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A new model for the drag force on a two-dimensional flat plate of arbitrary porosity,
oriented normal to the free stream, is introduced. The model is an extension of
that introduced by Koo & James (J. Fluid Mech., vol. 60(3), 1973, pp. 513-538),
where the performance at low porosities is improved by including a base-suction
term. The additional drag due to the base suction is calculated implicitly using
momentum theory, which makes the model self-contained. The model predictions
exhibit convincing agreement with experimental observations over a wide range of
porosities, including the solid case, as long as shedding is absent or suppressed.
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1. Introduction

Fluid flow through and around gauzes and perforated plates has received considerable
attention over recent decades, not solely because such geometries are variants of the
classical unsolved bluff body problem, but also because they form the basis of
many industrial applications such as air brakes, parachutes and grids. Furthermore,
perforated plates (commonly referred to as actuator disks) are often used as simple
alternatives to model flows over wind turbines and wind farms (see Medici &
Alfredsson 2005; Theunissen & Housley 2015; Bossuyt, Meneveau & Meyers 2017).
In fact, one-dimensional momentum theory, which forms the basis of both the Betz
limit and the widely used blade element momentum theory (BEM), treats the turbine
as a permeable disk (see Glauert 1935).

The plate porosity is defined as the ratio of the open area to the solid area,
B =A,/A. Thus, there is no flow resistance at 8 =1 (i.e. undisturbed free stream),
and as the porosity is reduced, the resistance of the plate is increased. As less fluid
is passing through the plate and more fluid circumvents it, shear layers are gradually
formed, which significantly alter the wake properties. Castro (1971) characterized the
flow fields of porous plates for a range of Reynolds numbers based on the plate width
of 2.5 x 10* < Re <9 x 10* and showed that if the porosity is reduced below a critical
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FIGURE 1. The effect of porosity on the wake: (a) 8 =0, (b) B =0.3. Modified from
Castro (1971).

value, the steady shear layers become unstable and the periodic Karman vortex street
emerges. For porosities larger than the critical value, shedding is suppressed as the
enhanced fluid bleeding inhibits the communication of the shear layers, similarly to
a splitter plate. Furthermore, the ‘intensity’ of the shear layers has a strong effect
on the recirculation region in the wake. For zero porosity (solid plate), this region is
attached to the plate. As the porosity is increased, the recirculation region detaches
from the plate, gradually moving downstream, as shown in figure 1.

The variety of possible regimes poses a significant challenge to the analytical
prediction of the plate drag. Most existing models rely on potential flow theory,
along with modified boundary conditions to ‘simulate’ important effects generated
by viscosity. Betz (1920) considered potential flow everywhere apart from the region
closest to the plate, and calculated the plate drag by applying a momentum budget in
a control volume enclosing the plate. For large porosities, this model has been shown
to work quite well, but the model becomes increasingly inaccurate as porosity is
decreased. This is mainly because this model assumes that no mixing occurs between
the outer flow and the wake, for the whole development of the wake region. While
this assumption is acceptable when most of the fluid passes through the plate and
the shear layers are ‘weak’, it generates inconsistencies if significant fluid volume
circumvents the plate. In that case, intense mixing occurs, which causes a significant
lowering of the wake pressure compared with the ambient, an effect termed ‘base
suction’ (Roshko 1955). As this is not taken into account by the Betz model, its
predictions underestimate the drag for small plate porosities, e.g. in the case of a
solid plate, the model yields the unphysical prediction of zero drag.

The model of Betz (1920) produces the same prediction as the one of Taylor
(1944), in which the plate is represented by a distribution of sources of equal
strength. Depending on the source strength, part of the free stream passes through
the plate, while the rest circumvents the plate, diverted by a ‘Kutta-like’ boundary
condition imposed by the sources. The resulting force is then readily calculated using
Lagally’s theorem.

Koo & James (1973) proposed an improvement to the model, by including a more
realistic description of the wake. The plate is again represented by a distribution of
sources, but the resulting wake velocities are scaled down appropriately to fulfil the
additional boundary condition of mass conservation across the plate. The drag is then
calculated using Bernoulli’s equation before and after the plate. For large porosities,
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the predictions of this model have been shown to be close to those of Betz—Taylor,
while there are improvements for lower porosities. For instance, for the solid plate
limit (8 = 0), the prediction of Koo & James (1973) is non-zero (compared with
the zero prediction of Betz—Taylor), albeit much smaller than the experimentally
observed value (see §3). As will be shown below, the discrepancies between the
model predictions and experimental observations are best explained by the neglected
wake mixing and base suction.

