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Abstract—Online detection of changes in stochastic systems,
referred to as sequential change detection or quickest change
detection, is an important research topic in statistics, signal
processing, and information theory, and has a wide range of
applications. This survey starts with the basics of sequential
change detection, and then moves on to generalizations and
extensions of sequential change detection theory and methods. We
also discuss some new dimensions that emerge at the intersection
of sequential change detection with other areas, along with a
selection of modern applications and remarks on open questions.

I. INTRODUCTION

HE efficient detection of abrupt changes in the statistical
behavior of streaming data is a classical and fundamental
problem in signal processing and statistics. The abrupt change-
point usually corresponds to a triggering event that could
have catastrophic consequences if it is not detected in a
timely manner. Therefore, the goal is to detect the change
as quickly as possible, subject to false alarm constraints. Such
problems have been studied under the theoretical framework of
sequential (or quickest) change detection [160]], [194], [215].
With an increasing availability of high-dimensional streaming
data, sequential change detection has become a centerpiece for
many real-world applications, ranging from monitoring power
networks [37], internet traffic [100], cyber-physical systems
[142], sensor networks [164], social networks [152], [165]],
epidemic detection [17], scientific imaging [162], genomic
signal processing [179], seismology [7], video surveillance
[109], and wireless communications [95]].
In various applications, the streaming data is high-
dimensional and collected over networks, such as social net-
works, sensor networks, and cyber-physical systems. For this
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reason, the modern sequential change detection problem’s
scope has been extended far beyond its traditional setting,
often challenging the assumptions made by classical methods.
These challenges include complex spatial and temporal de-
pendence of the data streams, transient and dynamic changes,
high-dimensionality, and structured changes, as explained be-
low. These challenges have fostered new advances in sequen-
tial change detection theory and methods in recent years.

(1) Complex data distributions. In modern applications,
sequential data could have a complex spatial and temporal
dependency, for instance, induced by the network structure
[16], [68], [167]. In social networks, dependencies are usually
due to interaction and information diffusion [116]: users in
the social network have behavior patterns influenced by their
past, while at the same time, each user in the network will be
influenced by friends and connections. In sensor networks for
river contamination monitoring [34]], sensor observations tend
to be spatially and temporally correlated.

(2) Data dynamics. The statistical behavior of sequential
data is often non-stationary, particularly in the post-change
regime due to the dynamic behavior of the anomaly that causes
the change. For example, after a linear outage in the power
systems, the system’s transient behavior is dominated by the
generators’ inertial response, and the post-change statistical
behavior can be modeled using a sequence of temporally
cascaded transient phases [[171].

(3) High-dimensionality. Sequential data in modern appli-
cations is usually high-dimensional. For example, in sensor
networks, the Long Beach 3D seismic array consists of ap-
proximately 5300 seismic sensors that record data continu-
ously for seismic activity detection and analysis. Changes in
high-dimensional time series usually exhibit low-dimensional
structures in the form of sparsity, low-rankness, and subset
structures, which can be exploited to enhance the capability
to detect weak signals quickly.

In this tutorial, our aim is to introduce standard methods
and fundamental results in sequential change detection, along
with recent advances. We also present new dimensions at the
intersection of sequential change detection with other areas,
as well as a selection of modern applications. We should
emphasize that our focus is on sequential change detection,
where the goal is to detect the change from sequential data
in real-time and as soon as possible. Another important line
of related research is offline change detection (e.g., [59],
[188]]), where the goal is to identify and localize changes
in data sequence in a retrospective manner, which is not our



focus here. Prior books and surveys on related topics include,
for instance, change detection for dynamic systems [97],
sequential analysis [98]], [[194], sequential change detection
[19], [160], [215], Bayesian change detection [201], change
detection assuming known pre- and post-change distributions
[159] and using likelihood-based approaches [186], as well as
time-series change detection [6].

The rest of the survey is organized as follows. In Section
we present the basic problem setup and classical results. In
Section we discuss several extensions and generalizations
of the classical methods. In Section[[V] we discuss new dimen-
sions which intersect with sequential change detection, with
some remarks on open questions. In Section we present
some modern applications of sequential change detection. In
Section [VIl we make some concluding remarks.

II. CLASSICAL RESULTS
A. Problem Definition

In the sequential change detection problem, also known as
the quickest change detection (QCD) problem [[131]], [160],
[215], the aim is to detect a possible change in the data gen-
erating distribution of a sequence of observations {X,,,n =
1,2,...}. The initial distribution of the observations is the one
corresponding to normal system operation. At some unknown
time y (referred to as the change-point), due to some event, the
distribution of the random observations changes. The goal is to
detect the change as quickly as possible, subject to false-alarm
constraints. We start by assuming that the observations are
independent and identically distributed (i.i.d.) with probability
density function (pdf) fo before and pdf f; after the change-
point, respectively. We discuss generalizations to non-i.i.d.
observations in Section

To motivate the design of algorithms for sequential change
detection, we consider the example of detecting a change in the
mean of the data generating distribution. In Fig.[I(a), we plot
a sample path of observations that are distributed according
to a normal distribution with zero mean and unit variance
N(0,1) before the change-point of 500, and A/ (0.1,1) after
the change-point. As can be seen in Fig.[I(a), such a small
mean shift cannot be detected through manual inspection of
the samples. In Fig.[[[b), we plot the evolution path of a
sequential change detection procedure, the CUSUM algorithm
(which is discussed in detail in Section [[I-C2), applied to the
observations in Fig.[I(a). It can be seen that the test statistic
stays close to zero before the change and has a positive
drift after the change. Therefore, the change can be detected
by comparing the test statistic to a positive threshold b (for
instance, b = 2) and raising an alarm when the test statistic
exceeds the threshold for the first time. For the sample path in
Fig.[[{a), this approach incurs a detection delay of 60 samples
(if we take samples daily, this means a detection delay of 2
months; if the sampling rate is 60 samples per second, this
means a detection delay of one second). One natural question
to ask is that: can we do better, at least on average? Clearly,
if we set a lower threshold, for instance b = 1, we can detect
the change much more quickly. However, this would result
in a false alarm at £k = 112. This example illustrates the

tradeoff between false-alarm and detection delay, which is a
central problem when designing sequential change detection
procedures. The goal in sequential change detection theory is
to find detection procedures that have guaranteed optimality
properties in terms of this tradeoff.
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Fig. 1. To motivate the need for sequential change detection procedures, we
plot a sample path with samples distributed according to A/ (0, 1) before the
change and A(0.1,1) after the change. We set the change-point v = 500.
As illustrated in (a), such a small mean shift cannot be detected through
manual inspection of the samples. In (b), we plot the evolution of the CUSUM
algorithm (detailed in Section [lI-C2)) corresponding to the observations in (a),
which can detect the change quickly.

