected subject? *Oikos* 111 (2), 209-214

467 45. Van Noordwijk, A.J. and de Jong, G. (1986) Acquisition and allocation of resources: their
468 influence on variation in life history tactics. *The American Naturalist* 128 (1), 137-
469 142

470 46. Wiegand, K. *et al.* (2004) Minimum recruitment frequency in plants with episodic
471 recruitment. *Oecologia* 141 (2), 363-372

472 47. Crone, E.E. (2001) Is survivorship a better fitness surrogate than fecundity? *Evolution* 55
473 (12), 2611-2614

474 48. Morris, W.F. and Doak, D.F. (2002) Quantitative conservation biology. *Sinauer,*
475 *Sunderland, Massachusetts, USA,*

476 49. Pfister, C.A. (1998) Patterns of variance in stage-structured populations: Evolutionary
477 predictions and ecological implications. *Proceedings of the National Academy of*
478 *Sciences* 95 (1), 213-218

479 50. Tredennick, A.T. *et al.* (2018) Size-by-environment interactions: a neglected dimension
480 of species' responses to environmental variation. *Ecol. Lett.* 21 (12), 1757-1770

481 51. Falster, D.S. *et al.* (2018) How functional traits influence plant growth and shade
482 tolerance across the life cycle. *Proceedings of the National Academy of Sciences* 115
483 (29), E6789-E6798

484 52. Cornelissen, J. (1999) A triangular relationship between leaf size and seed size among
485 woody species: allometry, ontogeny, ecology and taxonomy. *Oecologia* 118 (2), 248-
486 255

487 53. Ellner, S.P. *et al.* (2016) Data-driven modelling of structured populations: a practical
488 guide to the Integral Projection Model, Springer

489 54. van Tienderen, P.H. (2000) Elasticities and the link between demographic and

490 evolutionary dynamics. *Ecology* 81 (3), 666-679

491 55. Yang, J. *et al.* (2018) Why functional traits do not predict tree demographic rates. *Trends*
492 *Ecol. Evol.* 33 (5), 326-336

493 56. Hereford, J. (2009) A Quantitative survey of local adaptation and fitness trade-offs. *The*
494 *American Naturalist* 173 (5), 579-588

495 57. Dudley, S.A. (1996) The response of differing selection on plant physiological traits:
496 evidence for local adaption. *Evolution* 50 (1), 103-110

497 58. Edelaar, P. and Bolnick, D.I. (2019) Appreciating the multiple processes increasing
498 individual or population fitness. *Trends Ecol. Evol.* 34 (5), 435-446

499 59. Shipley, B. *et al.* (2006) From plant traits to plant communities: a statistical mechanistic
500 approach to biodiversity. *Science* 314 (5800), 812-814

501 60. Pollock, L.J. *et al.* (2012) The role of functional traits in species distributions revealed
502 through a hierarchical model. *Ecography* 35 (8), 716-725

503 61. Laughlin, D.C. and Laughlin, D.E. (2013) Advances in modelling trait-based plant
504 community assembly. *Trends Plant Sci.* 18, 584-593

505 62. Grainger, T.N. *et al.* (2019) The invasion criterion: a common currency for ecological
506 research. *Trends Ecol. Evol.* 34 (10), 925-935

507 63. Usinowicz, J. and Levine, J.M. (2018) Species persistence under climate change: a
508 geographical scale coexistence problem. *Ecol. Lett.* 21 (11), 1589-1603

509 64. Germain, R.M. *et al.* (2018) The ‘filtering’ metaphor revisited: competition and
510 environment jointly structure invasibility and coexistence. *Biol. Lett.* 14 (8),
511 20180460

512 65. Tilman, D. (2004) Niche tradeoffs, neutrality, and community structure: A stochastic
513 theory of resource competition, invasion, and community assembly. *Proceedings of*
514 *the National Academy of Sciences of the United States of America* 101 (30), 10854

515 66. Alexander, J.M. *et al.* (2016) When climate reshuffles competitors: a call for
516 experimental macroecology. *Trends Ecol. Evol.* 31 (11), 831-841

517 67. Hargreaves, A.L. *et al.* (2014) Are species’ range limits simply niche limits writ large? A
518 review of transplant experiments beyond the range. *The American Naturalist* 183 (2),
519 157-173

520 68. Dixit, A. and Kolb, T. (2020) Variation in seedling budburst phenology and structural
521 traits among southwestern ponderosa pine provenances. *Canadian Journal of Forest*
522 *Research*, 1-8

523 69. Martínez-Berdeja, A. *et al.* (2019) Evidence for population differentiation among Jeffrey
524 and Ponderosa pines in survival, growth and phenology. *For. Ecol. Manage.* 434, 40-
525 48

526 70. Angert, A.L. and Schemske, D.W. (2005) The evolution of species' distributions:
527 reciprocal transplants across the elevation ranges of *Mimulus cardinalis* and *M.*
528 *lewisii*. *Evolution* 59 (8), 1671-1684

