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We consider a class of macroscopic models for the spatio-temporal evolution of urban
crime, as originally going back to Ref. 28. The focus here is on the question of how far
a certain porous medium enhancement in the random diffusion of criminal agents may
exert visible relaxation effects. It is shown that sufficient regularity of the nonnegative
source terms in the system and a sufficiently strong nonlinear enhancement ensure that
a corresponding Neumann-type initial-boundary value problem, posed in a smoothly
bounded planar convex domain, admits locally bounded solutions for a wide class of ar-
bitrary initial data. Furthermore, this solution is globally bounded under mild additional
conditions on the source terms. These results are supplemented by numerical evidence
which illustrates smoothing effects in solutions with sharply structured initial data in
the presence of such porous medium type diffusion and support the existence of singular
structures in the linear diffusion case, which is the type of diffusion proposed in Ref. 28.
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1. Introduction

This manuscript is concerned with an adaptation of a macroscopic model for the
dynamics of urban crime, such as residential burglaries. In its original version, as
proposed in Ref. 28, this model takes the form

w =V - (DVu) — 2V - (gw) —w+ Bi(x,t), z€Q t>0,

1.1
vy = Av 4+ uv — v + By(x,t), z €, t>0, (1.1)
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System (1.1) is derived from an agent-based lattice model that incorporates the
movement of criminals, u, and a scalar field representing the attractiveness of crime,
v, measuring the appeal of a location from a criminal agents perspective. The sys-
tem is grounded on the assumptions of routine activity theory and the so-called
repeat and near-victimization effect®27. Routine activity theory asserts that crime
revolves around three factors: a potential offender, a suitable target, and the ab-
sence of guardianship?.

The repeat and near-repeat victimization effect states that criminal activity in a
certain location increases the probability of another crime occurring at the same,
or nearby, locations within a short period of time. This effect has been measured
in real-life data for crimes like residential burglaries'®27. In (1.1), this self-exciting
nature of crime is incorporated in the assumption that each crime increases the at-
tractiveness field, giving rise to the summand +uwv in the second equation (following
from the fact that uv is the expected number of crimes). The near-repeat victim-
ization effect is incorporated in the diffusivity of the attractiveness value, leading
to the term Aw in the second equation.

It is also assumed that when criminal agents commit a crime they exit the system,
which gives rise to the term —uw in the first equation. To counteract the exit of
criminal agents, the criminal population is subject to growth that is determined
by the known function B;. Moreover, an assumed base attractiveness value gives
rise to the the growth function, Bs, observed in the second equation. We remark
that for the analysis done in Ref. 28, it is assumed that B; and By are constant
functions; however, the authors mention that spatially and temporally dependent
functions B; and Bz are more realistic. On a final note, in system (1.1), criminals
are assumed to move with a combination of unconditional dispersal, DAu, and con-
ditional dispersal, —2V - (%Vv), biased by high values of attractiveness. In fact, in
system (1.1), D is a constant and thus the criminals move with a combination of
linear dispersal and a chemotactic-like dispersal.

Before we discuss the model of focus, let us mention some related previous works.
The fundamental issue of the well-posedness of (1.1) has been addressed by various
authors. In Ref. 26, the existence of global solutions to (1.1) in a one-dimensional
interval has been established; in two-dimensional balls and in the presence of ra-
dially symmetric initial data, at least some globally defined generalized solutions
have been constructed®. The well-posedness of certain variants of (1.1) have been
addressed in Ref. 20 and Ref. 25. Beyond the well-posedness theory, the existence of
spatially heterogeneous equilibrium solutions and their qualitative properties have
also been addressed. In Ref. 29, a weakly nonlinear analysis around the bifurcation
point between the linear stability and instability of the constant solutions is per-
formed. Global bifurcation of spatially heterogeneous steady states emanating from
the unique constant equilibrium solution is investigated in Ref. 6. The existence
and stability of spike-type equilibrium solutions to some related problems has been
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studied in Refs. 4, 12, 17, 18, 21 and 33, for instance. Finally, we note that gen-
eralizations to system (1.1) that include police dynamics have been proposed and
analyzed in Refs. 16, 23, and 24; or where criminals disperse through a Lévy process
over Brownian motion®. For other related models and their analysis we refer the
reader to Refs. 2, 8, 5, 7, 19 and 37.

The adaptation of (1.1) that we consider in this work is based on the premise that
criminals might have a tendency to avoid regions with a high density of other crim-
inals. For example, this is reasonable when criminals want to avoid competition,
or even suspect that hotspot policing, a strategy where the police force is deployed
to areas with high crime, is being employed?®. In such cases, criminals might want
to avoid areas with a high police density (or equivalently areas with a high crim-
inal density). The assumption that criminal agents tend to avoid police officers is
a natural consequence of routine activity theory. Indeed, one of the factors needed
for crime to occur, based on this theory, is absence of guardianship. Thus, criminal
agents will tend not commit a crime in locations where there are police agents, but
will instead choose to move away from areas with a high density of police.

A natural approach to incorporate such a change in the movement strategy of crim-
inal agents consists in allowing the diffusion rate D to depend on u — recall that
in (1.1), D is a constant. In particular, we assume that the diffusivity of criminals
increases with wu, thus modeling an overcrowding effect. Here we concentrate on
the prototypical algebraic choice of D = D(u), hence leading to porous medium
type diffusion operators. In the framework of a full no-flux initial-boundary value
problem we subsequently consider the variant of (1.1) given by

ug = V- (umVu) — xV - (%Vv) —uv + By(z,t), e, t>0,

vy = Av 4+ uv — v + By(x,t), x e, t>0, (1.2)
u _ 9 g, red, t>0,
u(z,0) = up(z), v(x,0)=1vo(z), x € 9,

in a bounded domain Q C R? with smooth boundary. Here, B; and By are suitably
regular nonnegative functions on  x (0,00), m > 1 is a given parameter and y is
allowed to attain any positive value, thus including the choice y = 2 in (1.1) as a
special case.

We note that in order to keep the modeling framework as simple as possible, in
this work we do not independently model the dynamics of the police force by, e.g.,
describing their population density through an additional variable, but rather we
make the simplifying assumption that the police force will match those of the crim-
inal agents.

Main results: Blow-up suppression by strong diffusion enhancement.
Due to the potentially substantial destabilizing character of the self-enhanced cross-
diffusive interaction therein, systems of the form (1.1) seem to bring about signifi-
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cant challenges already at the level of basic solution theories. Accordingly, the few
analytical findings available for (1.1) and related systems are either restricted to
spatially one-dimensional settings2®, or address ranges of suitably small y which
do not contain the relevant choice Y = 2 !0, or concentrate on certain small-data
solutions in cases of sufficiently small B; and By 3!, or resort to strongly generalized
concepts of solvability which do not a priori preclude the emergence of singulari-
ties within finite time!3:36. Although apparently no analytical study has rigorously
detected the occurrence of such phenomena yet, the outcome of numerical experi-
ments supports the conjecture that indeed the linear diffusion mechanism in (1.1)
is insufficient to rule out the possibility of explosions (cf. also Section 9).

