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Periodically driven Floquet quantum systems
could provide a promising platform to investigate
novel physics out of equilibrium [1], but the drive
generically heats up the system to a featureless
infinite-temperature state [2–4]. Fortunately, for
large driving frequency, the heat absorption rate
has been theoretically predicted to be exponen-
tially small, giving rise to a long-lived prether-
mal regime that exhibits all the intriguing prop-
erties of Floquet systems [5–8]. Here we experi-
mentally observe Floquet prethermalization us-
ing nuclear magnetic resonance techniques and
probe the heating rate. We first show the re-
laxation of a far-from-equilibrium initial state to
a long-lived prethermal state, well described by
a time-independent “prethermal” Hamiltonian.
By measuring the autocorrelation of this prether-
mal Hamiltonian we can further experimentally
confirm the predicted exponentially slow heat-
ing rate. More strikingly, we find that in the
timescale when the e↵ective Hamiltonian picture
breaks down, the Floquet system still possesses
other quasiconservation laws. Our results demon-
strate that it is possible to realize robust Floquet
engineering, thus enabling the experimental ob-
servation of non-trivial Floquet phases of matter.

Driving quantum systems promises to reveal new
physics phenomena beyond equilibrium statistics [1]. In
particular, periodically driven, or Floquet, systems have
received great attention. Time-periodic Floquet systems,
similar to crystals with spatial periodicity, are fully char-
acterized by a set of periodic eigenstates and associated
quasienergies, which can be obtained by diagonalizing
the single-period propagator. In Fourier space, the peri-
odic eigenstates form a Floquet lattice analogous to the
Brillouin zone. This artificial dimension in the Fourier
space enables simulation of complex dynamics in sim-
ple systems [9], and band crossing in the Floquet lattice
creates nontrivial topological structures [10, 11]. Impor-
tantly, the single-period, stroboscopic propagator can be
linked to a static quasilocal Hamiltonian via the Floquet-
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Magnus expansion; thus Floquet driving provides a way
to simulate time-independent Hamiltonians that might
not be otherwise directly accessible [12–14], and ulti-
mately enables universal quantum simulation [15, 16].
More strikingly, Floquet systems exhibit novel phenom-
ena that have no static counterparts, including discrete-
time crystalline phases [17, 18] and dynamical phase tran-
sitions [19].

However, a generic interacting Floquet system absorbs
energy from the drive and is expected to heat up to in-
finite temperature, thus suppressing all interesting phe-
nomena [2–4]. Many-body [20, 23–26] and dynamic [27–
29] localization provide a way to escape thermalization,
as well as some fine-tuned driving protocols [30]. More
generally, it has been theoretically shown [5–8] that the
dynamics of a Floquet system under rapid drive (fast
compared to any local energy scale) is approximately
governed by a time-independent e↵ective Hamiltonian –
called “prethermal Hamiltonian”– up to a correction ex-
ponentially small in the driving frequency. This prop-
erty is generic to any system with local interactions,
without requiring disordered fields or fine-tuned param-
eters. The Floquet system can be approximately de-
scribed by the prethermal Hamiltonian for an exponen-
tially long time, with emergent symmetries or “quasi-
conserved quantities” (i.e., conserved by the prether-
mal Hamiltonian but not by the exact Floquet propa-
gator) [31], such as (prethermal) energy conservation [5]
and Ising symmetry [32]. These quasiconserved quan-
tities demonstrate extraordinary robustness in quantum
simulation [27, 28, 30], and the emergent symmetries set
the foundation of Floquet phases [32–34].

Floquet prethermalization, featuring exponentially
slow heating, has been confirmed numerically in sev-
eral Hamiltonian models [33, 35–37], but an experimen-
tal study is still missing. In this paper, we experimen-
tally observe Floquet prethermalization in a natural nu-
clear spin system by developing nuclear magnetic reso-
nance (NMR) techniques to tune the driving frequency,
while keeping experimental errors constant. While quasi-
equilibrium regimes have been historically linked to the
concept of spin temperature in NMR [38], here we focus
on the heating rate of driven prethermal systems that has
not been previously investigated in NMR. Intriguingly,
we find a quasiconserved observable with an even slower
heating rate than the prethermal energy, indicating that
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Fig. 1. Schematic of the experimental system and Floquet prethermalization. (a) Floquet driving scheme for
the kicked dipolar model. In the inset: 16 RF ⇡/2-pulse sequence [20, 21] with duration (period) ⌧ = 120 µs and ⇡/2 pulse
width 1.02 µs (x,y indicate the pulse phases). The sequence engineers the Dy dipolar Hamiltonian up to second order in the
Magnus expansion, with variable strength J , and fixed time ⌧ and control errors. The variable-strength kicking field, hZ, can be
introduced by phase-shifting all pulses by an angle h⌧ without physically applying a field [21], an extremely robust experimental
method. In the following, we fix h/J = 1. (b) Fluorapatite crystal, Ca5(PO4)3F: the

19F spins-1/2 (red) form linear chains.
(c) Cartoon showing the typical thermalization process of a generic observable A in the fast driven Floquet systems: the
observable has an initial fast decay (orange shaded area) to its quasiconserved, prethermal value, followed by a slow relaxation
toward the fully thermalized value (blue shaded area). (d) Prethermalization of the Z magnetization, hZ(n)Zi/hZ(n)Dyi, in
the kicked dipolar model as a function of period (sequence repetition) number n for di↵erent J⌧ . The red dashed line is the
ratio hHZi/hHDyi = 8/[3⇣(6)] ⇡ 2.2. Error bars are determined from the noise in the free induction decay (Supplementary
Information).

emergent symmetries and associated Floquet phases may
exist beyond the e↵ective Hamiltonian picture.