As such, we may conclude that the models presented above are only valid for cases
where the plate porosity is large. Otherwise, these models underestimate the drag, as
they do not take into account the mixing of the outer flow with the wake region, and
the subsequent base suction. A natural improvement would therefore be to allow the
wake pressure to take values less than the ambient. This is the essence of the ‘notched’
hodograph methods of Roshko (1954) and Cumberbatch (1981), for solid and porous
plates respectively. However, apart from their complexity, the disadvantage of these
models is that they require an a priori knowledge of the base pressure, e.g. from
experimental measurements.

Here, we propose an analytical model (2.12) and (2.15) for the calculation of the
drag of an infinite-aspect-ratio plate of arbitrary porosity, placed perpendicular to the
free stream. This is achieved by extending the model of Koo & James (1973) by
including a base-suction term. Drag and base suction are then solved simultaneously
by applying momentum and energy conservation, rendering the model self-contained.
The resulting predictions are compared with new experimental drag measurements and
existing data from the literature, with convincing agreement.

2. Flow field model

2.1. A potential flow solution

Following Taylor (1944), we consider a distribution of potential sources of uniform
strength m along the y axis representing the plate, combined with a free stream
velocity U,, parallel to the x axis (see figure 2). The velocity upstream of the plate
u is the induced velocity at x — 0~, namely

m

u="Uy 5 (2.1)
The mass flux through the plate is then puA, with p being the fluid density and A
the frontal gross area of the plate. If, like Taylor, we conclude the modelling at this
step, the resulting force per unit area would be given using Lagally’s theorem as pmu,
resulting in a drag coefficient of Cp =4u/U (1 —u/Us), which could be interpreted
as the combination of two effects: first, the diversion of the fluid around the plate
and, second, the increase of the linear momentum of the fluid passing through the
plate. Indeed, for x — 0%, the induced streamwise velocity is given as U,, +m/2 > u.
This increase in momentum is unrealistic, and in fact violates conservation of mass
across the plate, but is necessary to keep the total pressure constant, as potential flow
dictates. To account for these effects, and improve the predictions, the contribution of
the momentum increase across the plate to the overall force needs to be accounted for,
and the effects of base suction included. Then, the drag coefficient can be calculated
using the formula

_br—D2

5pU%
where p; and p, are the static pressures on the front and rear sides of the plate
respectively.

Cp

(2.2)
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FIGURE 2. Sketch of the flow field model, in which the plate is represented by a
distribution of sources. The dashed lines bound the control volume where the momentum
budget is applied.

2.2. A wake correction

The flow can be divided into three regions, namely A, B and C, as shown in figure 2.
The flow in region A (outside the wake bounded by the streamlines passing from the
plate tips) is assumed to be inviscid and irrotational and its properties are determined
using Taylor’s model as described above. Indeed, the measurements of Graham (1976)
show that the mean streamwise velocity upstream of the plate is well represented
by Taylor’s model for any porosity, including the solid plate case. Using Bernoulli’s
equation, the following expression is obtained for p;:

P1=Poo + 30U — 1" — V), 2.3)

where v is the crosswise velocity immediately in front of the plate. This varies along
the plate, but for simplicity is taken to be equal to its average value over the plate
face, i.e. (see O’Neill 2006)

2_”’12_(1100_’4)2

2 3 (2.4)

The flow in region C is assumed to be viscous, and characterized by significant
mixing with the outer flow. In region C, the shear layers collapse, introducing a ‘base-
suction’ effect, leading to a static pressure p,, < pPoo-

Following Koo & James (1973), we assume the flow in region B to be inviscid, and
the fluid to follow the streamlines predicted by Taylor’s model, but with its velocity
scaled down appropriately such that mass is conserved across the plate. In that way,
the artificial increase in mass, and consequently also momentum, of the flow passing
through the plate predicted by Taylor’s model is negated. To do so, the wake velocities
are multiplied with a factor 0 < E <1 given by (note that (2.1) is used)

m
U5 wu,

Uo+ 1 2—u/Us’

(2.5)

so that the streamwise velocities for x — 0~ and x — 0 coincide. Furthermore, we
assume that no mixing occurs between the fluid of the outer region A and that of
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region B. Therefore, the total pressure is constant along a streamline in region B, and
p> is given by

p2=py+ipU, — 1’ —v)), (2.6)

where v,, is the crosswise velocity immediately downstream of the plate, given by
v, = Ev.

Next, we assume that the interface between regions B and C (i.e. the distance
after which the shear layers collapse and mixing of the wake with the outer flow
becomes significant) is far enough from the plate such that the flow velocity there is
not influenced by the induced velocity from the source distribution, i.e. U, = U E.