In contrast to this, we shall see that the presence of suitably strong nonlinear dif-
fusion enhancement entirely suppresses any such singular behavior in (1.2) within
finite time intervals, as expressed in the following statement on global existence of
locally bounded solutions:

Theorem 1.1. Let Q C R? be a bounded conver domain with smooth boundary,
and suppose that x > 0, that

By and By are nonnegative functions from C*(Q x [0, 00)), (B)
and that

m > (1.3)

2
Then for any choice of functions ug and vy which are such that
{uo e Whe(Q) s nonnegativi and that (1.4)
v € WH(Q) s positive in Q,
the problem (1.2) possesses at least one global weak solution (u,v) in the sense of
Definition 8.1 below. This solution is locally bounded in that

esssup |u(-, )| e () < 0 forallT >0
te(0,T)

and
esssup v (-, t)[[wi.aq) < o0 for all T >0 and q > 2.
te(0,T)

Under quite mild additional assumptions on B; and Bs, particularly fulfilled by
any nonnegative By = By(x) € C1(Q) and 0 # By = By(x) € C*(Q), solutions can
be found which are in fact globally bounded, meaning that in such cases moreover
even any infinite-time singularity formation is ruled out:

Theorem 1.2. Assume that Q@ C R? be a bounded conver domain with smooth

boundary, that m > % and x > 0, and that (ug,vg) satisfies (1.4), and suppose

furthermore that By and Bs are such that beyond (B) we have

sup {Bl(z,t) + Bg(x,t)} < 0 (B1)
(z,t)€Qx(0,00)
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and

liminf/ Bs(x,t)dx > 0. (B2)
t—oo [

Then (1.2) admits a global weak solution according to Definition 8.1 which is globally
bounded in the sense that

esssup ||u(-, t)|| o (o) < 00 (1.5)
>0

and

esssup [[v(-, t)|lw1.a(q) < 00 for all ¢ > 2. (1.6)
>0

Accompanied and illustrated by outcomes of corresponding numerical simula-
tions, to be presented in Section 9, these results quantitatively identify an effect of
the considered diffusion strengthening on overcrowding prevention. This seems to
indicate that nonlinear migration mechanisms of the said flavor may stabilize sys-
tems of the considered form by precluding a model breakdown due to the emergence
of singularities. Viewed in the contexts of the addressed application seems to be of
relevance, especially due to the nontrivial size of criminal agents. As partially seen
in Section 9, the description of crime hotspot formation, as known to occur in asso-
ciated typical real-life situations, is thereby transported to mathematical sceneries
involving structured but bounded spatial profiles, rather than exploding solutions
such as naturally going along with Keller-Segel type modeling of aggregation in

populations of microbial individuals!®3%3.

2. Regularization and basic properties

In order to conveniently regularize (1.2), we combine the essence of the correspond-
ing procedure in Ref. 36 with a standard non-degenerate approximation of porous
medium type diffusion operators, and hence we shall subsequently consider the
problems

ey =V ((ue + €)™ 'Vu.) = xV - (Z—:VUE) — uv: + By(x,t), zreN, t>0,

Ver = Avg + 1f€5§§v5 — vz + Ba(z,t), x €N, t>0,
G = G =0, z €N, t>0,
ue(x,0) = ug(z), ve(z,0)=vy(x), x €,

(2.1)

for € € (0,1), which indeed are all globally solvable in the classical sense:

Lemma 2.1. Assume (B) and (1.4), and let m > 1 and e € (0,1). Then there exist
functions

ue € C%(Q x [0,00)) N C%L(Q x (0,00)),

e € Mo CO10,00)5 WH2()) 1. C21 (@ x (0, 00)),
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which solve (2.1) classically in Q x [0,00), and which are such that u. > 0 in
Q x (0,00) and v. > 0 in Q x [0, 00).

Proof. This can be seen by a straightforward adaptation of the reasoning in Ref. 36
on the basis of standard results on local existence and extensibility, as provided
e.g. by the general theory in Ref. 1. D

Throughout the sequel, without further explicit mentioning we shall assume that
(B) and (1.4) are satisfied, and for m > 1 and € € (0,1) we let (u.,v:) denote the
solutions of (2.1) gained above.

In our respective formulation of statements on regularity of these solutions, we find
it convenient to make use of the following notational convention concerning a certain
time independence of constants under the hypotheses (B1) and (B2).

Definition 2.1. Let K : (0,00) — (0,00). We then say that K satisfies (K) if K
has the property that

sup K(T) < oo whenever (B1l) and (B2) hold.
>0

With reference to this property, our first basic statement on a pointwise lower
bound for the second solution component, resembling similar information found in

Ref. 26 and in Ref. 36 already, reads as follows.

Lemma 2.2. Let m > 1. Then there exists K : (0,00) — (0,00) fulfilling (K) such
that whenever T > 0,

1
< . .
ol ) < K(T) forallz e Q,t € (0,T) and € € (0,1) (2.2)

Proof. Firstly, in view of the nonnegativity of u.,v. and Bs it follows by a com-
parison argument that

ve(m, t) > { 116% vo(y)} et for all z € Q,¢t > 0 and € € (0,1). (2.3)
Y

Moreover, the convexity of {2 allows us to import from Ref. 11 a result on a pointwise

positivity feature of the Neumann heat semigroup (e');>o on Q to fix ¢; > 0
fulfilling

et >y / ¥ in Q for all ¢ > 1 and any nonnegative 1) € C°(Q),
Q
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whence again by the comparison principle, for arbitrary t; > 0 we can estimate

t
- pH(A=1) / (t—s)(A-1) e (-5 8)v () Bo(- d
vel) = vo + {1+5u5(,s)v5(~,s) + 2(’5)} 5

o e

Combining (2.3) with (2.4) readily yields (2.2) with some K satisfying (K). O

Likewise, our second basic observation has quite closely related precedents in
Ref. 26 and Ref. 36.

Lemma 2.3. Let m > 1. Then there exists K : (0,00) — (0,00) such that (K)
holds, and such that for all T > 0,

/ ue(+,t) < K(T) for allt € (0,T) and e € (0,1), (2.5)
Q
and that
/ ve(+, 1) < K(T) for allt € (0,T) and € € (0,1). (2.6)
Q

Proof. According to Lemma 2.2, we can find k; : (0,00) — (0, 00) with the corre-
sponding property (K) such that for all T' > 0,
1
— <k (T) inQx(0,7T) for all € € (0,1). (2.7)
Ve
Then letting

ko (T) == min {1, lel( )}, T>0, (2.8)

we use (2.1) to see that given any 7' > 0, for all ¢ > 0 and each ¢ € (0,1) we have

{2 fyve fpoc} + @ {2 fucs [}
= 2/u5v€+2/
/“5 / 1+u€€1;;€ /QB2
—&-ka(T)/Qus-ﬁ-ka(T)/st
< —/QUE’UE—FQICQ(T)/QUE-FQ/QBl"F/QB% (2.9)
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because k2 (T') < 1. Using that moreover 2ks(T) < ﬁ and hence

1
7/ u5v5+2k2(T)/ U < —7/ u5+2k2(T)/ u: <0
Q Q ki(T) Ja Q
for allt € (0,7) and € € (0,1), by (2.7), from (2.9) we infer that

i{2/§zug+/§zve}+kz(ﬂ'{2/Qus+/9ve}
<k)i= s {2 mis [ 5o}

for all ¢t € (0,T) and € € (0,1). Therefore, an ODE comparison shows that

s sl o [ 22}

for all t € (0,T) and € € (0,1), from which both (2.5) and (2.6) result upon the

observation that in view of (2.7), (K) holds for the function Z—i O

3. Estimates for v, in Wh9(Q) with q < 2

The following estimate essentially reproduces a similar finding from Ref. 36 to the
present framework involving slightly different hypotheses on B; and Bs.