Experiments are conducted on nuclear spins in fluo-
rapatite, an experimental system recently used to show
many-body localization [20] and static prethermaliza-
tion [21]. The system (see methods) can be modeled
as an ensemble of chains of 19F spins-1/2 Sj [Fig. 1(b)]
interacting via the dipolar Hamiltonian HDipz = J0Dz,

where D↵ =
P

L

j<k

1
2|k�j|3

⇣
3Sj

↵
Sk

↵
� ~Sj

·~Sk

⌘
. The large

system size (L > 50) is crucial to studying thermaliza-
tion, which only happens in the thermodynamic limit.
The long coherence time T1 ⇡ 0.8 s allows us to observe
late-time dynamics and thus study the slow heating pro-
cess.

The initial state at room temperature (see meth-
ods) is given by ⇢0 ⇡ ( � ✏Z)/2L, with �⇢0 ⌘ Z =P

j
Sj

z
the collective z-magnetization, which gives rise

to the signal. Importantly, the signal can be rewrit-
ten as the two-point correlation at infinite temperature,
Tr[�⇢(t)O]/2L ⌘ h�⇢(t)Oi�=0, with �⇢ playing the role
of an observable. The infinite temperature correlation
can directly reveal quasiconserved observables and pro-
vide information across the entire spectrum [31]. Using
RF controls, we can engineer �⇢(0) and O to be not only
collective magnetization around any axis, but also (see
methods) the dipolar order [39] operator D↵ in any ar-
bitrary direction ↵.

To probe Floquet prethermalization, we consider the
kicked dipolar model, with Floquet propagator UF ⌘

T
⇥
exp

�
�i

R
⌧

0 H(t)dt
�⇤

= e�ihZ⌧e�iJDy⌧ [Fig. 1 (a)]. J
and h are the strength of the dipolar interaction and
the collective z-field respectively. While inspired by the
kicked Ising model [17, 32] and its static counterpart, the
transverse field Ising model, this model presents a richer
prethermalization structure in 1D, as we will show. Typ-
ically J is fixed by the system properties (here the crys-
tal lattice), and probing Floquet thermalization requires
varying the time ⌧ , introducing undesired e↵ects from,
e.g., decoherence. To overcome this issue, in our exper-
iments we engineer the Hamiltonian JDy by modulat-
ing the natural dipolar Hamiltonian HDipz = J0Dz with
n repetitions of the pulse sequence in Fig. 1 (a) (Sup-
plementary Information). Then, to investigate di↵erent
driving frequencies, we vary the e↵ective dipolar strength
J by changing only relative delays within the sequence,
while keeping the sequence length fixed, ⌧ = 120 µs. The
advantage is that the total experimental time n⌧ and
number of pulses 16n are kept constant for di↵erent driv-
ing frequencies, J⌧ . As a result, the e↵ects of decoher-
ence and control errors (including finite pulse width, an-
gle error, frequency o↵set, which are already minimized
by our optimized sequence) do not change when vary-
ing J⌧ (see methods and Extended Data Fig. 1). This
allows us to isolate Floquet heating due to the coherent
quantum evolution from the presence of experimental im-
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perfections.
When the driving frequency is large compared to lo-

cal energy scales, the Floquet dynamics is captured by
a time-independent prethermal Hamiltonian Hpre, ob-
tained from the truncated Floquet-Magnus expansion,
plus an exponentially small time-dependent term [5, 7],
k�H(t)k < exp (�O(1/⌧)) (see methods). The typical
thermalization process for an observable A(t) is shown
in Fig. 1(c). In a time tpre ⇠ 1/kHprek, hA(t)i prether-
malizes to its canonical ensemble value Tr (A⇢pre) set by
the Gibbs state of the prethermal Hamiltonian, ⇢pre =
e��Hpre/Z, with Z the partition function and � deter-
mined by the initial state energy. After this transient,
hA(t)i decays under the influence of �H, and the e↵ective
Hamiltonian picture gradually breaks down. Finally, the
system thermalizes to infinite temperature in a timescale
t⇤⇠exp(O(1/⌧)).

To experimentally demonstrate prethermalization, we
consider the dynamics of �⇢(n) / Z(n) in the kicked
dipolar model, where for any observable O(n) =
(UF )

n
O(U†

F
)n. We plot the ratio of the experimen-

tally measured two-point correlators Tr[�⇢(n)Z] and
Tr[�⇢(n)Dy] in Fig. 1(d). We take the ratio because it
is insensitive to experimental imperfections (see meth-
ods). For fast driving, J⌧  1.05, the ratio quickly
stabilizes to a non-zero value after a few oscillations,
indicating the system reached a quasi-equilibrium. In-
deed, the initial density matrix prethermalizes to the
high-temperature Gibbs state of the prethermal Hamil-
tonian ⇢pre = � ✏0Hpre ⇡ � ✏0H + O(⌧), where
H = JDy + hZ is the zeroth-order average Hamilto-
nian (see methods). As a result, the ratio saturates at
hHZi/hHDyi = 8/[3⇣(6)] (with ⇣(6) ⌘

P1
n=1 n

�6 the
Riemann zeta function). For slightly slower driving, the
ratio still stabilizes, but its long-time value deviates from
8/3⇣(6) due to the presence of higher order terms inHpre.
The slow decay to zero induced by the error term �H
is not evident in the ratio shown in Fig. 1(d). To see
exponentially slow heating we need to look at observ-
ables conserved byHpre: as their correlation is nonzero in
the prethermal state and zero in the infinite-temperature
thermal state, they serve as a good metric to study the
thermalization process.

