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Prethermalization, by introducing emergent quasiconserved observables, plays a crucial role in
protecting periodically driven (Floquet) many-body phases over exponentially long time, while the
ultimate fate of such quasiconserved operators can signal thermalization to infinite temperature.
To elucidate the properties of prethermal quasiconservation in many-body Floquet systems, here
we systematically analyze infinite temperature correlations between observables. We numerically
show that the late-time behavior of the autocorrelations unambiguously distinguishes quasicon-
served observables from non-conserved ones, allowing to single out a set of linearly-independent
quasiconserved observables. By investigating two Floquet spin models, we identify two different
mechanism underlying the quasiconservation law. First, we numerically verify energy quasiconser-
vation when the driving frequency is large, so that the system dynamics is approximately described
by a static prethermal Hamiltonian. More interestingly, under moderate driving frequency, another
quasiconserved observable can still persist if the Floquet driving contains a large global rotation.
We show theoretically how to calculate this conserved observable and provide numerical verifica-
tion. Having systematically identified all quasiconserved observables, we can finally investigate their
behavior in the infinite-time limit and thermodynamic limit, using autocorrelations obtained from
both numerical simulation and experiments in solid state nuclear magnetic resonance systems.

I. INTRODUCTION

Controlling quantum systems using a periodic (Flo-
quet) drive has emerged as a powerful tool in the field of
condensed matter physics and quantum information sci-
ence. It has been used to realize Hamiltonians that are
not accessible in a static system, such as modifying the
tunneling and coupling rates [1–6], inducing non-trivial
topological structures [7–17], creating synthetic gauge
fields [18–22] and spin-orbit couplings [23]. On a quan-
tum computer, Floquet engineering also enables universal
quantum simulation via Trotter-Suzuki scheme [24–30].
Floquet systems also possess interesting dynamical phe-
nomena ranging from discrete time crystalline phase [31–
35] to dynamical localization [36, 37], dynamical phase
transitions [38, 39] and coherent destruction of tunnel-
ing [40–42].
While the connection to an effective time-independent

Hamiltonian is appealing, the active drive leads to energy
absorption by the Floquet many-body system, which is
then expected to heat up to infinite temperature. The
heating is detrimental to any quantum application, as
no local quantum information is retained and all in-
teresting phenomena mentioned above disappear [43–
45]. It has been shown theoretically [46–50] and ex-
perimentally [51, 52] that even when the system heats
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up, the thermalization time can be exponentially long in
the drive parameters (typically the frequency of a rapid
drive). Then, a long-lived prethermal quasi-equilibrium
is established, that allows exploiting the engineered Flo-
quet Hamiltonian for quantum simulation [53–55]. The
emergent symmetries and conserved observables in the
prethermal state distinguish it from the fully thermal-
ized state, and underpin the existence of novel Floquet
phases [34, 35, 50]. Even more surprisingly, some numer-
ical studies have shown that the emergent conserved ob-
servables might not display thermalizing behavior even
in the infinite-time limit [53–56]. Many-body localiza-
tion [32, 57–63], dynamic localization [53, 55, 64], and
some fine-tuned driving protocols [54, 56, 65] provide a
way to escape the thermalization fate, which could also
be absent in finite-size systems. Indeed, distinguishing
the long-lived prethermal state from an eventual ther-
mal state is challenging. Numerical studies are bound to
finite-size (and often small) systems, while experiments
can only probe finite times, before the external environ-
ment induces thermal relaxation.
Here we tackle this problem by a numerical and ex-

perimental study of two Floquet models in spin chains,
namely the kicked dipolar model (KDM) and the alter-
nating dipolar model (ADM). While most studies on spin
chain dynamics have focused on evolution of pure states,
here we propose to study Floquet prethermalization using
infinite temperature correlations. This metric provides
information about quasisconserved observables across the
whole spectrum and serves as a direct measurable quan-
tity in nuclear magnetic resonance (NMR) experiments.
In Sec. II we show that the existence of long-lived quasi-
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conserved observables can be unambiguously identified
using late-time behavior of the correlations, based on
which we provide a method to systematically search for
all linearly-independent local quasiconserved quantities.
Then we provide both numerical and analytical tools to
investigate such prethermal conserved observables and
their origins. We first show that the prethermal Hamil-
tonian Hpre obtained from the Magnus expansion under
rapid drive yields a quasiconserved observable in each
model in Sec. III A. We further show in Sec. III B that
when the driving Hamiltonian contains a large global
rotation, the Floquet propagator can induce an addi-
tional conserved observable, as shown by going beyond
the usual Magnus expansion. With all the quasiconserved
observables at hand, we investigate in Sec. IV whether
they exist in the thermodynamic limit and infinite-time
limit, by looking at the dependence of autocorrelations on
system size (numerically) and on time (experimentally).
Both methods indicate quasiconserved observables van-
ish and the system thermalizes to infinite temperature.

II. QUASICONSERVED OBSERVABLES

A. Hamiltonians and Correlations

In this paper we use the Trotter-Suzuki scheme for the
driving protocol, where the time-dependent Hamiltonian
is piecewise constant in one driving period. However,
our results are general for any form of periodic driving.
The evolution of the system we study is given by the
unitary propagator in one period UF = e−iH2τe−iH1τ ,
where in each period we consider the system to be un-
der the Hamiltonian H1 for a time τ , and then under
H2 for another duration τ . Motivated by NMR ex-
periments, we consider two models of an L-site spin-

(a) (b) (c)

(f)(e)(d)

FIG. 1. Typical dynamics of 〈O(t)O′〉 in a Floquet spin chain.
Here we choose KDM and O = O′. (a-c) Jτ = 0.5, (d-f)
Jτ = 2. (a,d) O = X, (b,e) O = Y , (c,f) O = Z. Different
colors correspond to different system size L, as shown in the
legend.

1/2 chain: the kicked dipolar model (KDM), where

H(K)
1 = JDy, H(K)

2 = hZ, and the alternating dipo-

lar model (ADM), with H(A)
1 = JDy and H(A)

2 = JDx.