529 71. Grady, K.C. *et al.* (2017) Local biotic adaptation of trees and shrubs to plant neighbors.
530 *Oikos* 126 (4), 583-593

531 72. Crone, E.E. *et al.* (2011) How do plant ecologists use matrix population models? *Ecol.*
532 *Lett.* 14 (1), 1-8

533 73. Fowler, N.L. *et al.* (2006) Detection of density dependence requires density
534 manipulations and calculation of λ . *Ecology* 87 (3), 655-664

535 74. Dahlgren, J.P. *et al.* (2016) The demography of climate-driven and density-regulated
536 population dynamics in a perennial plant. *Ecology* 97 (4), 899-907

537 75. Merow, C. *et al.* (2014) Advancing population ecology with integral projection models: a
538 practical guide. *Methods in Ecology and Evolution* 5 (2), 99-110

539 76. Dettol, M. *et al.* (2019) Bias in the detection of negative density dependence in plant
540 communities. *Ecol. Lett.* 22 (11), 1923-1939

541 77. Salguero-Gómez, R. *et al.* (2015) The compadre Plant Matrix Database: an open online
542 repository for plant demography. *J. Ecol.* 103 (1), 202-218

543 78. Farrior, C.E. *et al.* (2013) Competition for water and light in closed-canopy forests: A
544 tractable model of carbon allocation with implications for carbon sinks. *The American*
545 *Naturalist* 181 (3), 314-330

546 79. Falster, D.S. *et al.* (2017) Multitrait successional forest dynamics enable diverse
547 competitive coexistence. *Proceedings of the National Academy of Sciences* 114 (13),
548 E2719-E2728

549 80. Fisher, R.A. *et al.* (2018) Vegetation demographics in Earth System Models: A review of
550 progress and priorities. *Global Change Biol.* 24 (1), 35-54

551 81. Franklin, O. *et al.* (2020) Organizing principles for vegetation dynamics. *Nature Plants* 6
552 (5), 444-453

553 82. Hallett, L.M. *et al.* (2018) Tradeoffs in demographic mechanisms underlie differences in
554 species abundance and stability. *Nature Communications* 9 (1), 5047

555 83. Tredennick, A.T. *et al.* (2017) Do we need demographic data to forecast plant population
556 dynamics? *Methods in Ecology and Evolution* 8 (5), 541-551

557 84. Freckleton, R.P. *et al.* (2006) Census error and the detection of density dependence. *J.*
558 *Anim. Ecol.* 75 (4), 837-851

559 85. McGill, B.J. (2012) Trees are rarely most abundant where they grow best. *Journal of*
560 *Plant Ecology* 5 (1), 46-51

561 86. Thuiller, W. *et al.* (2014) Does probability of occurrence relate to population dynamics?

562 *Ecography* 37 (12), 1155-1166

563 87. Miller, J.E.D. *et al.* (2018) Functional traits and community composition: a comparison
564 among community-weighted means, weighted correlations, and multilevel models.
565 *Methods in Ecology and Evolution* 10 (3), 415-425

566 88. Garnier, E. *et al.* (2018) Plant demographic and functional responses to management
567 intensification: A long-term study in a Mediterranean rangeland. *J. Ecol.* 106 (4),
568 1363-1376

569 89. Damgaard, C. *et al.* (2011) The demography of space occupancy: measuring plant
570 colonization and survival probabilities using repeated pin-point measurements.
571 *Methods in Ecology and Evolution* 2 (1), 110-115

572 90. Canfield, R.H. (1941) Application of the line interception method in sampling range
573 vegetation. *J. For.* 39 (4), 388-394

574 91. MacColl, A.D. (2011) The ecological causes of evolution. *Trends Ecol. Evol.* 26 (10),
575 514-522

576 92. Laughlin, D.C. and Messier, J. (2015) Fitness of multidimensional phenotypes in
577 dynamic adaptive landscapes. *Trends Ecol. Evol.* 30 (8), 487-496

578 93. Enquist, B.J. *et al.* (2015) Chapter Nine - Scaling from Traits to Ecosystems: Developing
579 a General Trait Driver Theory via Integrating Trait-Based and Metabolic Scaling
580 Theories. In *Adv. Ecol. Res.* (Pawar, S. *et al.* eds), pp. 249-318, Academic Press

581 94. Thomson, F.J. *et al.* (2011) Seed dispersal distance is more strongly correlated with plant
582 height than with seed mass. *J. Ecol.* 99 (6), 1299-1307

583 95. Holt, R.D. (2009) Bringing the Hutchinsonian niche into the 21st century: Ecological and
584 evolutionary perspectives. *Proceedings of the National Academy of Sciences* 106
585 (Supplement 2), 19659

