Prethermal quasiconserved observables in Floquet quantum systems
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Prethermalization, by introducing emergent quasiconserved observables, plays a crucial role in
protecting periodically driven (Floquet) many-body phases over exponentially long time, while the
ultimate fate of such quasiconserved operators can signal thermalization to infinite temperature.
To elucidate the properties of prethermal quasiconservation in many-body Floquet systems, here
we systematically analyze infinite temperature correlations between observables. We numerically
show that the late-time behavior of the autocorrelations unambiguously distinguishes quasicon-
served observables from non-conserved ones, allowing to single out a set of linearly-independent
quasiconserved observables. By investigating two Floquet spin models, we identify two different
mechanism underlying the quasiconservation law. First, we numerically verify energy quasiconser-
vation when the driving frequency is large, so that the system dynamics is approximately described
by a static prethermal Hamiltonian. More interestingly, under moderate driving frequency, another
quasiconserved observable can still persist if the Floquet driving contains a large global rotation.
We show theoretically how to calculate this conserved observable and provide numerical verifica-
tion. Having systematically identified all quasiconserved observables, we can finally investigate their
behavior in the infinite-time limit and thermodynamic limit, using autocorrelations obtained from

both numerical simulation and experiments in solid state nuclear magnetic resonance systems.

I. INTRODUCTION

Controlling quantum systems using a periodic (Flo-
quet) drive has emerged as a powerful tool in the field of
condensed matter physics and quantum information sci-
ence. It has been used to realize Hamiltonians that are
not accessible in a static system, such as modifying the
tunneling and coupling rates [1-6], inducing non-trivial
topological structures [7-17], creating synthetic gauge
fields [18-22] and spin-orbit couplings [23]. On a quan-
tum computer, Floquet engineering also enables universal
quantum simulation via Trotter-Suzuki scheme [24-30].
Floquet systems also possess interesting dynamical phe-
nomena ranging from discrete time crystalline phase [31—
35] to dynamical localization [36, 37], dynamical phase
transitions [38, 39] and coherent destruction of tunnel-
ing [40-42].

While the connection to an effective time-independent
Hamiltonian is appealing, the active drive leads to energy
absorption by the Floquet many-body system, which is
then expected to heat up to infinite temperature. The
heating is detrimental to any quantum application, as
no local quantum information is retained and all in-
teresting phenomena mentioned above disappear [43-
45]. It has been shown theoretically [46-50] and ex-
perimentally [51, 52] that even when the system heats
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up, the thermalization time can be exponentially long in
the drive parameters (typically the frequency of a rapid
drive). Then, a long-lived prethermal quasi-equilibrium
is established, that allows exploiting the engineered Flo-
quet Hamiltonian for quantum simulation [53-55]. The
emergent symmetries and conserved observables in the
prethermal state distinguish it from the fully thermal-
ized state, and underpin the existence of novel Floquet
phases [34, 35, 50]. Even more surprisingly, some numer-
ical studies have shown that the emergent conserved ob-
servables might not display thermalizing behavior even
in the infinite-time limit [53-56]. Many-body localiza-
tion [32, 57-63], dynamic localization [53, 55, 64], and
some fine-tuned driving protocols [54, 56, 65] provide a
way to escape the thermalization fate, which could also
be absent in finite-size systems. Indeed, distinguishing
the long-lived prethermal state from an eventual ther-
mal state is challenging. Numerical studies are bound to
finite-size (and often small) systems, while experiments
can only probe finite times, before the external environ-
ment induces thermal relaxation.

Here we tackle this problem by a numerical and ex-
perimental study of two Floquet models in spin chains,
namely the kicked dipolar model (KDM) and the alter-
nating dipolar model (ADM). While most studies on spin
chain dynamics have focused on evolution of pure states,
here we propose to study Floquet prethermalization using
infinite temperature correlations. This metric provides
information about quasisconserved observables across the
whole spectrum and serves as a direct measurable quan-
tity in nuclear magnetic resonance (NMR) experiments.
In Sec. II we show that the existence of long-lived quasi-
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conserved observables can be unambiguously identified
using late-time behavior of the correlations, based on
which we provide a method to systematically search for
all linearly-independent local quasiconserved quantities.
Then we provide both numerical and analytical tools to
investigate such prethermal conserved observables and
their origins. We first show that the prethermal Hamil-
tonian Hp,. obtained from the Magnus expansion under
rapid drive yields a quasiconserved observable in each
model in Sec. IITA. We further show in Sec. III B that
when the driving Hamiltonian contains a large global
rotation, the Floquet propagator can induce an addi-
tional conserved observable, as shown by going beyond
the usual Magnus expansion. With all the quasiconserved
observables at hand, we investigate in Sec. IV whether
they exist in the thermodynamic limit and infinite-time
limit, by looking at the dependence of autocorrelations on
system size (numerically) and on time (experimentally).
Both methods indicate quasiconserved observables van-
ish and the system thermalizes to infinite temperature.

II. QUASICONSERVED OBSERVABLES
A. Hamiltonians and Correlations

In this paper we use the Trotter-Suzuki scheme for the
driving protocol, where the time-dependent Hamiltonian
is piecewise constant in one driving period. However,
our results are general for any form of periodic driving.
The evolution of the system we study is given by the
unitary propagator in one period Up = e H2Te T
where in each period we consider the system to be un-
der the Hamiltonian H; for a time 7, and then under
Hy for another duration 7. Motivated by NMR ex-
periments, we consider two models of an L-site spin-
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FIG. 1. Typical dynamics of (O(t)O’) in a Floquet spin chain.
Here we choose KDM and O = O'. (a-c) Jr = 0.5, (d-f)
Jr=2. (a,d) O =X, (bee) O =Y, (c,f) O = Z. Different
colors correspond to different system size L, as shown in the
legend.