Here Dα =
∑

j<k
1
2

(

3Sj
αS

k
α − "Sj · "Sk

)

/|j − k|3 is the

dipolar interaction operator in an arbitrary direction set
by α (α = x, y, z), where Sj

α are spin-1/2 operators of
the j-th spin (j = 1, · · · , L) and "Sj = (Sj

x, S
j
y, S

j
z)

T .
As shown in Ref. [35], the 1/r3 interaction is suffi-
ciently short range in 1D to yield no qualitative dif-
ference with respect to the nearest-neighbor interaction,
thus for simplicity in numerical and analytical studies we
only keep the nearest-neighbor interaction unless explic-
itly mentioned. Z =

∑

j S
j
z is the collective magneti-

zation operator along z-axis, and below we will also use
X =

∑

j S
j
x, Y =

∑

j S
j
y. J and h are the strength of the

dipolar interaction and the collective z-field respectively,
and we fix h = J throughout the paper. In numerics we
assume periodic boundary conditions.
To investigate quasi-conservation properties we

use infinite-temperature correlations as our metric,
〈O(t)O′〉β=0 ≡ Tr[UtOU †

t O′]/ (‖O‖‖O′‖), where Ut is
the unitary evolution during time t, O and O′ are ob-
servables, and the norm is defined as ‖O‖ ≡

√
TrO2[66].

Note that early works [67] used this metric to determine
whether a system is ergodic or integrable. Here we
show that we can also use these correlations to identify
quasi-conservation in prethermal systems, even if they
are expected to be ergodic.
Figure 1 shows numerical simulations of some exem-

plary correlations, the magnetization along three axes
O = O′ = Z,X, Y in KDM (the qualitative behavior is
general for other observables and models.) The autocor-
relations of X and Y display oscillations around 0 and
damping, which originate from the z-field and the dipo-
lar interaction, respectively. Instead, 〈Z(t)Z〉 exhibits a
more interesting behavior. For small Jτ , it quickly equi-
librates at a nonzero value independent of L, and it re-
mains constant afterwards. For relatively large Jτ , there
is a slow decay of 〈Z(t)Z〉 toward a final value that de-
creases with increasing L. We thus expect the final value
to be zero in the thermodynamic limit, corresponding
to an infinite-temperature final state. Indeed, the ob-
servable Z displays the defining characteristics of what
we deem a quasiconserved observable in the prethermal
regime: the autocorrelation of a quasiconserved observ-
able is nonzero in the prethermal regime, but goes to zero
in the fully thermalized state. In simulations, autocorre-
lations of quasiconserved observables still have nonzero
value at infinite time due to the small system size (e.g.
〈Z(t)Z〉 in Fig. 1), while for non-conserved observables
autocorrelations are zero (e.g. 〈X(t)X〉 in Fig. 1). These
distince behaviors serve as a direct metric to identify qua-
siconserved observables. As any observable that overlaps
with a quasiconserved observable would have non-zero
infinite-time autocorrelation, we want to find a linearly
independent, orthogonal set of eigen-quasiconserved ob-
servables.
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B. Eigen-quasiconserved Observables

We design a systematic procedure to search for the
set of eigen-quasiconserved observables, {Eµ} start-
ing from the infinite-time correlations 〈O(∞)O′〉 ≡
limT→∞(1/T )

∫ T

0 〈O(t)O′〉dt. We note that eigenvectors

{Eµ} of the Floquet (super)propagator ÛF form an or-
thogonal vector basis for the space of operators (here
Û [O] = UOU †.), |〈Ej(∞)Ek〉| ∝ δjk, that we can call
“eigen-observables”. However, this operator basis is in
general highly non-local, and thus not practical. We
then want to find a small, local set of observables that
approximate the exact eigen-observables, and have non-
zero eigenvalues, that is, are quasiconserved. We start
from a basis set {O(α)} of Hermitian observables that
are translationally invariant sums of local operators:

O(α) =
∑

j

Sj
α1
Sj+1
α2

· · ·Sj+r−1
αr

. (1)

Here (α) ≡ (α1, · · · ,αr) with αk ∈ {x, y, z, 0}, where Sj
0

denotes the identity matrix operating on the j-th spin.
By imposing α1,αr *= 0, we say O(α) is of range r: each
term in O(α) acts non-trivially on at most r neighbor-
ing spins. Since the number of operators is exponentially
large in system size, we restrict our search to the operator
subspace spanned by O(α) whose range r ≤ rc, which are
local and thus experimentally relevant. Starting from an
orthonormal operator basis {Oµ} of this subspace (with
〈OµOν〉 = δµν) we construct a matrix from all pair cor-
relations, Λµν = 〈Oµ(∞)Oν〉. The matrix Λ is the pro-

jection of the infinite-time propagator ÛF (t → ∞) onto
the rc-local subspace. The diagonalization of Λ yields the
local eigen-observables Ek, and eigenvalues λk, satisfying
〈Ek(∞)El〉 = λkδkl. Note that since Λ is not ensured to
be unitary, its eigenvalues do not have unit amplitude,
λk ≤ 1. We note that the larger the λk, the better Ek
approximates an exactly conserved observable. The cor-
relations 〈O(∞)O′〉 between any two observables whose
locality is bounded by rc can be directly derived by de-
composing the observables onto the Eµ basis

〈O(∞)O′〉 =
∑

µ

λµ〈OEµ〉〈EµO′〉. (2)

We apply this systematic procedure to the two mod-
els under consideration. The infinite time limit O(∞) is
taken by considering the diagonal ensemble of O (that
is, keeping only the diagonal matrix elements of O in the
Floquet energy eigenbasis), which gives the same result
as averaging O over long time. The results for rc = 3 are
shown in Fig. 2. At large Trotter steps, τ , most eigen-
values go to zero. The upward trends of the eigenvalues
when Jτ = hτ → π (most pronounced for the largest

eigenvalue) is due to the fact that [e−iH
(K)
1 τ , e−iH

(K)
2 τ ] =

0 at Jτ = hτ → π, making the system equivalent to a
time-independent system. Even for small Trotter steps,

(a) (b)

FIG. 2. By considering the matrix Λ obtained for each Jτ
Trotter step, we calculate three largest eigenvalues as a func-
tion of Jτ for KDM (a) and ADM (b). Curve color repre-
sents different eigenvalues and curve style represents different
system sizes. From the eigenvalues and their dependence on
system size, we see there are two eigen-quasiconserved observ-
ables in KDM while only one in ADM.

