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Abstract. We prove two conjectures of E. Khukhro and P. Shumyatsky concerning the

Fitting height and insoluble length of finite groups. As a by-product of our methods, we also

prove a generalization of a result of Flavell, which itself generalizes Wielandt’s Zipper Lemma

and provides a characterization of subgroups contained in a unique maximal subgroup. We

also derive a number of consequences of our theorems, including some applications to the set

of odd order elements of a finite group inverted by an involutory automorphism.

1. Introduction

A classical result of R. Baer [1] states that an element x of a finite group G is contained in

the Fitting subgroup F (G) of G if and only if x is a left Engel element of G. That is, x ∈ F (G)

if and only if there exists a positive integer k such that [g,k x] := [g, x, . . . , x] (with x appearing

k times) is trivial for all g ∈ G. (In this paper, we use left normed commutators, so that

[x1, x2, x3 . . . , xk] := [[. . . [[x1, x2], x3], . . .], xk]). The result was generalized by E. Khukhro

and P. Shumyatsky in [7] via an analysis of the sets

EG,k(x) := {[g,k x] : g ∈ G}.

In this notation, Baer’s Theorem states that x ∈ F (G) if and only if EG,k(x) = {1} for some

positive integer k. The generalization of Khukhro and Shumyatsky takes three directions.

First, if G is soluble then a complete generalization is obtained: [7, Theorem 1.1] proves that

if the Fitting height of the subgroup 〈EG,k(x)〉 (for any k) is h, then x is contained in Fh+1(G)

— the (h+ 1)-st Fitting subgroup of G.

Secondly, they also discuss analogous results for insoluble groups: for a finite group G, we

will write F ∗(G) for the generalized Fitting subgroup of G. That is, F ∗(G) := F (G)E(G),

where F (G) is the Fitting subgroup of G, and

E(G) := 〈N : N a quasisimple subnormal subgroup of G〉
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is the layer of G. We then write F ∗i (G) for the i-th generalized Fitting subgroup of G. That

is, F ∗1 (G) := F ∗(G) is the generalized Fitting subgroup of G, and F ∗i (G) is the inverse image

of F ∗(G/F ∗i−1(G)) in G for i ≥ 2. Thus, in particular, Fi(G) = F ∗i (G) when G is soluble.

It is proven in [7, Theorem 1.2] that if 〈EG,k(x)〉 has generalized Fitting height h, then x is

contained in F ∗f(x,h)(G) for a certain function f defined in terms of h and the number of prime

divisors of the order of x (counting multiplicities). The authors conjecture in [7, Conjecture

7.1] that in this case, x is in fact contained in F ∗h+1(G). The first main result of this paper is

a proof of this conjecture.

Theorem 1.1. Let G be a finite group, let x be an element of G, and fix h ≥ 0. Then F ∗h (G)x

is contained in F (G/F ∗h (G)) if and only if 〈EG,k(x)〉 has generalized Fitting height at most

h for some positive integer k. In particular, if 〈EG,k(x)〉 has generalized Fitting height h for

some positive integer k, then x is contained in F ∗h+1(G).

In fact, since it is an “if and only if” statement, Theorem 1.1 is stronger than [7, Conjecture

7.1]. In particular, Baer’s classical result can be recovered.

Thirdly, another length parameter for finite groups is discussed. For a finite group G, write

λ(G) for the insoluble length of G. That is, λ(G) is the minimum number of insoluble factors in

a normal series for G each of whose factors is either soluble or a direct product of non-abelian

simple groups. In particular, a group is soluble if and only if λ(G) = 0. The group R0(G) is

defined to be the soluble radical of G, while Ri(G) is defined to be the largest normal subgroup

of G with insoluble length i, for i ≥ 1. The series 1 ≤ R0(G) ≤ . . . ≤ Ri(G) ≤ . . . ≤ G is called

the upper insoluble series for G, and [7, Theorem 1.3] shows that if 〈EG,k(x)〉 has insoluble

length h, then x is contained in Rr(x,h)(G) for a certain function r defined in terms of h and

the number of prime divisors of x (again counting multiplicities). Khukhro and Shumyatsky

conjecture in [7, Conjecture 7.2] that we should have x ∈ Rh(G) in this case, and our next

result proves their conjecture.