1/2 chain: the kicked dipolar model (KDM), where
Hl(K) = JD,, HQ(K) = hZ, and the alternating dipo-

lar model (ADM), with H\*) = JD, and H{" = JD,.

Here Do = 3, 3 (35&55 _§j.§k) Jlj — kP is the
dipolar interaction operator in an arbitrary direction set
by a (o = z,y,2), where SJ are spin-1/2 operators of
the j-th spin (j = 1,---,L) and S; = (S4,8],89)7.
As shown in Ref. [35], the 1/r% interaction is suffi-
ciently short range in 1D to yield no qualitative dif-
ference with respect to the nearest-neighbor interaction,
thus for simplicity in numerical and analytical studies we
only keep the nearest-neighbor interaction unless explic-
itly mentioned. Z = Zj S is the collective magneti-
zation operator along z-axis, and below we will also use
X =3,8],Y =3,8). J and h are the strength of the
dipolar interaction and the collective z-field respectively,
and we fix h = J throughout the paper. In numerics we
assume periodic boundary conditions.

To investigate quasi-conservation properties we
use infinite-temperature correlations as our metric,
(O()0")g=0 = TE[UOU[O')/ (||O|][|O])), where Uy is
the unitary evolution during time ¢, O and O’ are ob-
servables, and the norm is defined as ||O]] = vV TrO?[66].
Note that early works [67] used this metric to determine
whether a system is ergodic or integrable. Here we
show that we can also use these correlations to identify
quasi-conservation in prethermal systems, even if they
are expected to be ergodic.

Figure 1 shows numerical simulations of some exem-
plary correlations, the magnetization along three axes
O =0 =7X,Y in KDM (the qualitative behavior is
general for other observables and models.) The autocor-
relations of X and Y display oscillations around 0 and
damping, which originate from the z-field and the dipo-
lar interaction, respectively. Instead, (Z(t)Z) exhibits a
more interesting behavior. For small J, it quickly equi-
librates at a nonzero value independent of L, and it re-
mains constant afterwards. For relatively large J7, there
is a slow decay of (Z(t)Z) toward a final value that de-
creases with increasing L. We thus expect the final value
to be zero in the thermodynamic limit, corresponding
to an infinite-temperature final state. Indeed, the ob-
servable Z displays the defining characteristics of what
we deem a quasiconserved observable in the prethermal
regime: the autocorrelation of a quasiconserved observ-
able is nonzero in the prethermal regime, but goes to zero
in the fully thermalized state. In simulations, autocorre-
lations of quasiconserved observables still have nonzero
value at infinite time due to the small system size (e.g.
(Z(t)Z) in Fig. 1), while for non-conserved observables
autocorrelations are zero (e.g. (X (¢)X) in Fig. 1). These
distince behaviors serve as a direct metric to identify qua-
siconserved observables. As any observable that overlaps
with a quasiconserved observable would have non-zero
infinite-time autocorrelation, we want to find a linearly
independent, orthogonal set of eigen-quasiconserved ob-
servables.



B. Eigen-quasiconserved Observables

We design a systematic procedure to search for the
set of eigen-quasiconserved observables, {&,} start-
ing from the infinite-time correlations (O(c0)O’) =
limr 0 (1/T) fg(@(t)(?’)dt. We note that eigenvectors

{E,} of the Floquet (super)propagator Up form an or-
thogonal vector basis for the space of operators (here
Ul0] = UOUT.), |(E;j(c0)EL)| o djx, that we can call
“eigen-observables”. However, this operator basis is in
general highly non-local, and thus not practical. We
then want to find a small, local set of observables that
approximate the exact eigen-observables, and have non-
zero eigenvalues, that is, are quasiconserved. We start
from a basis set {O,} of Hermitian observables that
are translationally invariant sums of local operators:
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Here (a) = (a1, -+, a,) with oy, € {z,y, 2,0}, where S}
denotes the identity matrix operating on the j-th spin.
By imposing aq, o, # 0, we say O, is of range r: each
term in O(,) acts non-trivially on at most r neighbor-
ing spins. Since the number of operators is exponentially
large in system size, we restrict our search to the operator
subspace spanned by O(,) whose range r < r., which are
local and thus experimentally relevant. Starting from an
orthonormal operator basis {O,} of this subspace (with
(0,0,) = 0,,,) we construct a matrix from all pair cor-
relations, A, = (0,(c0)O,). The matrix A is the pro-
jection of the infinite-time propagator U r(t = 00) onto
the r.-local subspace. The diagonalization of A yields the
local eigen-observables &, and eigenvalues \j, satisfying
(Ek(00)E) = Akdgi. Note that since A is not ensured to
be unitary, its eigenvalues do not have unit amplitude,
A < 1. We note that the larger the Ag, the better &
approximates an exactly conserved observable. The cor-
relations (O(00)O’) between any two observables whose
locality is bounded by r. can be directly derived by de-
composing the observables onto the &£, basis

(0(0)0") = 3 N (OE)(E,0"). (2)

m

We apply this systematic procedure to the two mod-
els under consideration. The infinite time limit O(o0) is
taken by considering the diagonal ensemble of O (that
is, keeping only the diagonal matrix elements of O in the
Floquet energy eigenbasis), which gives the same result
as averaging O over long time. The results for r. = 3 are
shown in Fig. 2. At large Trotter steps, 7, most eigen-
values go to zero. The upward trends of the eigenvalues
when Jr = ht — 7 (most pronounced for the largest

. . g g
eigenvalue) is due to the fact that [e 7?1 7 =2 7] =
0 at JT = ht — m, making the system equivalent to a
time-independent system. Even for small Trotter steps,
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FIG. 2. By considering the matrix A obtained for each Jr
Trotter step, we calculate three largest eigenvalues as a func-
tion of Jr for KDM (a) and ADM (b). Curve color repre-
sents different eigenvalues and curve style represents different
system sizes. From the eigenvalues and their dependence on
system size, we see there are two eigen-quasiconserved observ-
ables in KDM while only one in ADM.

most eigenvalues are already small, and decrease when
increasing system size. However, a few eigenvalues are
large, and show little dependence on system size. This
last group comprises the eigenvalues associated with the
eigen-quasiconserved observables that govern the non-
trivial dynamics at long times.