B. Mathematical Preliminaries

Sequential change detection is closely related to the prob-
lem of statistical hypothesis testing, in which observations,
whose distribution depends on the hypothesis, are used to
decide which of the hypotheses is true. For the special case
of binary hypothesis testing, we have two hypotheses, the
null hypothesis and the alternative hypothesis. The classic
Neyman-Pearson Lemma [136] establishes the form of the
optimal test for this problem. In particular, consider the case
of a single observation X, and suppose the pdf of X under
the null and alternative hypotheses are fy and fi, respectively.
Then, the test that minimizes the false negative error (Type-II
error), under the constraint of the false positive error (Type-I
error), is to compare the likelihood ratio f1(X)/fo(X) to a
threshold to decide which hypothesis is true. The likelihood
ratio test is also optimal under other criteria such as Bayesian
and minimax [131]. As we will see, the likelihood ratio also
plays a key role in the development of sequential change
detection algorithms.

The goal of sequential change detection is to design a
stopping time on the observation sequence at which it is
declared that a change has occurred. A stopping time is
formally defined as follows:

Definition 1 (Stopping Time). A stopping time with respect to
a random sequence {X,,n =1,2,...} is a random variable
T such that for each n, the event {T =n} € o(X1,...,Xp),
where o(X1, ..., X,,) denotes the sigma-algebra generated by
(X1,...,Xn). Equivalently, the event {T = n} is a function
of only Xq,...,X,.

The main results on stopping times that are most useful for
sequential change detection problems include Doob’s Optional
Stopping Theorem [43]] and Wald’s Identity [185].

A quantity that plays an important role in the performance of
sequential change detection algorithms is the Kullback-Leibler
(KL) divergence between two distributions.



Definition 2. (KL Divergence). The KL divergence be-
tween two pdfs fi and fo is defined as D(fi|fo) =

[ fi(@) log(fi(x)/fo(z)) da.

Note that D(f1]|fo) > 0 with equality if and only if f; = fo
almost surely. It is usually assumed that 0 < D(f1]|fo) < 0.
Define the log-likelihood ratio for an observation X:

U(X) :=log f1(X)/ fo(X). (1

A fundamental property of the log-likelihood ratio, which is
useful for constructing sequential change detection algorithms,
is that before the change n < -y, the expected value of ¢(X,,)
is equal to —D(fo||f1) < 0; and after the change, n > ~, the
expected value of ¢(X,,) is equal to D(f1]|fo) > 0. As will
be seen later, the KL divergence between the pre- and post-
change distributions is an important quantity that characterizes
the tradeoff between the average detection delay and the false-
alarm rate.

C. Common Sequential Change Detection Procedures

We now present several commonly used sequential change
detection procedures, including the Shewhart chart, CUSUM,
and Shiryaev-Roberts procedure, which enjoy certain opti-
mality properties that we will make more precise later in
Section These algorithms can be efficiently implemented
in an online setting, which makes them useful in practice. We
also briefly discuss some other sequential change detection
procedures.

1) Shewhart Chart: One of the earliest sequential change
detection procedures is the Shewhart chart [[180], [181]], which
is widely used in industrial quality control [130]]. The Shewhart
chart was first introduced for the Gaussian model and based on
comparing the instant observation to a threshold. We consider
the log-likelihood-based modification and generalization of the
standard Shewhart chart, where we compute the log-likelihood
ratio based on the current observation (or the current batch
of observations) and compare it with a threshold (called the
control limit) to make a decision about the change. The
property of the log-likelihood ratio discussed in Section [[I-B
is utilized, which motivates the Shewhart chart:

e = inf {n >1:4(X,) > b},

where b is a pre-specified threshold. The Shewhart chart
is widely used in practice due to its simplicity. In [155],
Pollak and Krieger showed that the Shewhart chart enjoys
the optimality property that it maximizes the probability of
detecting the change at the time it occurs, subject to false-
alarm constraints. However, the Shewhart chart may suffer
from “information loss” due to the fact that it ignores past
observations in making a decision about the change, which
leads to performance loss when we consider criteria, e.g.,
the tradeoff between detection delay and false-alarm rate (see
Section [[I-DJ.

2) Cumulative Sum (CUSUM) Procedure: The CUSUM
procedure, first introduced by Page [149]], addresses the prob-
lem of “information loss” in the Shewhart chart. The CUSUM
procedure uses past observations and thus can achieve a signif-
icant performance gain, especially when the change is small.

Although the CUSUM procedure was developed heuristically,
it was later shown in [96], [[122]], [132], [[170] that it has very
strong optimality properties, which we will discuss further in
Section

The CUSUM procedure utilizes the properties of the cumu-
lative log-likelihood ratio sequence:

S, = Zn:axk).
k=1

Before the change occurs, the statistic has a negative drift
because the expected value of ¢(Xj) before the change is
negative. After the change, it has a positive drift because the
expected value of ¢(X}) after the change is positive. Thus,
Sy, roughly attains its minimum at the change-point «. The
CUSUM procedure is then constructed to detect this change
in the drift of S,,. Specifically, the exceedance of S,, with
respect to its past minimum is taken and compared with a
threshold b > 0:

TC:inf{n21:Wn:(Sn— min Sk>2b}. 2)
0<k<n

The CUSUM statistic can be rewritten as:
n n

Wo=max > U(X;)= max ) UXi). )
i=k+1 i=k

Note that the maximization over all possible v = k corre-
sponds to plugging in a maximum likelihood estimate of the
unknown change-point location in the log-likelihood ratio of
the observations to form the CUSUM statistic. It can be shown
that W,, can be computed recursively:

Wn = (Wn—l + €<Xn))+7 WO = 07

where ()" = max{x, 0}. This recursion enables the efficient
online implementation of the CUSUM procedure in practice.