Theorem 1.2. Let G be a finite group, let x be an element of G, and fix h ≥ 0. Then x is

contained in Rh(G) if and only if 〈EG,k(α)〉 has insoluble length at most h for some positive

integer k.

Again, since Theorem 1.2 is an “if and only if” statement, it is stronger than [7, Conjecture

7.2].

Bounds on the insoluble length and the Fitting height of a finite group have proved to

be powerful tools in both finite and profinite group theory. In particular, such bounds were

crucial in the reduction of the Restricted Burnside Problem to soluble and nilpotent groups

due to P. Hall and G. Higman [4]. J. Wilson also used such bounds when reducing the problem
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of proving that periodic profinite groups are locally finite to pro p-groups [8]. E. Zelmanov

then solved both of these problems in his famous papers [9, 10, 11].

If A is a subgroup of H, let AH denote the subgroup H generated by all the conjugates of

A in H. Theorems 1.1 and 1.2 can in fact be deduced from the following general result.

Theorem 1.3. Let G be a group which satisfies the max condition on subgroups, and the

min condition on subnormal subgroups, and let A be a subgroup of G with AG = G. Set

Y := YG(A) = 〈H � G : A ≤ H and H = AH〉. Then one of the following holds.

(1) Y = G.

(2) A is contained in a unique maximal subgroup of G.

Theorem 1.3 will follow from a generalization of a result of Flavell, which itself generalizes

Wielandt’s Zipper Lemma.

As a by-product of our methods, we also obtain strong results concerning the sets EG,k(x).

Theorem 1.4. Let G be a finite group, and let α be an element of Aut(G) with the property

that [G,α] = G. Then G = 〈EG,k(α)〉 for all positive integers k.

In Theorem 1.4, the commutators [g,k α] are understood to be computed in 〈G,α〉.

An easy corollary of Theorem 1.4 is the following:

Corollary 1.5. Let G be a finite group, and let x be an element of G. Let H be the final term

in the subnormal series G ≥ [G, x] ≥ [G, x, x] ≥, and let K be the final term in the series

G ≥ 〈EG,1(x)〉 ≥ 〈EG,2(x)〉 ≥ . . ..

(1) 〈EG,k(x)〉 is subnormal in G for all k; and

(2) H = K.

(3) The minimum of the generalized Fitting heights [respectively insoluble lengths] of the

groups 〈EG,k(x)〉, for k ∈ N, is the generalized Fitting height [resp. insoluble length]

of K.

We remark that Corollary 1.5 is a new result, even in the soluble case: the subnormality

of the groups 〈EG,k(α)〉 was (as far as we know) previously unknown.

Next, we note that in the special case where the automorphism α in Theorem 1.4 is an

involution, a stronger result is available. First, in this case define the set

JG(α) := {g ∈ G : g has odd order and gα = g−1}.

We then have the following.



4 ROBERT M. GURALNICK AND GARETH TRACEY

Theorem 1.6. Let 1 6= G be a finite group, and let α ∈ Aut(G) be an involution. Suppose

that [G,α] = G, and write 2k = max{|g|2 : g ∈ G and gα = g−1}. Then JG(α) = EG,j(α) for

all j > k. In particular, G = 〈JG(α)〉 by Theorem 1.4.

We also prove the following, which may be of independent interest.

Theorem 1.7. Let 1 6= G be a finite group, and let α ∈ Aut(G) be an involution. Suppose

that [G,α] = G. Then there is some function f so that |G| ≤ f(|JG(α)|).

Since H = [H,α] if and only if H = 〈JH(α)〉, we also deduce the following.