Based on these results, we find that there are two

eigen-quasiconserved observables for KDM, El(K),EQ(K),

and one for ADM, El(A). In both models, & is close to
their average Hamiltonian H = Hy + Hs (blue curves in

Fig. 2), while 52(K) for KDM is close to D, [red curves in
Fig. 2(a)]. Similar additional conserved quantities were
predicted in static models [49]. Here we can more care-
fully analyze these Floquet quasiconserved observables
and describe analytically their origin in the limit of small
7 in the next section. Even so, we remark that there is an

interesting regime at intermediate 7 , where 81(K), 52(1()

are well conserved, since )\gK),)\éK) are still large, but
they deviate from their static (7 — 0) counterparts. This
indicates that the quasiconserved observables truly arise
from the Floquet dynamics, and are not simply a rem-
nant of the approximated, static Hamiltonian.

III. ANALYTICAL DERIVATION OF
CONSERVED OBSERVABLES

A. Prethermal Hamiltonian

It is intuitive to expect that a quasiconserved observ-
able might emerge from energy conservation. Indeed, one
can always regard the Floquet evolution as arising from
an effective static Hamiltonian by setting Up = e~*71F
for some Hermitian operator Hr. However, in general
this Hamiltonian is highly non-local and thus it is not
associated to a local quasi-conserved observable. Still,
when the driving frequency is large compared to local
energy scales (here J, h), the stroboscopic dynamics is
given by a time-independent local prethermal Hamilto-
nian Hp,. plus a small correction dH (t) [46, 48], which
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FIG. 3. (a) to (c) show the Magnus expansion Eq. 3 of KDM, and (d) to (f) show that of ADM. (a) (d) Circles show the norm
of Q (normalized by L2%). Solid line represents the linear fit. (b) (e) infidelity 1 — (Hppe(00) Hpre) of infinite-time averaged
Hp,e evaluated up to m* order. Different curves stand for Jr from 0.2 to 2 with a step of 0.2. Darker color represents smaller
Jr. L =12 is used. (c) (f) infinite-time autocorrelation of Hy,. as a function of Jr for different system sizes. Order m = 7.

may be nonlocal. It is this prethermal Hamiltonian Hy,..
that can be associated with a local quasiconserved ob-
servable. H,,. can be obtained from the Floquet-Magnus
expansion [68, 69] truncated at an optimal order m*:

Hpre = Y 7", (3)

where the zeroth order term is the average Hamiltonian
Qo=H =1/7 [ H(t)dt and higher order terms €, in-
volve m nested commutators. Then, for spin chains with
nearest-neighbor couplings the range of 2, grows lin-
early with m.

The truncation m* is crucial not only to keep the
prethermal Hamiltonian local, but also because the series
in Eq. 3 diverges for a generic many-body system [48].
The time-dependent correction d H is however exponen-
tially small in 1/J7, leading to an exponentially long
time tp,. for the system to heat up. Thus, for ¢t < ¢,
the system effectively prethermalizes to the state e ~#Hrre
where 8 is determined by the initial state energy, mak-
ing Hpr. an eigen-quasiconserved observable. Although
one should investigate the prethermalization process by
studying the dynamics of an infinitely large system at
long times approaching infinity, numerically we can only
tackle small system sizes, so we take a different approach
—we set the time to infinity, and study how the observable
correlations change when increasing system size. The va-
lidity of this approach relies on the fact that for a system
size L < m* the term 6 H does not appear in the expan-

sion, making O = Hp,. exactly conserved even at infi-
nite time for sufficiently small 7. From a physics point
of view, this means that the energy 27h/7 is larger than
the many-body bandwidth (~ JL), and thus the system
cannot absorb energy from the drive if it is faster than
1/JL. Since the zeroth order term of Hp,. is H, the
autocorrelation of Hp,. provides a bound for that of H,
leading to bounded Trotter error in the Trotter-Suzuki
scheme [53].

As further verification, we calculate numerically the
Floquet Magnus expansion, Eq. (3), up to m = 10 and
evaluate not only the convergence of the expansion, but
also operator conservation. For the first metric, we plot
[19.]] in Fig. 3(a) and (d) for the two models studied.
We find that, up to the computationally accessible or-
der, the norm of ,, decays exponentially, indicating
that Hy,.. converges when 7 is small. From the slopes
in Fig. 3(a) and (d), we get radii of convergence Jr ~ 3
for both models. Still, the expansion convergence does
not guarantee the resulting H,,. is a quasiconserved ob-
servable. In Fig. 3(b) and (e), we compute the long-time
infidelity (1 — (Hpre(00)Hpre)) by truncating the expan-
sion in Eq. (3) at increasing orders. When J7 is small,
the autocorrelation exponentially approaches 1 with in-
creasing order, suggesting that the optimal truncation
order m* should be larger than our largest accessible or-
der here, or even absent in the system size we study. In-
stead, for larger J7, the correlation stops converging at
some order; for even larger Jr (J7 =1 for example) the
correlation is almost zero for all orders. Therefore, even



within the radius of convergence J7 ~ 3, H,,. from Eq. 3
may fail to be quasiconserved. We plot the infinite-time
correlation (Hpye(00)Hpre) versus J7 in Fig. 3(c) and (f)
and show how it changes with system size (here Hp.
is evaluated to 7*" order). The drop of (Hpe(00)Hpre)
with increasing system size is evident for J7 2 1.2 in
both models, suggesting that for the system size we ex-
plore the effective Hamiltonian picture fails in the above
parameter space. Note that in the I — oo limit the cor-
relations are expected to be zero for any 7 > 0 as will be
discussed in Sec. IV.