3) Shiryaev-Roberts Procedure: The maximum likelihood
interpretation of the CUSUM procedure is closely related to
another popular algorithm in the literature, called the Shiryaev-
Roberts (SR) procedure. In the SR procedure, the maximum
in (@) is replaced by a sum and the log-likelihood ratio is
replaced by likelihood ratio. The detection statistic for the SR
procedure is then defined as:

TP ol § PET) 4)

1<k<ni=k
and the corresponding stopping time is defined as
T = inf{n >1:T, > b}.
The SR statistic can also be computed recursively:

T, =0+T,_)e" X Ty =o0.

D. Optimality

We now briefly summarize optimality results in the existing
literature for the above procedures. We begin by considering
the non-Bayesian setting, where we do not assume a prior on
the change-point 7, and then consider the Bayesian setting,



where the change-point is assumed to follow a certain distri-
bution.

A fundamental problem in sequential change detection is
to optimize the tradeoff between the false-alarm rate and
the average detection delay, as illustrated in Section
using the example in Fig.[T] Controlling the false-alarm rate
is commonly achieved by setting an appropriate threshold on
a test statistic such as the one in (2)). But the threshold also
affects the average detection delay. A larger threshold incurs
fewer false alarms but leads to a larger detection delay, and
vice versa.

1) Minimax Optimality: In non-Bayesian settings, the
change-point is assumed to be a deterministic and unknown
variable. In this case, the average run length (ARL) to false
alarm is generally used as a performance measure for false
alarms:

ARL(7) = Exo[7], (%)

where P, is the probability measure on the sequence of
observations when the change never occurs, and E., is the
corresponding expectation. Its reciprocal, the false-alarm rate
(FAR), is also commonly used:

1 1
= = . 6
ARL(r) ~ Exol7] ©
FAR can also be interpreted as the rate at which false alarms
occur in the pre-change regime if we repeat the change

detection procedure after each false alarm. Denote the set of
stopping times that satisfy a constraint a on the FAR by:

FAR(T)

D, = {7 : FAR(7) < a}. @)

Finding a uniformly powerful test that minimizes the delay
over all possible values of the change-point v, subject to a
FAR constraint, is generally intractable. Therefore, it is more
tractable to pose the problem in the so-called minimax setting.
There are two essential measures of the detection delay in
the minimax setting, due to Lorden [122]] and Pollak [154],
respectively.

Lorden considers the supremum of the average detection
delay conditioned on the worst possible realizations. In par-
ticular, Lorden deﬁneﬂ

WADD(7) = sup esssup E, [(7 —n)T|X1,..., X, 1],

n>1
®)
where IP,, denotes the probability measure on the observations
when the change occurs at time n, and [E,, denotes the cor-
responding expectation. We then have the following Lorden’s
formulation:

minimize WADD(7) subject to FAR(T) < a. )

For the i.i.d. setting, Lorden showed that Page’s CUSUM
procedure given in (2)) is asymptotically optimal as o — 0. It
was later shown in [[132] and [[170] that a slight modification

1 orden defined WADD with (t —n+1)7 inside the expectation, i.e., he
assumed a penalty of 1 if the algorithm stops at the change-point. We drop
this additional penalty in our definition to be consistent with the other delay
definitions in this paper.

of the CUSUM procedure, with W,, = (W,,_1)" + £(X,,), is
exactly optimal for (9) for all « > 0.

Although the CUSUM procedure is exactly optimal under
Lorden’s formulation, WADD(7) is a pessimistic measure of
detection delay since it considers the worst-case pre-change
samples. An alternative measure of detection delay was sug-
gested by Pollak [[154]:

CADD(7) = sup E, [t — n|T > n],
n>1

(10)

for all stopping times 7 for which the expectation is well-
defined. It is easy to see that for any stopping time T,
WADD(7) > CADD(7), and therefore, Pollak’s formulation
is less pessimistic.

In general, it may be challenging to exactly solve the
problem in (9) and the corresponding problem defined using
CADD in (I0). For this reason, asymptotically optimal so-
Iutions for the above problems are often investigated in the
literature. Specifically, a stopping time 7 is said to be first-
order asymptotically optimal if it satisfies:

CADD(7)
inf,cp, CADD(7)
it is second-order asymptotically optimal if CADD(r) is

within a constant of the best possible delay over the class
D.:

— 1, as a— 0

CADD(7) — 1€rg’ CADD(7) = O(1);
and it is third-order asymptotically optimal if such a constant
goes to 0 as a — 0O:

CADD(7) — inf CADD() = o(1).

These notions can also be defined similarly for the problem
in (9) defined using WADD.

Pollak’s formulation has been studied for the i.i.d. data in
[154] and [197]. The first-order asymptotic optimality for Lor-
den’s formulation can also be extended to Pollak’s formulation.
To show this, Lorden in [122] established a universal lower
bound for WADD and Lai in [96] proved the lower bound to
CADD:

Theorem 1 (Lower Bound for CADD [96]). As o« — 0,
| log o

inf CADD(7) > ——=——(1+0(1)).

2, CAPPE) = By o)
It can be shown that the CUSUM procedure with a threshold
b = |loga]| is first-order asymptotically optimum for both

Lorden’s and Pollak’s formulations. In particular, as o« — 0,
[ log a
CADD(7.) = WADD(7¢) ~ ————,
‘ “ D(fillfo)

where ~ means the ratio of the quantities on its two sides
approaches 1 as oo — 0.

The SR procedure is also asymptotically optimal and it was
shown in [197] that by setting the threshold b = 1/¢,

|log a|
CAPDL) = pipig T

where ¢ is a constant that can be characterized using the
nonlinear renewal theory [230] (details omitted here).