Corollary 1.8. Let 1 6= G be a finite group, and let α ∈ Aut(G) be an involution. Then

|〈JG(α)〉| is bounded above by a function of |JG(α)|.

The previous two results do not depend upon the classification of finite simple groups.

Using the classification [3], we can show:

Corollary 1.9. Let 1 6= G be a finite group, and let α ∈ Aut(G) be an involution. If

G = [G,α], then [G : F (G)] < |JG(α)|!4.

The proof of Corollary 1.9 in the case that Z(G) = 1 follows from Theorem 1.6. That

implies that CG(α)/Z(G) acts faithfully on J# := JG(α) \ {1}. Moreover α acts as a fixed

point free involution on J#, whence if m = |J#|, |CG(α)| ≤ 2m/2−1(m/2)! and then using the

main theorem in [5], we get a bound for [G : F (G)] (without the classification of finite simple

groups) and the specific bound using [3] which depends upon the classification. If Z(G) 6= 1,

one needs to modify the proof slightly (see Lemma 3.2).

In fact, the bound in Corollary 1.9 is not so far from best possible. Let A = Sn, G = An and

α a transposition in A. Then |JG(α)| = 2n−3, |CG(α)| = (n−2)! and |G| > ((|JG(α)|−1)/2)!.

Throughout, we write Z(G), [G,G], and O(G) to denote the centre, derived subgroup, and

largest odd order normal subgroup of G, respectively. For an element g of G, we will denote

the order of g by |g|.

Finally, we remark that the earlier bounds [7, Theorems 1.2 and 1.3] on the generalized

Fitting height and insoluble length of a finite group depend on the classification of finite

simple groups, through the use of solubility of the outer automorphisms of a finite simple

group (Schreier’s conjecture). All results in this paper, apart from Corollary 1.9 are obtained

without the use of the classification of finite simple groups.

Acknowledgement: We would like to thank Professor Pavel Shumyatsky for introducing

us to these problems, and for useful discussions. We would also like to thank the anonymous

referee for their time and effort in reviewing the paper.



ON THE GENERALIZED FITTING HEIGHT AND INSOLUBLE LENGTH OF FINITE GROUPS 5

2. Proofs of Theorems 1.1, 1.2, 1.4 and 1.6; and Corollary 1.5

We begin this section by showing that Theorems 1.1, 1.2, 1.4 and 1.6, together with Corol-

lary 1.5, follow from Theorem 1.3.

Proposition 2.1. Assume that Theorem 1.3 holds. Then Theorems 1.1, 1.2, 1.4 and 1.6,

together with Corollary 1.5, hold.

Proof. We first prove that Theorem 1.4 holds. So assume that G is a finite group, α is an

automorphism of G, and [G,α] = G. Suppose that k is minimal with the property that

〈EG,k(α)〉 6= G. Note that if H is a subgroup of G, then [H,α] = H if and only if 〈αH〉 =

〈H,α〉. Set X := 〈G,α〉. Recall that Y := YX(α) = 〈H � X : α ∈ H = αH〉. If Y :=

YX(α) = X, then X = 〈αH : H � G〉 and the result follows by induction on the order of G.

Thus, by Theorem 1.3 we may assume that α is contained in a unique maximal subgroup K

of X. Since 〈G,α〉 is generated by conjugates of α, the subgroup K is self normalizing.

Now, by the minimality of k we may choose an element h := [g,k−1 α] of X\K. Then

[h, α] ∈ K, so αh ∈ K. Hence α ∈ Kh−1 6= K, contrary to assumption. This completes the

proof of Theorem 1.4.

We next prove Corollary 1.5. Let N be a minimal normal subgroup of X. Let R =

〈EG,k(α)〉. We need to show that R is subnormal in X. By induction RN is subnormal in X

and so it suffices to prove that N normalizes R or RN = RCN (α) (since CN (α) normalizes

R).