Finally, combining (2.2)—(2.4) and (2.6), we obtain

L T : C 2.7)
3 Uoo pW9 .

where Cp,, = (p, — Pso)/((1 /2),0U§O). Equation (2.7) shows that the drag coefficient of
a porous plate is the combination of two separate effects. First, the non-dimensional
total pressure drop due to the fluid circumventing the plate, if base suction were
absent, i.e. [1 — E?]. This term is adjusted appropriately so that its contribution to
the overall drag takes into account the static pressure decrease due to the crosswise
velocity in the vicinity of the plate. As such, the term [1 — E?] can be considered
to quantify the ‘bluffness’ of the plate. Second, the term —Cp,,, which represents the
further decrease of the total pressure due to base suction.

It should be noted that (2.7) reduces to the prediction of Koo & James (1973) if
we assume that p,, = p,, (i.e. we neglect the added drag due to base suction) and
neglect the effect of the crosswise velocity. Neglect of these terms represents the case
of large plate porosity, which is where the prediction of Koo and James agrees well
with experimental results.

Cp=[1-E"]

2.3. Conservation of momentum

In the previous section, the drag coefficient was calculated based on energy
conservation considerations. The computed drag, however, has to be consistent with
conservation of momentum in a volume around the plate. This poses a constraint
on the problem which can be used to calculate the base pressure term. It should be
noted that a similar approach was used by Yeung & Parkinson (2000) for solid plates
and wedges.

Consider the control surface shown with a dashed line in figure 2. A momentum
balance of the fluid passing through this surface requires

D+ (py — poo)L = pL(UZ, — U}) — iU, (2.8)

where D is the plate drag per unit length, L is the wake width at the position where
the control surface cuts the wake and iz is the mass flow rate per unit length exiting
the lateral control surfaces. Keeping in mind that U, = EU,,, the wake width can be
calculated by applying conservation of mass inside the wake, i.e.

u u
L= EUOO Wy = 2— Uioc Wy, (29)
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where w, is the plate width. It should be noted that for the solid plate case, u=U,, =0,
and thus the wake width cannot be calculated using conservation of mass. In that case,
we use the limiting value of the wake width as the plate tends to become solid, i.e.
using (2.9), lim,_.o L =2w,.

The mass flow rate per unit length 7z can be calculated by applying conservation
of mass outside the wake, i.e.

m=p(Usx — EU)L, (2.10)

where we have assumed that no mixing occurs between the outer flow and the wake.
By combining (2.8), (2.9) and (2.10) and normalizing appropriately we obtain

u u
Cp=2E(1 —F) (2 Uoo> Cp,, (2 Uoo) . (2.11)
Equation (2.11) shows that the drag of the plate is given as the difference of the
momentum flux of the fluid entering and exiting the slipstream (first term on the
right-hand side) plus the pressure forces on the control surface (second term on the
right-hand side). In the special case of a solid plate (u = E =0), (2.11) predicts a
vanishing drag coefficient if, like Koo & James (1973), we assume that Cp, = 0.
However, their prediction for the same case is non-zero, showing that their model is
inconsistent with conservation of momentum.
Making the substitution u* = u/U,, and using the definition of E, i.e. (2.5), we
finally obtain

8 /1—u\?
—Cp, = 3 (2_u*) , (2.12a)
_4d-u)2+u)
Cp = 3—(2—u*) (2.12b)

2.4. Plate resistance

In the previous section, we calculated the drag connected with the fluid circumventing
the plate, diverted by a ‘Kutta-like’ condition imposed by the sources, as a function
of the velocity ratio u/U,. The latter, however, is not always easily known for a
given plate geometry, limiting the practicality of the model. A more straightforward
approach would be to use the easily measured plate open area ratio 8 = A,/A as
the independent variable of the model instead. To do so, an additional equation
is necessary, linking the drag coefficient and the open area ratio to u/U,. This
relationship can be obtained by calculating the total pressure loss on a streamline
that passes through the plate. The total pressure loss can be considered as a sum of
viscous losses due to the friction between the plate walls and the fluid particles, and
dynamic losses due to separation of the flow at the end of the contraction.