An obvious conserved quantity is the HamiltonianHpre

itself: prethermal energy quasiconservation can naturally
reveal the prethermal phase, and its breakdown indi-
cates the eventual heating to infinite temperature. In
experiments, we can only measure the average Hamilto-
nians H, which still serves as a good approximation to
Hpre even at long times. Indeed, during a short tran-
sient of order tpre, terms in H not in Hpre prethermalize
(creating highly correlated operators that cannot be ob-
served). After this prethermalization process, hH(n)Hi

and hHpre(n)Hprei di↵er only by a constant factor, and
they both undergo a slow decay. We obtain the au-
tocorrelation of H by adding 4 experiments hZ(n)Zi,
hZ(n)Dyi, hDy(n)Zi, and hDy(n)Dyi, as shown in Fig.
2(a). The initial damped oscillations signal the prether-

malization of H(n) under Hpre. This prethermalization
stage is followed by a slow exponential decay as a result
of heating. We plot the long-time fitted decay rates of
the autocorrelations in Fig. 2(b). The results do show ex-
ponentially slow heating on top of a constant background
decay due to experimental imperfections (such as deco-
herence, pulse errors, and higher-order terms in engineer-
ing the dipolar Hamiltonian JDy.) In other words, these
results demonstrate that while the Trotter error generi-
cally scales as (J⌧)2 [15, 27], for quasiconserved quanti-
ties it only grows exponentially slow in (J⌧)�1. By nor-
malizing the data to the data collected under the fastest
drive (J⌧ = 0.35), the background decay is canceled, and
the resulting dynamics only arises from the coherent evo-
lution, as shown in Fig. 2(c). Here we show the autocorre-
lation after the prethermal transient dynamics (n � 16),
as a function of the driving rate, J⌧ . In the absence of
Floquet heating, the curves in Fig. 2(c) would not change
with n. Instead, the curves drop slowly when increasing
n, qualitatively indicating that the system is still absorb-
ing energy from the driving, and evolves toward the fully
thermalized state at infinite temperature [31]. At fixed n,
the autocorrelation is close to 1 for small J⌧ , but it decays
to zero for larger J⌧ due to the presence of higher orders
in Hpre and the ultimate breakdown of the prethermal
Hamiltonian picture.

It is interesting to investigate whether this behavior
is limited to energy quasiconservation, or if it occurs for
other, non-trivial quasiconserved observables. Intrigu-
ingly, we find that such quasiconserved quantities not
only exist, but can be even more robust than the prether-
mal energy. In the kicked dipolar model, there is an ad-
ditional quasiconserved quantity Dpre ⇡ Dz, which we
call dressed dipolar order [39]. We experimentally mea-
sured the autocorrelation of Dz [Fig. 3(a)], whose de-
cay rate can be fitted to a constant background decay
plus a term exponentially slow in J⌧ [Fig. 3(b)]. Sur-
prisingly, we find that not only does Dz have a smaller
overall decay rate than H, but the decay rate even shows
a slower scaling with J⌧ . As a result, after normalizing
by the background decay, the autocorrelation of Dz is
larger than that of H [Fig. 3(c)], indicating that for rela-
tively large J⌧ , Dz is conserved for longer times than H,
as also confirmed numerically in Extended Data Fig. 2.
In other words, there is a regime where the stroboscopic
evolution can no longer be described by a static prether-
mal Hamiltonian, but still exhibits emergent symmetries,
here the dressed dipolar order. Although Ref. [8, 21, 32]
have shown that Dz is conserved by the static average
Hamiltonian H, this cannot explain its extraordinary ro-
bustness here, as indeed even for relatively large ⌧ we can
derive (see methods) the quasi-conservation law without
first transforming to a static Hamiltonian. This could
further lead to Floquet phases that have no static coun-
terpart.

In conclusion, we studied Floquet prethermalization
and heating in an interacting many-body system pro-
vided by a solid-state NMR quantum simulator, intro-
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Fig. 2. Breakdown of energy conservation and Floquet heating rate. (a) Autocorrelation as a function of n, for
J⌧ = 0.35 (darker color) to 2.27 (lighter color) in steps of 0.175. The period length is ⌧ = 120 µs. (b) We fit the autocorrelations
from n = 20 to n = 64 to an exponentially decaying function exp(��n) and plot the decay rate �. The length of the error
bars corresponds to two standard deviations of the fitted decay rate. The solid curve is a fit to � = a exp(�b/J⌧) + c. (c)
Autocorrelation versus J⌧ for di↵erent n. Lighter colors represent smaller n and darker colors represent larger n. For each n,
the autocorrelation is normalized by its value at J⌧ = 0.35 , i.e. the leftmost point is normalized to 1. In (a) and (c), error
bars are determined from the noise in the NMR free induction decay (Supplementary Information).
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Fig. 3. Robustness of dipolar order. (a) Autocorrelation of Dz in the kicked dipolar model with J⌧ from 0.35 (darker
color) to 2.27 (lighter color) in steps of 0.175. The period length is ⌧ = 120 µs. (b) We fit the autocorrelations in (a) from
n = 20 to n = 64 to an exponentially decaying function exp(��Dn) and plot the decay rate �D (left axis, green). The
length of the error bars corresponds to two standard deviations of the fitted decay rate. The solid curve indicates the fit to
�D = aD exp(�bD/J⌧) + cD. The fitted coe�cients aD, bD, cD are shown in the plot with the 95% confidence interval. The
blue curves (right axis) are from Fig. 2(b). The left and right axis are shifted but have the same scale for easier comparison.
Comparing the fitted coe�cient bD to b reveals that Dz has a slower dependence on J⌧ . (c) Autocorrelation of Dz versus J⌧ for
di↵erent periods n. Lighter colors represent smaller n and darker colors represent larger n. For a given n, the autocorrelation
is normalized by hDz(n)Dzi at J⌧ = 0.35, i.e. the leftmost point is normalized to 1. The grey dashed curve shows hH(n)Hi at
n = 64. In (a) and (c), error bars are determined from the noise in the NMR free induction decay (Supplementary Information).