most eigenvalues are already small, and decrease when
increasing system size. However, a few eigenvalues are
large, and show little dependence on system size. This
last group comprises the eigenvalues associated with the
eigen-quasiconserved observables that govern the non-
trivial dynamics at long times.
Based on these results, we find that there are two

eigen-quasiconserved observables for KDM, E(K)
1 , E(K)

2 ,

and one for ADM, E(A)
1 . In both models, E1 is close to

their average Hamiltonian H = H1 +H2 (blue curves in

Fig. 2), while E(K)
2 for KDM is close to Dz [red curves in

Fig. 2(a)]. Similar additional conserved quantities were
predicted in static models [49]. Here we can more care-
fully analyze these Floquet quasiconserved observables
and describe analytically their origin in the limit of small
τ in the next section. Even so, we remark that there is an

interesting regime at intermediate τ , where E(K)
1 , E(K)

2

are well conserved, since λ(K)
1 ,λ(K)

2 are still large, but
they deviate from their static (τ → 0) counterparts. This
indicates that the quasiconserved observables truly arise
from the Floquet dynamics, and are not simply a rem-
nant of the approximated, static Hamiltonian.

III. ANALYTICAL DERIVATION OF
CONSERVED OBSERVABLES

A. Prethermal Hamiltonian

It is intuitive to expect that a quasiconserved observ-
able might emerge from energy conservation. Indeed, one
can always regard the Floquet evolution as arising from
an effective static Hamiltonian by setting UF = e−iτHF

for some Hermitian operator HF . However, in general
this Hamiltonian is highly non-local and thus it is not
associated to a local quasi-conserved observable. Still,
when the driving frequency is large compared to local
energy scales (here J, h), the stroboscopic dynamics is
given by a time-independent local prethermal Hamilto-
nian Hpre plus a small correction δH(t) [46, 48], which
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FIG. 3. (a) to (c) show the Magnus expansion Eq. 3 of KDM, and (d) to (f) show that of ADM. (a) (d) Circles show the norm
of Ωm (normalized by L2L). Solid line represents the linear fit. (b) (e) infidelity 1 − 〈Hpre(∞)Hpre〉 of infinite-time averaged
Hpre evaluated up to mth order. Different curves stand for Jτ from 0.2 to 2 with a step of 0.2. Darker color represents smaller
Jτ . L = 12 is used. (c) (f) infinite-time autocorrelation of Hpre as a function of Jτ for different system sizes. Order m = 7.

may be nonlocal. It is this prethermal Hamiltonian Hpre

that can be associated with a local quasiconserved ob-
servable. Hpre can be obtained from the Floquet-Magnus
expansion [68, 69] truncated at an optimal order m∗:

Hpre =
m∗

∑

m=0

τmΩm, (3)

where the zeroth order term is the average Hamiltonian
Ω0 =H = 1/τ

∫ τ

0 H(t)dt and higher order terms Ωm in-
volve m nested commutators. Then, for spin chains with
nearest-neighbor couplings the range of Ωm grows lin-
early with m.
The truncation m∗ is crucial not only to keep the

prethermal Hamiltonian local, but also because the series
in Eq. 3 diverges for a generic many-body system [48].
The time-dependent correction δH is however exponen-
tially small in 1/Jτ , leading to an exponentially long
time tpre for the system to heat up. Thus, for t < tpre,
the system effectively prethermalizes to the state e−βHpre

where β is determined by the initial state energy, mak-
ing Hpre an eigen-quasiconserved observable. Although
one should investigate the prethermalization process by
studying the dynamics of an infinitely large system at
long times approaching infinity, numerically we can only
tackle small system sizes, so we take a different approach
– we set the time to infinity, and study how the observable
correlations change when increasing system size. The va-
lidity of this approach relies on the fact that for a system
size L < m∗ the term δH does not appear in the expan-

sion, making O1 = Hpre exactly conserved even at infi-
nite time for sufficiently small τ . From a physics point
of view, this means that the energy 2π!/τ is larger than
the many-body bandwidth (∼ JL), and thus the system
cannot absorb energy from the drive if it is faster than
1/JL. Since the zeroth order term of Hpre is H , the
autocorrelation of Hpre provides a bound for that of H ,
leading to bounded Trotter error in the Trotter-Suzuki
scheme [53].
As further verification, we calculate numerically the

Floquet Magnus expansion, Eq. (3), up to m = 10 and
evaluate not only the convergence of the expansion, but
also operator conservation. For the first metric, we plot
‖Ωm‖ in Fig. 3(a) and (d) for the two models studied.
We find that, up to the computationally accessible or-
der, the norm of Ωm decays exponentially, indicating
that Hpre converges when τ is small. From the slopes
in Fig. 3(a) and (d), we get radii of convergence Jτ ≈ 3
for both models. Still, the expansion convergence does
not guarantee the resulting Hpre is a quasiconserved ob-
servable. In Fig. 3(b) and (e), we compute the long-time
infidelity (1− 〈Hpre(∞)Hpre〉) by truncating the expan-
sion in Eq. (3) at increasing orders. When Jτ is small,
the autocorrelation exponentially approaches 1 with in-
creasing order, suggesting that the optimal truncation
order m∗ should be larger than our largest accessible or-
der here, or even absent in the system size we study. In-
stead, for larger Jτ , the correlation stops converging at
some order; for even larger Jτ (Jτ = 1 for example) the
correlation is almost zero for all orders. Therefore, even
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within the radius of convergence Jτ ≈ 3, Hpre from Eq. 3
may fail to be quasiconserved. We plot the infinite-time
correlation 〈Hpre(∞)Hpre〉 versus Jτ in Fig. 3(c) and (f)
and show how it changes with system size (here Hpre

is evaluated to 7th order). The drop of 〈Hpre(∞)Hpre〉
with increasing system size is evident for Jτ ! 1.2 in
both models, suggesting that for the system size we ex-
plore the effective Hamiltonian picture fails in the above
parameter space. Note that in the L → ∞ limit the cor-
relations are expected to be zero for any τ > 0 as will be
discussed in Sec. IV.