B. Emergent dipolar order

To search for additional conserved observables in KDM
we develop a method inspired by the existence of discrete
time-translation symmetry-protected phases in prether-
mal Floquet systems [50]. Similar results have been ob-
tained for the static Hamiltonian H = hZ + J D, associ-
ated with the (zero-order) KDM. For this model, it has
been shown that the polarization Z is quasiconserved,
and does not reach its thermal equilibrium value until a
time exponentially long in h/.J [49, 50, 70], even if ac-
cording to ETH the system should thermalize.

Since the average Hamiltonian picture breaks down
when increasing 7, but we see from Fig. 2(a) that the
second observable is conserved for even larger 7, we must
go beyond the static case and work directly in the Flo-
quet system. This kind of system was first studied in [50],
where they further focused on the case h = 7 to identify a
prethermal Floquet time crystal. Here we generalize their
analysis to obtain the novel quasiconserved observable for
any h, by following the intuition in [49]: thanks to the in-
teger spectrum of Z, we expect that there exists a frame
where the polarization is conserved up to some small,
highly-nonlocal corrections in the Hamiltonian. Taking
into account the Floquet nature of our problem, we find
such rotated frame order by order, using not only J/h
but also h7 as a small parameter.

We first transform the Floquet operator by going to a
rotated frame as

eSeflh‘rZefz‘rHlefs _ efthZefz‘r(DJréH)7 (4)

and demand [Z,D] = 0. By appropriately choosing
S, D, it will be shown that §H is exponentially small in
min[O(%),0(;%)] [71]. Therefore, for small 7 and large
enough ratio h/J 2 0.5 [70], the operator D approxi-
mately commutes with the Floquet unitary in the rotated
frame, making Dp,. = e SDe” a prethermal quasicon-
served observable in the original frame. We emphasize
that the right-hand side of Eq. 4 still describes a Floquet
system, therefore we derived the quasiconservation with-
out first transforming to a static Hamiltonian. Note that
Zpre = e 5765 is quasiconserved in the same sense as
Dyre. However, whereas Dy, is orthogonal to Hp,. to
zeroth order, Zp,e = Hpre — Dpre and it cannot thus be
considered an eigen-quasiconserved observable.

Now we describe in detail how to find the desired S, D.
We first write the transformation Eq. 4 in an equivalent
form

o~ iT(D+SH) _ icZ S ,~icZ ,~ic*TH) e=S, (5)
Here we make the shortcut Z = hrZ, and assume that
J/h and ht are small parameters of the same order
marked by e. S and D can be expressed as Taylor se-
ries of €, S = €S1 + €293+ -+, D = 2Dy + D3 + - - .
Because S; are artificial variables, we can choose S; such
that D,yq satisfy the requirement [Z, Dj+1] = 0. Repeat
the process order by order, we have [Z, D] = 0 upto small
error term d H. More specifically, one can do Magnus ex-
pansion of the right-hand side of Eq. 5 to get

— iTjjgeij = jjgej ([iZ,Sj_l} + hj) ) (6)

where we have ignored the high-order dH. Here h; is
defined recursively as nest commutators of iZ, —iTH;
and S with j° < j—1. For example, the first few orders
are

hg = —iTHl, (7)
ha = [S1, ho] + §([iZ,[iZ, $1]] — [St, [S1,iZ]).

Recursively, assuming all S;» with j* < j —1 (and thus
hj) are known (which is trivially true for j = 2), we
determine S;_; and D; from j-th order of Eq. 6, by re-
quiring that D; = [iZ, S;_1] + hj commutes with Z. To
do this, we first decompose h; = 37 _, ., . hjq such
that [Z,h;q] = qhjq (hjq are called the ¢g-th quantum
coherence of Z [72-74]). This decomposition is possi-
ble as long as the dominant part of the Hamiltonian has
integer eigenvalues (up to a common constant), a fre-

quent feature shared by the collective rotation HQ(K) x Z
in our case. [Z,D = 0] is then satisfied by choosing
—itDj = hjo and Sj_1 = i), 44 hjq/(hqr). We note
that S is a sufficiently local operator, r(S;) = j, for
KDM with nearest-neighbor interaction. Similar to the
prethermal Hamiltonian Eq. 3, the expansion in € gener-
ally diverges and should be truncated at some order j*,
leading to the exponentially small nonlocal residual 6 H,
see, e.g. Ref. [46, 50].

When 7 is small, the S; operators are dominated by the
(J/h)? term. Therefore, in the 7 — 0 limit, the quasicon-
served observable found here for the Floquet model re-
duces to the prethermal quasiconserved observable of the
static Hamiltonian 7" [50, 70], where the expansion is
a series of J/h and 6H ~ exp(—O(h/.J)). In this regime,
Dpre = —2D. +O((J/h)?), and the expansion converges
for h/J 2 0.5 (up to truncation at exponentially large
order) as shown in Ref. [70] (Note that here we used
h/J = 1). Instead, for relatively larger hr, the S; opera-
tors are dominated by (h7)7 and 6H =~ exp(—O(1/h1)),
and thus the system exhibits exponentially slow Floquet
heating as expected.
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FIG. 4. Dp,. expansion of KDM. (a) Norm of the m™ order term of the quasiconserved observable Dpr. (normalized by

L2%).

