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Abstract—As multicore systems continue to grow in scale
and on-chip memory capacity, the on-chip network bandwidth
and latency become problematic bottlenecks. Because of this,
overheads in data transfer, the coherence protocol and replace-
ment policies become increasingly important. Unfortunately, even
in well-structured programs, many natural optimizations are
difficult to implement because of the reactive and centralized
nature of traditional cache hierarchies, where all requests are
initiated by the core for short, cache line granularity accesses.
For example, long-lasting access patterns could be streamed from
shared caches without requests from the core. Indirect memory
access can be performed by chaining requests made from within
the cache, rather than constantly returning to the core.

Our primary insight is that if programs can embed informa-
tion about long-term memory stream behavior in their ISAs,
then these streams can be floated to the appropriate level of
the memory hierarchy. This decentralized approach to address
generation and cache requests can lead to better cache policies
and lower request and data traffic by proactively sending data
before the cores even request it.

To evaluate the opportunities of stream floating, we enhance
a tiled multicore cache hierarchy with stream engines to process
stream requests in last-level cache banks. We develop several
novel optimizations that are facilitated by stream exposure in
the ISA, and subsequent exposure to caches. We evaluate using
a cycle-level execution-driven gem5-based simulator, using 10
data-processing workloads from Rodinia and 2 streaming kernels
written in OpenMP. We find that stream floating enables 52%
and 39% speedup over an inorder and OOO core with state of
art prefetcher design respectively, with 64% and 49% energy
efficiency advantage.

I. INTRODUCTION

Despite the slowing of technology scaling, and in some ways
because of it, commodity general purpose processors continue
to scale in number of cores (64 cores in AMD EPYC Milan,
56 in Intel Cooper lake, 72 in Knights Landing [54]), as well
as last-level cache capacity (quarter of a GB in EPYC Rome).
In these systems, the on-chip network bandwidth and latency
become increasingly problematic bottlenecks.

Fundamentally, higher core count means more on-chip
communication, causing longer latency and higher bandwidth
utilization. This exacerbates coherence protocol inefficiencies.
Widening the network bandwidth is the common approach, but
this does not help much to reduce the overheads of smaller
control messages. Private caches, which are critical to avoiding
communication overheads, are often not used effectively due
to thrashing. For example, we show that on a 64-core system
with data-processing workloads from Rodinia and more, 72%
of evicted cache lines have no reuse, and caching non-reused
data contributes 50% of total network traffic.

On the other hand, many workloads exhibit structure and
regularity that is possible to exploit, provided that the cache
system is proactive and decentralized. For example, programs
often contain long well-defined patterns of memory access.
If the shared last level cache (henceforth L3) was aware of
these patterns, this could be exploited by proactively streaming
the data with few control messages. This requires some
decentralization, as the cache itself would make requests. As
another example, much of the data held in the L3 has little finer-
grain reuse. If the private caches could be proactively warned
of this behavior, this data would not need to be stored there. As
a final example, relevant especially in data processing kernels,
many cores may stream through the same data at relatively the
same time. If the cache was aware of longer-term behavior,
this can be proactively detected, and the cache can make a
decentralized decision to combine the requests and efficiently
service them through multicasting.

Unfortunately, it is not obvious how to implement such style
of optimizations with conventional reactive and centralized
cache systems. The reactive nature of caches – that they take
actions based on downstream fine-grain (cache-line grain)
requests – prevents the cache from being aware of and
exploiting long term behavior. Even prefetchers, which try
to learn access patterns, are typically activated as a response to
cache misses. Furthermore, all memory requests and responses
are centralized at the core, even if the core needs to do nothing
but initiate the subsequent access.

Goal and Approach: To enable proactive and decentralized
cache optimizations, we argue that caches need to be aware of
decoupled components of programs corresponding to common
access patterns. For this, we can leverage prior decoupled-
stream ISAs [52,60], which integrates streaming memory
patterns into general purpose ISAs. These prior works use
decoupled-streams to enable efficient programmable prefetch-
ing. In this work we take this principle to its logical endpoint:
allow streams to be decoupled from the core, floating them into
cache hierarchy. Our goal is to explore how floating streams
can enable proactive and decentralized optimizations, ultimately
enabling higher efficiency in many-core systems.

To this end, we develop extensions to a tiled multicore’s
memory system to allow decoupled-streams to float into the
shared last-level (L3) cache banks. Streams are managed with
stream engines (SEs) at three places in the core/cache hierarchy:
the L3 cache bank (SEL3), the private L2 (SEL2), and within the
core (SEcore). The core’s stream engine (SEcore), can generate
binding prefetches based on the program’s streams. SEcore can
choose to float streams to SEL3, which will then proactively
generate read requests for the requesting core. These responses
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Fig. 1: Stream Floating Optimizations

will be buffered by the SEL2, where responses from remote
streams will reside before being consumed by SEcore.

In this context, we explore three main optimizations, shown
visually in Figure 1 along with their benefits:
• Affine Floating: Enable an affine stream pattern without

reuse to be floated to L3. This optimization is by far the
most prevalent in our workloads, while the following are
targeted optimizations.

• Indirect Floating: Enable a stream to load from an
address dependent on a prior stream, decentralized from
the originating core. Only the requested subline is returned.

• Stream Confluence: Enable streams reaching L3 with the
same pattern to coalesce and multicast the responses.

We view stream-floating as a new avenue for achieving less
request and response traffic, lower effective access latency, and
less L3 bandwidth demand. Enabling these optimizations to
work efficiently means overcoming several challenges which
we address in this work. This includes: how to avoid the
communication overheads of stream offloading and maintaining
flow control; how to decide when to offload streams by
leveraging both static and dynamic information; how to
interface with the coherence protocol; and how to detect when
streams have confluence and avoid overheads of stalling cores.
Methodology and Findings: To evaluate the system, we
develop an LLVM-based compiler to recognize and extract
stream-based patterns and embed them in an X86 ISA, and an
execution-driven, cycle-level simulator based on gem5 [12,39]
1. We evaluate on data-processing workloads programmed
using OpenMP, including several workloads from Rodinia.
We also compare against a novel version of a state-of-the-art
prefetcher (Bingo [9]), where we augment this baseline with
an optimization for bulk-prefetch to reduce coherence traffic.