Finally, results in [[133]], [155]], [196] show that the Shewhart
chart is optimal for the criterion of maximizing the probability
of detecting the change upon its occurrence subject to the
FAR constraints. A more precise statement of this optimality
property is as follows. Let the post-change density be denoted
by fo(x), where 6 € O is the post-change parameter. The She-
whart chart as defined earlier becomes the following stopping

time:
Xn
fo(Xn) S b} 7
f 0 (X n)
where b is a pre-specified threshold. It is shown that when the

threshold b is selected such that FAR(7g,) = «, then 7y, is the
optimal solution to the following optimization problem:

TSh:inf{n21:

1<1nf PY (7 = n|r > n) subject to FAR(7) < a,
n<oo
1D

where P? denotes the probability when the change happens at
n with 6 being the post-change parameter. Moreover, it was
shown in [[196] that if the likelihood ratio fy(X)/fo(X) is a
monotone non-decreasing function of a statistic S(X), then the
Shewhart chart is equivalent to 75, = inf{n > 1: S(X,,) > b}
and when b is selected such that FAR(7y,) = «, the Shewhart
chart is uniform optimal in § € © in the sense of solving
for all 6 € O.

In summary, both the CUSUM and SR procedures are
asymptotically optimal with respect to Lorden’s formulation
and Pollak’s formulation. The FAR decays to zero exponen-
tially with exponent D(f1||fo). We demonstrate the theory
using an example in Fig.]2] by plotting the tradeoff curve be-
tween the CADD and — log(FAR) for the CUSUM procedure.
Note that the curve has a slope approximately of 1/D( f1||fo),
which is consistent with the theory.

maximize

”e fo=N(0,1) f = N(0.75,1)
,
24t 1
T —

221 / 1
[m] A
a
<
o

201

181 o

16 . . . . .

75 8 8.5 9 9.5 10
—log(FAR)

Fig. 2. Tradeoff curve between CADD and — log(FAR) for the CUSUM
algorithm. The pre-change distribution is fo = N'(0, 1), and the post-change
distribution is fi = N(0.75,1). The slope of the curve is approximately
1/D(f1l1f0)-

Some more optimality results are summarized as follows.
Under Pollak’s criterion, it was shown in [197] that the SR
algorithm is second-order asymptotically optimal, and that the
SRP algorithm (Pollak’s version of the SR algorithm that starts
from a quasi-stationary distribution of the SR statistic) is third-
order asymptotically optimal (as was also first established in
[154]). More importantly, in [[197]], it was proved that the SR-r
procedure that starts from a specially selected fixed point r is
third-order optimal. In [158]], it was shown that SR-r is strictly

optimal for CADD in some special cases. We also note that
the (generalized) Shewhart chart is optimal for the criterion of
maximizing the probability of detecting a change subject to
false alarm constraints.

2) Bayesian Optimality: In the Bayesian setting, it is as-
sumed that the change-point is a random variable I' taking
values on the non-negative integers, with probability mass
function m,, = P{I" = n}. For a stopping time 7, define the
average detection delay (ADD) and the probability of false
alarm (PFA) as follows:

= Z T En, [(T
Z TP

In Bayesian sequential change detection, the goal is to min-
imize ADD subject to a constraint on PFA. Shiryaev [183]]
formulated the Bayesian sequential change detection problem
as follows:

ADD(r) = E[(r- - D)*] (12)

PFA(T) = P(r<T) (r <T). (13)

minimize ADD(7) subject to PFA(7) < a. (Shiryaev)
(14)
The prior on the change-point I' is usually assumed to be a

geometric distribution with parameter 0 < p < 1,
T, =P{T'=n} = p(1 —p)"*

where I is the indicator function. The justification for this
assumption is that the geometric distribution is memoryless.
Moreover, it leads to a tractable formulation and convenient
optimal solutions to the Bayesian problem in as we will
discuss in the following.

The detection statistic of the Shiryaev algorithm is the
posterior probability that the change has taken place given

Lip>1y, mo =0, (15)

the observations so far. Denote by X} = (X,...,X,,) the
observations up to time n, and by
pn =PI <n|X7) (16)

the a posteriori probability at time n that the change has taken
place given the observations up to time n. It then follows from
the Bayes’ rule that p,, can be updated recursively:

Byet )

Pny1 = = ; a7)

pneé(anr]) + (1 - i)n)
where p,, = pn, + (1 — pn)p, and py = 0. Then the Shiryaev
algorithm is defined by comparing p,, with a given threshold
ba:

s =inf{n >1:p, > by}, (18)

where b, € (0,1) is chosen such that the false alarm
constraint, PFA(75) < a, is satisfied.

Theorem 2 (Optimal Bayesian Procedure [183], [[184]]). When
the threshold b, is selected such that PFA(1s) = «, the
Shiryaev algorithm in (18) is Bayesian optimal for (14).

An equivalent form of the Shiryaev statistic can be devel-
oped using the idea of the likelihood ratio test. This builds
a connection to the earlier SR statistic defined in (H]) and



it reveals useful insights about the nature of the procedure.
Consider two hypotheses: “Hy : I' < n” and “Hy : I' > n”.
Denote by R, , = pn/[p(1 — pn)] the scaled likelihood ratio
between the two hypotheses averaged over the change-point.
It then follows that R,, , can be updated recursively as:

1 + Rn,p ee(X'nJrl)

1—p ’
The Shiryaev stopping time 75 in (18) can then be rewritten as
a comparison of R,, , with a threshold. We remark here that
if we set p = 0, then the Shiryaev statistic reduces to the SR
statistic in (@).

A generalized Shewhart chart is also Bayesian optimal, as
shown in [[155]], in the sense that it minimizes the expected loss
where the loss function is I, r;, assuming that the change-
point I'" follows a geometric prior and the parameter 6 of
the post-change distribution follows a known prior G. This
result was generalized in [[196, Theorem 5.1]. Moreover, both
the CUSUM and SR procedures are first-order asymptotically
optimal for the Bayesian setting when the prior has a heavy
tail, or when the change-point is geometrically distributed with
a small enough parameter.