We consider a sufficiently large Reynolds number based on the pore dimensions, so
that viscous forces can be neglected. It should be noted that for screens and fabrics
constructed from cylindrical elements, Hoerner (1952) found a critical Reynolds
number of Re. =~ 1000, based on the diameter of the cylindrical elements and the
maximum velocity through the fabric, above which friction losses are negligible.
Then, using Bernoulli’s equation, we may calculate the pressure of the fluid passing
through the holes as

pr=p1+3ou>(1 —1/8%) + 1 pv°, (2.13)
853 R3-6
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FIGURE 3. Variation of the resistance coefficient, k = CDUgo/uz, of a porous sheet
perpendicular to the free stream with the open area ratio. Symbols: measurements of
porous plates spanning the whole test section from Taylor & Davies (1944). Solid line:

k=(1-p%/p%

where v? is given by (2.4). Immediately downstream of the holes, the flow separates,
as it is discharged into the space behind the plate. As mentioned above, this results
in total pressure losses, and when the fluid regains its initial velocity u, its pressure
will be p, <p;. To model p,, we follow Taylor & Davies (1944) and consider that all
surplus kinetic energy due to the fluid acceleration is lost, and is thus not reconverted
into pressure. Then, the total pressure after the flow has settled will be

P2+ Lpi? + 1pv2 =pj + Lpi?, (2.14)

where v, 1is the crosswise velocity immediately downstream of the plate. By
combining (2.13) and (2.14) and normalizing appropriately we obtain

C:wﬂ(_0_4“‘ff (2.15)
P B2 32—uw)? '

It should be noted that Taylor & Davies (1944) considered a plate spanning the whole
test section, and therefore neglected the crosswise velocities before and after the plate.
In that case, (2.15) becomes k = 1/8% — 1, where k = CpU? /u*. Figure 3 shows
that this relationship agrees quite well with experimental results taken from Taylor
& Davies (1944).

To express the drag coefficient as a function of the plate open area ratio 8, we
need to equate the two predictions for the drag coefficient, i.e. (2.12b) and (2.15).
Physically, this implies that the resistance a fluid particle faces to pass through
the plate, in steady conditions, is equal to the resistance it would face were it to
circumvent the plate. In the limit of zero porosity (u= 8 =0), all fluid circumvents
the plate and (2.12b) is sufficient for the drag prediction (Cp =4/3).

3. Validation and discussion

3.1. Experimental apparatus

Experiments were conducted in a water channel with a test section 0.46 m wide,

0.27 m deep and 2.44 m long. The mean free stream velocity was set to 0.2 ms~!.
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FIGURE 4. (a) Side view of the water channel, the load cell (LC) and the plate. (b) Front
view of a porous plate; w, and d are given in table 1.

B 0% 10% 20% 30% 40% 50% 60%

w, (mm) 30 334 375 429 501 601 75.1
d (mm) 0 4.0 6.4 8.9 12.1 162 221

TABLE 1. Geometrical characteristics of the tested plates.

A set of six perforated plates was tested, details of which can be seen in figure 4 and
table 1. All plates were made from stainless steel with a thickness of 3 mm and with
the same net area, leading to the same channel blockage ratio of 6.5 %. By varying
the hole diameter and the gross plate area, a range of open area ratios B = 0-60 %
was obtained. The plates were oriented perpendicular to the free stream, as shown in
figure 4. This was done by rotating the plates using a stepper motor, and locating
the angle where the plate drag was maximum. Care was taken so that the plates did
not touch the channel bottom, but were separated by a small gap of approximately
1 mm. The Reynolds number based on the ‘net width’, (1 — 8)w,, was Re = 6000 for
all plates tested, larger than the critical Re. = 1000 where the drag coefficient of solid
square plates reaches a plateau (see Hoerner 1965). Drag was measured using a load
cell (ATI Mini40) with a force resolution of 5 x 10~* N. Following previous studies
involving perforated and solid plates (e.g. de Bray 1957; Castro 1971; Bearman &
Trueman 1972), drag was corrected for blockage using the method of Maskell (1965).
To gain an idea about the experimental error, measurements were repeated for the
plate § = 0.3 four more times, on different days and experimental runs. An error
bar was added (see figure 5) at that particular data point, representing the standard
deviation of the five mean values.