Across a range of data-processing kernels, stream floating
improves the performance of a 4-way inorder, 4-way OOO, and
8-issue OOO by 52%, 41% and 39% respectively, and by 64%,
51%, and 49% in terms of energy efficiency. These results
include a state-of-the-art multicore prefetcher [9]. Whereas the
best prefetcher increases the traffic by 28%, stream floating
with subline transfer reduces NoC traffic by 36%.

1Open source at: https://github.com/PolyArch/gem-forge-framework/
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Contributions:
• The principle of stream floating: transparently offloading

long-term access patterns into the memory hierarchy.
• Three novel optimizations (affine and indirect offloading,

stream confluence) which reduce the data and request traffic.
• Detailed evaluation across inorder/OOO cores, and com-

parison to an enhanced state-of-the-art prefetcher.
Paper Organization: We first motivate by discussing over-
heads in existing reactive caches, and overview how we
address these with our three optimizations (§II). We then
discuss background on the stream-specialized core (§III).
Following that, we develop the hardware extensions and policies
necessary for stream floating (§IV), as well as coherence
considerations (§V). Finally, we present methodology (§VI),
evaluation (§VII), and discuss related work (§VIII).

II. MOTIVATION AND OVERVIEW
Stream floating is the concept of offloading decoupled

portions of the program, specifically address generation and
memory requests, near the relevant data. We first motivate by
discussing existing inefficiencies in caches. Then we overview
the primary optimizations that we explore in this work.

A. Motivation: Reactive Cache Inefficiency
Conventional cache systems reactively attempt to exploit

locality: they make a best effort approach to keep data recently
used by the core in the hopes that it will be reused later.
However, for the N-1 cache levels for which the working
set of a program phase does not fit, the data stored there is
nearly guaranteed to be evicted with zero reuse. This leads to
thrashing, wasting both cache capacity and network bandwidth.

To show the potential inefficiency for working sets that fit in
LLC, we simulate 12 data processing workloads on a 64-core
CMP with private L1, L2 caches and shared L3 banks (see
§VI for hardware parameters, simulation and workload details).
The results reveal three major overheads:
• Cache Thrashing: Figure 2a shows the number of L2

cache lines evicted in a clean state without being reused,
normalized to total L2 evictions. Overall, 72% of evicted
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cache lines have not been reused at all. This cache pollution
can hurt performance and energy efficiency.

• Tracking Coherence State: Caching data without reuse
also implies unnecessary tracking of coherence state, which
incurs significant overheads in possible invalidation and
writeback for peer cache controllers. Figure 2b measures
the flits injected into the NoC due to caching not reused
data, normalized to total flits. Flits are classified as data
and control flits (for coherence). Caching not reused data
contributes 50% of total network traffic, and 20% is from
control messages. Notice that this is an underestimate, as
it does not include the traffic generated from replacing the
“victim” line, which could include useful data.
• Redundant Request Messages: Even if we ignore all the

overheads mentioned before, the NoC traffic is still not
optimal. Existing memory systems require one request per
cache line, even if the pattern is very simple.

The fundamental reason behind such inefficiency is that
current cache systems are designed to be reactive – driven
by individual requests from the core. They lack a holistic
view of the access pattern, duration of the pattern, presence
of dependent accesses and reuse, etc. Without such key
information, the cache can only react passively to external
events with suboptimal policies. Hence, ISAs with richer
abstractions can help to provide this information.
Stream Behavior: In this work, rather than trying to have
the caches derive pattern information, we use a specialized
ISA (discussed in Section III) that encodes streams explicitly.
Streams are well-defined patterns of memory accesses. They
can be as simple as an affine pattern A[i] or an indirect pattern
like B[A[i]]. Figure 2a shows the fraction of the cached
data without reuse corresponding to streaming patterns. On
average it is 63% out of 72%, indicating that in the applications
we target, streams are widely applicable to cover most of the
required memory access behavior.

B. Optimization Overview
With streams as the abstraction for floating, we discuss

three optimizations that can improve network traffic, coherence
overheads, and data prefetching.
Affine Floating: Figure 3 demonstrates floating an affine
stream A[i]. In a conventional system, the core issues a
sequence of requests to the remote L3 banks to fetch the
data (multiple arrows on one line). The stream’s data may be
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distributed among multiple tiles, due to address interleaving in
the shared L3. Responses are driven by individual requests.

In stream floating, the core first provides stream information
to the cache, including the access pattern, length, etc. After
configuration, the cache independently streams data back to the
core, without excessive request messages. After some iterations,
the stream may attempt to access an address outside the range
of that bank (determined by address-interleaving granularity).
At this point, the stream will migrate to the appropriate L3 bank
to keep fetching data until completing. Stream floating replaces
many request messages by a one-time configuration and a few
migration messages, and the cache proactively prefetches.

Indirect Floating: Figure 4 shows floating an indirect stream
B[A[i]]. Normally, the core first gets data from the index
array A[], computes the indirect access address, and finally
accesses array B[]. The cache does not know the access pattern
and cannot generate addresses on behalf of the core: the core
centralizes all requests.

With stream floating, the indirect stream can be offloaded
together with the affine stream. Once the affine stream data is
ready, the remote L3 cache can simultaneously stream back
A[] and fetch B[A[]] on behalf of the core (both labeled as
2 in Figure 4). This shortens the chain for indirect accesses.

Stream Confluence: In multi-threaded workloads, it is com-
mon that different threads are requesting the same data.
However, in existing systems, these accesses are independent
from each other, as Figure 5 shows. The cache lacks sufficient
information to detect and coalesce identical accesses, as
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int a[N],B[N],C[N];
int i=0,
while (i < N) {
  c[i] = a[i]+b[i];
  i++;
}

while (si < N) {
  sc = sa + sb;
  stream_step(si);
}
stream_end(si,sa,sb,sc);

int i = 0;
while (i < N) {
  c[i] = a[b[i]];
  i++;
}

si

sc sb

sa

while (s_i < N) {
  sc = sa;
  stream_step(si);
}
stream_end(si,sa,sb,sc);

(b) Indirect Lookup

Decoupled Stream Pseudo Assembly Stream Dep. GraphOriginal C Code

stream_cfg(sa=A[si], sb=B[si],
                    sc=C[si]); si

sc sbsa

stream_cfg(sb=B[si], sa=A[sb], 
                    sc=C[si]);

Semantically,
 2 loads & 1 store

Semantically, indirect 
load & store

Legend:  si: Pseudoreg. for induction stream Sa,b,c: Pseudoreg. for memory stream

(a) Vector Add

Fig. 6: Decoupled-Stream ISA Examples

individual requests from different cores are short-lived and
arrive at different times.