First suppose that N is elementary abelian. Then since N acts trivially on N , R acts

completely reducibly on N . Let M be an irreducible R-submodule of N with M ∩R = 1 (or

equivalently M is not contained in R). Then M0 := [M,α, . . . , α] (the k-fold commutator) is

contained in M ∩R = 1. Thus CM (α) 6= 1 and so CM (α)R∩M 6= 1. Since M is an irreducible

R-module, this implies that M ≤ CM (α)R. Since this is true for any irreducible submodule,

N ≤ CN (α)R.

So we may assume that N is a direct product of t ≥ 1 non-abelian simple groups. By

Theorem 1.4, R∩N contains [N,α], whence N = (N∩R)CN (α) and as above, N normalizes H.

This proves (1) of Corollary 1.5. Since K is subnormal in EG,k(α) for all k ∈ N, part (3) also

follows. Moreover, since H = [H,α], Theorem 1.4 implies that H = 〈EH,m(α)〉 ≤ 〈EG,m(α)〉
for all m, whence H ≤ K. Obviously K ≤ H, whence H = K.

We now prove Theorem 1.6. So assume that α ∈ Aut(G) is an involution. Write 2k =

max{|g|2 : g ∈ G and gα = g−1}, and note that [g,j α] = [g, α](−2)
j−1

whenever g ∈ G. Since

[g, α] is inverted by α for all g ∈ G, we deduce that EG,j(α) ⊆ JG(α) whenever j > k. Thus,

since JG(α) is contained in EG,j(α) for all j ≥ 1, we have JG(α) = EG,j(α) whenever j > k.
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Next, we prove that Theorems 1.1 and 1.2 follow from Theorem 1.4.

Indeed, suppose that G is a finite group, α is an element of G, and k is a positive integer.

Let H be the stable term in the subnormal series G ≥ [G,α] ≥ [G,α, α] ≥ . . .. Then

H = [H,α], so H = 〈EH,k(α)〉 ≤ 〈EG,k(α)〉 by Theorem 1.4. Now, an easy exercise shows

that the generalized Fitting height [respectively insoluble length] of HG coincides with the

generalized Fitting height [resp. insoluble length] of H, since H is subnormal in G. Moreover,

the generalized Fitting height [resp. insoluble length] of H is at most the generalized Fitting

height [resp. insoluble length] of 〈EG,k(α)〉. Let h be the generalized Fitting height [resp.

insoluble length] of H. Then HG, being a normal subgroup of G with generalized Fitting

height [resp. insoluble length] h, is contained in F ∗h (G) [resp. Rh(G)]. Hence, F ∗h (G)α [resp.

Rh(G)α] is contained in F (G/F ∗h (G)) ≤ F ∗h+1(G)/F ∗h (G) [resp. F (G/Rh(G)) = 1] by Baer’s

Theorem.

On the other hand, suppose that F ∗f (G)α is contained in F (G/F ∗f (G)) [resp. Rf (G)], where

f ≥ 0. Then α centralizes HF ∗f (G)/F ∗f (G) [resp. HRf (G)/Rf (G)], so [H,α] = H implies

that H, and hence HG, is contained in F ∗f (G) [resp. Rf (G)]. Thus, h ≤ f , as required. �

We will now begin preparations for the proof of Theorem 1.3. First, for a proper subgroup

A of a group H, we define the normal closure descending series for A in H as follows. Let

H0 = H and let Hi+1 = 〈AHi〉. We define F (A,H) := ∩i≥0Hi.

We first note the following trivial facts:

Lemma 2.2. Let H, A, Hi and F (A,H) be as defined above, and assume that H satisfies

the min condition on subnormal subgroups. Then

(i) Hi+1 is normal in Hi and Hj is subnormal in H for all j.

(ii) 〈AF (A,H)〉 = F (A,H).

(iii) If A ≤ L ≤ H and 〈AL〉 = L, then L ≤ F (A,H).