Different curves stand for ht = J7 from 0 to 2 in steps of 0.2. Darker color represents smaller J7. (b) Infidelity

1 — (Dpre(00)Dpre) of infinite-time averaged Dpr. evaluated up to m'™ order. L = 12 is used. (¢) Fidelity (Dpre(00)Dpre)
evaluated to 7" order as a function of hr for different system sizes.

We numerically evaluate the convergence properties of
D, in the KDM [Fig. 4(a)], using the metrics discussed
in the previous section, convergence of the order-by-order
expansion terms and infinite-time autocorrelation. We
find that the series converges up to order 7 in the hr
regime we are interested in. The infinite-time autocorre-
lation is close to 1 at small 7, as shown in Fig. 4(b) and
(c), confirming that the local truncation of Dy, (as ob-
tained by the first few orders) gives rise to quasiconserved

observable EQ(K). Comparing these results to the prether-
mal Hamiltonian shown in Fig. 3(b) and (c), we find that
(1) the normalized autocorrelation of Dp,. converges to
1 in a larger parameter range (J7 < 1.6 for Dy, and
J7 <1 for Hpre), (i) the autocorrelation shows a signif-
icant drop at Jr 2 1.8 for Dy, and J7 2 1.2 for Hpye,
with a steeper drop when L is increased from 8 to 12.
Both facts suggest that D, is more robust than H,.,
in agreement with the experimental results presented in
Ref. [51]. This provides evidence that it is possible to
realize novel Floquet phases beyond the effective Hamil-
tonian picture.

IV. TOWARD INFINITE TEMPERATURE:
EXPERIMENTAL AND NUMERICAL
SIGNATURES

Although it is generally believed that Floquet many-
body systems should heat up to infinite temperature,
some numerical works [53-56] have found signs of non-
thermal behavior in various models. Here we provide
evidence of thermalization in the long-time and ther-
modynamic limit, using numerics and experiments in a
NMR quantum simulator [51, 70, 72], respectively. In
simulations, we can access the infinite-time limit using
exact diagonalization, but only for small system sizes.
Conversely, the system size in NMR experiments is large
enough to achieve the thermodynamic limit, but the evo-
lution time cannot be too long due to hardware limi-
tation. Still, by looking at the dynamics for increas-
ingly longer times (experimentally) and larger system

sizes (numerically), we can extract insight on the final
fate of the Floquet systems.

The experimental system is a single crystal of fluorap-
atite (FAp) [76]. We study the dynamics of F spin-1/2
using NMR techniques. Although the sample is 3D, F
form quasi-1D structure because the interaction within
the chain is ~40 times larger than the interaction be-
tween different chains [77-79]. Average chain length is
estimated to be > 50 and the coherence time of the 9 F
spins is T} ~ 0.8s. The sample is placed in 7 T mag-
netic field where the Zeeman interaction dominates, thus
reducing the 'F spins interaction to the secular dipo-
lar Hamiltonian H = JoD, with Jy = —29.7 krad/s (we
define z as the magnetic field direction). While the cor-
responding 1D, nearest-neighbor XXZ Hamiltonian is in-
tegrable [80-82], the experimental 1/73 Hamiltonian can
lead to diffusive [83, 84] and chaotic behavior [85] in 3D.
In the presence of a transverse field, the system is known
to show a quantum phase transition [86]. We use 16 RF
pulses [51, 70, 72, 87] to engineer the natural Hamilto-
nian into Hl(A) = JD, and HQ(A) = JD, with tunable
J. This enables varying the Floquet steps by tuning J,
while keeping 7 fixed. Then, experimental imperfections
such as decoherence and pulse errors remain the same,
and we can faithfully quantify the Floquet heating rate.
The initial state is a high-temperature thermal state with
small thermal polarization in the magnetic field direction
p(0) =~ (1 — eZ)/2% with € ~ 107°, and the observable
is the collective magnetization along x-axis O = X. As
the identity part does not change under unitary evolu-
tion and does not contribute to signal, it is convenient to
consider only the deviation from the identity dp(0) =
Z, which can be rotated to a desired observable O'.
Therefore, the NMR signal is equivalent to an infinite-
temperature correlation Tr[dp(t) X] — (O (t)O) g=o.

We experimentally study the heating rates of the qua-
siconserved observables and their scaling with Floquet
period, to reveal the prethermal phase and investigate
the eventual heating to infinite temperature. In Fig. (5)
we show results for ADM (the two quasiconserved ob-
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FIG. 5. Autocorrelation of the average Hamiltonian for the alternating dipolar model. (a) Autocorrelation as a function of
n. Different curve stands for J7 from 0.35 to 2.27 with a step of 0.175. Darker color represents smaller J7 and lighter color
represents larger J7. We fit the autocorrelations from n = 20 to n = 64 to exponentially decaying function exp(—-vyn) and plot
the decay rate « in (b). The length of the error bars corresponds to two standard deviation of the fitted decay rate. Solid curve
indicates the fit to function v = aexp(—b/J7) + c¢. The fitted coefficients a, b, ¢ are shown in the plot with the 95% confidence
interval. (c) Autocorrelation versus Jr for different n. Lighter colors represent smaller n and darker colors represent larger n.

For a given n, the autocorrelation is normalized by (H(n)H) at J7 = 0.35, i.e. the leftmost point is normalized to 1. In (a-b),
error bars are determined from the noise in the free induction decay (see SM [75] for details on the experimental scheme).

servable in KDM show similar behavior as reported else-
where [51].) To study the autocorrelation of H,.. =
H +O(7) in ADM, we measure the average Hamiltonian

H(A) =JDy+JD,=—JD,, since the higher order terms
in Eq. 3 are not accessible. We use the Jeener-Broekaert
pulse pair [88] to evolve the initial state dp and exper-

imental observable X into D, o H(A). Because of the
difference Hp,e — H, we still expect an initial transient,
over a time ~ || Hp.|| !, where the average Hamiltonian
thermalizes to the prethermal Hamiltonian. When more
Floquet periods are applied, the autocorrelation of D,

slowly decays from its prethermal value.