Streams, on the other hand, encode access patterns and are
much easier to be compared and coalesced. Streams accessing
the same data tend to have the same parameters: e.g. start
address and stride. Also, streams are generally long enough to
describe long-term behaviors, which exposes more multicast
opportunities. In Figure 5, streams accessing the same data
can be transparently merged by the cache, turning them into
one multicast stream and further reducing the NoC traffic.

Overall, leveraging streams as a coarse grain unit of
offloading can empower proactive and more intelligent caches.

III. BACKGROUND: DECOUPLED STREAMS
In this section, we discuss background on decoupled stream

ISAs and their required microarchitecture support [60].

A. Decoupled-Stream ISAs
Basic Concepts: Stream-config instructions (stream_cfg)
encode patterns of memory access (e.g. A[i]), and can be
chained to support indirection (e.g. A[B[i]])2. Streams are
configured before loops to define (and inform the microarchi-
tecture) of their access patterns. Streams are deconstructed
explicitly with a stream_end instruction; this enables data-
dependent loop bounds.

Stream data is consumed semi-bindingly3, through pseudo-
registers, which are normal registers that are renamed to point
to stream data (this allows any instruction to use stream data).
Pseudo registers are set in the configuration instruction. Finally,
stream_step instructions advance the position of the stream.
Decoupling stream use from stream advancement allows control
dependent use of stream data. Because a pseudo-register can
be reused before advancement, the ISA defines that the first
use defines the program order for that load.
Examples: Figure 6 shows two example programs in the
decoupled stream ISA; for each we show the original code, a
pseudo-assembly version with intrinsics, and the dependence
graph representing the relationship between streams. The vector
add loop in 6(a) requires configuring an induction variable
stream, along with three memory streams that are dependent
on it. The statement sc=sa+sb corresponds to a typical add
instruction in the ISA, but with pseudo-registers. Hence, this

2The set of indirect patterns is described in §IV-B.
3Semi-binding because streams allow control-dependent use through decou-

pling access from advancement (using the stream_step instruction).
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implies 2 loads and one store operation. Figure 6(b) shows an
example with indirection, where one stream is configured to
be dependent on another.

B. Hardware Extensions for Decoupled Streams
Figure 7 overviews microarchitecture extensions to support

a decoupled-stream ISA, as we describe below.
Stream Engine (SE): The stream engine (SE) holds streams’
definition and manages their state. After being configured by
stream_cfg, it allocates stream FIFOs and issues requests
to L1. It also receives stream data, used to compute indirect
addresses. Streams are deallocated by stream_end.
Stream FIFOs: There are two stream FIFOs, one each for
loads and stores. The load FIFO buffers prefetched stream data
and is accessed by core instructions that consume stream data.
The store FIFO combines the store address (from the SE) and
the store data (from core pipeline) and sends them to the store
buffer when the core instruction commits. Stream FIFOs may
be accessed at vector width by SIMD instructions.
Iteration Map: The iteration map in the decoder essentially
performs renaming of stream registers, for the core to maintain
consistency with streams. Specifically, it maps a stream
register access to its current sequence index (its iteration).
A stream_cfg initializes it to 0, and it is incremented with
each stream_step. When decoding, consuming registers
are renamed to stream FIFOs according to iteration count.
Memory Ordering: As discussed, the first-use of a stream
element defines the program order for that load. In the
microarchitecture, on first use, a stream load is dispatched
to the load queue for alias detection.

Since the stream engine (SE) issues requests ahead of the
core, a prefetch element buffer (PEB) is added to track the RAW
dependence between stores and prefetched stream elements.
It can be viewed as a logical extension of the LQ. When a
store is committed to the store buffer, the PEB is searched
for possible aliased stream elements. If stream aliasing is
detected in either structure, all prefetched elements in PEB
are flushed and their requests are reissued. The SE disables
prefetching for the aliased stream to avoid future memory order
violations. Elements are freed from the PEB when the first
user is dispatched into the LQ or when released as unused.
Inorder Decoupled-stream Core: While not previously pro-
posed, decoupled-stream ISAs are particularly attractive for
inorder cores, as the required hardware support is modest, but
the inorder core essentially gets the latency hiding capability
of the OOO core for well defined patterns. Because it reorders
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memory instructions, it retains the PEB of the OOO core (and
small LSQ) for memory disambiguation.

IV. STREAM FLOATING DESIGN

In this section, we develop the detailed microarchitecture
and policies for transparently supporting stream floating.

Figure 8 overviews the stream floating system. In addition
to the core stream engine (SEcore), we add a “stream engine”
to the L2 and L3 cache levels (SEL2, SEL3) to manage stream
interactions there. We refer to the tile consuming the stream data
as the “requesting” tile, and the tile where the floating stream
is offloaded to as the “remote” tile. In general, the remote SEL3
(Figure 10) generates requests and sends stream data back to
the requesting SEL2. The requesting SEL2 (Figure 9) buffers
the stream data and matches it with requests from the SEcore.
We first show a detailed example of an affine stream, and then
generalize to indirect streams and stream confluence.

A. Affine Stream Floating
Stream Configure: SEcore decides whether a load stream
should be floated to cache using its pattern and history
information (details in §IV-D). If so, SEcore sends a stream
configuration packet to SEL2, containing the hardware context
id (same as core id if no SMT), the stream id, and its pattern
(i.e. base address, stride, etc.). This is 1 in Figure 8.

SEL2 sets up the stream context and allocates the stream
buffer. Then it computes and translates the address of the
first stream element (see §IV-E). SEL2 sends a configuration
message over the NoC to the remote L3 bank where the first
element is mapped to. Upon receiving the packet, the configure
unit in the SEL3 initializes the stream state, and the issue unit
starts to generate requests based on the stream pattern.
Stream Request: Once configured, SEL3 computes addresses
and sends requests to the colocated L3 cache controller. The
issue unit selects ready streams in round-robin order. Besides
address and type, requests also contain the stream id and
the element index. The L3 cache controller is directed to
send the data response to the original requesting tile ( 2 in
Figure 8). Thus, we generate requests at the remote tile on
behalf of the requesting tile, and eliminate the unnecessary
NoC traffic. The stream data will be buffered at SEL2, not
cached by the L2 cache. SEL2’s buffer is address-tagged for
memory disambiguation (see §IV-E).