ducing a control protocol that can isolate Floquet e↵ects
from other experimental imperfections and decoherence.
Periodic driving is a powerful tool for quantum simula-
tion and to induce novel phases of matter due to the
Floquet dynamics. Whether such phases and engineered
Hamiltonians can survive for long-enough times to allow
interesting quantum simulations is a critical question for
practical applications. Here we first observed the dynam-
ics of a non-equilibrium state and showed that it indeed
relaxes to a long-time steady-state given by the canon-
ical ensemble of the prethermal Hamiltonian. By mea-
suring the dynamics of prethermal quasiconserved quan-
tities, while keeping fixed experimental imperfections,
we further revealed that the final thermalization to in-
finite temperature happens with an exponentially small
heating rate. We succeeded in measuring to leading or-
der not only the autocorrelation of the quasiconserved

prethermal Hamiltonian Hpre, but also another emer-
gent quasiconserved quantity, the dressed dipolar order
Dpre. Surprisingly, we find that the heating rate of Dpre

is smaller than for Hpre, with both rates scaling expo-
nentially in the driving frequency. This result suggests
that Floquet systems may exhibit conservation laws even
when the dynamics can no longer be described by a static
Hamiltonian. Our work not only provides experimental
evidence of Floquet prethermalization theory, but also
opens new avenues for robust Floquet engineering and
long-lived Floquet phases of matter.
Note added. During the preparation of this

manuscript, we became aware of related experi-
ments about Floquet prethermalization in Bose-Hubbard
model [40].
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METHODS

Experimental System

We use nuclear spins in fluorapatite as our experimen-
tal testbed. The 19F spins-1/2 form linear chains in the
crystal [Fig. 1(b)] and interact with each other via mag-
netic dipolar interactions. A single crystal is placed in a
7 T magnetic field at room temperature. In such a strong
field the interaction Hamiltonian for the 19F spins is given
by the secular dipolar Hamiltonian HDipz = J0Dz, where

Dz =
P

j<k

1
2

⇣
3Sj

z
Sk

z
� ~Sj ·

~Sk

⌘
/r3

jk
, with rjk = |k � j|

the normalized distance between two spins and J0 =
�29.7 krad/s the nearest neighbor coupling strength.
Here Sj

↵
(↵ = x, y, z) are spin-1/2 operators of the j-

th 19F spin and ~Sj = (Sj

x
, Sj

y
, Sj

z
)T (see Supplementary

Information for more details). In the short timescale, the
system can be approximated as an ensemble of identical
spin chains [41], because the interchain coupling is ⇠ 40
times weaker than the intrachain coupling. The quasi 1D
nature of the crystal allows us to compare with numerical
simulation easily, but the results of this paper should be
generic to any dimension with short-range interactions.
The NMR signal is summed over a macroscopic number
of chains in the crystal. The average chain length L is
larger than 50, much longer than the extent of correla-
tions in the experiments. This large system size enables
studying thermalization, a process that only happens in
the thermodynamic limit. On the timescales explored
the 19F spin system can be considered a closed system,
as the coupling to 31P spins in the lattice is refocused by
the applied control, and the spin-lattice relaxation e↵ects
are negligible (T1 ⇡ 0.8 s). Such a long relaxation time
allows us to resolve the exponentially slow heating rate.
We can thus model the 19F spins by the closed quantum
dynamics of spins interacting via dipolar couplings.

The initial state of a room-temperature NMR exper-
iment with L spins is described by the density matrix
⇢0 ⇡ ( � ✏Z)/2L, with ✏ = �!0 ⇠ 10�5, where !0 is
the Zeeman energy and � the inverse temperature. As
the identity operator describes a totally mixed state that
does not produce any NMR signal, we only care about the
deviation �⇢0 = Z. The NMR spectrometer measures the
collective transverse magnetization, but with collective
control we can measure the magnetization around any
axis. In addition, the Jeener-Broekaert pulse pair [39] can
be used to evolve the collective magnetization into the
dipolar ordered state, Dz, plus some highly correlated op-
erators which do not contribute to the signal. Then, both
the initial state �⇢0 and the observableO can be chosen to
be the collective magnetization operator

P
j
Sj

↵
or dipo-

lar order operator D↵ =
P

j<k

1
2

⇣
3Sj

↵
Sk

↵
� ~Sj ·

~Sk

⌘
/r3

jk

with ↵ being an arbitrary direction. The signal we mea-
sure can be rewritten as the two-point correlation at infi-
nite temperature, Tr[U(t)�⇢0U†(t)O]/2L ⌘ h�⇢(t)Oi�=0.
That is, we are e↵ectively measuring the correlation of a

system at infinite temperature where (the deviation of)
the density matrix becomes the time-dependent observ-
able. Here and in the main text, we drop the subscript
� = 0 for brevity.

Experimental background decay rate as a function
of J⌧

It is important to distinguish Floquet heating from
experimental errors. The following errors are typical
in NMR experiments: pulse angle error, finite pulse
width, pulse phase transients, and decoherence. The
decoherence timescale is over two orders of magnitude
larger than the experiments time and thus negligible.
The other three error sources are deterministic and pe-
riodic. As Floquet prethermalization theory applies to
generic Hamiltonians, those errors only slightly mod-
ify the prethermal Hamiltonian and dress the conserved
quantities, without compromising our observation of
prethermalization. Moreover, our sequence is designed to
cancel these errors to leading order. In principle, higher-
order e↵ects could correlate with the Floquet period and
obscure the Floquet heating-rate scaling with J⌧ . In par-
ticular, the simplest strategy to vary the Floquet period
⌧ , that is, increasing the time between pulses, would lead
to experiments performed with di↵erent total times or
a di↵erent number of control operations. This method
would have introduced variable amounts of decoherence,
relaxation, and control errors. Instead, here we devised
a more robust control strategy that kept the time for one
Floquet period constant and used Hamiltonian engineer-
ing to change the Hamiltonian strength, in order to vary
the Floquet driving frequency.
In the main text, we assumed that the background de-