The decay rate in the prethermalization regime is
shown in Fig. 5(b), and can be fitted to an exponen-
tial function in 1/(J7) on top of a constant background
decay (which is due to experimental imperfections, see
SM [75] for more details.) By normalizing the data to
the data collected under the fastest drive (J7 = 0.35),
the background decay is cancelled, and the resulting dy-
namics only arises from the coherent evolution, as shown
in Fig. 5(c). For given n, the normalized correlation de-
creases when increasing J7, because Hy.. = H + O(J7)
thus H that we measure has less overlap with the true
quasiconserved observable Hy,.. for larger J7. The over-
all drop of the curves when increasing n is instead an
indicator of Floquet heating.

To better quantify the final thermalization process, we
define a critical value J. such that when J7 > J.7 the
system is thermalized, at a given number n of periods
in the thermodynamic limit, or for a system size L at
infinite time. Studying the scaling of J. as a function of
n (experimentally) and L (numerically) provides hints on
the long-time, thermodynamic limits.

We numerically obtain the autocorrelations (O(c0)O)
as a function of J7, using exact diagonalization. In

Fig. 6(a) we show simulation results for O = F(K), D,

for KDM and © = A for ADM. (Here we explicitly

consider the exact dipolar interaction instead of truncat-
ing to nearest neighbors.) Note that both observables in
KDM show a non-monotonic behavior. They appear to
be quasiconserved until J7 = 1; the decrease in overlap
is however interrupted by a revival at Jr = 1.6. This

—(K
is because H (K) and D, are approximation of Hp,. and

Dy, to leading order. Thus H(K) (D) still has a small
overlap with Dy,.e (Hpre), giving rise to a second plateau
at Jr = 1.6 (J7 ~ 1). The experimentally measured
autocorrelations of quasiconserved observables in KDM
can be find in [51]. For both experiments and simula-
tions we then find J.7 from the point where the curves
drop below a threshold value of 0.5 (any other reason-
able choice would not qualitatively change the results).
We linearly interpolate between data points to get J.7
for every quasiconserved observable and plot the J.7 in
Fig. 6(b) and (c¢). The decrease of numerically calcu-
lated J.7 with L in Fig. 6(b) indicates that even the
correlations of quasiconserved observables decay to zero
as the system thermalizes to infinite temperature, sug-
gesting this non-thermalizing behavior should not per-
sist to the thermodynamic limit. Similar result is also
observed from experimentally measured J.7 as shown in
Fig. 6(c) [89]. Note that although J.7 for <H(K)(n)ﬁ(K)>
shows only a moderate dependence on n [Fig. 6(c)], its
decay is still larger than experimental uncertainties.

V. CONCLUSION

As Floquet driving is a promising avenue for quantum
simulation, it is crucial to evaluate its robustness, the
existence of a long-lived prethermal phase, and the even-
tual thermalization to infinite temperature. Investigat-
ing Floquet heating, which breaks the prethermal regime,
is particularly challenging, not only because of inherent
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limitations in numerical and experimental studies, but
also because of the challenge to properly identifying all
quasiconserved observables in the complex, many-body
driven dynamics.

Here we tackle both these issues by combining analyt-
ical, numerical and experimental tools. First, we provide
a systematic strategy to find local, eigen-quasiconserved
observables in the prethermal regime using infinite-
temperature correlations. By systematically searching
over local operators, we find that counter-intuitive qua-
siconserved observables might emerge, as we identify two
eigen-quasiconserved observables: the first, not surpris-
ingly is associate with energy, H,,., under sufficient fast
drive; in addition, we find another quasiconserved observ-
able, Dy, for the KDM in the presence of a large driving
field. Our search protocol would be useful in other set-
tings, such as identifying the underlying Hamiltonian or
symmetries from measurements.

We then use numerical and experimental evidence to
obtain insight into the inaccessible thermodynamic limit
and long-time regime, to show that autocorrelations of

quasiconserved observables indeed decrease toward zero
due to Floquet heating, suggesting the Floquet system
approaches the infinite temperature state.

Our results not only provide a metric to study ther-
malization in driven quantum systems, but also open in-
triguing perspectives into the existence of quasiconserved
observables other than the energy. It is an open ques-
tion when they emerge and how they interact with each
other. A better understanding of quasiconserved observ-
ables would benefit understanding of heating in closed
driven systems, and designing robust protocol to slow
down thermalization.
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although J.7 approaches zero when L. — oo and n — oo, the convergence speed depends on the path to that limit.



Prethermal quasiconserved observables in Floquet quantum systems

Chao Yin,! * Pai Peng (i), T Xiaoyang Huang,! Chandrasekhar Ramanathan,® and Paola Cappellaro® -+

! Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139
3 Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
4 Department of Nuclear Science and Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139
(Dated: May 29, 2020)

I. EXPERIMENTAL BACKGROUND DECAY
RATE AS A FUNCTION OF Jr

In the main text we measured the Floquet heating for a
periodic, Hamiltonian switching scheme. While it would
be easy to change the period by increasing the time be-
tween switches, this would lead to experiments performed
with different total times or a different number of control
operations. In turns, this can introduce variable amount
of decoherence and relaxation effects, and of control er-
rors. Instead, we kept the time for one Floquet period
constant and used Hamiltonian engineering to vary the
Hamiltonian strength in order to vary the Floquet driv-
ing frequency.