3) Evaluating the Performance Metrics: In the definition of
the WADD metric (8) and the CADD metric (I0), it appears
that we need to consider the supremum over all possible past
observations and over all possible change-points. However, we
can actually show that for the CUSUM and SR procedures,
and some other algorithms, that the supremum over all possible
change-points in WADD and CADD is achieved at time n = 1:

CADD(7.) = WADD(7) = E; [re — 1],
CADD(75) = WADD(7) = Ey [r — 1] .

Therefore, the CADD and the WADD can be conveniently
evaluated by setting v = 1, without “taking the supremum”.

Rot1,p= Ry, =0. (19)

E. Other Sequential Change Detection Procedures

1) Mixture and Generalized Likelihood Ratio (GLR) Statis-
tics: The CUSUM and SR procedures require full knowl-
edge of pre- and post-change distributions to obtain the log-
likelihood ratio ¢(X) used in computing the test statistics.
In practice, the post-change distribution f; may be unknown.
In the parametric setting, the post-change distribution can be
parametrized using fg, where 6 € O is the unknown parameter.
Two commonly used methods for the situation here, which
corresponds to the problem of composite hypothesis testing,
are the generalized likelihood ratio (GLR) approach and the
mixture approach. In the GLR approach, a supremum over
0 € O is taken in constructing the test statistic. In particular,
the test statistic for the GLR-CUSUM algorithm is given by:

Wy =

max sup Z lo(X;), (20)

1<k<n+lgco —r
where £y(X) = log(fo(X)/fo(X)). Performance analyses of
the GLR-CUSUM algorithm for one-parameter exponential
families can be found in [[122], [123]]. A major drawback of the
GLR approach is that the corresponding GLR statistic (e.g.,
the one given in (20)) cannot be computed recursively in time,

except in some special cases (e.g., when the parameter set
© has finite cardinality). To reduce the computational cost,
a window-limited GLR approach was developed in [229] and
generalized in [96], [99]. Window-limited versions of the GLR
algorithm can be shown to be asymptotically optimal in certain
cases if the window size is carefully chosen as a function of
FAR.

The mixture method replaces the supremum over § € © by a
weighted average. For example, the mixture-CUSUM statistic
is computed as:

m_ “r fo(Xi)
W' = 1§%§§+110g/@i1:£ fo(Xi)w(a)de’ (21)

where w(f) is a weight function that integrates (sums) to 1
over ©. Note that, like the GLR test statistic, the mixture
test statistic cannot be computed recursively in general. It was
shown in [[196] that the mixture approach can result in first-
order asymptotically optimal tests for practically any prior for
both the i.i.d. and non-i.i.d. cases. In [189]], the optimal prior
was established such that the resultant mixture SR procedure
is asymptotically optimal in a certain stronger sense.

2) EWMA: Note that the CUSUM and SR procedures can
achieve a significant gain in performance when compared to
the Shewhart chart by making use of past observations, i.e.,
CUSUM and SR have memory. The exponentially weighted
moving average (EWMA) chart is another type of sequential
change detection procedure that employs past observations.
The EWMA detection statistic was originally defined as
Z, = XX, + (1 = A\)Z,,—1, where A € (0,1] is a pre-
specified constant, with the aim to detect mean shift. The
EWMA can be generalized to Z,, = M(X,,) + (1 — \)Z,—1
to detect shift in distribution, more generally. Thus, Z,, is a
weighted moving average of all past information with weights
decreasing exponentially in time. The EWMA chart is simple
to implement and does not require any prior knowledge of the
pre- and post-change distributions. A performance comparison
of the EWMA chart and the CUSUM and SR procedures is
given in [157].

III. GENERALIZATIONS AND EXTENSIONS
A. General Asymptotic Theory for Non-i.i.d. Data

There has been a considerable amount of effort to generalize
the optimality results for sequential change detection to the
non-i.i.d. setting. Lai [96] initiated the development of a
general minimax asymptotic theory for both Lorden’s and
Pollak’s formulations, while Tartakovsky and Veeravalli [206]]
initiated the development of a general Bayesian asymptotic
theory.

1) General Minimax Asymptotic Theory: Under the mini-
max setting, Lai in [[96] obtained a general lower bound for
non-i.i.d. data on the CADD (and hence on the WADD) for any
stopping time that satisfies the constraint that FAR is no larger
than «. It was then shown that an extension of the CUSUM
procedure (2)) to the non-i.i.d. setting achieves this lower bound
asymptotically as a« — 0. There are also works investigating
non-i.i.d. data under some specific settings, e.g., multi-sensor
slope change detection [28], linear regression models [63]],



[221]], generalized autoregressive conditional heteroskedastic-
ity (GARCH) models [22], non-stationary time series [42],
general stochastic models [195], [200]], and hidden Markov
models [62]. We refer to [196] for more recent developments
on this topic.

We now present a generalized CUSUM procedure for non-
ii.d. data. In this setting, conditional distributions are used
to compute the likelihood ratios. In the pre- and post-change
regimes, the conditional distribution of X,, given X{“l is
given by fo.n(Xn|X7Y) and f1.,(X,|XT"), respectively.
Define the conditional log-likelihood ratio and the CUSUM
statistic, respectively, as:

; Xz Xi—l n
7]01’ (Xi] 171)’ and C,, = max Y;.
fO,i(Xi|X1 )

1<k<n+1 4
Then the stopping time for the generalized CUSUM is defined
as:

Y; =log

7o =inf{n >1:C, > b}. (22)

Note the generalized CUSUM (for non-i.i.d. data) takes a
similar form as the original CUSUM (for i.i.d. data) except
that we replace the log-likelihood ratio with the conditional
log-likelihood ratio.

The minimax optimality of the generalized CUSUM for the
non-i.i.d. data was established in [96]. Under some regularity
conditions, by setting the threshold b = |log «|, we have 7, €
D,,. If there exists I such that

n+m

mzzc; Y, —>1 as. P, ast— oo Vn, (23)

and the convergence is complete in the sense that

S Pu(|(1/n) X0 Y — I > €) < oo for all € > 0, then
as a — O:

CADD(75) ~ WADD(75) ~ ir%f WADD(7)
TED
1 (24)
~ inf CADD(r)~ 18l
TED, 1

where the positive constant I > 0 plays a similar role as the
KL divergence in the i.i.d. setting.