cay rate does not change much with Floquet driving fre-
quency (compared to the change in Floquet heating rate).
Here, we provide experimental evidence for this assump-
tion. When changing driving frequency, we are changing
(i) the e↵ective strength J of the engineered dipolar in-
teraction JDy and (ii) the kicking angle in the kicked
dipolar model via a phase shift (see SM). As phase shift
angles are usually very accurately implemented in NMR
experiments, we focus on errors from the engineered dipo-
lar interaction, which is obtained by Floquet engineer-
ing itself, as explained in SM. To quantify how good
is the engineered JDy, we measure the correlations [31]
hY (n)Y i and hDy(n)Dyi under the engineered Hamilto-
nian JDy, with no kicking field nor direction alternation,
as shown in Extended Data Fig. 1. Qualitatively, we
observe that the decay rate decreases when increasing
J⌧ , while the decay rate when performing Hamiltonian
switching [Fig. 2(b) and Fig. 3(b) of the main text] in-
creases with J⌧ . This opposite trend of the decay rate
further strengthens our conclusions in the main text: (i)
the normalized decay of autocorrelations is indeed due to
Floquet heating, and not to experimental errors, (ii) the
decay rate curve shown in Fig. 2(b) and Fig. 3(b) of the
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main text would have been slightly steeper in the absence
of background decay, thus further discriminating the ex-
ponential scaling from other possibilities (e.g. quadratic
prethermalization due to first-order perturbation), (iii)
the change in Floquet heating rate is more pronounced in
the magnetization than in the dipolar state, thus our con-
clusion that the Dz quasiconservation survives at longer
periods than H = hZ + JDy is even stronger.

Note that the maximum di↵erence between the decay
rate of hDy(n)Dyi over the range of J⌧ considered is
⇠ 0.003, much smaller than the Floquet heating rate in
the main text. A quantitative analysis is challenging be-
cause the specific form of error terms is unknown, and
JDy is an interacting Hamiltonian thus error accumula-
tion is intractable. Here we use some simple arguments
to argue that variations in the background decay with
J⌧ have little to no influence on our results. First, we
note that while in the main text we are interested in the
decay of the autocorrelation of Hpre and Dpre, here with
H = JDy we can only discuss the decay of Dy and Y ,
since other quantities that are not conserved display very
fast decay which is not informative. For example, in the
main text we measure Dz, which thermalizes even under
the ideal Dy and thus we cannot distinguish thermaliza-
tion from decay due to experimental imperfections in the
engineered dipolar Hamiltonian Dy. Still, as Dz and Dy

overlap, if the background decay of Dz had a significant
change with J⌧ , it would be reflected in Dy, which is not
observed. Therefore, we expect the change in the back-
ground decay rate for hDz(n)Dzi to be small as well.
Here we can only probe the background decay rate of
Y , while in the main text we are interested in the longi-
tudinal magnetization, Z, that appears in hH(n)Hi [see
Fig. 2(b) of the main text]. The transverse magnetiza-
tion decay rate is, however, an upper bound for Z, since
in NMR experiments Z is usually more robust against er-
rors than Y due to the large magnetic field in z-axis that
suppresses decoherence and experimental errors that do
not conserve the total Zeeman energy (we note that we
typically do not explicitly write the Zeeman energy in the
Hamiltonians as we work in the rotating frame). Even
if the variation in the background decay for Z were as
large as what was observed for Y in these experiments
(⇠ 0.009), it would still be still small compared with Flo-
quet (see inset of Extended Data Fig. 1). In addition, in
the kicked dipolar model, we can consider Dy as being
subjected to rotations along Z that further cancel out the
error terms in the engineered JDy that do not conserve
Z. As a result, the decay rate of Y due to the engineered
Dy is larger, by about a factor of 2, than the baseline
decay of hH(n)Hi in the kicked dipolar model (they are
0.254 and 0.123, respectively, in the fastest driving case
J⌧ = 0.35).

Prethermal expansion

1. Fast driving expansion

For any periodic Hamiltonian H(t) = H(t + ⌧), the
stroboscopic propagator UF = T

⇥
exp

�
�i

R
⌧

0 H(t)dt
�⇤

(with T the time-ordering operator) can be written in
terms of a time-independent Floquet Hamiltonian HF ,
UF = exp(�iHF ⌧). HF can be expanded in powers of ⌧
by the Floquet-Magnus expansion [42, 43]. In interact-
ing many-body systems, the expansion typically diverges
and a quasilocal HF cannot be found [43, 44], indicating
there is no energy conservation and the system eventu-
ally heats up to infinite temperature. Still, in some cases
a prethermal Hamiltonian Hpre emerges from the trun-
cated Floquet-Magnus expansion

Hpre =
m

⇤X

m=0

⌧m⌦m. (1)

Here the zeroth order term is the average Hamil-
tonian ⌦0 = H = 1/⌧

R
⌧

0 H(t)dt and higher order
term ⌦m involves m nested commutators, e.g., ⌦1 =
�(i/2⌧)

R
⌧

0 dt1
R
t1

0 dt2 [H(t1), H(t2)]. For a prether-
mal Hamiltonian, the residual time-dependent part
�H(t) = HF � Hpre is exponentially small, k�H(t)k <
exp (�O(1/⌧)) (where || · || denotes norm of local terms).
Then, the system dynamics is governed by this truncated
Floquet Hamiltonian up to an exponentially long time
t⇤ ⇠ exp(O(1/⌧)), before finally reaching infinite tem-
perature.