One of the assumptions in our work is that the back-
ground decay rate does not change much with driving
frequency (compared to the change in Floquet heating
rate). In this section, we provide experimental evidence
for this assertion. When changing driving frequency, we
are changing (i) the effective strength J of the engineered
dipolar interaction JD, and (ii) the kicking angle in the
kicked dipolar model by a phase shift (see II C). As phase
shift angles are usually very accurately implemented in
NMR experiments, we focus on the engineered dipolar
interaction, which is obtained by Floquet engineering it-
self, as explained in IIC. To quantify how good is the
engineered JD,, we measure (Y (n)Y) and (Dy,(n)D,)
under the engineered Hamiltonian JD,, without kicking
field nor direction alternation, as shown in Fig. S1.

Note that the maximum difference between the decay
rate of (Dy(n)D,) over the range of Jr considered is
~ 0.003, much smaller than the Floquet heating rate in
the main text. A quantitative analysis is challenging be-
cause the specific form of error terms is unknown, and
J D, is an interacting Hamiltonian thus error accumula-
tion is intractable. Here we use some simple arguments
to argue that variations in the background decay with
J7 have little to no influence on our results. First, we
note that while in the main text we are interested in
the decay of the autocorrelation of H,,. and Dp,., here
with H = JDy we can only discuss the decay of D, and
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T C.Y. and P.P. contributed equally to this work.
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FIG. SI1. Decay rate of (Y (n)Y) (blue) and (Dy(n)D,)

(green) under engineered dipolar Hamiltonian JD, as a func-
tion of J7. The range of J7 studied was obtained by varying
the scaling u (see SM [S1]) from 0.098 to 0.646, while keeping
fixed 7 = 120us. In the inset, we compare the background
decay rates with the Floquet decay rates (dashed lines).

Y, since other observables that are not conserved display
very fast decay which is not informative. For example, in
the main text we measure D,, which thermalizes even un-
der the ideal D, and thus we cannot distinguish thermal-
ization from decay due to experimental imperfections in
the engineered dipolar Hamiltonian D,. Still, as D, and
D, overlap, if the background decay of D, had a signifi-
cant change with Jr, it would be reflected in D,,, which
is not observed. Therefore, we expect the change in the
background decay rate for (D, (n)D,) to be small as well.
Here we can only probe the background decay rate of Y,
while in the main text we are interested in the longitu-
dinal magnetization, Z, that appears in <F(K) (n)ﬁ(K)>
[see Fig. 6(c) in the main text]. The transverse magneti-
zation decay rate is, however, a upper bound for Z, since
in NMR experiments Z is usually more robust against er-
rors than Y due to the large magnetic field in z-axis that
suppresses decoherence and experimental errors that do
not conserve the total Zeeman energy (we note that we
typically do not explicitly write the Zeeman energy in the
Hamiltonians as we work in the rotating frame). Even if
the variation in the background decay for Z were as large



as what observed for Y in these experiments (~ 0.009), it
would still be still small compared with Floquet (see inset
of Fig. S1). In addition, in the kicked dipolar model, we
can consider Dy as being subjected to rotations along Z
that further cancel out the error terms in the engineered
JD, that do not conserve Z. As a result, the decay
rate of ¥ due to the engineered D, is larger, by about

a factor of 2, than the baseline decay of <F(K)(n)F(K)>
in the kicked dipolar model (they are 0.254 and 0.123,
respectively, in the fastest driving case J7 = 0.35).

II. EXPERIMENTAL SYSTEM, CONTROL AND
DATA ANALYSIS

A. Experimental System

The system used in the experiment was a single crys-
tal of fluorapatite (FAp). Fluorapatite is a hexagonal
mineral with space group P63/m, with the °F spin-1/2
nuclei forming linear chains along the c-axis. Each flu-
orine spin in the chain is surrounded by three 3'P spin-
1/2 nuclei. We used a natural crystal, from which we
cut a sample of approximate dimensions 3 mmx3 mm X 2
mm. The sample is placed at room temperature inside
an NMR superconducting magnet producing a uniform
B =7 T field. The total Hamiltonian of the system is
given by

Hyp =wrp Y S¥+wp Y sf+ Hp+ Hp+ Hpp (S1)
k K

The first two terms represent the Zeeman interactions
of the F(S) and P(s) spins, respectively, with frequen-
cies wp = ypB &~ (27)282.37 MHz and wp = vpB =
(2m)121.51 MHz, where vp,p are the gyromagnetic ra-
tios. The other three terms represent the natural mag-
netic dipole-dipole interaction among the spins, given
generally by

S A
Hdip:ZM S..Sk_w . (S2)
j

where 77; is the vector between the ¢j spin pair. Because
of the much larger Zeeman interaction, we can truncate
the dipolar Hamiltonian to its energy-conserving part
(secular Hamiltonian). We then obtain the homonuclear
Hamiltonians

1 . . )
Hp =3 > T (2808F — SISk — §ISk)
j<k
1 P o A A A (83)
Hp = 5 Z Ja (28585 — spsy — sysy)
ALK
and the heteronuclear interaction between the F' and P
spins,

Hpp = ZJifSﬁ’s’;, (S4)
k,k

1—3cos(0,x)°?

175k ]?
between the vector 7j; and the magnetic field z-axis.
The maximum values of the couplings (for the closest
spins) are given respectively by J¥ = —32.76 krad s7!,
JP =1.20 krad s~ and JFF = 6.12 krad s~ .