Note that SEcore still generates requests to prefetch the stream
data. These requests are also tagged with its stream id and the
element index, and are intercepted by the SEL2 if matched to

Field Bits Description Field Bits Description

A
ffi

ne

cid 6 Core id. ptbl 48 Page table addr.
sid 4 Stream id. iter 48 Current iter.
base 48 Base virt. addr. size 8 Element size.
strd 48 Mem-stride (3×) len 48 Length (3×)

In
d. sid 4 Stream id. size 8 Element size.

base 48 Base virt. addr.

TABLE I: Affine and Indirect Stream Configuration

a floating stream. If so, the SEL2 checks its stream buffer, and
either responds or delays if the data is not ready yet.

Most commonly, stream data is not present in the requesting
private cache. However, in some scenarios (e.g. inadvertently
floating a stream with high reuse) the data may already be
cached in the L1 or L2. To avoid stalling the core, the L1
and L2 cache still perform normal tag checking for floating
streams’ requests, and respond immediately if hitting in the
cache. The SEL2 will also be notified that the stream request
is already served so that it can correctly advance the stream
buffer.

Stream Migrate: As the stream is iterating in the SEL3,
eventually the next element will no longer be mapped to
the current L3 bank. At this point, the migrate unit (see
Figure 10) constructs a stream migration packet similar to
the stream configuration packet, but also with the current iter
and remaining flow control credits (explained later in this
section). This migration packet is sent to the L3 bank which
holds the next element, and the stream continues there ( 3 , 4
in Figure 8).

Stream End: When a stream completes, the SEcore constructs
a “stream end” packet to terminate the floating stream. The
SEL2 uses the last allocated element’s address to determine
where to forward the packet, and the SEL3 will ack once done
( 5 in Figure 8). Floating streams with known length can be
silently terminated with no stream end packets. Notice that
the stream end packet also enables the SEcore to terminate
the stream early. This can be useful for implementing context
switching, as well as reversing the decision to float a stream
(i.e. sinking the stream) when there is L1/L2 locality (see
§IV-D).

Coarse-Grained Flow Control: Since the stream data is
buffered at the SEL2, we need a flow control scheme to
synchronize the SEL2 and SEL3 and avoid overwhelming the
SEL2’s buffer and network. We use a credit-based flow control
scheme, where the SEL2 sends credits to the SEL3 indicating
the vacancy of the stream buffer. These credit messages are
handled by the flow unit in Figure 10, and the issue unit
stalls the stream when running out of credits. This scheme is
coarse-grained, as SEL2 only sends out credits when half of the
allocated buffer is available; this helps amortize the overhead
of flow control messages. SEL2 computes the last allocated
element’s addresses to determine which L3 bank it should send
credits to.

Configuration Size: Table I summarizes the fields in a stream
configuration packet. We assume 48-bit virtual address. Notice
that we support up to a 3-level affine pattern to enable broad
applicability and coarse grain patterns. The total size is 450
bits, which is less than one cache line.
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B. Indirect Streams and Subline Transmission

Indirect streams are supported by combining their pattern
with the corresponding affine stream – they are configured,
migrated, and ended together, and share the same flow control
credits. When a floated stream is indirect, the L3 cache
controller notifies the colocated SEL3 when the indirect index is
ready. This index is buffered in the operands table (Figure 10)
and is used to compute the indirect access address. Finally, the
indirect request is sent to the target L3 bank which responds
to the requesting core with indirect data ( 6 , 7 in Figure 8).

Supported Patterns: The general indirect access pattern is:

ileni
0 j

len j
0 klenk

0| {z }
any order

wsize
0 B[A[i][ j][k]+w] (1)

The i, j, and k iterators can be reordered (by changing the
strides in Table I), to support strided access. The w loop iterates
over multiple consecutive data items from the indirect address.
This enables the stream to support iterating over the fields of a
structure (i.e. A[i].x and A[k].y) with one stream. It can
also be used to iterate over a small linear range at each indirect
location. Finally, by encoding further stream configuration
within the indirect request, it is possible to support longer
indirect chains like C[B[A[i]]].

It is common in stencil workloads that two streams A[i],
A[i+K] have a constant offset (and thus reuse) [16]. If such
reuse distance can fit in SEL2’s buffer (after accommodating
other streams), SEL3 would only send the first K elements
of the first stream A[i], and SEL2 would reuse data from
the second stream A[i+K] for the following elements. This
essentially provides the A[i] stream with a prefetch with
distance of K elements. This approach is compatible with the
aliasing detection scheme in IV-E.

Benefits: Floating indirect streams can 1. shorten the depen-
dence chain for indirect accesses by generating the address
at the remote L3 bank instead of returning to the requesting
core; and 2. in most cases, indirect accesses have low inter-line
locality, so we need only need transmit the required portion of
the cache line, which can further save network traffic.

Configuration Size: Table I lists the fields of an indirect
stream, which are appended to the base affine configuration
and require 60 bits per indirect stream.

Field Description Field Description

sid Stream id request # stream requests
reuse # priv. cache reuses miss # priv. cache misses
aliased Aliased with stores

TABLE II: Stream History Table

C. Stream Confluence

As an optimization, SEL3 transparently detects when multiple
cores simultaneously request the same streaming data, and
merges these requests. When adding a stream to the SEL3
(either configuring or migrating), the merge unit compares the
new stream’s parameters with those of existing streams (one
comparison per cycle). Affine streams from different cores, but
with same address space and parameters, form a confluence
group, which is recorded in the merge table. The issue unit
records any merged streams information in the request, and
the response is multicast to their requesting tiles.

Although it is possible to merge streams from any two cores,
it increases the hardware complexity and yields fewer benefits
if they share no common path through the mesh NoC. Thus, we
divide mesh tiles into smaller 2-by-2 blocks, and only merge
streams from the same block. Each confluence group contains
at most 4 streams, sorted by their progress (i.e. number of
issued elements). The issue unit delays streams with more
progress, so that those lagging behind can catch up and form
a confluence request.