Lemma 3.1. Assume that m > 1, and let p € (0,1). Then there exists a function
K =K® :(0,00) — (0,00) which satisfies (K) and is such that whenever T > 0,

t+1
/ / WPV |? < K(T) forallt € (0,T) and € € (0,1). (3.1)
¢ Q

Proof. Relying on Lemma 2.3, we can fix a mapping k : (0,00) — (0,00) which
enjoys the boundedness feature in (K) and is such that for all 7' > 0,

/ v(-, 1) <k (T) forall t € (0,74 1) and € € (0,1),
Q
whence given p € (0,1) we can use Young’s inequality to see that

/ VP (1) < / (UE(-,t) + 1) < k1 (T) + |9 forallt € (0,7 +1) and € € (0,1).
Q Q

(3.2)
Since according to (2.1) we have

1d uv?
—— [ W =(1- vp_Qsz—/vp—i—/ S —l—/v”_lB
pdt o € ( p)A € | €| o e Ql+5us 0 € 2

> (1—p)/v§_2|Vva|2—/v§ forallt >0 and e € (0,1)
Q Q
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and thus

t+1 1 1 t+1
u—m/“/@*WmP f/vﬂ¢+n—f/w%w+/“/¢
t Q P Ja Q
1 t+1
/ Lt 1) / / o
Q

for all t > 0 and € € (0, 1), utilizing (3.2) to estimate

/ Ht+) /m/ (T) + [9]) + k1 (T) + |9

for all t € (0,7T) and ¢ € (0,1). We arrive at (3.1) upon an evident choice of K. O

IA

I /\

Besides being of independent use in some of our subsequent estimates (see
Lemma 4.1 and Lemma 7.2), Lemma 3.1, through suitable interpolation involv-
ing Lemma 2.3, also entails the following boundedness property of v. with respect
to the norm in W14(Q) for ¢ € [1,2) arbitrarily close to 2.

Lemma 3.2. Suppose that m > 1 and let q € [1,2). Then there exists K = K@ .
(0,00) = (0,00) fulfilling (K) with the property that for oll T > 0, any ¢ € (0,1)
and each t € (0,T) fulfilling t > 2 one can find to = to(t,e) € (t —2,t—1) such that

[0 (- to) [lwr.a(e) < K(T). (3.3)

Proof. We evidently need to define K(T') for T' > 2 only, and to achieve this we
first employ Lemma 3.1 and Lemma 2.3 to find k; : (0,00) — (0,00), 7 € {1,2},
which comply with (K) and are such that whenever T' > 2,

t—1
/ / v;%|VUE|2 < k1 (T) for all t € [2,T] and € € (0,1) (3.4)
t—2 Jo
and

/ v. < ks(T)  forall £ € (0,T) and = € (0,1). (3.5)
Q

Moreover, given ¢ € [1,2) we define p = p(q) := % > 1 and make use of the
continuity of the embedding W12(Q2) < L*(Q) to fix ¢; = ¢1(g) > 0 such that

1ol iy < et Vol By +crllpll By forall g € WH(Q).  (36)

Now letting 7' > 2 and t € [2,T] be arbitrary, from (3.4) we infer the existence of
to = to(t,e) € (t —2,t — 1) such that

/S)U;%('7t0)|vvé("t0)|2 < ki(T), (3.7)
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which in conjunction with (3.6) and (3.5) entails that
D i 4p
[ w2(t0) = o (1) 2
i 4p 3 4p
Cleve ('atO)HL2(Q) + Cl””é ('7t0)||L4(Q)

= Eg.{/Qvgg(.,t0)|wg(-,t0)|2}2p+c1~{/Qve(-,to)}p

C
< ks(T) = KS(T) := 47117 EP(T) + e1k2(T).

IN

Once more combined with (3.7), due to Young’s inequality and thanks to our defi-
nition of p this shows that

_3 512 %
[vettolr = [ ot wlvetmr} o )
Q Q
< [o Vot + [ 7Tt
Q Q

< ki (T) + ks (T).
In view of (3.5), this implies the claimed boundedness property in W14(Q). D

4. Superlinear integrability properties of u.

Our derivation of further regularity properties of v. will crucially rely on the fol-
lowing a priori information on the first solution component, obtained by means of
a standard testing procedure on the basis of Lemma 3.1.

Lemma 4.1. Let m > 1. Then there exists K : (0,00) — (0,00) satisfying (K)
such that if T > 0 then
t+1
/ /(us + &)™ Hue + 1) 3| Vu|? < K(T) for allt € (0,T) and ¢ € (0,1),
¢ Q
ifm e (1,2],

t+1
/ /(us + &) 4V |2 < K(T) forallt € (0,T) and ¢ € (0,1)
t Q

if m> 2.
(4.1)

Proof. We again return to Lemma 2.2 and additionally employ Lemma 3.1 to pick
k; : (0,00) — (0,00), i € {1,2}, which comply with (K) and are such that if T > 0
then

Ve 2

T e (0,7)  forallee (0,1) (4.2)

and

t+1
/ / v Vo2 < ks(T)  foralltc (0,7) and € (0,1),  (4.3)
t Q
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and to further prepare our argument for large m we utilize Young’s inequality
together with (B1) to find k3 : (0,00) — (0, 00) which is such that (K) holds and
that if m > 2, then whenever T > 0,

! m—2 1 m—1
{1€1(T)+”Bl("t)||L°°<m}-§ S gt @) frallte 07).

(4.4)

Now for such m, we use (u: + €)™ 2 as a test function in (2.1) to see that
1 d

- - . m—1 -9 / . 2m—4 52
g L =2 [ e+ v
Vv,

Ve

=(m— 2)X/ ue(us + &)™ *Vu, -
Q
—/ e (ue + €)™ 20, + / (ue + €)™ 2By for all t > 0 and € € (0,1]4.5)
Q Q

where once more by Young’s inequality, and by (4.2), given T' > 0 we can estimate

\Y%
(m — 2))(/ e (ue + )" 3V, - Uve
Q 5

) — 2)yv2 - 2 |2
S m /(ua _~_E)2m—4|vua‘2 + (m )X / ( u ) ‘VU ‘
Q 2 Q

2 Ue + € v2
-2 —2)x? 1 _3
< L/(ug+5)2m_4|Vu5\2+uk%(T)/ L
2 Ja 2 Q
forall t € (0,7) and ¢ € (0,1), and where (4.2) together with (4.4) ensures that for
all 7' > 0,
—/ e (ue + €)™ v, + / (ue +¢)" 2By
Q Q
1 -2 -2
< —— m m—2p
<~ [t [ ety

ff; w m—1 € w m—2 w m—2
= kl(T)/Q(erg) +k1<T)/Q(E+5) +/Q(5+€) B;

1 m—1 1 ) ) " 2
_m/ﬂ(ug‘f'f) +{k1(T)+||Bl(7t)||Loo(Q)} /Q( €+E)
< —L/(uﬁg)mfwk?)(z’)\m for all ¢ € (0,T) and = € (0,1).
Q

2k1(T')
Therefore, (4.5) entails that whenever T' > 0,
1 d m—1_ M—2 2m—4 2 1 / m—1
T AR Ml O e NI e O
m—2)x% 1 _3
< PP @) [ ot we + kel (46)

forallt € (0,T) and € € (0, 1), from which in light of (4.3) the respective inequality
in (4.1) readily results upon an integration in time.
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We are thus left with the case when m € (1, 2], in which we let ®(&) := foﬁ Jo (r+
1)™=3drdo, € > 0, and noting that ®”(£) = (£ +1)™3 for all £ > 0 we once more
resort to (2.1) to see that similarly to the above, given an arbitrary T > 0 we have

d _ ! m—1 Ue
G [ ow = [ @) {v (e +9" 90 = xV - (2290.) - v, +Bl}
m—1z/ 2 " Ve
=— [ (uc+e) " (u)|Vue|” + x | ue®”(us)Vue -
Q Q Ve