B. Emergent dipolar order

To search for additional conserved observables in KDM
we develop a method inspired by the existence of discrete
time-translation symmetry-protected phases in prether-
mal Floquet systems [50]. Similar results have been ob-
tained for the static Hamiltonian H = hZ + JDy associ-
ated with the (zero-order) KDM. For this model, it has
been shown that the polarization Z is quasiconserved,
and does not reach its thermal equilibrium value until a
time exponentially long in h/J [49, 50, 70], even if ac-
cording to ETH the system should thermalize.
Since the average Hamiltonian picture breaks down

when increasing τ , but we see from Fig. 2(a) that the
second observable is conserved for even larger τ , we must
go beyond the static case and work directly in the Flo-
quet system. This kind of system was first studied in [50],
where they further focused on the case h = π to identify a
prethermal Floquet time crystal. Here we generalize their
analysis to obtain the novel quasiconserved observable for
any h, by following the intuition in [49]: thanks to the in-
teger spectrum of Z, we expect that there exists a frame
where the polarization is conserved up to some small,
highly-nonlocal corrections in the Hamiltonian. Taking
into account the Floquet nature of our problem, we find
such rotated frame order by order, using not only J/h
but also hτ as a small parameter.
We first transform the Floquet operator by going to a

rotated frame as

eSe−ihτZe−iτH1e−S = e−ihτZe−iτ(D+δH), (4)

and demand [Z,D] = 0. By appropriately choosing
S,D, it will be shown that δH is exponentially small in
min[O( hJ ), O( 1

hτ )] [71]. Therefore, for small τ and large
enough ratio h/J ! 0.5 [70], the operator D approxi-
mately commutes with the Floquet unitary in the rotated
frame, making Dpre = e−SDeS a prethermal quasicon-
served observable in the original frame. We emphasize
that the right-hand side of Eq. 4 still describes a Floquet
system, therefore we derived the quasiconservation with-
out first transforming to a static Hamiltonian. Note that
Zpre = e−SZeS is quasiconserved in the same sense as
Dpre. However, whereas Dpre, is orthogonal to Hpre to
zeroth order, Zpre ≈ Hpre −Dpre and it cannot thus be
considered an eigen-quasiconserved observable.

Now we describe in detail how to find the desired S,D.
We first write the transformation Eq. 4 in an equivalent
form

e−iτ(D+δH) = eiεZ̃eSe−iεZ̃e−iε2τH1e−S , (5)

Here we make the shortcut Z̃ ≡ hτZ, and assume that
J/h and hτ are small parameters of the same order
marked by ε. S and D can be expressed as Taylor se-
ries of ε, S = εS1 + ε2S2 + · · · , D = ε2D2 + ε3D3 + · · · .
Because Sj are artificial variables, we can choose Sj such
that Dj+1 satisfy the requirement [Z,Dj+1] = 0. Repeat
the process order by order, we have [Z,D] = 0 upto small
error term δH . More specifically, one can do Magnus ex-
pansion of the right-hand side of Eq. 5 to get

− iτ
j∗
∑

j=2

εjDj =
j∗
∑

j=2

εj
([

iZ̃, Sj−1

]

+ hj

)

, (6)

where we have ignored the high-order δH . Here hj is
defined recursively as nest commutators of iZ̃, −iτH1

and Sj′ with j′ < j−1. For example, the first few orders
are

h2 = −iτH1, (7)

h3 = [S1, h2] + 1
2 ([iZ̃, [iZ̃, S1]]− [S1, [S1, iZ̃]]).

Recursively, assuming all Sj′ with j′ < j− 1 (and thus
hj) are known (which is trivially true for j = 2), we
determine Sj−1 and Dj from j-th order of Eq. 6, by re-
quiring that Dj = [iZ̃, Sj−1] + hj commutes with Z. To
do this, we first decompose hj =

∑

q=0,±1,··· hjq such
that [Z, hjq] = qhjq (hjq are called the q-th quantum
coherence of Z [72–74]). This decomposition is possi-
ble as long as the dominant part of the Hamiltonian has
integer eigenvalues (up to a common constant), a fre-

quent feature shared by the collective rotation H(K)
2 ∝ Z

in our case. [Z,D = 0] is then satisfied by choosing
−iτDj = hj0 and Sj−1 = i

∑

q &=0 hjq/(hqτ). We note
that S is a sufficiently local operator, r(Sj) = j, for
KDM with nearest-neighbor interaction. Similar to the
prethermal Hamiltonian Eq. 3, the expansion in ε gener-
ally diverges and should be truncated at some order j∗,
leading to the exponentially small nonlocal residual δH ,
see, e.g. Ref. [46, 50].
When τ is small, the Sj operators are dominated by the

(J/h)j term. Therefore, in the τ → 0 limit, the quasicon-
served observable found here for the Floquet model re-
duces to the prethermal quasiconserved observable of the

static Hamiltonian H
(K)

[50, 70], where the expansion is
a series of J/h and δH̃ ≈ exp(−O(h/J)). In this regime,
Dpre = − 1

2Dz +O((J/h)2), and the expansion converges
for h/J ! 0.5 (up to truncation at exponentially large
order) as shown in Ref. [70] (Note that here we used
h/J = 1). Instead, for relatively larger hτ , the Sj opera-
tors are dominated by (hτ)j and δH̃ ≈ exp(−O(1/hτ)),
and thus the system exhibits exponentially slow Floquet
heating as expected.
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FIG. 4. Dpre expansion of KDM. (a) Norm of the mth order term of the quasiconserved observable Dpre (normalized by
L2L). Different curves stand for hτ = Jτ from 0 to 2 in steps of 0.2. Darker color represents smaller Jτ . (b) Infidelity
1 − 〈Dpre(∞)Dpre〉 of infinite-time averaged Dpre evaluated up to mth order. L = 12 is used. (c) Fidelity 〈Dpre(∞)Dpre〉
evaluated to 7th order as a function of hτ for different system sizes.

We numerically evaluate the convergence properties of
Dpre in the KDM [Fig. 4(a)], using the metrics discussed
in the previous section, convergence of the order-by-order
expansion terms and infinite-time autocorrelation. We
find that the series converges up to order 7 in the hτ
regime we are interested in. The infinite-time autocorre-
lation is close to 1 at small τ , as shown in Fig. 4(b) and
(c), confirming that the local truncation of Dpre (as ob-
tained by the first few orders) gives rise to quasiconserved

observable E(K)
2 . Comparing these results to the prether-

mal Hamiltonian shown in Fig. 3(b) and (c), we find that
(i) the normalized autocorrelation of Dpre converges to
1 in a larger parameter range (Jτ " 1.6 for Dpre and
Jτ " 1 for Hpre), (ii) the autocorrelation shows a signif-
icant drop at Jτ ! 1.8 for Dpre and Jτ ! 1.2 for Hpre,
with a steeper drop when L is increased from 8 to 12.
Both facts suggest that Dpre is more robust than Hpre,
in agreement with the experimental results presented in
Ref. [51]. This provides evidence that it is possible to
realize novel Floquet phases beyond the effective Hamil-
tonian picture.