2) General Bayesian Asymptotic Theory: Under the
Bayesian setting, when the samples conditioned on the change-
point are non-i.i.d., it is generally difficult to find an exact
solution to the Shiryaev problem in (T4). Tartakovsky and
Veeravalli [206] showed that the Shiryaev algorithm is asymp-
totically optimal as o« — 0, under some regularity conditions
on the pre- and post-change distributions.

Similar to the i.i.d. case, we can define the posterior
probability p,, of change having occurred before time n given
all previous samples, in the same expression as (I6). The
Shiryaev algorithm for the non-i.i.d. setting is then defined
in the same way as in (I8). Note that the recursion in (I7)
may not hold for a general distribution for I'. However, if
the change-point I' is geometrically distributed, a recursive
expression for p,, can still be derived. Define

d— — lim logP(T" > n)

n—00 n

b

which captures the decay rate of the tail probability of change-
point I"’s prior distribution as the sample size n increases.
When I' is “heavy-tailed”, d = 0, and when I' has an
“exponential tail”, d > 0. For example, when the prior
distribution is geometric with parameter p as defined in (I3),
d = |log(1 — p)|. If there exists I such that

n—+t
1
n Z Y, -1 as.P, ast— o0, Vn, 25)

and some additional conditions on the rates of convergence are
satisfied (see [200] for the details), then the Shiryaev algorithm
in (I8) with a threshold b, = 1 — « is asymptotically optimal
for Bayesian optimization problem in (14) as o — 0 [[206]:

| log af
I+d-
Note that in [206]], a general result for the m-th moment of the

delay was developed. Here, for simplicity, we only presented
the result for m = 1.

inf
7:PFA(T)<a

ADD(7) ~ ADD(7) (26)

B. Change-of-measure to Obtain Accurate ARL Approxima-
tions

For CUSUM and SR procedures with i.i.d. samples, it
may be relatively easy to evaluate their performance (such
as the ARL) both theoretically and numerically, as discussed
in Section However, in many settings such as those in-
volving non-i.i.d. observations, GLR statistics [|188]], and non-
parametric statistics [115]], it may be challenging to develop
exact analytical expressions for the ARL (or its inverse the
FAR). In these situations, one has to use onerous numerical
simulation to obtain a threshold for a target ARL. To tackle this
problem, techniques based on extremes in random fields have
been developed [238]], from which one can obtain accurate
approximations to the ARL for many problems.

1) Using Change-of-measure to Analyze the ARL: The
main idea here is to relate finding ARL to finding the tail
probability of the maximum of a random field. To obtain
a more accurate approximation of the ARL, an alternative
probability measure is considered, under which false alarms
are more likely to occur. This is analogous to “importance
sampling”, but it is more involved since the alternative prob-
ability measure is usually a mixture of distributions.

The analysis usually involves two steps. First, we aim
to find the probability Po.{7 < m}, for a large constant
m > 0 and stopping time 7 (the first time the detection
statistic exceeds the threshold b). Finding this probability is
challenging because {7 < m} is a rare event under the pre-
change regime, especially when the threshold b is large (this is
the asymptotic scenario that we are interested in). Therefore,
the change-of-measure technique plays an important role by
considering an alternative measure under which {r < m}
happens with a much higher probability. More specifically, we
choose the alternative measure such that the expectation of the
detection statistic equals the threshold b. Then, using the local
central limit theorem and the local behavior of the correlated
random field, we can obtain an analytical expression for the
probability of {7 < m} under the alternative measure. The



probability under the alternative measure is then converted
back to the probability under the original measure through
Mill’s ratio. The rigorous mathematical derivations can be
found in [238].

Second, we will relate the above probability to the ARL,
leveraging the fact that the stopping time 7 as threshold
b — oo is asymptotically exponentially distributed [4], [[187].
Although this fact only holds strictly for stopping times for
algorithms such as the CUSUM and SR when observations are
ii.d. [156]], this method has been widely used and is verified
to be highly accurate in practice (see examples in [28]], [[115]],
[188], [236]). Thus, for a large m, Poo {7 < m} ~ 1 —e2om,
where ), is the parameter of the exponential distribution. By
definition, the mean of the exponential distribution is 1/\,
which corresponds to the ARL.

2) Example: Analyzing MMD-based Sequential Change De-
tection Procedure: Below, we illustrate the change-of-measure
technique by analyzing the non-parametric kernel-based maxi-
mum mean discrepancy (MMD) statistics (details can be found
in [115]]). The kernel MMD divergence, which measures the
distance between two arbitrary distributions, is widely adopted
in signal processing and machine learning. Given two sets of
samples X := {x1,...,x,} generated i.i.d. from a distribution
foand Y :={y1,...,y,} generated i.i.d. from a distribution
f1, an unbiased estimator of the MMD between fy and f; is
the following:

MMD(X,Y) = ﬁ > {k(wisz;) + k(yi,ys)
i#]
- k(ffhyj) - k(xj7yi)}7

where k(-, -) is a kernel in the reproducing kernel Hilbert space
(RKHS), e.g., Gaussian kernel. Intuitively, the MMD statistic
is small when fj is similar to f;, and is large otherwise.

The sequential change detection procedure based on the
MMD statistic is then defined as follows [115]]. At each
time t, we treat the most recent B samples, denoted by
X! pi1 = {Xi_By1,..., X4}, as the test block (B > 0
is a pre-specified parameter). Then we sample N blocks of
size B from the “reference” data generated from the pre-
change distribution, denoted by {5( Lo X ~ }- We compute
an average MMD statistic of all the reference blocks with
respect to the test block:

N
1 -
Up =5 > MMD(X;, X[ _p.).

i=1

Define Z; := U,/+/var[U;] as the standardized detection
statistic, where the variance var[U;] can be found in closed-
form and can be estimated conveniently from data [[115]]. The
MMD-based procedure stops when the standardized MMD
statistic exceeds a threshold b:

v = inf{t : Z; > b}.