7/ ue®’ (ue) v, Jr/ &' (u.) By

Q Q

= — / (e + &)™ Hue + D)™ 3| Vu|? + X/ e (ue +1)™ 3V, -
Q Q

—/Qusfb’(us)vg—k/ﬂ@l(us)Bl

<3 [ o v - [ e
Q

—/ (ue 4+ )" (ue +1)™ 3\Vvs\ /@’(ue)Bl
Q

2 _3
<—~1/0%+6V11W8+1V1ﬂVuA2 Xfﬁ%TX/vgﬂV%P
2 Q 2 Q

Vo,

Ve

_/%M%m+/@%wl (4.7)
Q Q
for all t € (0,7) and € € (0,1) because of the pointwise inequality

uZ(ue +e)' "M (ue + 1) < (ue + )P (e + 1) <,

valid throughout € x (0,00) for each ¢ € (0,1) and any such m. Now from the
definition of ® we furthermore see that for all £ > 0,

o) = { — ()2 ?f ,m € (1,2), 48)
In(§ + 1), if m=2,
and
2() = {_a—m—mﬂnm* bttt gy, me(1,2)

€+ mE+1) ¢, if m =2,

from which it follows that for each £ > 0,

EO'(€) — D(E) = { merE D" mm ) - ey, Tme L),

E—(E+ 1) In(¢+1), if m = 2.

Using that (€ +1)™~2 < 1 for all £ > 0 when m < 2, and that In(¢ +1) < £ for any
¢ > 0, we thus obtain ¢; > 0 and ¢y > 0 such that in both cases,

£D'(E) —D(8) > — forall € >0



July 9, 2020 20:42 WSPC/INSTRUCTION FILE
’crime nonlinear diffusion final 2”

Relaxation in an urban crime model 13

and
(&) <€+ for all £ > 0.

As (4.8) moreover implies that & > 0 on [0, 00), once again going back to (4.2) and
recalling Lemma 2.3, we can thus find k4 : (0,00) — (0, 00) fulfilling (K) such that
for fixed T' > 0 we can estimate the two rightmost summands in (4.7) according to

! ! ]‘ / !
- /Q 0e® (). + /Q ¥ (1) By < o /Q e (1) + | By ()| ey /Q &' (u)

1
<y J, (o +a)

1B () e / (e + c2)
Q

1
< ‘kl(T>/Q‘I>(“€)+’“4(T)

for all t € (0,T) and € € (0,1). For any such T, from (4.7) we consequently derive
the analogue of (4.6) given by

d 1 1
— (I>u5—1—7/ue—i—smflus—i—lm*SVus?—{—i/fI)us
R N e L T T

2
< X?k{ (T)/ vs F|Vol? + ka(T)  forallt € (0,T) and £ € (0, 1),
Q

which due to (4.3) and the evident nonnegativity of ® entails the claimed inequality
in (4.1) also for such values of m. |

An interpolation of the latter with the L' bound provided by Lemma 2.3, namely,
yields a spatio-temporal integral estimate for w. itself which involves superlinear
summability powers conveniently increasing with m.

Lemma 4.2. Let m > 1. Then there exists K : (0,00) — (0,00) satisfying (K)
such that whenever T' > 0,

t+1
/ / u?™ ! < K(T) for allt € (0,T) and € € (0,1). (4.9)
¢ Q

Proof. We fix p € C°(]0,00)) such that p = 0 on [0, 1}, p(&) = &m 2 for all € > 2

and 0 < p(§) < €72 for all £ > 0, and let P(¢) := [; p(o)do for € > 0. Then P

belongs to C'*(]0,00)) and satisfies P(£) < % as well as
13 é-m—l _ 2m—1
P > / plo)do = . T > 6mt for all £ >3 (4.10)
. —
. 1—(2)m! .
with ¢; := — 25— > 0. Since thus

1P (ue)

1 B
"< (m—l)fm/us forallt >0and e € (0,1)
Lm=1() Q
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and
IVP@ ey = [ PVl < [ v
Q {ue>1}

for all ¢ > 0 and € € (0, 1), and since herein

/ w2V [? = / u™ w3 V|2
{u521} {“621}

< 23_’”/(% )™ (e + 1) 3|V 2
Q
for all ¢ > 0 and € € (0,1) if m < 2 and, clearly,
/{ }ugm*4|Vu5|2 < (ue +)*™ 4| Vu|? for allt >0 and € € (0,1)
u:>1

if m > 2, by combining Lemma 2.3 with Lemma 4.1 we obtain functions k; :
(0,00) — (0,00), i € {1,2}, for which (K) holda and which are such that when
T >0,

<k (T) forallte (0,T+1)and e € (0,1) (4.11)

1P, g <

and
t+1
/ IV P(ue(-, s))||2L2(Q)ds < ko(T) forall t € (0,T) and € € (0,1). (4.12)
t
As the Gagliardo-Nirenberg inequality provides c1 > 0 fulfilling
m—1

e for all € W2(9Q),
()

2m—1 1
me1 < 2 m—1
/QIsO\ P s allVelzolel "2 o+ 1H90

we thus infer that for any T > 0,

1

t+1 t+1
/ /P ) <a / IV P ) 220y I P DI T ds
t

Lm=1(Q)

t+1 2m—1
+c Plu(-,8))|| ™3 ds
e
m—1

< ik (T)ko(T) + k)™ (T)

for all t € (0,T) and € € (0,1), from which (4.9) immediately follows thanks to
(4.10) and the trivial fact that «2™~! < 32"~ in {u. < 3}. O

5. Estimating ||vc|lw1.qa(q) for some g > 2 when m > %

Now an observation of crucial importance to our approach asserts a bound for v,
with respect to the norm in W14(2) with some ¢ > 2, provided that the integrability
exponent in Lemma 4.2 can be chosen to be superquadratic. This circumstance can
be viewed as the core of our requirement on m in Theorem 1.1 and Theorem 1.2.
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Lemma 5.1. Let m > 3. Then one can find a function K : (0,00) — (0,00) such
that (K) holds, and that if T > 0 then

lve (-, ) lwr2m-10) < K(T) forallt € (0,T) and € € (0,1). (5.1)

Proof. As p:=2m — 1 satisfies p > 2, a Gagliardo-Nirenberg interpolation corre-
sponding to the continuous embeddings WP (Q) < L>°(Q) — L!(Q) warrants the
existence of ¢; > 0 such that

lole@ < cillelinm el — forallo e W@, (5.2)

with the number a := 35%2 € (0,1) satisfying

1 —1 1 —1)(3p—2 3p? -3 2 1

L=l 1 (e-)Bp—2) 3 —dp+2 1
p  pa p 2p? 2p? 2
because 2p% —3p+2 = 2(p—1)?+p > 0. We can therefore pick q € (1
close to 2 such that

,2) sufficiently

q p pa
and thereupon invoke known smoothing properties of the Neumann heat semigroup
(€72) 550 on Q34 to fix positive constants ¢z, c3 and ¢, fulfilling