IV. TOWARD INFINITE TEMPERATURE:
EXPERIMENTAL AND NUMERICAL

SIGNATURES

Although it is generally believed that Floquet many-
body systems should heat up to infinite temperature,
some numerical works [53–56] have found signs of non-
thermal behavior in various models. Here we provide
evidence of thermalization in the long-time and ther-
modynamic limit, using numerics and experiments in a
NMR quantum simulator [51, 70, 72], respectively. In
simulations, we can access the infinite-time limit using
exact diagonalization, but only for small system sizes.
Conversely, the system size in NMR experiments is large
enough to achieve the thermodynamic limit, but the evo-
lution time cannot be too long due to hardware limi-
tation. Still, by looking at the dynamics for increas-
ingly longer times (experimentally) and larger system

sizes (numerically), we can extract insight on the final
fate of the Floquet systems.

The experimental system is a single crystal of fluorap-
atite (FAp) [76]. We study the dynamics of 19F spin-1/2
using NMR techniques. Although the sample is 3D, 19F
form quasi-1D structure because the interaction within
the chain is ∼40 times larger than the interaction be-
tween different chains [77–79]. Average chain length is
estimated to be > 50 and the coherence time of the 19F
spins is T1 ≈ 0.8s. The sample is placed in 7 T mag-
netic field where the Zeeman interaction dominates, thus
reducing the 19F spins interaction to the secular dipo-
lar Hamiltonian H = J0Dz with J0 = −29.7 krad/s (we
define z as the magnetic field direction). While the cor-
responding 1D, nearest-neighbor XXZ Hamiltonian is in-
tegrable [80–82], the experimental 1/r3 Hamiltonian can
lead to diffusive [83, 84] and chaotic behavior [85] in 3D.
In the presence of a transverse field, the system is known
to show a quantum phase transition [86]. We use 16 RF
pulses [51, 70, 72, 87] to engineer the natural Hamilto-

nian into H(A)
1 = JDy and H(A)

2 = JDx with tunable
J . This enables varying the Floquet steps by tuning J ,
while keeping τ fixed. Then, experimental imperfections
such as decoherence and pulse errors remain the same,
and we can faithfully quantify the Floquet heating rate.
The initial state is a high-temperature thermal state with
small thermal polarization in the magnetic field direction
ρ(0) ≈ (1 − εZ)/2L with ε ≈ 10−5, and the observable
is the collective magnetization along x-axis O = X . As
the identity part does not change under unitary evolu-
tion and does not contribute to signal, it is convenient to
consider only the deviation from the identity δρ(0) =
Z, which can be rotated to a desired observable O′.
Therefore, the NMR signal is equivalent to an infinite-
temperature correlation Tr[δρ(t)X ] → 〈O′(t)O〉β=0.

We experimentally study the heating rates of the qua-
siconserved observables and their scaling with Floquet
period, to reveal the prethermal phase and investigate
the eventual heating to infinite temperature. In Fig. (5)
we show results for ADM (the two quasiconserved ob-
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FIG. 5. Autocorrelation of the average Hamiltonian for the alternating dipolar model. (a) Autocorrelation as a function of
n. Different curve stands for Jτ from 0.35 to 2.27 with a step of 0.175. Darker color represents smaller Jτ and lighter color
represents larger Jτ . We fit the autocorrelations from n = 20 to n = 64 to exponentially decaying function exp(−γn) and plot
the decay rate γ in (b). The length of the error bars corresponds to two standard deviation of the fitted decay rate. Solid curve
indicates the fit to function γ = a exp(−b/Jτ ) + c. The fitted coefficients a, b, c are shown in the plot with the 95% confidence
interval. (c) Autocorrelation versus Jτ for different n. Lighter colors represent smaller n and darker colors represent larger n.
For a given n, the autocorrelation is normalized by 〈H(n)H〉 at Jτ = 0.35, i.e. the leftmost point is normalized to 1. In (a-b),
error bars are determined from the noise in the free induction decay (see SM [75] for details on the experimental scheme).

servable in KDM show similar behavior as reported else-
where [51].) To study the autocorrelation of Hpre =
H +O(τ) in ADM, we measure the average Hamiltonian

H
(A)

=JDy+JDx=−JDz, since the higher order terms
in Eq. 3 are not accessible. We use the Jeener-Broekaert
pulse pair [88] to evolve the initial state δρ and exper-

imental observable X into Dz ∝ H
(A)

. Because of the
difference Hpre −H , we still expect an initial transient,
over a time ∼ ‖Hpre‖−1, where the average Hamiltonian
thermalizes to the prethermal Hamiltonian. When more
Floquet periods are applied, the autocorrelation of Dz

slowly decays from its prethermal value.

The decay rate in the prethermalization regime is
shown in Fig. 5(b), and can be fitted to an exponen-
tial function in 1/(Jτ) on top of a constant background
decay (which is due to experimental imperfections, see
SM [75] for more details.) By normalizing the data to
the data collected under the fastest drive (Jτ = 0.35),
the background decay is cancelled, and the resulting dy-
namics only arises from the coherent evolution, as shown
in Fig. 5(c). For given n, the normalized correlation de-
creases when increasing Jτ , because Hpre = H +O(Jτ)
thus H that we measure has less overlap with the true
quasiconserved observable Hpre for larger Jτ . The over-
all drop of the curves when increasing n is instead an
indicator of Floquet heating.

To better quantify the final thermalization process, we
define a critical value Jc such that when Jτ > Jcτ the
system is thermalized, at a given number n of periods
in the thermodynamic limit, or for a system size L at
infinite time. Studying the scaling of Jc as a function of
n (experimentally) and L (numerically) provides hints on
the long-time, thermodynamic limits.