For the three plates whose open area ratio was less than the critical value 8 =
0.23, where Castro (1971) observed that shedding emerged, measurements were also
taken with a 1.5 mm thick stainless steel splitter plate positioned at the wake of the
plates, spanning the whole channel height. The splitter plate was separated from the
perforated plates by a gap of 5 mm, i.e. 0.17 times the solid plate width, and had a
length of 210 mm, i.e. 7 times the solid plate width. As shown by Apelt & West
(1975), this length is sufficient to completely suppress the shedding in plates. The
small gap is not expected to have any effect on the drag, since a splitter plate can
be detached from the body and still suppress the shedding, as long as it is covers the
position where the Karman street is formed. For a circular cylinder, Roshko (1955)
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FIGURE 5. Plate drag coefficients against their open area ratios. Filled symbols: current
measurements. Empty symbols: previous measurements taken from Graham (1976) and
Bearman & Trueman (1972). Squares: no splitter plate. Triangles: splitter plate. Red line:
current prediction (2.12b) and (2.15). Black line: Prediction of the model of Betz—Taylor.
Blue line: prediction of the model of Koo & James (1973). Dashed black line: point where
shedding emerges, as measured by Castro (1971). Dashed red line: empirical fit capturing
shedding.

showed that this distance is 2.7 times the cylinder diameter, much larger than the
current gap. To verify the above, measurements were repeated for the solid plate case
after the gap was doubled. No noticeable difference in drag was observed.

3.2. Comparison with plate data

In figure 5, the drag coefficients of plates of varying porosity are plotted against their
open area ratios. The data include the current measurements and data taken from the
literature, i.e. from Bearman & Trueman (1972) for the solid case and from Graham
(1976) for porous plates. Graham (1976) included results from his own experiments
as well as data taken from previous studies.

In figure 5, the predictions of Betz—Taylor, Koo and James, and the current study,
ie. (2.12b) and (2.15), are also plotted. We observe that both the predictions of
Betz—Taylor and those of Koo and James can be considered to be valid only for
B > 0.5. For smaller porosities, the Betz—Taylor model gives unphysical predictions,
with the drag coefficient decreasing instead of increasing. The model of Koo & James
(1973) also fails for large porosities, as it neglects the effect of base suction. It should
be noted that in the study of Koo & James (1973), the graphical representation of
their prediction does not exhibit the small drop when B is small, but rather increases
slowly until Cp =1 for g =0. However, this increase is artificial and is because the
crosswise velocity upstream of the plate, v, is assumed to be negligible, resulting in
the prediction Cp=1— E? (see discussion in § 2). While this assumption is reasonable
for large B, it is not true for small plate porosities, since in those cases the majority
of the fluid volume has to circumvent the plate. A better representation of their model
would be Cp=[1—E*|[1 - (1 —u/Us)?/3] (i.e. (2.7) without the base-suction term),
which is represented by the blue line in figure 5.

The model proposed herein is shown as the solid red line in figure 5, and it agrees
very well with the data for all porosities where shedding remains suppressed, i.e.

853 R3-9


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.621

Downloaded from https://www.cambridge.org/core. Princeton Univ, on 02 Oct 2018 at 15:10:47, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2018.621

K. Steiros and M. Hultmark

B = 0.23. For lower porosities, the data diverge from the prediction and can only be
captured using an empirical fit. This is expected, as one of the model assumptions
is that there is no mixing between region B and the outer flow (see figure 2). This
assumption is approximately true when shedding is absent, but invalid when shedding
is present as it causes intense mixing in the wake. As such, when shedding is
suppressed by the use of a splitter plate, the data fall close to the prediction for all
porosities. In that case, the standard error of the model was found to be S = 0.08,
defined as

1 i=n
; Z(yl _ﬁ)Z, (31)
i=1

where n is the number of data points, y; is the measurement at a particular open area
ratio and f; is the prediction of (2.12b) and (2.15) at the same open area ratio.

In the solid case, (2.12b) predicts Cp = 1.33, while the experiments indicate
Cp = 1.44 £ 0.4. This agreement is also reflected in the base pressure: (2.12b)
predicts —Cp,, = 0.67, which can be compared with the experimentally observed
value of —Cp,, = 0.6 for solid plates equipped with a splitter plate, as measured by
Bearman & Trueman (1972).

4. Summary

A model for predicting the drag on a plate of arbitrary porosity is introduced.
The model is formulated using potential flow theory, along with the following four
conditions to render the flow field realistic. First, following Taylor (1944), we impose
a ‘Kutta-like’ boundary condition on the fluid that circumvents the plate. Second,
following Taylor & Davies (1944), we impose a total pressure loss on the fluid that
passes through the plate. Third, following Koo & James (1973), we rescale the wake
velocities to impose mass conservation on the fluid passing through the plate. Fourth,
following Roshko (1954), we allow the pressure in the far wake to take values less
than the ambient. Drag is then calculated under the constraints of energy, momentum
and mass conservation. The proposed model (2.12b) and (2.15) captures better the
flow physics associated with flow bleeding, and offers improved predictions compared
with the classical Betz model, especially for small plate porosities. It could therefore
find application in wind-turbine load and power predictions, through BEM, which
relies heavily on drag predictions for porous plates.
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