Proof. Parts (i) and (ii) follow immediately from the definition of the series H = H0 ≥ H1 ≥
. . ., since F (A,H) = Hm is a member of the series in this case. So assume that A ≤ L ≤ H

and that 〈AL〉 = L. Then H0 = LH0, so H1 = 〈ALH0〉 ≥ 〈AL〉 = L. Extending this argument

inductively yields L ≤ Hi for all i. Hence, L ≤ Hm = F (A,H). �

Next, we prove a generalization of a result of Flavell, which states that if G is finite and

A is a proper subgroup of G which is contained in at least two maximal subgroups and is

subnormal in all but at most one of the maximal subgroups in which it is contained, then A is

contained in a proper normal subgroup of G. Write M(A) for the set of maximal subgroups

of G containing A. We remark that Wielandt’s Zipper Lemma [6, Theorem 2.9], which is

usually stated for finite groups, holds in the more general case where G satisfies the max
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condition for subgroups, while his Join Lemma [6, Theorem 2.5], holds whenever G satisfies

the max condition for subnormal subgroups. Hence, from [2, proof of Main Theorem] we can

see that Flavell’s Theorem holds in the more general case where G satisfies the max condition

on subgroups.

Our generalization can now be given as follows.

Lemma 2.3. Let G be a group satisfying the max condition on subgroups, and the min

condition on subnormal subgroups. Let A be a proper subgroup of G satisfying the following:

(a) A is contained in at least two maximal subgroups of G.

(b) The set {F (A,H) : H ∈M(A)} has a unique maximal element.

Then A is contained in a proper normal subgroup of G.

Proof. Clearly, we may assume that 〈AG〉 = G. Denote by Ω(A,G) the set of subgroups H

of G with the property that 〈AH〉 = H, and let Y be the unique maximal element of the set

{F (A,H) : H ∈M(A)}. Also, let M be a maximal subgroup of G containing Y .

Now, choose X ∈ Ω(A,G) maximal with respect to X being contained in at least two

maximal subgroups of G. This set is not empty since A has this property. If L 6= M is any

maximal subgroup of G containing X, observe that X is the stable term in the normal closure

series for A in L (by part (iii) of the previous lemma, X is contained in the stable term, which

in turn is contained in Y ≤M and by maximality, it is the stable term).

Thus, X is subnormal in all but at most one of the maximal subgroups in which it is

contained. Flavell’s Theorem [2] then implies that X is contained in a proper normal subgroup

of G. Since A ≤ X, this completes the proof. �

We remark that this does indeed generalize the theorem of Flavell mentioned above. To

see this, suppose that G is finite, A � G, |M(A)| ≥ 2, and A is subnormal in all but at most

one member, say M , of A. We claim that A is contained in a proper normal subgroup of G.

Clearly, we may assume that 〈AG〉 = G. We first prove that A = F (A,L) for any maximal

subgroup L 6= M containing A. Let A = Hd+1 < Hd < . . . < H1 < H0 = L be a subnormal

chain for A < L, where Hi �Hi+1. Consider the normal closure descending series F (A,L) =

Lm < . . . < L1 < L0 = L for A in L as defined above. Then L1 = AL ≤ H1, and it follows via

an easy inductive argument that Li ≤ Hi for all i. Thus, A ≤ F (A,L) ≤ Ld+1 ≤ Hd+1 = A,

so A = F (A,L), as claimed. It follows that the set {F (A,H) : H ∈ M(A)} has a unique

maximal element. The claim follows.

We are now ready to prove Theorem 1.3.
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Proof of Theorem 1.3. Let Ω(A,G) be as in the proof of Lemma 2.3, and let Y = 〈H|H ∈
Ω(A,G)〉 . Assume that Y 6= G, and let M be a maximal subgroup of G containing Y . Then

Y = F (A,M).