This corresponds to a generalized type of Shewhart chart.

Theorem 3 (ARL of MMD-based Procedure [[115[). Let B >
0. When b — oo, the ARL of the stopping time Ty, Exo[T), is

given by:
ob2/2 9B — 1 228 1) —1
b {\/ﬂB(B_DV(b B(B_l)>} (1+0(1)),

where v(-) is a special function whose definition can be found

in [|185]].

We present the main step of the proof to Theorem[3] to
illustrate the change-of-measure technique. First, note that the
event {7 < m} is the same as the maximum of the detection
statistic has exceed the threshold b at some point before m,
ie., {supyci<,, Z; > b}, and

P { sup Z; > b}
2<t<m

P
= Beo | S5 Tonacocn 220)
s=
m

_p2 _ [, —b? o +
= e V2N B { Reem BTV AHOS ML s g arz03 )
t=2

where & = bZ] — b?/2 is the log-likelihood ratio between
the changed measure E;[X] = E,[Xe%] and the original
measure Eoo, M; = max, et ~%, S, = Y %75, and the
so-called Mill’s ratio Ry = M,;/S;. The result in Theorem is
established by establishing properties of the local field {£; —
&} and the global term & — b2 /2 (details omitted here).

The numerical example in Fig.[3§] demonstrates that the
threshold b (to achieve a target ARL) obtained using the
theoretical approximation in Theorem[3] is consistent with
that obtained from simulations, especially after a skewness
correction. This example demonstrates that the theoretical
approximation of the ARL obtained using the change-of-
measure technique is of high accuracy, and thus can help
avoid computationally expensive simulations to calibrate the
procedure.

-+ -Simulation (B=10, N=10)
Simulation (B=10, N=20)
Simulation (B=10, N=30)

—*=Theory

5 —#—Theory with skewness correction

[=2)

o 02 04 06 08 1
ARL(10%

Fig. 3. Accuracy of ARL approximations, obtained by ‘“‘change-of-measure”,
for the sequential MMD-based procedure: comparison of the thresholds
obtained by simulation and from Theorem 3]



C. Non-stationary and Multiple Changes

In various modern applications, for instance, line outage
detection in power systems [171]] and stochastic power supply
control in data centers [173]], the change is not stationary.
There can be a sequence of multiple changes: one followed by
another. Below, we review some recent advances in sequential
detection of dynamic changes.

1) Sequential Change Detection Under Transient Dynam-
ics: In classical sequential change detection formulations [[19],
[160], [194], [215]], the statistical behavior of the observations
is characterized by one pre-change distribution and one post-
change distribution (known or unknown). In other words, the
statistical behavior after the change is stationary. This assump-
tion may be too restrictive for many practical applications with
more involved statistical behavior after the change-point.

An example of the problem where the observations are
non-stationary after the change, is sequential change detection
under transient dynamics, which was studied in [[171], [173],
[174], [251]. Specifically, the pre-change distribution does not
change to a persistent post-change distribution instantaneously,
but after several transient phases, each phase is associated
with a distinct data generating distribution. The goal is to
detect the change as quickly as possible, either during the
transient phases or during the persistent phase. This problem
is fundamentally different from detecting a transient change
(see, e.g., [S1]], [52], [64]), where the system goes back to the
pre-change mode after a single transient phase, and the goal is
to detect the change within the transient phase. The problem is
also related to sequential change detection in the presence of
a nuisance change, where the presence of the nuisance change
can be modeled as a transient phase. However, an alarm should
be raised only if the critical change occurs [[103].

Two algorithms were proposed and investigated in
[171], [251]] for the minimax setting, the dynamic-CUSUM
(D-CUSUM), and the weighted dynamic-CUSUM (WD-
CUSUM), where the change-point and the transient durations
are assumed to be unknown and deterministic. The basic
idea is to construct a generalized likelihood based algorithm
taking the supremum over the unknown change-point and the
durations of transient phases. It was shown in [[171]], [251] that
the D-CUSUM and WD-CUSUM test statistics can be updated
recursively, and thus are computationally efficient. In [251]],
it was demonstrated that both algorithms are adaptive to the
unknown transient dynamics, although durations of transient
phases were unknown and were not employed in algorithm
implementation. Moreover, both the D-CUSUM (under certain
conditions) and the WD-CUSUM algorithms were shown to
be first-order asymptotically optimal in [251]]. The Bayesian
setting was investigated in [174]], where the change-point and
the durations of transient phases are assumed to be geomet-
rically distributed. The optimal test was constructed, and a
computationally efficient alternative test based on thresholding
the posterior probability that the change has occurred was also
proposed.

2) Sequential Detection of Moving Anomaly.: Existing stud-
ies on sequential change detection in networks usually assume
that the change is persistent once it affects a node. However,
there are scenarios where the change may not necessarily

be persistent at a particular node; instead, it is persistent
across the network as a whole, e.g., a moving anomaly in
a sensor network. In this case, existing approaches using
CUSUM statistics from each node, e.g., [55], [66], [126],
[255]), cannot be applied. Recently, the problem of sequential
moving anomaly detection in networks was studied in [[175]],
[176]. Specifically, after an anomaly emerges in the network,
one node is affected by the anomaly at each time instant and
receives data from a post-change distribution. The anomaly
dynamically moves across the network with an unknown
trajectory, and the node that it affects changes with time. Two
approaches have been proposed to model the trajectory of the
anomaly: the hidden Markov model [176]], and the worst-case
approach [[175]], which we discuss in the following.

The first approach (hidden Markov model) [176] models
the anomaly’s trajectory as a Markov chain, and thus the
samples are generated according to a hidden Markov model.
The advantage of this model is that it takes into consideration
the network’s topology, i.e., that the anomaly only moves
from a node to one of its neighbors. In [176]], a windowed
GLR based algorithm was constructed and was shown to
be first-order asymptotically optimal. Alternative algorithms
were also designed with performance guarantees, including
the dynamic SR procedure, recursive change-point estimation,
and a mixture CUSUM algorithm.