D. Policy for Floating and Sinking Streams

The SEcore decides whether to float a stream by considering
both the current pattern as well as history information. If the
stream’s length is known and its estimated memory footprint
is already larger than the private L2 cache, it can be directly
floated. Otherwise, the SEcore will defer floating, and record
its runtime behaviors in a stream history table, as in Table II.
This includes the stream id, the number of requests sent and
private cache misses. The private cache tag array is extended
to remember the id of the stream which brought the line in.
When a “stream” line is reused, the cache controller notifies
the SEcore to increment the reuse field in the history table.
Finally, the aliased bit is set to true if the core detects an
aliasing store. After accumulating a certain number of stream
requests, SEcore floats the stream if it exhibits no reuse, has a
high miss ratio in the private cache and is not aliased.
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Fig. 11: Detecting Aliasing to Floating Stream Load

SEcore may “sink” a floating stream (undo the offload), by
terminating it and starting to cache its data. It can be beneficial
to sink a stream when the core detects an aliased store. Another
case is when the floating stream starts to hit in the private
cache. To handle this, SEcore sinks a stream if it hits in the
private cache several times consecutively (we use 8 as the
threshold).

E. Crosscutting Concerns

Address Translation: Since stream patterns generate virtual
addresses, SEL2 and SEL3 addresses need to be translated. We
assume each core has its own private two level TLB within
each tile. Addresses generated by SEL2 are satisfied by the L2
TLB. TLB access is infrequent, as only the configure/end and
coarse grain flow control messages are translated here.

As for SEL3, we include a TLB in its translate unit in
Figure 10, which again only needs to be queried for indirect
access and at the beginning of a page for affine access. For SEL3
TLB misses, there are several options. One option is to send the
translation request to the processor’s IOMMU [7,8,28]. Another
option is to use the requesting core’s MMUs for translation, as
was explored in prior work for accelerators [24]. This allows
the reuse of the core’s page table walker, MMU cache, and
data cache for caching the page table entries. A third option
is to use the remote core’s MMU, but the potential downside
is disturbing its MMU’s caches if it is executing an unrelated
workload. Therefore, if the thread running on the remote core
is within the same address space as the requesting thread,
SEL3 will access the remote core’s MMU to avoid extra traffic,
otherwise SEL3 will access the requesting core’s MMU to avoid
polluting the remote MMU.
Memory Disambiguation: Since floating streams load data
before the core, we must detect aliasing. Figure 11 visualizes
the life of a floating stream load. Starting backwards from
commit, there are three windows that aliasing could happen:

After the SEcore issues the request, the floating load is
protected by the PEB and LSQ, similar to other non-floating
stream loads. Also, since a core stream request always checks
the private cache’s tag, it will get the updated value if the
modified line is still present in the private cache. This mitigates
the problem of detecting an aliasing store being evicted before
the core stream request is serviced.

When the L2 cache evicts a dirty cache line, it searches
the L2 stream buffer for a possible aliasing floating load. If
found, it can either update the stream buffer with latest data,
or simply mark the floating stream aliased and let the SEcore
sink it. This search can be performed in parallel while the L2
cache is waiting for the ack from the L3, and is not on the
critical path. This covers the second window.

Finally, there is a race condition when the store happens after
the remote SEL3 issues the request and is written back before
the response comes back. Since the floating load happens at the
remote L3 tile in a decentralized fashion, we take a conservative
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Fig. 12: Coherence Protocol Interaction

approach to cover a slightly larger vulnerable window, starting
from sending the credit to the remote SEL3. Specifically, we
maintain two sequence numbers (head and tail) for in-flight
credits: newly sent credits remember and increment head, and
incoming floating responses are reordered by their sequence
number and increment tail. The L2 cache tags the line with
head when it sees a dirty eviction from the L1 cache. Eviction
of dirty cache lines will be delayed if its sequence number is
greater than tail, as that means there are possible aliasing in-
flight floating stream loads. This case is rare since the window
is relatively short. However, there is a potential deadlock when
the remote L3 bank happens to be waiting on the writeback.
To break the dependence cycle, the SEL2 will notify the SEcore
to sink a floating stream if it causes a long delay.
Precise State and Context Switch: Stream-floating adds no
architectural state to the decoupled-stream ISA. On a context
switch, SEs will discard/flush all floating streams. On switching
back, all streams are initially not floating.

V. COHERENCE AND CONSISTENCY

As discussed in §II, one of the major overheads for caching
lines without reuse is that eviction causes traffic to the coher-
ence directory (to update snoop filters to avoid unnecessary
invalidations). Our goal is to avoid directory updates for
data without reuse, so we can see the maximum potential
of stream floating. We first outline the approach we take in our
implementation, which does not allow for memory consistency
of stream accesses (but allows for software to provide stream
consistency). Then we outline an alternate that would, but
which has other tradeoffs.

A. Our Approach: Uncached Stream Data
Our approach to avoiding clean-eviction traffic is to simply

let the stream data reside in SEL2’s buffer without being
in a cached state from the perspective of coherence. The
consequence is that we cannot support a traditional notion
of consistency for streams, as another core can perform a
store to stream data that is not detected by the directory.
Note that this is rare in data-processing workloads, as writes
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System Params 2.0GHz, 8x8 Cores

IO4 CPU 4-wide fetch/issue/commit
(4-issue) 10 IQ, 4 LSQ, 10 SB

OOO4 CPU 24 IQ, 24 LQ, 24 SQ+SB
(4-issue) 256 Int/FP RF,96 ROB

OOO8 CPU 64 IQ, 72 LQ, 56 SQ+SB
(8-issue) 348 Int/FP RF, 224 ROB

Func. Units 4 Int ALU/SIMD (1 cycle)
(×2 for OOO8) 2 Int Mult/Div (3/12 cycles)

2 FP ALU/SIMD (2 cycles)
2 FP Div (12 cycles)

L1 D/I TLB 64-entry / 8-way
L2/SEL3 TLB 2k/1k-entry / 16-way, 8-cycle lat.

L1 I/D Cache 32KB / 8-way, 2-cycle lat.