586 96. Choat, B. *et al.* (2012) Global convergence in the vulnerability of forests to drought.
587 *Nature* 491, 752

588 97. Bartlett, M.K. *et al.* (2012) Rapid determination of comparative drought tolerance traits:
589 using an osmometer to predict turgor loss point. *Methods in Ecology and Evolution* 3
590 (5), 880-888

591 98. Pleban, J.R. *et al.* (2020) Rapid chlorophyll a fluorescence light response curves
592 mechanistically inform photosynthesis modeling. *Plant Physiol.*, pp.00375.2019

593 99. Caswell, H. (2007) Sensitivity analysis of transient population dynamics. *Ecol. Lett.* 10
594 (1), 1-15

595 100. Salguero-Gómez, R. (2017) Applications of the fast-slow continuum and reproductive
596 strategy framework of plant life histories. *New Phytol.* 213 (4), 1618-1624

597 101. Rüger, N. *et al.* (2020) Demographic trade-offs predict tropical forest dynamics. *Science*
598 368 (6487), 165

599 102. Lavorel, S. and Garnier, E. (2002) Predicting changes in community composition and
600 ecosystem functioning from plant traits: revisiting the Holy Grail. *Funct. Ecol.* 16 (5),
601 545-556

602 103. Smith, A.L. *et al.* (2020) Global gene flow releases invasive plants from environmental
603 constraints on genetic diversity. *Proceedings of the National Academy of Sciences*
604 117 (8), 4218

605 104. Metcalf, C.J.E. and Pavard, S. (2007) Why evolutionary biologists should be
606 demographers. *Trends Ecol. Evol.* 22 (4), 205-212
607
608

609 **Figure Captions**

610

611 **Figure 1.** Relationships between traits and vital rates can be misleading proxies for
612 estimating the effect of traits on fitness without considering demographic trade-offs [11, 16,
613 17, 21, 32, 43]. Different colored symbols represent species that exemplify different life
614 histories: red triangles typify species such as annual plants that rely on high reproduction
615 rates, blue circles typify species such as short-lived perennials that rely on rapid individual
616 growth rates, and purple squares typify long-lived perennials that rely on high survival rates.

617

618

619 **Figure 2.** Four approaches to estimate population fitness span a trade-off of empirical rigor
620 and logistical ease, and each approach exhibits different strengths and weaknesses. A)
621 Illustration of experimental common gardens where each species is planted and monitored in
622 its home range and in two additional sites beyond its range. This is the best way to observe
623 population declines in ill-suited environments. B) Integral Projection Models can incorporate
624 density dependence by using population size as a covariate in the vital rate regression models.
625 C) Fitness landscape resulting from an individual-based model of forest dynamics where
626 multiple combinations of height and leaf mass per area can stably coexist. Warm colors in
627 this fitness landscape represent evolutionarily stable strategies [79] (reproduced with
628 permission). D) Hypothetical time series of population-level data (e.g., counts, cover, or
629 biomass) can be used to account for density dependence by regressing $\log(Cover_{t+1} / Cover_t)$
630 on $\log(Cover_t)$, which can be used to estimate population growth rate at low density (see blue
631 dotted arrow). E) Multiple species distribution models can be used simultaneously to analyze
632 how trait-by-environment interactions affect occurrence or abundance at global scales. This

633 method does not analyze fitness, but it can be used to generate hypotheses about which traits
634 are most important at global scales.

635

636 **Figure 3.** Identifying the functional traits that drive environmental effects on population
637 fitness will advance community ecology. (A) In this example of five hypothetical species, the
638 red species is adapted to the high end of the environmental gradient. But why? (B) The trait-
639 by-environment interaction across multiple species illustrates that the red species is adapted
640 to the high end of the gradient because it has a low trait value. The grid of points on the
641 horizontal surface of the 3D figure illustrates that each species has a different trait value and
642 that each species was measured across the full range of environmental conditions. This
643 rigorous sampling of species across the environmental gradient can only be perfectly
644 accomplished in common garden experiments because species can be planted beyond their
645 natural range. The unimodal fitness response is shown here to reflect the classic fitness
646 function, but linear models are often used in practice given their greater simplicity for model
647 estimation [12, 91]. (C) The first partial derivative of fitness with respect to the environment
648 illustrates how species with different trait values respond to the environment differently. Note
649 that because the trait-by-environment fitness function is unimodal in panel B, the fitness
650 response will depend on both the trait and the environment [12], but the general relationship
651 would still be negative overall in this example. The horizontal error bars reflect that species
652 exhibit random trait variation among populations. To test whether traits can generalize to
653 other species, this model can predict the fitness response for a ‘new species’ (represented by
654 the diamond) that was not included in the original model. For example, if this new species
655 had a high trait value, the model would predict a negative response to the environmental
656 gradient, implying that, unlike the red species, it would exhibit high fitness at the low end of
657 the environmental gradient.