Now, every subgroup in Ω(A,G) is contained in Y (and so in M). Suppose that A is

contained in some maximal subgroup K 6= M . Then F (A,K) ∈ Ω(A,G), so A ≤ F (A,K) ≤
M . Hence, F (A,K) ≤ Y by Lemma 2.2 part (iii). It follows that the set {F (A,H) : H ∈
M(A)} has a unique maximal element. Thus, A is contained in a proper normal subgroup of

G, by Lemma 2.3. This contradicts 〈AG〉 = G, and completes the proof. �

3. Proof of Theorem 1.7

In this section, we prove Theorem 1.7. So throughout, we assume that G is a finite group,

and that α is an involutory automorphism of G with the property that [G,α] = G. Set

A = 〈G,α〉 and J = JG(α). Recall that J is the set of elements of odd order in G inverted by

α.

Before proceeding to the proof of Theorem 1.7, we note two useful lemmas.

Lemma 3.1.
⋂
j∈J CG(α)j = CG(A) ≤ Z(G). In particular, coreG(CG(α)) is contained in

Z(G).

Proof. Note that if j ∈ J , then 〈α, αj〉 is a dihedral group containing j (since j has odd order).

Thus 〈αj |j ∈ J〉 = 〈J, α〉 = A and the result follows. �

Lemma 3.2. [G : F (G)] can be bounded above in terms of |J |.

Proof. Note first that since G = [G,α], α acts without fixed points on G/[G,G], and so acts

by inversion. In particular, |G/[G,G]| is odd.

Now, there is no harm in assuming that Φ(G) = 1 since G/F (G) does not change. It

follows that Φ(Z(G)) = 1. That is, Z(G) has square-free order. If Z(G) 6= 1, we can

therefore write G = M × B where B ≤ Z(G) has prime order. Thus, [G,G] = [M,M ] ≤ M

and so |B| is odd and M is α-invariant. It also follows that [M,α] = M . Furthermore,

[G : F (G)] = [M : F (M)]. The inductive hypothesis then yields the result.

Thus, we may assume that Z(G) = 1. Since J generates by G by Theorem 1.6, it follows

that CG(α) acts faithfully on J \{1} and so |CG(α)| ≤ (|J |−1)!. The main theorem in [5] (or

[3] if we allow the Classification of Finite Simple Groups) then bounds [G : F (G)] in terms of

|J |. �

We are now ready to prove Theorem 1.7.
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Proof of Theorem 1.7. We prove the theorem by induction on |J |. If |J | = 1, then G = 〈J〉 is

trivial and the result holds. So we assume that J and G are both nontrivial.

We first note the following elementary and well known observation. If Ng ∈ JG/N (α), with

N a normal subgroup of A contained in G, then there is h ∈ Ng ∩ J (b := [α, g] is inverted

by g and is in the coset Ng2 – now take h = be for e some power of 2).

In particular, if N is a normal subgroup of A contained in G and J ∩N is non-trivial, then

|JG/N (α)| < |J |.(3.1)

Now, as mentioned in the proof of Lemma 3.2, |G/[G,G]| has odd order and α acts without

fixed points and so acts by inversion. In particular,

|G/[G,G]| ≤ |J | and CG(α) ≤ [G,G].(3.2)

Next, set L := [O(Z(G)), α]. If L > 1, then since L ⊆ J , the inductive hypothesis and (3.1)

imply that |G/L| is bounded in terms of |J |. Thus, |G| can be bounded in terms of |J |. So

we may assume that

[O(Z(G)), α] = 1.(3.3)

Now, by Lemma 3.2, we may assume that F (G) 6= 1. If F (G) = Z(G), then again by

Lemma 3.2, |G/Z(G)| can be bounded in terms of |J |. Schur’s theorem then gives a bound

for |[G,G]| in terms of |G/Z(G)| and again the result holds, using (3.2).

Now, let N/Z(G) be a minimal normal subgroup of A/Z(G) contained in F (G)/Z(G). So

N/Z(G) is an elementary abelian p-group for some prime p.