11 p-1
+ 2= (5.3)

||e”Ag0||W1,p(Q) < o Y ellwra() for all ¢ € (0,2) and ¢ € C*(Q)  (5.4)
and
le”®@llwrr() < esllgllwre — forallo € (0,2) and p € CH(Q)  (5.5)
as well as
le”®@llwrniy < cac 2 @llo) ~ forall o € (0,2) and ¢ € C°(Q),  (5.6)

where o := % — % > 0. Apart from that, Lemma 2.3 together with Lemma 4.2, (B),
Lemma 3.2 and (1.4) provides functions k; : (0,00) — (0,00), i € {1,2,3,4}, which
satisfy (K) and are such that for all T > 0,

lve (-, )| L1 () < ka(T) for allt € (0,T) and € € (0,1) (5.7)
and
t
/ / WP < ky(T)  forallt € (0,T) and = € (0,1) (5.8)
(t-2); Jo
as well as
| Ba(- )| ey < ka(T) forall t € (0,T) and ¢ € (0,1), (5.9)

and that for any such T', each ¢y € (0,7 and arbitrary € € (0,1) we can find ¢, > 0
t. = t«(to,€) > 0 with the properties that

te € ((to—2)4, (b0 —1)4) and  |Joe(-, &) lwrao) < ka(T)  if to > 2, (5.10)
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and that
t, =0 and ||U5(-,t*)||wl,m(g) <cg:= HUOHWLOO(Q) if ty € (0,2). (5.11)
Now given T' > 0,ty € (0,T) and ¢ € (0, 1), taking ¢, = t.(to, ) as thus specified
we estimate the number
sup {(t—t*)a||vs(~7t)||W1,p(Q)} if tg > 2,
M = { tE(tto] (5.12)
sup |[[v= (-, ) [[wr (o)
te(ts to]

by relying on a Duhamel representation associated with the second sub-problem of
(2.1) to see that due to (5.6),

t
- _ —)(A— Ue (e, 8)ve (-, 8
ve (-, ) lwrr gy = [|el 1 1)v5(~,t*)+/ (=) (A—1) <, 8)ve (-, 8) s

. 1+ euc(-, 8)ve(+, 8)

t
+/ =)A= By (- 5)ds
t

. We(Q)
< e[l 102 (1) e o)
t
+c4/ (t—s) e (%) ue( 8)ve (5 5) ds
N L+ euc(,8)v: (5 8) || 1o )
t
+c4/ (t=5) 2By, 5) | oy ds (5.13)
Ty

for all ¢t € (¢4, to], because tg — t, € (0,2). Here if ¢y > 2, then by (5.4) and (5.10),

e B[R () lwre(ay < calt—t) ™ e t) lwrage) < coka(T)(t—t) 7"
(5.14)

for all t € (4, 10], and if tp < 2, then by (5.5) and (5.11),
6_(t_t*)||€(t_t*)AUa(',t*)HWl,p(sz) < eallve (-, t)llwr () < eses, (5.15)

while (5.9) asserts that

¢ ¢
04/ (t—s)"2e" ") Bs(-, 8)|| Lo (yds < C4/€3(T)/ (t—s)"2ds
t ¢

= 2e4ks(T)(t — t,)2

< 23 ¢4ks(T) (5.16)
for all t € (t,,to]. In order to appropriately cope with the crucial second last sum-
mand on the right of (5.13), we first concentrate on the case when ¢y > 2, in which

we apply (5.2) together with (5.7) and recall our respective definition of M from
(5.12) to find that

H ue (- 8)ve (-, 5)

1+ euc(-, s)ve(s, 8)

< ||u8('a3)||LP(Q)||U8('a3)||L°°(Q)
Lr(Q)

< crllusC, 9)llze@llve () fyne ey e 9) o)

< erky T (T)M® |Juc(-, 8)| oy (s — t) =™
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for all s € (t4,tp), so that by the Holder inequality,

¢
04/ (t— s)_%e_(t_s)
¢

*

ue(+, 8)ve (-, 8)

d
1+ cue(s, $)ve(+, 8) s

Lr(Q)

t
< ekl DM [ (=97 = 1) s,y ds
t

t
clc4k%_a(T)Ma~{/ /u’s’}
t.JQ

for all ¢t € (t4,to]. Here,

p—1

. {/:(t sy T (s — t*)—iii“ids} (5.17)

paa

t
/ (t—s) T D(s—t,) pids=cg(t —t,) D »1  forallt>t,,
ty

=

IN

with cg := fol 1-0) _2<prl> 07%d0 being finite, because the inequalities p > 2, ¢ >
1 and a < 1 imply that 5245 < 1 and £29 = EZ ‘{;q < a < 1. In view of (5.8),
from (5.17) we therefore obtain that

t
84/ (t—s)_fe_(t s)
ty

< creses KIS (T)MO(t = £,)5" 372 for all £ € (ts, o], (5.18)
which combined with (5.14) and (5.16) shows that (5.13

ue (-, 8)ve (-, 8)
1+ cue (s, s)ve(s, 8)

ds
Lr(Q)

~

implies the inequality

N |

(t = t0)* o<, ) [ o) §02k74(T)+clc406p kl YTVRE (T)MO(t — t,) " —2—oote

+25 cqky (T)(t — t,)°
< ks(T) + ks(T)M* for all ¢t € (t4, to] (5.19)
with
ks(T) := max {62k4(T) + 2%C4k3(T) <29 cm&?k‘%‘“(T)kQ% (1) - 2%7%70“”0‘},

because again since p > 2 and a < 1,

As a further consequence of the fact that a < 1, (5.19) finally entails that
M < kg(T) := max {1, (2k5(T))ﬁ},

from which by the definition of M in (5.12) it particularly follows that whenever
tO Z 27

[[ve (- to) [[wrw () < (to — )™M < ke(T), (5.20)
because tyg —t, > 1 and o > 0.

If ¢ty € (0,2), however, then referring to the respective part in (5.12) enables us
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to actually simplify the above reasoning so as to infer, in a way similar to that in
(5.17) and (5.18), that

t
04/ (t— 8)_%6_“_5)
t

*

ue(+, 8)ve (-, 8)

d
1+ cue(s, 8)ve(+, 8) s

LP(Q)

ot o { el

< clc4c7p kl “(T)k2 M®  for all t € (t,to] = (0,t0],

with ¢7 1= fo 0TI do = %22@*1) . In this case now relying on (5.15) instead
of (5.14), from (5.13) and (5.16) we thus infer that

p—1

lve (-, t) [[wre () < c365 + creacs” kl a(T)kQE (TYM* + 2%C4k3(T) for all ¢ € (0, to]
and that hence
M < kr(T) + b (T)M?,

p=1 1
where k7(T) := max{cscs 422 caks(T) clc4c7p E1=%(T)kZ (T)}. Again since a < 1,
this especially shows that for any such ¢y,

Ve (-, to) lwin(e) < M < max {1, (2 (T)) 5 }

which together with (5.20) yields the claimed conclusion. O

6. Boundedness properties in L>=(2) x W14(Q) for arbitrary q > 2

With the knowledge from Lemma 5.1 at hand, we can successively improve our
information about regularity in the course of a three-step bootstrap procedure, the
first part of which is concerned with bounds on w. in LP(f2) for arbitrarily large
finite p.