2. Large kicking field expansion

We can use this prethermal formalism [7, 32] to theo-
retically demonstrate that the kicked dipolar model leads
to prethermal quasiconserved quantities featuring expo-
nentially slow heating. We can understand this e↵ect in
analogy to dynamical decoupling of a single spin qubit
from an external bath by a periodic driving [45–48]: here
the large kicking field dynamically decouples the dipolar
state �⇢ / Dz from other many-body states to leading
order in h/J , while higher order terms dress the en-
ergy level and yield the prethermal conserved quantity,
similarly to the dressed qubit. More rigorously, we can
rewrite the Floquet operator for the kicked dipolar model
using a local unitary transformation e�S ,

eS
�
e�ihZ⌧e�iJDy⌧

�
e�S = e�ih eZ⌧e�i⌧( eD+� eH), (2)

where [ eZ, eD] = 0 and � eH is exponentially small in
min{O(h/J), O(1/h⌧)} (we use eO to denote operators
in the new frame.) eD is then exponentially conserved,
yielding a prethermal quasiconserved quantity Dpre =

e�S eDeS in the original frame.
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To find S, we first rewrite the transformation in Eq. (2)
as

ei✏hZ⌧eSe�i✏hZ⌧e�i✏
2
JDy⌧e�S = e�i⌧( eD+� eH), (3)

where we drop the tilde on Z because the two operators
have the same matrix representation. Here ✏ = 1 is the
case at hand, but we will evaluate Eq. (3) as a pertur-
bation in the small parameter ✏ ⌧ 1. In particular, we
set both h⌧ and J/h to be small numbers of order ✏.
After expanding the operators, eD = ✏D1 + ✏2D2 + · · · ,
S = ✏S1 + ✏2S2 + · · · , one can collect terms that are of
order ✏j on both sides of Eq. (3), using the Magnus ex-
pansion to evaluate the products of exponentials. The
jth order is given by

� i⌧Dj = [Sj�1,�ihZ⌧ ] + hj , (4)

where hj only contains hZ⌧ , JDy⌧ and Sj0<j . Higher
orders can be found recursively from h1 = 0 and h2 =
�iJDy⌧ . Assuming all orders Sj0 with j0 < j � 1 are
known, we determine Sj�1 by requiring [Sj�1,�ihZ⌧ ]
to cancel the terms in hj that do not commute with
Z. This can be conveniently obtained by decompos-
ing hj =

P
q=0,±1,··· hjq such that [Z, hjq] = qhjq (hjq

is called the qth quantum coherence of Z [20, 49, 50].)
Eq. (4) is satisfied by setting �i⌧Dj = hj0 and Sj�1 =
i
P

q 6=0 hjq/(hq⌧). This procedure results in a localized
expansion: for nearest-neighbor interaction, the range of
Sj is at most j, yielding an exponentially localized eS

(similar localization is expected for short-range interac-
tions found in our experiments.) Truncating the expan-
sion so it remains convergent and local leads to the ex-
ponentially small residual � eH.

In the ⌧ ! 0 limit, the Sj operators are dominated by
the (J/h)j term, and the Floquet quasiconserved quanti-

ties agree with the prethermal quasiconserved quantities
of the static Hamiltonian H [21, 32]. In this regime, as
in the static case, the expansion is a series in J/h, con-
verging for h/J & 0.5 with an error � eH ⇡ exp[�O(h/J)],
which yields Dpre = �

1
2Dz +O((J/h)2) [21].

Instead, for relatively larger h⌧ , the Sj operators are

dominated by (h⌧)j and � eH ⇡ exp(�O(1/h⌧)), in agree-
ment with the exponentially slow Floquet heating. This
prethermal expansion is a generalization of earlier re-

sults [32], which required [ eD, e�ih eZ⌧ ] = 0 for h⌧ = ⇡
to realize discrete time crystals. Here instead we impose
the stronger requirement [ eD, eZ] = 0, and the expansion
is valid for arbitrary h⌧ . Note that since the right-hand
side of Eq. (2) still describes a Floquet system, the qua-
siconservation is derived without first transforming to a
static Hamiltonian.
Numerical simulations [31] of the series convergence

and the infinite-time correlation (see extended data) sug-
gest that Dpre is more robust than Hpre, in agreement
with the experimental results in the main text.
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I. EXPERIMENTAL SYSTEM, CONTROL AND
DATA ANALYSIS

A. Experimental System

The system used in the experiment was a single crys-

tal of fluorapatite (FAp). Fluorapatite is a hexagonal

mineral with space group P63/m, with the
19
F spin-1/2

nuclei forming linear chains along the c-axis. Each flu-

orine spin in the chain is surrounded by three
31
P spin-

1/2 nuclei. We used a natural crystal, from which we

cut a sample of approximate dimensions 3 mm⇥3 mm⇥2

mm. The sample is placed at room temperature inside

an NMR superconducting magnet producing a uniform

B = 7 T field. The total Hamiltonian of the system is

given by

Htot = !F

X

k

S
k
z + !P

X



s

z +HF +HP +HFP (1)

The first two terms represent the Zeeman interactions

of the F(S) and P(s) spins, respectively, with frequen-

cies !F = �FB ⇡ (2⇡)282.37 MHz and !P = �PB =

(2⇡)121.51 MHz, where �F/P are the gyromagnetic ra-

tios. The other three terms represent the natural mag-

netic dipole-dipole interaction among the spins, given

generally by

Hdip =

X

j<k

~�j�k
|~rjk|

3

"
~Sj ·

~Sk �
3~Sj · ~rjk

~Sk · ~rjk

|~rjk|
2

#
, (2)

where ~rij is the vector between the ij spin pair. Because

of the much larger Zeeman interaction, we can truncate

the dipolar Hamiltonian to its energy-conserving part

(secular Hamiltonian). We then obtain the homonuclear

Hamiltonians

HF =
1

2

X

j<k

J
F
jk(2S

j
zS

k
z � S

j
xS

k
x � S

j
yS

k
y )

HP =
1

2

X

�<

J
P
�(2s

�
z s


z � s

�
xs


x � s

�
ys


y)

(3)
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and the heteronuclear interaction between the F and P

spins,

HFP =

X

k,

J
FP
k, S

k
z s


z , (4)

with Jjk = ~�j�k 1�3 cos(✓jk)
2

|~rjk|3 , where ✓jk is the angle

between the vector ~rjk and the magnetic field z-axis.