Priv. L2 Cache 256KB / 16-way, 16-cycle lat

L1 Stride Pf. 16 streams, 8 pf. per stream
L1 Bingo Pf. 8kB PHT, 2kB region
L2 Stride Pf. 16 streams, 18 pf. per stream

NoC 256-bit 1-cycle link
5-stage router, multicast
8x8 Mesh, X-Y routing
Memory controller at 4 corners

Shared L3 Cache 1MB per bank / 16-way
20-cycle lat., MESI coherence
Static NUCA, 64B Interleave

Replacement Policy Bimodal RRIP, p = 0.03

DRAM 1600MHz DDR3 12.8 GB/s

SEcore IO4/OOO4/OOO8 256B/1kB/2kB FIFO, 12 streams

SEL2 16kB FIFO, 12 streams

SEL3 12 streams per core, 768 total

TABLE III: System and Microarchitecture Parameters

Benchmark Dataset Parameters

conv3d H/W: 256 × 256, I/O:
16×64, K: 3×3

mv matrix 256×65536
b+ tree 1m leaves, 10k lookups, 6k

range queries
bfs 1m nodes, 599970 edges
cfd fvcorr.domn.193K

hotspot 1024×1024, 8 iters
hotspot3D 512×512×8, 8 iters

nn 768k entries
nw 2048×2048

particlefilter 48k particles, 1000×1000
pathfinder 1.5m entries, 8 iterations

srad 512×2048, 8 iterations

TABLE IV: Workload Datasets

to streaming data are otherwise synchronized. Streams are
guaranteed to see stores prior to the creation of the stream,
which is accomplished by waiting to offload the stream until
the stream configuration instruction is committed. It is thus
the compiler’s responsibility to ensure that this guarantee is
sufficient for correct execution. Our compiler’s strategy is to
limit stream lifetime to synchronization-free regions.

Uncached Coherence Extension: To support the uncached
requests performed by SEL3, we add a minor extension to a
standard 3-level MESI protocol. Specifically we add a new
request: GetUncached (GetU), which means the requested data
will not be cached in the private cache. Figure 12 summarizes
the transition and action for stable states involving GetU. These
are for when (a) the data is present in L3 (e.g. S state), (b)
the data is not present (e.g. I state), and (c) another L2 owns
the data (e.g. M state). In all cases, the transitions follow a
typical GetS, except that the requesting core is not added as
a sharer. In (c), when another L2 owns the data, we let that
core forward the data, again without altering its state.

B. Alternate: Stream-grain Coherence

In stream-grain coherence we let stream data be cacheable
at the core (stream data still uses SEL2’s stream buffer), and
perform coherence at the granularity of streams. Instead of
tracking the coherence state of stream data in the directory, we
let the SEL3 track the coherence state on a per-stream basis, for
example by keeping the accessed ranges of each stream with
base/bound registers (false positives due to conservative range
check will be rare). When another core accesses the directory,
it also checks the SEL3 to see if it needs to invalidate the stream
data (which would eventually cause the stream to re-execute and
sink to SEcore). Also, the SEL3 will need to be informed when to
deallocate a stream’s range data. This would be performed when
the core commits the stream_end instruction. The SEL2
would keep track of which SEL3’s to deallocate for each stream.
This idea is inspired by prior coarse grain coherence tracking
works [40,41,47,50,65], but uses streams as the granularity.

The main advantage of this approach is, of course, that we
could still use coherence events to implement consistency spec-

ulation for streams in the traditional way4. One disadvantage
is that the range checks may have false positives (if a write
is in between the reads of a stream) leading to unnecessary
invalidations (though we suspect this is uncommon). A second
disadvantage is the additional messages to deallocate streams
in SEL3, which can be an overhead for short streams which
touch multiple banks (e.g. due to striding or indirect access).

Implementing stream-grain coherence is future work. How-
ever, we do not expect its disadvantages to be significant for
the workloads we evaluate: streams are relatively long, and
writes do not generally appear in the middle of stream ranges.

VI. METHODOLOGY

Simulator: We extended X86 gem5 [12,39] with partial AVX-
512 support for higher vector width and simulate all cores
in execution-driven, cycle-level detail. The in-order CPU is
extended with a SEcore to support decoupled-stream ISA
extensions. For the NoC, we use Garnet [3].

Compiler: We develop an LLVM-based compiler to gen-
erate stream-specialized programs with X86 backend, with
similar support and mechanisms to prior work [60]. One
difference is the that we use explicit load/store instructions (i.e.
stream_{load|store}) to access stream data, instead of
using pseudo-registers5.

Benchmarks: We simulate 10 OpenMP benchmarks from
Rodinia [14] and two tiled kernels: matrix-vector multiplication
(mv) and 3d convolution (conv3d), as they are important
workloads with stream behavior. Programs are compiled with
-O3 and AVX-512. Table IV summarizes the parameters.

Systems and Comparison: Table III summarizes the default
system parameters including added hardware structures. We
use McPAT [35] to estimate the energy at 22nm, and extended
to model SEcore, SEL2 and SEL3.

4Also, the need to prevent cache line evictions for alias detection (see
Section IV-E) becomes unnecessary, as the SEL3 can inform the requesting core
if it is attempting write ownership of stream data (indicates alias mispeculation).

5Pseudo-registers implicitly map certain registers in a region to stream data,
and can eliminate some instruction overhead. Enabling pseudo-register support
would further reduce the instruction overhead and shift more pressure to the
cache and thus provide even more opportunities for stream floating.
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Fig. 13: Overall Speedup and Energy Efficiency

We choose two different prefetchers to compare against: tra-
ditional strided, because they capture the streaming behavior of
these workloads, and the Bingo spatial prefetcher [9], because
it won 1st place for multi-core prefetching in DPC3 [48] in
2019. By experimenting with different configurations, we found
that adding an L2 prefetcher to both Bingo and the L1-stride
prefetcher also improved performance.

We also implemented a “micro-architecture-only” version
of the concept of coarse-grain requests to L3: bulk prefetch.
Specifically, we augmented the L2 stride prefetcher to group
consecutive prefetch requests as a single message if they are to
the same L3 bank. We group 4 requests, as this reduced NoC
traffic and avoided overfetch. This optimization can only be
applied when the L3 address interleaving granularity is greater
than 64B (one cache line). Since this helped performance less
than just using 64B interleaving, it is only shown in the traffic
analysis (Figure 15).
Specifically, we compare a Base core with no prefetching to:

Stride Prefetching (L1Stride-L2Stride): Baseline core
with L1 and L2 stride prefetcher. Single-cycle request gen.; 16
streams and 8 (16 for L2) prefetching requests per stream.

Bingo Prefetching (L1Bingo-L2Stride): Baseline core with
L1 Bingo spatial prefetcher [9], and L2 stride prefetcher.