Lemma 6.1. Let m > % and p > max{l,m —1+ gﬁj} Then there exists K =
K®) :(0,00) = (0,00) such that (K) is valid and that whenever T > 0,

/ uP(-,t) < K(T) for allt € (0,T) and € € (0,1). (6.1)
Q

Proof. On testing the first equation in (2.1) by u?~! and using Young’s inequality,
we see that

1d 2(p—1) mip-1 o
— P T\ 2
g o Gty f, 9

-1
= [ = o= 1) [ e+ oV

Vo
+(p—1)x/u§71VuE- - —/ufvg—i—/uﬁ.’*lBl
Q Ve Q Q

—1)v?
< u/ u_ Pl |Vv5| / uPv, +/ uP~!' By for all t > 0,(6.2)
Q Q Q

- 2 v2
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where using Lemma 2.2 along with (B) and again Young’s inequality we can find
ki : (0,00) = (0,00), 7 € {1,2,3}, fulfilling (K) and such that for all T > 0,

—/u§v5+/u§—131 —kl(T)/uﬁ—i—kg(T)/ug_l
Q Q Q Q
T
< B [ k) (6.3)
Q

IN

for all t € (0,T) and € € (0,1). Apart from that, Lemma 5.1 in conjunction with
Lemma 2.2 entails the existence of k4 : (0,00) — (0, 00) such that (K) holds, and
that if T > 0 then

‘V’U ‘2m 1
G e S k4(T) for all t € (O,T) and € € (O, 1),
Q  Ue

whence utilizing the Holder inequality we find that for any such T,

(p — 1)X2 / —m+p—1 ‘VUE‘
Q

2 Ye v2

2 2 1 1 2m—3 91 2m—3
(p—Dx G- Crte-D) | BT Vo | 7=t
S Ue ' T
Q Q U

(2m—1)(—m+p—1) 271
< k5(T) - { / ue  omR } for all t € (0,7) and € € (0,1) (6.4)
Q

2 2 . (2m=1)(=m+p+1)
m+p—1 < m+p—1 2m—3 due

3 by assumption on p, the Gagliardo-Nirenberg

2m—3
with kg (T) := @=1 pon=r (T) Now since
to the fact that —-m +p+1 > 2m 0
inequality applies so as to say that with

~@m-1)(-m+p+1)-2m+3

€ (0,1 6.5
(2m—1)(—m+p—|—1) ( ’ ) ( )
and some ¢; = ¢1(p) > 0 we have
2m—3
@Em-y(mip-1) ) 2n=1 mtpo1 2ometptl)
/us = flue > | s 2mo1)(=mapt1)
Q [ m¥p—1 =3 («
p—1 2(— m++P+11>a mtp—1 W
m+p 2 m+p—
<alTul L e
m4p—1 2(=m+tp+1l)
T (6.6

LmFr=1(Q)

for all £ > 0 and € € (0, 1). Here we recall that Lemma 2.3 provides kg : (0,00) —
(0, 00) such that (K) holds and that for all T' > 0,

—1 2
[ . / w. < keT)  forall t € (0,T) and ¢ € (0,1),
Q
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and furthermore we note that according to (6.5),
(—m+p+1)a _@m-1)(-m+p+1)-2m+3
m+p—1 (2m —1)(m+p—1) B
(2m —1)(—=2m +2) — 2m + 3
(2m—1)(m+p—1)
2(m—1) 2m —3
Tm+p—1 (2m—-1)(m+p-1)

1

<0,

so that 0 := % satisfies # > 1. An application of Young’s inequality to (6.6)
therefore yields functions k; : (0,00) — (0,00), ¢ € {7,8}, for which (K) is valid,

and which are such that for all T > 0,

Em-1)(—mip—1) ) Bt
2m—3
k5(T) /ue
Q

m+p—1 2(=m+tp+l)a
€

< kr(D)[Vue * a0y +ke(T)
2Ap—1 mip-1
< MA |Vue = |2+ ks(T) for allt € (0,7) and ¢ € (0,1).

Together with (6.3) and (6.4) inserted into (6.2), this shows that for each 7' > 0 we
have

1 T
,i/ ug’—i—m/ uf < k3(T) + ks(T) for all t € (0,7) and € € (0,1),
pdt Jo 2 Ja

which results in (6.1) by means of an evident ODE comparison argument. O

This in turn improves our knowledge on the second solution component:

Lemma 6.2. Letm > % and q > 2. Then one can find K = K9 : (0,00) — (0, 00)
such that (K) holds, and that given any T > 0 we have

lve (-, )| wragy < K(T) for allt € (0,T) and ¢ € (0,1). (6.7)
Proof. As Wh?m=1(Q) — L*(Q) due to the hypothesis m > 2, Lemma 5.1
together with Lemma 6.1 and (B) in particular yields k; : (0,00) — (0, c0) fulfilling
(K) and such that writing f.(2,t) == 25~ (2,t) + Ba(, 1), (z,) € Q x (0,00),
€€ (0,1), for all T > 0 we have

| fe( ) ey < ka(T) for all t € (0,T) and € € (0, 1).

Therefore, (6.7) can be derived by straightforward application of well-known regu-
larization estimates for the Neumann heat semigroup>? to the inhomogeneous linear
heat equation ve; = Av. + fe. O

When combined with Lemma 6.1, through a standard argument the latter in
fact asserts a boundedness feature of u. even with respect to the norm in L ().
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Lemma 6.3. Let m > 2. Then there exists K : (0,00) — (0,00) fulfilling (K) such
that for all T > 0,

llue (-, )| Loe () < K(T) for allt € (0,T) and € € (0,1).

Proof. This can readily be obtained from the bounds provided by Lemma 6.1 and
Lemma 6.2 through a standard application of a Moser-type recursive argument
(cf. e.g. Ref. 30 ). O

7. Further compactness properties and regularity in time

For our mere existence statement in Theorem 1.1, tracking a possible dependence
of estimates on the asymptotic behavior of By and By seems unnecessary; the next
three statements preparing our limit procedure £ Y\, 0 will therefore not involve
our hypothesis (K), but rather exclusively provide information on arbitrary but
fixed time intervals. Our first observation in this regard is an essentially immediate
consequence Lemma 4.1 when combined with the boundedness information from
Lemma 6.3.

Lemma 7.1. Let m > % and

m+1 ) 3
m+1 2]
a>{ 2 ifm < (2’ ’ (7.1)
m—1 if m> 2.
Then for all T > 0 there exists C(a,T) > 0 such that
T
/ / IV(ue +¢)*> < C(e, T)  for all e € (0,1). (7.2)
0o Ja
Proof. In view of Lemma 6.3, given T > 0 we can fix ¢1(T") > 0 fulfilling
ue <c1(T) in Qx(0,7) for all € € (0,1). (7.3)

Therefore, in the case m € (2, 2] we can use that then (7.1) requires that 2a > m+1
to estimate

1 _
IV +9)" P = (ue + )2V
= (e &) M+ )T (e + 2% (e + 1)
< {(e 40 e + )7V - (ea () 12 e (1) + 1)

in 2 x (0,7T) for all € € (0,1), so that in light of Lemma 4.1, (7.2) results upon an
integration over Q x (0,7T).