The maximum values of the couplings (for the closest

spins) are given respectively by J
F

= �32.76 krad s
�1

,

J
P

= 1.20 krad s
�1

and J
FP

= 6.12 krad s
�1

, esti-

mated from the crystal structure. If the crystal’s c-axis

is aligned with the magnetic field, these will be the cou-

pling strength. In experiments, We measure the coupling

of nearest neighbor
19
F to be J0 = �29.7 krad/s by fit-

ting hX(t)Xi under the double quantum Hamiltonian to

the analytical form [1].

The dynamics of this complex many-body system can

be mapped to a much simpler, quasi-1D system. First,

we note that when the crystal is oriented with its c-axis

parallel to the external magnetic field the coupling of flu-

orine spins to the closest o↵-chain fluorine spin is ⇡ 40

times weaker, while in-chain, next-nearest neighbor cou-

plings are 8 times weaker. Previous studies on these crys-

tals have indeed observed dynamics consistent with spin

chain models, and the system has been proposed as solid-

state realizations of quantum wires [2–4]. This approxi-

mation of the experimental system to a 1D, short-range

system, although not perfect has been shown to reliably

describe experiments for relevant time-scales [5, 6]. The

approximation breaks down at longer times, with a con-

!"
x y y x x y y x x y y x x y y x
!# 2!" !# 2!" !# 2!" !# 2!" !# 2!" !# 2!" !# 2!" !# !"

n

Fig. 1. A Fluorapatite crystal structure, showing the Fluo-
rine and Phosphorus spins in the unit cell. B NMR scheme
for the generation and detection of MQC. In the inset (C)
an exemplary pulse sequence for the generation of the Hdipy.
Note that thanks to the ability of inverting the sign of the
Hamiltonian, the scheme amounts to measuring out-of-time
order correlations.

mailto:paipeng@mit.edu
mailto:pcappell@mit.edu
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vergence of various e↵ects: long-range in-chain and cross-

chain couplings, as well as pulse errors in the sequences

used for Hamiltonian engineering. In addition, the sys-

tem also undergoes spin relaxation, although on a much

longer time-scale (T1 = 0.8 s for our sample).

B. Error analysis

In experiments, we want to measure the correlation

h�⇢(t)Oi, where �⇢(t) = U(t)�⇢(0)U(t) is the nontrivial

part of the density matrix evolved under a pulse-control

sequence for a time t. Instead of just performing a single

measurement after the sequence, we continuously moni-

tor the free evolution of �⇢(t) under the natural Hamil-

tonian Hdip, from t to t + tFID. The measured signal is

called in NMR free induction decay (FID) and a typical

FID trace is shown in Fig. 2). This signal trace allows

us to extract not only the amplitude of the correlation

(from the first data point) but also its uncertainty. We

take the standard deviation of the last 20 data points in

the FID as the uncertainty of the h�⇢(t)Oi. This uncer-

tainty is used with linear error propagation to obtain the

error bars of all the quantities analyzed in the main text.

0 200 400 600 800
-2000

0
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Fig. 2. An example of FID. 128 data points are taken
in total. The first data point gives h(�⇢(t)Oi and the stan-
dard deviation of the last 20 points gives the uncertainty of
h(�⇢(t)Oi.

C. Hamiltonian Engineering

In the main text we focused on the Floquet heat-

ing (Trotter error) for a periodic alternating scheme,

switching between two Hamiltonians. In order to avoid

longer times and/or di↵erent numbers of control opera-

tions when changing the Trotter step (Floquet period),

we engineered Hamiltonians of variable strengths. Then,

the Hamiltonians themselves are obtained stroboscopi-

cally by applying periodic rf pulse trains to the natural

dipolar Hamiltonian that describes the system, and are

thus themselves Floquet Hamiltonians. Since we only

varied the sequences, but not the Floquet period, errors

in this step contribute to the background decay but not

the Floquet heating described in the main text, as we

investigate in methods.

We used Average Hamiltonian Theory (AHT) [7] as the

basis for our Hamiltonian engineering method, to design

the control sequences and determine the approximation

errors. The dynamics is induced by the total Hamilto-

nian H = Hdip+Hrf, where Hdip =
1
2

P
j<k Jjk(2S

j
zS

k
z �

S
j
xS

k
x �S

j
yS

k
y )+

P
j hjS

j
z is the system Hamiltonian, and

Hrf(t) is the external Hamiltonian due to the rf-pulses.

The density matrix ⇢ evolves under the total Hamiltonian

according to ⇢̇ = �i[H, ⇢]. We study the dynamics into

a convenient interaction frame, defined by ⇢
0
= Urf

†
⇢Urf,

where Urf(t) = T exp[�i
R t
0 Hrf(t

0
)dt

0
] and T is the time

ordering operator. In this toggling frame, ⇢
0
evolves ac-

cording to ⇢̇
0
= �i[H(t), ⇢

0
], where H(t) = Urf

†
HdipUrf.

Since Urf is periodic, H(t) is also periodic with the same

period ⌧ , and gives rise to the Floquet Hamiltonian, HF ,

as as U(⌧) = exp[�iHF ⌧ ]. Note that if the pulse se-

quence satisfies the condition Urf(⌧) = 1, the dynam-

ics of ⇢ and ⇢
0
are identical when the system is viewed

stroboscopically, i.e., at integer multiples of ⌧ , where the

toggling frame coincides with the (rotating) lab frame.