The dynamics of this complex many-body system can
be mapped to a much simpler, quasi-1D system. First,
we note that when the crystal is oriented with its c-axis
parallel to the external magnetic field the coupling of
fluorine spins to the closest off-chain fluorine spin is ~
40 times weaker, while in-chain, next-nearest neighbor
couplings are 8 times weaker. Previous studies on these
crystals have indeed observed dynamics consistent with
spin chain models, and the system has been proposed as
solid-state realizations of quantum wires [S2-S4]. This
approximation of the experimental system to a 1D, short-
range system, although not perfect has been shown to
reliably describe experiments for relevant time-scales [S5,
S6]. The approximation breaks down at longer times,
with a convergence of various effects: long-range in-chain
and cross-chain couplings, as well as pulse errors in the
sequences used for Hamiltonian engineering. In addition,
the system also undergoes spin relaxation, although on a
much longer time-scale (T; = 0.8 s for our sample).

with Jjr = hyj , where 0;; is the angle

B. Error analysis

In experiments, we want to measure the correlation
(0p(t)O), where dp(t) = U(t)op(0)U(¢) is the nontrivial
part of the density matrix evolved under a pulse-control
sequence for a time t. Instead of just performing a single
measurement after the sequence, we continuously moni-
tor the free evolution of dp(t) under the natural Hamil-
tonian Hgip, from ¢ to ¢t + tprp. The measured signal is
called in NMR free induction decay (FID) and a typical
FID trace is shown in Fig. S3). This signal trace allows
us to extract not only the amplitude of the correlation
(from the first data point) but also its uncertainty. We
take the standard deviation of the last 20 data points in
the FID as the uncertainty of the (6p(¢)O). This uncer-
tainty is used with linear error propagation to obtain the
error bars of all the quantities analyzed in the main text.

Preparation  Evolution Mixing Detection
B bo2/2 X
e -
Ug _ Una=Uho

Clxy yx xy yx Xy y%x %

<!
<!
xi

FIG. S2. A Fluorapatite crystal structure, showing the Flu-
orine and Phosphorus spins in the unit cell. B NMR scheme
for the generation and detection of MQC. In the inset (C)
an exemplary pulse sequence for the generation of the Hgipy.
Note that thanks to the ability of inverting the sign of the
Hamiltonian, the scheme amounts to measuring out-of-time
order correlations.
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FIG. S3.  An example of FID. 128 data points are taken
in total. The first data point gives ((dp(t)O) and the stan-
dard deviation of the last 20 points gives the uncertainty of

((0p(1)O).

C. Hamiltonian Engineering

In the main text we focused on the Floquet heat-
ing (Trotter error) for a periodic alternating scheme,
switching between two Hamiltonians. In order to avoid
longer times and/or different numbers of control opera-
tions when changing the Trotter step (Floquet period),
we engineered Hamiltonians of variable strengths. Then,
the Hamiltonians themselves are obtained stroboscopi-
cally by applying periodic rf pulse trains to the natural
dipolar Hamiltonian that describes the system, and are
thus themselves Floquet Hamiltonians. Since we only
varied the sequences, but not the Floquet period, this
step does not contribute to the behavior described in the
main text, as we further investigate in I.

We used Average Hamiltonian Theory (AHT [ST7])
as the basis for our Hamiltonian engineering method,
to design the control sequences and determine the ap-
proximation errors. The dynamics is induced by the
total Hamiltonian H = Hgjp + Hyp, where Hgp =
%ZKk Jip(255SF — Sigk — SgS’;) + Ej h;S? is the
system Hamiltonian, and H,¢(t) is the external Hamil-
tonian due to the rf-pulses. The density matrix p
evolves under the total Hamiltonian according to p =
—i[H, p]. We study the dynamics into a convenient in-
teraction frame, defined by p’ = UrprUrﬁ where Uy(t) =
T exp|[—i fot Hy¢(t')dt'] and T is the time ordering op-
erator. In this toggling frame, p’ evolves according to
p = —i[H(t),p'], where H(t) = rfTHdipUrf. Since U,¢
is periodic, H(t) is also periodic with the same period
7, and gives rise to the Floquet Hamiltonian, Hp, as as
U(7) = exp[—iHp7]. Note that if the pulse sequence sat-
isfies the condition Uys(7) = 1, the dynamics of p and p/
are identical when the system is viewed stroboscopically,
i.e., at integer multiples of 7, where the toggling frame
coincides with the (rotating) lab frame.

We devised control sequences to engineer a scale-down,
rotated version of the dipolar Hamiltonian [S8, S9]. We
usually look for control sequences that would engineer the
desired Hamiltonian up to second order in the Magnus-
Floquet expansion. Then, to engineer the interaction D,,
we use a 16-pulse sequence. The basic building block
is given by a 4-pulse sequence [S10, S11] originally de-
veloped to study MQC. We denote a generic 4-pulse se-
quence as P(71,n1, T2, Do, T3, N3, T4, N4, T5), Where n; rep-
resents the direction of the j-th 7/2 pulse, and 7;’s the de-
lays interleaving the pulses. In our experiments, the 7/2
pulses have a width t,, of typically 1 us. 7; starts and/or
ends at the midpoints of the pulses (see also Fig. S2).
In this notation, our forward 16-pulse sequence can be
expressed as

P(m,%x,7T2,y,271,y, T2, X, 71)P(11,X, T2, ¥, 271, y, T2, X, 71 ) P(11,X, 72, ¥, 271, ¥, T2, X, 71 ) P(71,X, 72, ¥, 211, ¥, T2, X, T1)

and the backward sequence as

P(T37Y7T37Xa27—45XaT3ay7T3)P(T37YaT3aXa 27—4aX7T37Y7T3)P(T3ay77-3ai7 27—47ia T3,?,T3)P(T3,?,T3,i, 27—4)ia7-3ay77-3)

where {X,¥} = {—x, —y}. The delays are given by

To = 7'0(1 + 2’[1,),
T4 = 7'0(1 — 2u),

71 =710(1 — w),
T3 = ’7'0(1 + u),

where 7p is 5 us in this paper. The cycle time ¢, defined

(

as the total time of the sequence, is given by 7 = 2475. u
is a dimensionless adjustable parameter, and is restricted
such that none of the inter-pulse spacings becomes neg-
ative. To the zeroth order Magnus expansion, the above
sequence realizes Hamiltonian uJyD, and uJy = J.
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