Similarly, if m > 2 then 2a > 2m — 2 by (7.1), and thus
1
§|V(ua + E)O‘|2 — {(ue + 5)2m—4|vu€‘2} . (ug + E)Qa—Qm—Q

< {0V} (@(1) + D™ in 0 x (0,7)
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for all € € (0,1), again implying (7.2) due to Lemma 4.1. O

Now for suitably large «, the expressions appearing in (7.2) enjoy some favorable
time regularity feature:

Lemma 7.2. Let m > % and

2 ifme (32]

a (7.4)
m—1ifm>2.
Then for all T > 0 there exists C'(a,T) > 0 such that
T
: < . :
/O [ (etct) <) H(Wzyz(m)*dt <Cla,T)  foralice (0,1) (7.5)

Proof. Using (2.1), for fixed ¢t > 0 and ¢ € C*°(£) we compute
1 «
o [ o+ e
@ Jo
= / (Ug + 5)('!_190 . {V : ((ue + 5)m_1vua) - Xv : (%vva) — UeVe + Bl}
Q Ve
a—2 a—1 m—1 Ue

= —/ {(a — 1) (ue +)* ?pVue + (ue +¢) V(p} . {(ug +e)" 'Vu, — X—va}

Q Ve

_/ Us(ua+5)(X—1U5§0+/(u5+5)a_1@
Q

Q
=—(a—1) / (ue +€)m+a_3|Vu€\2<p+ (a — 1)X/ e (ue +E)a_2 (VUE ) VU@)@
Q Q Ve
m4a—2 a—1 Vo,
— [ (uc +¢) Vue - Vo+x [ ue(ue +)* 1 —.Vp
Q Q Ve
—/ ug(ue—ka)o‘_lvggo—&—/(ug—I—e)o‘_l(p for all £ € (0,1). (7.6)
Q Q

Here given T' > 0, we note that Lemma 6.3, Lemma 2.2, Lemma 5.1 and (B) ensure

the existence of positive constants ¢;(T), i € {1,2, 3,4}, such that for all £ € (0, 1),
ue <ci(T), c(T) <ve <ec3(T) and By < ey(T) in Qx(0,7). (7.7)

Since (7.4) especially requires that « > 1, by using Young’s inequality we thus
obtain that whenever t € (0,7) and ¢ € (0, 1),

v . 2 2 202
X/us(us+€)a71&.v¢ S/% 2|vv6|2+X7/ MW@F
Q Ve Q 4 Jo

v2
_3 23 - (e (T) + 1)%202
< / ve 2|V |* + XZ CHAK 11( ) +1) '”V(»OH%?(Q)
Q 3 (T)

(7.8)
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and
‘ - [ wetu +e>a1w‘ < (1) (@T) + ) eI - gl (79)
as well as
\ [ +e>a131¢‘ < @)+ 1) e oliey.  (710)

Now in the case m € (2,2] in which (7.4) asserts that o > 2 > max{ZH | 3=m},

the first three summand on the right of (7.6) can similarly be estimated according
to

\ -1 [ (e +e>m+a-3|we|%]
Q

< (a = 1)(ea(T) + )™ (ea(T) + 1> { et om i+ 1>m-3|w5|2} Nl

(7.11)
and
Vo
_ a—2 A €
(a 1)X/Qu5(u€+5) (Vue o )Lp’
. —1)242 2(y, 20—4
<o Ve + (a 4) X {/ uZ(u +f) |Vu5|2} Neell oo
Q UE2
< ”UE_%|V’UE|2
+(Of — 12 (al(T) +e) "0 (e (T) +1)%™ o
1 c3 ()
m—1 3—m 2
o [ e+ 0P VP | e
(7.12)
and

—/(ug+6)m+a2vus'vw‘
Q
- 1
< [ e+ 9P + 11V

— —m m— m— 1
< @(T) 42 (@) + 1P [ (w4 2™ e+ )Tl + 1V

Q
(7.13)

for all t € (0,T) and e € (0,1). Since W22(Q) — L>(Q2), from (7.6) and (7.8)-
(7.13) we thus infer that if m € (2,2] and « satisfies (7.4), then for each T > 0
there exists c5(T") > 0 such that for all ¢ € (0,T) and € € (0, 1),

_3
o+ Mooy < () -{ [ e+ 9w 17l i@l 1],
Q Q
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so that (7.5) results from Lemma 4.1 and Lemma 3.1 upon an integration in time
for any such m and a.

If m > 2, then in view of the accordingly modified form of the estimate in Lemma
4.1, given T > 0 we rely on the hypothesis « > m — 1 in replacing (7.11)-(7.13)
with the inequalities

Q

< (a—1)(ea(T) )™t { /Q(us + 6)2’”4|Vue|2} lellzee o)

and

va)w

Ve

(a — 1)X/Qu6(u5 +e)*? (Vu6 :

(Oé _ 1)2X2 (cl (T) + E)—2m+2(x+2

. ; { [t epmivut ol
(1) a

-3 2
< we 2|V |* +

as well as
1
= [ Vi vy < @)+ o [ PV + IV
Q Q
for all t € (0,T) and ¢ € (0,1), and conclude as before. O

Independently from the latter two lemmata, the estimates from Lemma 6.3 and
Lemma 6.2 entail a Holder regularity property of the second solution component as
follows.

Lemma 7.3. Let m > 2. Then for all T > 0 there exist ¥ = 9(T) € (0,1) and
C(T) > 0 such that

1vell 0.2 oy < €T for alle € (0,1).
Proof. Once more letting f. := 2%~ 4+ By in Q x (0,00) for € € (0,1), from

Lemma 6.3 and, e.g., Lemma 6.2 we especially know that (f:)ce(o,1) is bounded
in L (2 x [0,00)). As v is Holder continuous in 2 thanks to (1.4), the claimed
estimate therefore directly follows from standard theory on Holder regularity in

scalar parabolic equations??. O

8. Passing to the limit. Proof of Theorem 1.1 and Theorem 1.2

We are now prepared to construct a solution of (1.2) by means of appropriate
compactness arguments, where following quite standard precedents, our concept of
solvability will be as specified in the following.



July 9, 2020 20:42 WSPC/INSTRUCTION FILE
' crime nonlinear diffusion final 27

Relaxation in an urban crime model 25

Definition 8.1. Assume that m > 1, that y € R, and that (B) and (1.4) hold.
Then a pair (u,v) of functions

{u € L7 (2% [0,00))  and (8.1)

v € L, ([0,00); WH1(2))
will be called a global weak solution of (1.2) if u > 0 and v > 0 a.e. in  x (0, 00), if
%vv belongs to LL (0 x [0, 00); R?) (8.2)

and
uv lies in L}, (Q x [0,00)), (8.3)

and if for each p € C§°(Q x [0, 00)) fulfilling g—f =0 on I x (0,00), and for any
¢ € C5°(Q x [0,00)), the identities

oo 1 oo o0
—/ /wt—/uow(-,O):*/ /umA<p+X/ /ngw
0 Q Q m Jo Q 0 Qv
—/ /uv(p—F/ By (8.4)
o Ja o Jo

[ o= [ o oo [

(8.5)
are valid.

We are now prepared to construct a solution of (1.2) by means of appropriate
compactness arguments.

Lemma 8.1. Let m > 3. Then there exist (¢j)jen C (0,1) as well as functions

{u €Ly, (2% [0,00))  and (8.6)

v € COUQ x [0,00)) N Mysn Lis.([0, 00); WH4(Q))

such that €; \, 0 as j — oo, that u > 0 a.e. in  x (0,00) and and v > 0 in
Q x [0,00), that as e = €; \, 0 we have

Us = U in m LP (2% [0,00)) and a.e. in Q x (0,00), (8.7)
p>1
Ve = U in CP.(Q x [0,00)) and (8.8)
Vo 5 Vo in () Lis.([0,00); L9(9)), (8.9)
q>2

and that (u,v) form a global weak solution of (1.2) in the sense of Definition 8.1.
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Proof. We take any a > 0 such that
1
max{%,Z}EQ ifme@ﬂ,

m—1 if m > 2,

«

and note that then Lemma 7.1 and Lemma 7.2 may simultaneously be applied so
as to show that thanks to Lemma 2.3,
((us + s)a) o) 18 bounded in L2((0,7); W'2(Q)) forall T > 0
e€(0,1
and that

<8t(ua + €)a)

Therefore, employing an Aubin-Lions lemma3? yields (£;)en C (0,1) and a nonneg-
ative function u on Q x (0, 00) such that £; \, 0 as j — oo, and that as e = ¢; \, 0
we have (u. +¢)* — u® in L? _(Q x [0,00)) and a.e. in © x (0,00), whence in
particular also u. — u a.e. in Q X (0, 00). Since furthermore Lemma 6.3 warrants
boundedness of (uc).c(o,1) in L(Q x (0,7)) for all T > 0, (8.7) as well as the in-

[es)
loc

o is bounded in L' ((0,T); (W*?(€))*) for all T > 0.
e€(0,

clusion u € L$® (€2 x [0,00)) result from this due to the Vitali convergence theorem.