Stream Specialized Processor (SS): Stream-specialized
core as described in §III. It gets the benefits of stream-based
prefetching, but not floating.

Stream Floating Processor (SF): Stream floating as de-
scribed in this paper. Unless mentioned otherwise, SF uses
1kB L3 interleaving to reduce stream migration.

VII. EVALUATION

Our evaluation attempts to address two main questions: First
is how much potential exists in exploiting streaming patterns in
reducing network traffic and coherence overheads, and second
is whether that potential is only attainable when streams are
embedded in the ISA. We begin by evaluating the overall
performance and energy efficiency, then analyze how stream
floating reduces network traffic, as well as its sensitivity to
network bandwidth, NUCA mapping scheme and system size.

A. Overall Speedup, Energy Efficiency and Area

Performance: Figure 13 shows the speedup and energy
efficiency over different baseline cores. For small cores (IO4),
SS-IO4 (1.95×) is slightly worse than BG-IO4 (2.10×) due
to limited FIFO size (256B). SF-IO4 further improves the
speedup to 3.20×. The performance benefits can be attributed
to network and coherence benefits, because the prefetchers
generally recognize and optimize for the same patterns. The two
exceptions are bfs, as our evaluated prefetchers do not support
indirection, and nw, which failed on the stride prefetcher
(blocked 2D array accessed in diagonal order). SF-IO yields
64% more performance than SS-IO, as it floats streams to the
cache to reduce network traffic and latency. For OOO cores,
the speedup of SF over SS is still significant, at 37% (OOO4)
to 31% (OOO8), even though the wide OOO can hide much
more memory latency.
Energy: For OOO8, the stride prefetcher and Bingo improve
the energy efficiency by 19% and 21% respectively. Prefetching
may hurt energy efficiency due to inaccuracy (bfs and nw).
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Fig. 14: Requests to L3 of SF-OOO8

SS-OOO8 achieves 1.44× energy efficiency, and SF-OOO8
pushes it to 1.80× with 25% improvement over SS-OOO8.
Area: Most of the area comes from the SRAM to store stream
configuration and data, and we estimate the area using CACTI
and McPAT (22nm). Each SEL3 can hold 12×64= 768 streams
and uses 48kB (0.11mm2) to store stream configuration, as well
as a 1k entry TLB (0.04mm2). These sum to 4.5% overhead
for the L3. At L2, the stream buffer takes 0.09mm2 and
the configuration state takes 0.05mm2. The 35-bit L2 tag is
extended with 4-bit stream id and 12-bit sequence number
(§IV-E). Summing together, stream floating introduces 9% area
overhead for L2 (0.16mm2 / 1.85mm2). The whole chip area
overhead is 1.6% for IO4 and 1.4% for OOO8 (OOO8 also
uses larger stream FIFOs in SEcore).

B. Floating Requests
Figure 14 breaks down requests to the L3 cache into

normal/stream requests from the core and requests from floating
affine/indirect/confluence streams. On average, 68% of the
requests are generated by SEL3, showing that a significant
portion of memory accesses can be floated. Most of the requests
are from affine floating (50%), and only 5% are from indirect
floating (bfs and cfd). For stream confluence, SEL3 can
successfully recognize multicast, e.g. the input feature map in
conv3D constituting 51% of requests.

C. Network Traffic
Figure 15 shows the total number of traveled hops of all

injected flits, normalized to Base, as well as average network
utilization. The traffic in the first graph is classified by the
packet type (from bottom to top): coherence control, data, and
extra messages to manage floating streams (config., migration,
termination, flow control). Besides SS and SF, we include SF-
Aff with only affine floating enabled, and SF-Ind which adds
indirect floating. We also add the bulk optimization for the
prefetchers, as described in §VI, which groups 4 contiguous
prefetch requests.
Streams are accurate: L1Bingo-L2Stride actually increases
the NoC traffic by 34% due to inaccurate pattern and aggressive
prefetching. This can be mitigated by dynamically trading-off
prefetching aggressiveness with accuracy and timeliness. How-
ever, the decoupled-stream ISA extension provides accurate
stream information and SS does not increase traffic (except
3% for cfd and hotspot3D due to interference between
SEcore and normal core requests).
SF fundamentally reduces traffic: The bulk prefetching
optimization reduces traffic by 6%, but it is still limited by
the inaccurate pattern and unnecessarily caches the data with
no reuse. On the other hand, offloading affine streams reduces
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Fig. 16: SF vs. Bingo with 128, 256, 512-bit link (OOO8)

the traffic by 30%. Most of the reduction comes from control
messages, as SF eliminates redundant requests and simplifies
the coherence protocol for offloaded streams. More importantly,
data traffic is also sometimes reduced (e.g. pathfinder),
as not caching stream data without reuse prevents pollution.
Finally, only 2% traffic overhead is needed to configure and
migrate streams, as they capture long-term behavior.

Among these benchmarks, only bfs and cfd contain
indirect streams, and indirect offloading helps in the case
of bfs due to subline transfer. For cfd, the traffic slightly
increased by 2%, as a small fraction of indirect stream data is
already cached. Finally, stream confluence shows significant
benefits on conv3D (sharing the same input feature map) and
particlefilter (resample through the same accumulated
weight array). Overall, SF reduces network traffic by 36% and
average network utilization from 35% (Bingo) to 25%.

D. Sensitivity to NoC Bandwidth
Figure 16 shows the performance of SF and Bingo under

different link widths, normalized to Bingo with 128-bit links.
For some benchmarks, increasing link width does not cause
speedups because: 1. for computation intensive workloads (e.g.
particlefilter) a 128-bit link can already transfer data
fast enough; 2. when streaming from main memory (e.g. nn),
memory bandwidth/latency becomes the bottleneck.

Compared to Bingo with the same link width, SF performs
better as link width increased from 128-bit (1.34×) to 512-bit
(1.43×). This is because with 512-bit link, data messages are
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broken into fewer flits and can be transmitted faster, meanwhile
the latency of control messages becomes proportionally more
critical. SF benefits more from higher link width, as it
eliminates unnecessary control messages.