We numerically obtain the autocorrelations 〈O(∞)O〉
as a function of Jτ , using exact diagonalization. In

Fig. 6(a) we show simulation results for O = H
(K)

, Dz

for KDM and O = H
(A)

for ADM. (Here we explicitly
consider the exact dipolar interaction instead of truncat-
ing to nearest neighbors.) Note that both observables in
KDM show a non-monotonic behavior. They appear to
be quasiconserved until Jτ = 1; the decrease in overlap
is however interrupted by a revival at Jτ = 1.6. This

is because H
(K)

and Dz are approximation of Hpre and

Dpre to leading order. Thus H
(K)

(Dz) still has a small
overlap with Dpre (Hpre), giving rise to a second plateau
at Jτ ≈ 1.6 (Jτ ≈ 1). The experimentally measured
autocorrelations of quasiconserved observables in KDM
can be find in [51]. For both experiments and simula-
tions we then find Jcτ from the point where the curves
drop below a threshold value of 0.5 (any other reason-
able choice would not qualitatively change the results).
We linearly interpolate between data points to get Jcτ
for every quasiconserved observable and plot the Jcτ in
Fig. 6(b) and (c). The decrease of numerically calcu-
lated Jcτ with L in Fig. 6(b) indicates that even the
correlations of quasiconserved observables decay to zero
as the system thermalizes to infinite temperature, sug-
gesting this non-thermalizing behavior should not per-
sist to the thermodynamic limit. Similar result is also
observed from experimentally measured Jcτ as shown in

Fig. 6(c) [89]. Note that although Jcτ for 〈H(K)
(n)H

(K)〉
shows only a moderate dependence on n [Fig. 6(c)], its
decay is still larger than experimental uncertainties.

V. CONCLUSION

As Floquet driving is a promising avenue for quantum
simulation, it is crucial to evaluate its robustness, the
existence of a long-lived prethermal phase, and the even-
tual thermalization to infinite temperature. Investigat-
ing Floquet heating, which breaks the prethermal regime,
is particularly challenging, not only because of inherent
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FIG. 6. Scaling of the critical Trotter step for KDM (H
(K)

, blue and Dz, green) and ADM (H
(A)

, red). (a) Simulated
autocorrelations as a function of Jτ for L = 8, 9, · · · , 17 using exact diagonalization. Darker colors represent larger L as shown
in the color bar. (b) Jcτ at which the numerical autocorrelation (L = 17) drops to half of the value under infinitely fast driving
(Jτ → 0). (c) Jcτ at which the experimentally measured autocorrelation drops to half of the value under the fastest driving
(Jτ = 0.35). Error bars are determined from the noise in the free induction decay (SM [75]).

limitations in numerical and experimental studies, but
also because of the challenge to properly identifying all
quasiconserved observables in the complex, many-body
driven dynamics.
Here we tackle both these issues by combining analyt-

ical, numerical and experimental tools. First, we provide
a systematic strategy to find local, eigen-quasiconserved
observables in the prethermal regime using infinite-
temperature correlations. By systematically searching
over local operators, we find that counter-intuitive qua-
siconserved observables might emerge, as we identify two
eigen-quasiconserved observables: the first, not surpris-
ingly is associate with energy, Hpre, under sufficient fast
drive; in addition, we find another quasiconserved observ-
able, Dpre, for the KDM in the presence of a large driving
field. Our search protocol would be useful in other set-
tings, such as identifying the underlying Hamiltonian or
symmetries from measurements.
We then use numerical and experimental evidence to

obtain insight into the inaccessible thermodynamic limit
and long-time regime, to show that autocorrelations of

quasiconserved observables indeed decrease toward zero
due to Floquet heating, suggesting the Floquet system
approaches the infinite temperature state.
Our results not only provide a metric to study ther-

malization in driven quantum systems, but also open in-
triguing perspectives into the existence of quasiconserved
observables other than the energy. It is an open ques-
tion when they emerge and how they interact with each
other. A better understanding of quasiconserved observ-
ables would benefit understanding of heating in closed
driven systems, and designing robust protocol to slow
down thermalization.
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[59] P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin,
Many-body localization in periodically driven systems,
Phys. Rev. Lett. 114, 140401 (2015).

[60] L. Zhang, V. Khemani, and D. A. Huse, A flo-
quet model for the many-body localization transition,
Phys. Rev. B 94, 224202 (2016).

[61] H. C. Po, L. Fidkowski, T. Morimoto, A. C. Potter, and
A. Vishwanath, Chiral floquet phases of many-body lo-
calized bosons, Phys. Rev. X 6, 041070 (2016).
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although Jcτ approaches zero when L → ∞ and n → ∞, the convergence speed depends on the path to that limit.
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i�F2 i?2 bi�M/�`/ /2pB�iBQM Q7 i?2 H�bi ky /�i� TQBMib BM
i?2 6A. �b i?2 mM+2`i�BMiv Q7 i?2 〈δρ(t)O〉X h?Bb mM+2`@
i�BMiv Bb mb2/ rBi? HBM2�` 2``Q` T`QT�;�iBQM iQ Q#i�BM i?2
2``Q` #�`b Q7 �HH i?2 [m�MiBiB2b �M�Hvx2/ BM i?2 K�BM i2tiX
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Q`BM2 �M/ S?QbT?Q`mb bTBMb BM i?2 mMBi +2HHX " LJ_ b+?2K2
7Q` i?2 ;2M2`�iBQM �M/ /2i2+iBQM Q7 JZ*X AM i?2 BMb2i U*V
�M 2t2KTH�`v TmHb2 b2[m2M+2 7Q` i?2 ;2M2`�iBQM Q7 i?2 H/BTvX
LQi2 i?�i i?�MFb iQ i?2 �#BHBiv Q7 BMp2`iBM; i?2 bB;M Q7 i?2
>�KBHiQMB�M- i?2 b+?2K2 �KQmMib iQ K2�bm`BM; Qmi@Q7@iBK2
Q`/2` +Q``2H�iBQMbX
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6A:X ajX �M 2t�KTH2 Q7 6A.X Rk3 /�i� TQBMib �`2 i�F2M
BM iQi�HX h?2 }`bi /�i� TQBMi ;Bp2b 〈(δρ(t)O〉 �M/ i?2 bi�M@
/�`/ /2pB�iBQM Q7 i?2 H�bi ky TQBMib ;Bp2b i?2 mM+2`i�BMiv Q7
〈(δρ(t)O〉X