As, apart from that, given T' > 0 we know from Lemma 7.3 and Lemma 6.2 that
(ve)ee(0,1) is bounded in C?"5(Q x [0,7]) and in L>=((0,T); Wh4(Q)) for some
¥ = 9(T) € (0,1) and each ¢ > 2, in view of the Arzeld-Ascoli theorem and the
Banach-Alaoglu theorem we may assume upon passing to a subsequence if necessary
that, in fact, (&) ey is such that with some function v complying with (8.6) we also
have (8.8) and (8.9) as € = &; \, 0. The positivity of v in Q x [0, 00) therefore is
a consequence of Lemma 2.2, whereas, finally, the integral inequalities in (8.4) and
(8.5) can be verified in a straightforward manner by relying on (8.7)-(8.9) when
taking € = ¢; \, 0 in the corresponding weak formulations associated with (2.1). O

Our main result on global solvability has thereby actually been established al-
ready:

Proof. (cof Theorem 1.1).  All statements have actually been covered by Lemma
8.1 already. 0

According to our preparations, and especially due to our efforts to control the
dependence of our estimates from Lemma 6.3 and Lemma 6.2 on T through (K),
also the claimed boundedness features can now be obtained as simple consequences:

Proof. (c of Theorem 1.2). Again taking the global weak solution of (1.2) ob-
tained in Lemma 8.1, we only need to observe that thanks to the hypotheses (B1)
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and (B2), Lemma 6.3 and Lemma 6.2 in conjunction with our notational convention
concerning the property (K) guarantee boundedness of (u: )¢ (o,1y in L>(£2x (0, 00))
and of (ve)ee(o,1) in L*°((0, 00); W14(Q)) for each ¢ > 2. Therefore, namely, the ad-
ditional features (1.5) and (1.6) directly result from (8.7) and (8.9). O

9. Numerical Experiments

The purpose of this section is thee-fold: (1) to illustrate how the overcrowding
effect included in (1.2) results in the relaxation of solutions, (2) to provide some
comparison of this to the situation corresponding to the linear diffusion case m = 1,
which was not addressed by our previous analysis, and (3) to study the effect that
the parameter x has on the potential concentration of the solution in the linear
diffusion case. To this end, we consider the associated evolution problems (1.2)
under initial conditions involving the mildly concentrated data given by: ug(z) =

vo(x) = \/231_76_ 202 for x € Q, with some small o on the square € := (-3, 3)2.

We first solve the (1.2) numerically with m = 1 (leading to linear diffusion) and
m = 3 (leading to porous medium type diffusion) with o = 1/4. We illustrate our
results for x = 10 in both simulations, but all other terms are as in the original
model proposed in Ref. 28 with B; =1 and By = 1.

The initial condition for u is illustrated in Figure la. In the case when m = 1, we
see a concentration of mass around t = .95 — see Figure 1b. Here there is a real
possibility that blow-up happens in finite time, although to make this more precise,
more thorough numerical experiments need to be run, which goes beyond the scope
of the present work. What is evident is the concentration around the origin (even
if there were eventual relaxation) in finite time. On the other hand, the porous
medium type diffusion suppresses this concentration entirely as can be observed
in Figure 2, which illustrates the solution to (1.2) with the same initial data and
m = 3. We clearly see that there is never a concentration of density, and that by
time ¢ = 10, solution comfortably reaches an equilibrium. This may be interpreted
as describing crime hotspots that have spontaneously emerged due to the reaction-
cross-diffusion interplay in (1.2). Videos of the full simulations can be found in the
supplementary material. These preliminary results lead us to believe that there is
blow-up when Y is sufficiently large in the presence of linear diffusion, even for some
initial data that are only mildly concentrated. However, the considered nonlinear
diffusion enhancement suppresses this potential blow-up.
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Crime Density: x = 10,m=1, t= 0
Crime Density: x = 10,m= 1, t= 0.95
150
200

100

N~\ . 4////3 ' *\2’\\ — 0
\;‘\/Xj/:// ’ . zx - /4,72,44” o 1
(a) t=0 (b) t = .95
. . . . L=
Fl.g. 1: Numerical solutions with m =1, x = 10 and ug(x) = vo(z) = Vo=
with o =1/4.

From more general numerical experiments, we observe that the smaller y is, the
more concentrated the initial data needs to be in order for a potential blow-up to
occur in the m = 1 case. Moreover, for each x there are initial data which are not
sufficiently concentrated to lead to potential blow-up, but concentrated enough to
see some initial growth. However, this initial growth is suppressed by the overcrowd-
ing effect from (1.2). This is shown in Figure 3, where the top row illustrates the
linear diffusion case (m = 1) and the bottom row illustrates the non-linear diffusion
with m = 3. In the top row, we observe the initial growth of the solution in Figure
3b. This growth does not last for very long and the solution is already decaying at
time ¢ = .5 as illustrated in Figure 3c. Note that in the m = 3 case, this initial
growth never occurs, see Figure 3e. However, we do see some numerical instabilities
for the case m = 3 on the boundary of the concentration. We expect that this is
due to the degeneracy of the diffusion and more sophisticated numerical methods
need to be used to deal with potential contact lines.

In conclusion, the numerical experiments presented here provide evidence of a po-
tential blow-up of the solution to the original model proposed in Ref. 28, when the
initial data is sufficiently concentrated. Note that the case of linear diffusion is not
covered by our theoretical analysis. At the same time, we observe that this blow-
up, or initial growth, are suppressed by replacing the linear diffusion with a porous
medium type diffusion.
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Crime Density: x = 10,m=3, t= 0.95 Crime Density: x = 10,m=3, t= 1.2

(b)t=1.2

Grime Density: x = 10,m=3, t= 1.95 Crime Density: x = 10,m=3, t= 9.95

(c) t =1.95 (d) t =9.95

|z]2

. . . . . _ o _ _ 1 _ .
Fig. 12/.4Numer1cal solutions with m = 3, x = 10 and u = v = Nor=idl with
o=1/4.
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Grime Density: x = 5.m= 1,20 Grime Density: y = 5,m= 1,t= 0.1 Crime Density: x = 5m=1,1= 05

(aym=1,t=0 bym=1,t=.1 (c)ym=1,t=.5

Grime Density: x = 5,m=3,=0 Grime Density: x = 5,m=3,= 0.1 Crime Density: x = 5m=3,1= 05

(dym=3,t=0 (e)m=3,t=.1 f)m=3,t=.5

Fig. 3: Numerical solutions comparing m = 1 and m = 3 with x = 5 and ug(x) =

|
vo(z) = 2;02 e~ 202 with o = .16.
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