E. Sensitivity to NUCA Mapping
Addresses are interleaved in L3 banks to avoid hotspots. We

evaluate how interleaving granularity affects performance for
simple linear static NUCA, as finer-granularity implies more
migrations. Figure 17 shows the performance of Bingo and
SF with 64B, 256B, 1kB and 4kB interleaving granularity,
normalized to Bingo-64B. Some benchmarks do suffer from
hotspots with coarse interleaving granularity (e.g. mv) and
Bingo-4kB performs slightly worse than Bingo-64B (0.93×).
SF performs the best with 1kB interleaving, as network traffic
caused by stream control messages is still negligible (1.5% for
SF-1kB vs. 1.1% for SF-IO-4kB), while also avoiding hotspots
in L3 banks. For 64B interleaving, streams constantly migrate,
generating 12% stream control traffic compared to Base, but
still reduce the total network traffic by 22%. Also, floated
streams run ahead of the core, and migration latency is hidden.

Although we consider static NUCA, dynamic NUCA may
also have interesting opportunities. E.g. aggressively migrating
cache lines closer to the requesting tile based on the stream
pattern, or the center of multiple requesting tiles if they are
offloading the same stream (i.e. during stream confluence).

F. Sensitivity to Core Scaling
Figure 18 shows SF’s speedup over SS with varying core

counts, normalized to SS-4x4. Dots indicate L2 and L3 hit
rate in SS. For some benchmarks (e.g. pathfinder), stream
floating has better scaling than SS, especially when the working
set can be cached in L3 and the L2 hit rate is low, as the NoC
bandwidth pressure is reduced and L2 cache capacity is saved
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Fig. 19: Energy vs. Speedup for IO4, OOO4, OOO8

for reused data. However, when the data cannot be cached on
chip, SF suffers from the same memory bottleneck as SS and
yields marginal speedup, e.g. mv-4x8. Overall, SF achieves
slightly better speedup for 8x8 (1.32×) than 4x4 (1.30×).

Figure 19 shows the energy vs. speedup across IO4, OOO4,
and OOO8. For these workloads, SS slightly outperforms state-
of-the-art prefetchers for OOO cores. After enabling streams
to float into the cache hierarchy, significantly new tradeoffs
emerge: SF-IO4 even outperforms SS-OOO8, and has much
lower energy consumption.

VIII. RELATED WORK

Decentralizing Compute: A large body of work explored
the idea of bringing near-data computing to general purpose
systems. One example is PIM-enabled instructions [4], which
enables offloading remote memory instructions. Active Rout-
ing [27] maps computation kernels to the memory network in
a hybrid memory cube. While sending packets for operands,
the network builds a routing tree for the computation, and
computes the result at the least common ancestor of the
operands. SnackNoC [51] leverages the idle time of NoC
router to perform computation. A centralized packet manager
distributes computation to routers, which chains computation
by forwarding. Livia [38] enables user-defined, single-input
computation kernels to be offloaded to the highest level of the
memory hierarchy where the data exists, including memory.

Stream floating focuses on long-term data-movement (in-
spired by [18,44,60–62]) and only computation offloading
of address generation, simplifying hardware requirements.
Furthermore, all of the above require APIs/programmer support,
whereas stream floating leverages an ISA targetable by a simple
compiler.
Near-data for GPUs: EMC [25] augments a GPU memory
controller with compute, and enables miss-generating data-
dependent instructions to be executed at the memory controller.
Pattnaik et al. explore offloading RMW instruction chains to
remote cores, as well as computing at the “meet” of two remote
inputs, to reduce traffic [45].
Programmer Control of Locality: Jigsaw exposes cache
data placement and allocation to software for locality and
avoiding cache interference [10,11]. Jenga [57] can configure
the hierarchy, avoiding unnecessary levels. Coherence Domain
Restriction (CDR) [19] adds a mapping between logical and
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physical cores to limit coherence needs to fewer cores, reducing
traffic and latency. These require some programmer/system
support, and (save for Jenga) will not apply to sharing across
all cores.

Cache Policy Optimizations: Dead-block techniques predict
which cache lines have little reuse, and help quickly replace or
avoid caching them [26,32–34,37]. Other bypassing techniques
follow similar principles [13,22,53,56,63]). It is future work to
selectively decide whether to bypass or allow floating stream
data to enter cache. Similarly, several cache replacement poli-
cies avoid thrashing by initially assuming little reuse [29,30,49].

Another body of work recognizes data sharing patterns to
simplify coherence operations (e.g. producer-consumer [15,31],
migratory [17,23], false-sharing [58]), and also to enable
forwarding to hide latency [1,42,59]. The pattern can be
detected by hardware, or supplied by software.

None of the above support accesses whose requests originate
remotely, which is required for stream floating optimizations.

Prefetching: Stream-floating is heavily inspired by many prior
prefetching works. For example feedback directed prefetch-
ing [55] monitors prefetching usefulness, lateness and pollution
to throttle the prefetcher; our design also monitors usefulness
for floating and throttles based on timing.

Specifically for indirect (data-dependent) prefetching, prior
work explored software techniques [5] and hardware techniques
like IMP [64] and CATCH [43]. Our approach identifies similar
patterns. An even more general approach is the event-triggered
prefetcher [6], which allows specialized prefetching hardware
to run simple programs which can respond to prefetch events.
Our prefetcher is less general, focusing on common forms.

Buffets [46] are an efficient composable storage idiom
for accelerators that enables efficient data-reuse without the
overheads of caching or inflexibility of double-buffering with
scratchpads. They do not integrate with general caches.

In-Memory/In-Cache Computing: Another line of work
attempts to perform computation using the same substrate
as memory devices [20,36]. Compute Cache [2] and Duality
Cache [21], enable SRAMs to serve as both caches and bit-
serial computation units. These suggest a path forward for
enabling stream floating to also offload computation.

IX. CONCLUSION

This work explores the idea of leveraging inherent program
access patterns – streams – as the units of near-data offloading.
We find that streams are prevalent in data processing workloads,
and encode useful information that can help eliminate coherence
and traffic overheads. By exposing stream information to the
caches, they can proactively prefetch with optimized cache
policies and mechanisms. Our microarchitecture can correctly
identify beneficial streams and transparently float them among
the caches, reducing the network traffic as well as improving
the cache utilization.

More broadly, as we continue to scale multicores, especially
without the help of technology improvements, it is important to
consider new avenues for innovation beyond microarchitecture-
only solutions. We believe that the concept of exposing higher
level abstractions like streams can help to enable new memory
system optimizations.
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