*X >�KBHiQMB�M 1M;BM22`BM;

AM i?2 K�BM i2ti r2 7Q+mb2/ QM i?2 6HQ[m2i ?2�i@
BM; Uh`Qii2` 2``Q`V 7Q` � T2`BQ/B+ �Hi2`M�iBM; b+?2K2-
brBi+?BM; #2ir22M irQ >�KBHiQMB�MbX AM Q`/2` iQ �pQB/
HQM;2` iBK2b �M/fQ` /Bz2`2Mi MmK#2`b Q7 +QMi`QH QT2`�@
iBQMb r?2M +?�M;BM; i?2 h`Qii2` bi2T U6HQ[m2i T2`BQ/V-
r2 2M;BM22`2/ >�KBHiQMB�Mb Q7 p�`B�#H2 bi`2M;i?bX h?2M-
i?2 >�KBHiQMB�Mb i?2Kb2Hp2b �`2 Q#i�BM2/ bi`Q#Qb+QTB@
+�HHv #v �TTHvBM; T2`BQ/B+ `7 TmHb2 i`�BMb iQ i?2 M�im`�H
/BTQH�` >�KBHiQMB�M i?�i /2b+`B#2b i?2 bvbi2K- �M/ �`2
i?mb i?2Kb2Hp2b 6HQ[m2i >�KBHiQMB�MbX aBM+2 r2 QMHv
p�`B2/ i?2 b2[m2M+2b- #mi MQi i?2 6HQ[m2i T2`BQ/- i?Bb
bi2T /Q2b MQi +QMi`B#mi2 iQ i?2 #2?�pBQ` /2b+`B#2/ BM i?2
K�BM i2ti- �b r2 7m`i?2` BMp2biB;�i2 BM AX

q2 mb2/ �p2`�;2 >�KBHiQMB�M h?2Q`v U�>h (ad)V
�b i?2 #�bBb 7Q` Qm` >�KBHiQMB�M 2M;BM22`BM; K2i?Q/-
iQ /2bB;M i?2 +QMi`QH b2[m2M+2b �M/ /2i2`KBM2 i?2 �T@
T`QtBK�iBQM 2``Q`bX h?2 /vM�KB+b Bb BM/m+2/ #v i?2
iQi�H >�KBHiQMB�M H = H/BT + H`7- r?2`2 H/BT =
1
2

∑
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j hjSj

z Bb i?2
bvbi2K >�KBHiQMB�M- �M/ H`7(t) Bb i?2 2ti2`M�H >�KBH@
iQMB�M /m2 iQ i?2 `7@TmHb2bX h?2 /2MbBiv K�i`Bt ρ
2pQHp2b mM/2` i?2 iQi�H >�KBHiQMB�M �++Q`/BM; iQ ρ̇ =
−i[H, ρ]X q2 bim/v i?2 /vM�KB+b BMiQ � +QMp2MB2Mi BM@
i2`�+iBQM 7`�K2- /2}M2/ #v ρ′ = U`7

†ρU`7- r?2`2 U`7(t) =

T 2tT[−i
∫ t
0 H`7(t′)dt′] �M/ T Bb i?2 iBK2 Q`/2`BM; QT@

2`�iQ`X AM i?Bb iQ;;HBM; 7`�K2- ρ′ 2pQHp2b �++Q`/BM; iQ
ρ̇′ = −i[H(t), ρ′]- r?2`2 H(t) = U`7

†H/BTU`7X aBM+2 U`7
Bb T2`BQ/B+- H(t) Bb �HbQ T2`BQ/B+ rBi? i?2 b�K2 T2`BQ/
τ - �M/ ;Bp2b `Bb2 iQ i?2 6HQ[m2i >�KBHiQMB�M- HF - �b �b
U(τ) = 2tT[−iHF τ ]X LQi2 i?�i B7 i?2 TmHb2 b2[m2M+2 b�i@
Bb}2b i?2 +QM/BiBQM U`7(τ) = 1- i?2 /vM�KB+b Q7 ρ �M/ ρ′

�`2 B/2MiB+�H r?2M i?2 bvbi2K Bb pB2r2/ bi`Q#Qb+QTB+�HHv-
BX2X- �i BMi2;2` KmHiBTH2b Q7 τ - r?2`2 i?2 iQ;;HBM; 7`�K2
+QBM+B/2b rBi? i?2 U`Qi�iBM;V H�# 7`�K2X

q2 /2pBb2/ +QMi`QH b2[m2M+2b iQ 2M;BM22` � b+�H2@/QrM-
`Qi�i2/ p2`bBQM Q7 i?2 /BTQH�` >�KBHiQMB�M (a3- aN)X q2
mbm�HHv HQQF 7Q` +QMi`QH b2[m2M+2b i?�i rQmH/ 2M;BM22` i?2
/2bB`2/ >�KBHiQMB�M mT iQ b2+QM/ Q`/2` BM i?2 J�;Mmb@
6HQ[m2i 2tT�MbBQMX h?2M- iQ 2M;BM22` i?2 BMi2`�+iBQM Dy-
r2 mb2 � Re@TmHb2 b2[m2M+2X h?2 #�bB+ #mBH/BM; #HQ+F
Bb ;Bp2M #v � 9@TmHb2 b2[m2M+2 (aRy- aRR) Q`B;BM�HHv /2@
p2HQT2/ iQ bim/v JZ*X q2 /2MQi2 � ;2M2`B+ 9@TmHb2 b2@
[m2M+2 �b P (τ1,M1, τ2,M2, τ3,M3, τ4,M4, τ5)- r?2`2 Mj `2T@
`2b2Mib i?2 /B`2+iBQM Q7 i?2 j@i? π/2 TmHb2- �M/ τj Ƕb i?2 /2@
H�vb BMi2`H2�pBM; i?2 TmHb2bX AM Qm` 2tT2`BK2Mib- i?2 π/2
TmHb2b ?�p2 � rB/i? tw Q7 ivTB+�HHv R µbX τj bi�`ib �M/fQ`
2M/b �i i?2 KB/TQBMib Q7 i?2 TmHb2b Ub22 �HbQ 6B;X akVX
AM i?Bb MQi�iBQM- Qm` 7Q`r�`/ Re@TmHb2 b2[m2M+2 +�M #2
2tT`2bb2/ �b