We devised control sequences to engineer a scale-down,

rotated version of the dipolar Hamiltonian [8, 9]. We usu-

ally look for control sequences that would engineer the

desired Hamiltonian up to second order in the Magnus-

Floquet expansion. Then, to engineer the interactionDy,

we use a 16-pulse sequence. The basic building block is

given by a 4-pulse sequence [10, 11] originally developed

to study MQC. We denote a generic 4-pulse sequence as

P (⌧1,n1, ⌧2,n2, ⌧3,n3, ⌧4,n4, ⌧5), where nj represents the

direction of the j-th ⇡/2 pulse, and ⌧j ’s the delays inter-

leaving the pulses. In our experiments, the ⇡/2 pulses

have a width tw of 1.02 µs. ⌧j starts and/or ends at the

midpoints of the pulses (see also Fig. 1). In this notation,

our forward 16-pulse sequence can be expressed as

P (⌧1,x, ⌧2,y, 2⌧1,y, ⌧2,x, ⌧1)P (⌧1,x, ⌧2,y, 2⌧1,y, ⌧2,x, ⌧1)P (⌧1,x, ⌧2,y, 2⌧1,y, ⌧2,x, ⌧1)P (⌧1,x, ⌧2,y, 2⌧1,y, ⌧2,x, ⌧1)

and the backward sequence as

P (⌧3,y, ⌧3,x, 2⌧4,x, ⌧3,y, ⌧3)P (⌧3,y, ⌧3,x, 2⌧4,x, ⌧3,y, ⌧3)P (⌧3,y, ⌧3,x, 2⌧4,x, ⌧3,y, ⌧3)P (⌧3,y, ⌧3,x, 2⌧4,x, ⌧3,y, ⌧3)
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where {x,y} ⌘ {�x,�y}. The delays are given by

⌧1 = ⌧0(1� u), ⌧2 = ⌧0(1 + 2u),

⌧3 = ⌧0(1 + u), ⌧4 = ⌧0(1� 2u),

where ⌧0 is 5 µs in this paper. The cycle time ⌧ , defined

as the total time of the sequence, is given by ⌧ = 24⌧0. u

is a dimensionless adjustable parameter, and is restricted

such that none of the inter-pulse spacings becomes neg-

ative. To the zeroth order Magnus expansion, the above

sequence realizes Hamiltonian uJ0Dy and uJ0 = J .

A uniform transverse field can be introduced in H
(0)

by phase-shifting the entire pulse sequence. Consider ro-

tating the n-th cycle of the pulse sequence by (n � 1)�

around the z axis, which can be accomplished by phase

shifting all the pulse directions nj in the n-th cycle by

(n � 1)�. The evolution operator for each cycle is given

by

U1 = e
�iJDy⌧ ,

U2 = e
i�Z

e
�iJDy⌧e

�i�Z
,

U3 = e
2i�Z

e
�iJDy⌧e

�2i�Z
,

· · ·

Un = e
i(n�1)�Z

e
�iJDy⌧e

�i(n�1)�Z

where Z =
P

j S
j
z . The total evolution operator over n

cycles is given by the product:

U(n⌧) = UnUn�1 · · ·U3U2U1

= e
in�Z

⇥
e
�i�Z

e
�iJDy⌧

⇤n

where the Floquet sequence is then given by H1 =

JDy H2 = hZ, with h = �/⌧ . The rotation approach

also generates an extra term e
in�Z

, this term can be can-

celed in MQC experiments by rotating the observable by

n�.

We note that our methods can be applied more broadly

to engineer desired Hamiltonians Hdes using only collec-

tive rotations of the spins applied to the naturally occur-

ring Hamiltonian, Hnat. The engineered Hamiltonian is

obtained by piece-wise constant evolution under-rotated

versions of the natural Hamiltonian under the conditionP
k RkHnatR

†
k = Hdes, where Rk are collective rotations

of all the spins, which achieves the desired operator to

first order in a Magnus expansion. Symmetrization of

the sequence can further cancel out the lowest order cor-

rection. Using only collective pulses limits which Hamil-

tonians can be engineered, due to symmetries of the nat-

ural Hamiltonian and the action of collective operators.

For typical two-body interactions of spin-1/2, an e�cient

tool to predict which Hamiltonians are accessible is to use

spherical tensors [12].

II. FIT OF HEATING RATES

In the main text we fit the autocorrelation decay rates

by an exponential function hO(n)Oi / exp(��n) using

Fig. 3. Fitted decay rates for di↵erent fitting range: n 2

[10, 64] (light colors), n 2 [20, 64] (intermediate colors) and
n 2 [30, 64] (dark colors).
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Fig. 4. Fitted decay rates using exponential fitting (solid
curves, left axis) and stretched exponential fitting (dashed
curves, right axis). Fitting range is n 2 [20, 64].

data within range n 2 [20, 64] to exclude transient ef-

fects. Since neither the specific form of the decay func-

tion nor the end of the transient dynamics is known

exactly, in this section we present the decay rates ob-

tained when varying the fitting range and the fitting

function and show that these do not qualitatively change

their behavior and thus our conclusions. Figure 3 de-

picts the decay rates obtained from an exponential fit-

ting of the data over di↵erent ranges. Fitting a smaller

range starting at later time results in a slightly smaller

decay rate (with larger uncertainty), but the exponen-

tial trend is unchanged. In Fig. 4 we compared fitting

to an exponential and to a stretched exponential func-

tion, hO(n)Oi = hO(0)Oi exp(�(t/⌧K)
↵
). We choose

the stretched exponential because it is a good model for

exponential decays under a distribution of decay rates.

Here we plot the inverse of the mean relaxation time of
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a stretched exponential function,

1/� = h⌧Ri =
⌧K

↵
�

✓
1

↵

◆
, (5)

where � is the Gamma function. The decay rates from

both fitting models are qualitatively the same.
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