First suppose that p is odd. We claim that

α does not centralize N/Z(G).(3.4)

Indeed, since N is nilpotent, we may write N = Op(N)Z(G). Then [N,α] = [Op(N), α] ≤
Op(Z(G)). Since α centralizes O(Z(G)) by (3.3), we have [N,α, α] = 1. Since Op(N)

is nilpotent of odd order, Baer’s Theorem then implies that α centralizes Op(N). Hence,

Op(N) ≤ coreG(CG(α)) ≤ Z(G) by Lemma 3.1. This contradiction proves (3.4).

Now, (3.4) implies that N/Z(G)∩JG/Z(G)(α) is non-trivial. Thus, J ∩Z(G)n > 1 for some

n ∈ N , by the assertion in the first paragraph. It follows that p ≤ |J ∩ N | ≤ |J | and, from

(3.1), that |JG/N (α)| < |J |. Thus, G/N has order bounded in terms of |J |. Since N/Z(G) is

an irreducible module for G/N and p is |J |-bounded, we deduce that |N/Z(G)|, and hence

G/Z(G), has order bounded order in terms of |J |. Applying Schur’s theorem and (3.2) then

yields a bound for |G| in terms of |J |.

Thus, we may assume that Op(G) ≤ Z(G) for all odd primes p. Suppose now that p = 2.

Then arguing with Baer’s Theorem as above, and using the fact that J consists of elements of
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odd order and G = 〈J〉, we see that G does not centralize N/Z(G). Let x ∈ J be an element

of odd prime order acting non-trivially on N/Z(G).

Let w ∈ N . Then (wx)α = wαx−1 and so α inverts wx if and only if x−1w−1 = wαx−1.

Let V/Z(G) be a 〈α, x〉-submodule of N/Z(G) with x acting nontrivially. Choose Z(G)v ∈
V/Z(G) so that x acts non-trivially on V . Then set w := v if αx−1 centralizes v, and

w := vvαx
−1

otherwise. It is then a straightforward computation to see that Z(G)wx has

order |x| and Z(G)x−1w−1 = Z(G)wαx−1. Thus, Z(G)wx ∈ JG/Z(G)(α) ∩N/Z(G). We can

then deduce from (3.1), as in the p odd case above, that |JG/N (α)| < |J | and so G/N is

|J |-bounded by the inductive hypothesis. Since N/Z(G) is an irreducible module for G/N

and p = 2, this implies that |N/Z(G)|, and hence |G/Z(G)|, is |J |-bounded. Schur’s Theorem

then implies that |G| is |J |-bounded, and this completes the proof. �

References

[1] R. Baer, Engelsche elemente Noetherscher Gruppen. Math. Ann. 133 (1957), 256–270.

[2] P. Flavell, On Wielandt’s theory of subnormal subgroups, Bull. Lond. Math. Soc. 42 (2010), 263–266.

[3] R. M. Guralnick and G. R. Robinson, Variants of some of the Brauer-Fowler Theorems. J. Algebra (in

press) (2019). Available from arXiv:1807.00965.

[4] P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside’s

problem. Proc. London Math. Soc. (3) 6 (1956), 1–42.

[5] B. Hartley and Th. Meixner, Periodic groups in which the centralizer of an involution has bounded

order. J. Algebra 64 (1980), 285–291.

[6] I. M. Isaacs, Finite group theory, Graduate Studies in Mathematics 92, American Mathematical Society,

Providence, RI, 2008.

[7] E. Khukhro and P. Shumyatsky, Engel-type subgroups and length parameters of finite groups. Israel

J. Math. (2017), 599–629.

[8] J. S. Wilson, On the structure of compact torsion groups, Monatsh. Math. (1983), 57–66.

[9] E. I. Zelmanov, Solution of the restricted Burnside problem for groups of odd exponent, Izv. Akad.

Nauk SSSR Ser. Mat. 54 (1990), 42–59.

[10] E. I. Zelmanov, Solution of the restricted Burnside problem for 2-groups. Mat. Sb. 182 (1991), 568–592.

[11] E. I. Zelmanov, On periodic compact groups. Israel J. Math. 77 (1992), 83–95.

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532,

USA

Email address : guralnic@usc.edu
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