P (τ1,t, τ2,v, 2τ1,v, τ2,t, τ1)P (τ1,t, τ2,v, 2τ1,v, τ2,t, τ1)P (τ1,t, τ2,v, 2τ1,v, τ2,t, τ1)P (τ1,t, τ2,v, 2τ1,v, τ2,t, τ1)

�M/ i?2 #�+Fr�`/ b2[m2M+2 �b

P (τ3,v, τ3,t, 2τ4,t, τ3,v, τ3)P (τ3,v, τ3,t, 2τ4,t, τ3,v, τ3)P (τ3,v, τ3,t, 2τ4,t, τ3,v, τ3)P (τ3,v, τ3,t, 2τ4,t, τ3,v, τ3)

r?2`2 {t,v} ≡ {−t,−v}X h?2 /2H�vb �`2 ;Bp2M #v

τ1 = τ0(1− u), τ2 = τ0(1 + 2u),

τ3 = τ0(1 + u), τ4 = τ0(1− 2u),

r?2`2 τ0 Bb 8 µb BM i?Bb T�T2`X h?2 +v+H2 iBK2 tc- /2}M2/

�b i?2 iQi�H iBK2 Q7 i?2 b2[m2M+2- Bb ;Bp2M #v τ = 24τ0X u
Bb � /BK2MbBQMH2bb �/Dmbi�#H2 T�`�K2i2`- �M/ Bb `2bi`B+i2/
bm+? i?�i MQM2 Q7 i?2 BMi2`@TmHb2 bT�+BM;b #2+QK2b M2;@
�iBp2X hQ i?2 x2`Qi? Q`/2` J�;Mmb 2tT�MbBQM- i?2 �#Qp2
b2[m2M+2 `2�HBx2b >�KBHiQMB�M uJ0Dy �M/ uJ0 = J X

(aR) a22 bmTTH2K2Mi�`v QMHBM2 K�i2`B�HX (ak) SX *�TT2HH�`Q- *X _�K�M�i?�M- �M/ .X :X *Q`v- ǳaBK@
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mH�iBQMb Q7 BM7Q`K�iBQM i`�MbTQ`i BM bTBM +?�BMb-Ǵ S?vbX
_2pX G2iiX NN- k8y8ye UkyydVX

(aj) S�QH� *�TT2HH�`Q- GQ`2Mx� oBQH�- �M/ *?�M/`�b2F?�`
_�K�M�i?�M- ǳ*Q?2`2Mi@bi�i2 i`�Mb72` pB� ?B;?Hv KBt2/
[m�MimK bTBM +?�BMb-Ǵ S?vbX _2pX � 3j- yjkjy9 UkyRRVX

(a9) *?�M/`�b2F?�` _�K�M�i?�M- S�QH� *�TT2HH�`Q-
GQ`2Mx� oBQH�- �M/ .�pB/ : *Q`v- ǳ1tT2`BK2Mi�H
+?�`�+i2`Bx�iBQM Q7 +Q?2`2Mi K�;M2iBx�iBQM i`�MbTQ`i
BM � QM2@/BK2MbBQM�H bTBM bvbi2K-Ǵ L2r CX S?vbX Rj-
RyjyR8 UkyRRVX

(a8) 1X _m72BH@6BQ`B- *X JX a�M+?2x- 6X uX PHBp�- >X JX
S�bi�rbFB- �M/ SX _X G2pbi2BM- ǳ1z2+iBp2 QM2@#Q/v /v@
M�KB+b BM KmHiBTH2@[m�MimK MK` 2tT2`BK2Mib-Ǵ S?vbX
_2pX � dN- yjkjk9 UkyyNVX

(ae) q2MtB�M w?�M;- S�QH� *�TT2HH�`Q- L�i�MB� �MiH2`-
"`B�M S2TT2`- .�pB/ :X *Q`v- oB�i+?2bH�p oX .Q#`QpBi@
bFB- *?�M/`�b2F?�` _�K�M�i?�M- �M/ GQ`2Mx� oB@
QH�- ǳLK` KmHiBTH2 [m�MimK +Q?2`2M+2b BM [m�bB@QM2@
/BK2MbBQM�H bTBM bvbi2Kb, *QKT�`BbQM rBi? B/2�H bTBM@

+?�BM /vM�KB+b-Ǵ S?vbX _2pX � 3y- y8kjkj UkyyNVX
(ad) lX >�2#2`H2M �M/ CXaX q�m;?- ǳ*Q?2`2Mi �p2`�;BM; 27@

72+ib BM K�;M2iB+ `2bQM�M+2-Ǵ S?vbX _2pX Rd8- 98jĜ9ed
URNe3VX

(a3) E2M sm�M q2B- *?�M/`�b2F?�` _�K�M�i?�M- �M/
S�QH� *�TT2HH�`Q- ǳ1tTHQ`BM; HQ+�HBx�iBQM BM Mm+H2�`
bTBM +?�BMb-Ǵ S?vbX _2pX G2iiX Rky- ydy8yR UkyR3VX

(aN) E2M sm�M q2B- S�B S2M;- PH2b a?i�MFQ- AK�M J�`pB�M-
a2i? GHQv/- *?�M/`�b2F?�` _�K�M�i?�M- �M/ S�QH�
*�TT2HH�`Q- ǳ1K2`;2Mi T`2i?2`K�HBx�iBQM bB;M�im`2b BM
Qmi@Q7@iBK2 Q`/2`2/ +Q``2H�iBQMb-Ǵ S?vbX _2pX G2iiX Rkj-
yNyey8 UkyRNVX

(aRy) :m`M22i E�m` �M/ S�QH� *�TT2HH�`Q- ǳAMBiB�HBx�iBQM �M/
`2�/Qmi Q7 bTBM +?�BMb 7Q` [m�MimK BM7Q`K�iBQM i`�Mb@
TQ`i-Ǵ L2r CX S?vbX R9- y3jyy8 UkyRkVX

(aRR) um@ax2 u2M �M/ �X SBM2b- ǳJmHiBTH2@[m�MimK MK` BM
bQHB/b-Ǵ CX *?2KX S?vbX d3- j8dNĜj83k URN3jVX