The second approach (worst-case approach) [175] assumes
that the anomaly’s trajectory is unknown but deterministic
and considers the worst-case performance over all possible
trajectories. A CUSUM-type procedure was constructed. The
main idea is to use the mixture likelihood to construct a
test statistic, which is further used to build a procedure of
the CUSUM-type. This procedure was shown to be exactly
optimal in [175] when the sensors are homogeneous. This idea
has been further generalized to solve the sequential moving
anomaly detection problem with heterogeneous sensors and
has been shown to be first-order asymptotically optimal [[172].

3) Multiple Change Detection: A related line of research is
multiple change detection in the offline setting, which aims to
estimate multiple change-points from observations in a retro-
spective study. Various methods were proposed to estimate the
number and locations of change-points, including hierarchi-
cal clustering based method [125], binary segmentation type
methods [9], [40], [41], [60], [61], [220], (penalized) least-
squared methods [23], [L06]—[108], [240], Schwarz criterion
[239], kernel-based algorithms [8]], [69], and so on. Another
line of work aims to reduce the computational complexity of
the multiple change detection methods, such as [71], [89],
[169]. We refer to [210] for a recent review on multiple change
detection. Some offline multiple change detection algorithms
can motivate the development of their online versions.

4) Decentralized and Asynchronous Change Detection in
Networks: When the information for detection is distributed
across a network of sensors, detection problems fall under
the umbrella of distributed (or decentralized) detection [31]],
[212], [214], [216]. In the decentralized setting, each sensor
sends messages to the fusion center based on the observations
it has received so far. The fusion center may provide feedback
to sensors and make the final decision. The problem of



decentralized sequential change detection in distributed sensor
systems was introduced in [217]], considering the observation
model where all sensors are affected by the change at the
same time. There have been a number of papers on the topic
since then, see e.g., [127], [205], [207]. A more recent (and
practical) perspective is that the change may affect sensors
with delay, i.e., different sensors may observe the change at
different times, which we will present in the following.

In the case of multiple data streams, the change may happen
asynchronously for different sensors. When we desire to detect
the first onset of change, it is proposed in [[66]] to monitor
each data stream by local CUSUM procedures and raise the
alarm when any sensor raises an alarm. The sum of local
CUSUM statistics has been considered in [126] and was
shown to be asymptotically optimal. The problem where the
change propagates from one sensor to the next with known
Markov dynamics after the change was studied in [164], and an
asymptotically optimal test was developed. A recent procedure
proposed in [231] finds an optimal combination of local data
streams accounting for their delays in being affected by the
change, which can boost the signal-to-noise ratio and reduce
the detection delay especially when the signal is weak.

In [255]], the problem of sequentially detecting a significant
change (i.e., when at least 7 number of sensors are affected
by the change) was investigated. The event is dynamic,
i.e., different nodes are affected at different times. Instead
of using a scan statistic, which is computationally costly,
a spartan-CUSUM (S-CUSUM) algorithm was constructed,
which compares the sum of the smallest N — 7 + 1 local
CUSUM statistics to a threshold, where NV is the total number
of nodes. For the case where the change propagates along
network edges, a network-CUSUM (N-CUSUM) algorithm
was further constructed based on the idea that the affected
nodes shall induce a connected subgraph. The N-CUSUM
algorithm was also shown to be first-order asymptotically
optimal, and performs much better than the S-CUSUM nu-
merically. The decentralized setting where there is no fusion
center and nodes can only communicate with their neighbors
was studied in [111]], [253]], and the approach is based on
a novel combination of the alternating direction method of
multipliers (ADMM) and average consensus approaches. In
[94], a Bayesian approach is used to model the dynamic
change with an unknown propagation pattern, where the goal
is to detect the change when it firstly emerges in the network;
an optimal solution structure is derived using a dynamic
programming framework.

D. Robust Sequential Change Detection

Many classical procedures (for instance, CUSUM and SR)
require exact knowledge of the pre- and post-change dis-
tributions. However, in real-world scenarios, the actual data
distributions may be complex and different from what we have
assumed. There can be adversarial attacks that significantly
perturb the data distributions. This can lead to performance
degradation of the optimal procedures. How to make the
procedures more robust in the presence of model mismatch
is the topic of robust sequential change detection.

1) Robustness to Model Uncertainties: There have been
many efforts to make the detection procedure more robust
to model uncertainties. One approach is to treat the pre- and
post-change distributions to belong to some parametric family
with unknown parameters in uncertainty sets and then form
the GLR based test as we discussed earlier in Section
Another approach to developing good tests in the presence of
model uncertainties is through the use of minimax robustness
as the criterion as is done in the seminal work of Huber on
robust hypothesis testing [82]], [83]]. The solution to the robust
hypothesis testing problem usually relies on finding the least
favorable distributions (LFDs) within the uncertainty classes,
with likelihood ratio of these distributions used in constructing
the robust tests. It can be shown that LFDs exist for uncertainty
classes satisfying a certain joint stochastic boundedness (JSB)
condition [218]. The problem of minimax robust sequential
change detection was explored in [213]], in which an exactly
optimal solution was obtained for uncertainty classes satisfy-
ing the JSB condition under a generalized Lorden criterion.
An extension of this result to asymptotic minimax robust
sequential change detection is studied in [[129]], where a weaker
notion of stochastic boundedness is introduced.

A robust CUSUM algorithm is developed in [27] by making
a connection to convex optimization, which is particularly
useful for the high-dimensional setting and leads to a tractable
formulation. For instance, assuming the covariance matrix lies
in an uncertainty set centered around a nominal value, the
problem of finding LFDs can be cast as solving a semidefinite
program and can be solved efficiently.

2) Robustness to Adversarial Attacks: The problem of
sequential change detection in sensor networks in the presence
of adversarial attacks [[102] was investigated in [20], [56]. In
the presence of Byzantine attacks, an adversary may modify
observations arbitrarily to defer the detection of a change
and increase the false alarm rate. In [20], it is assumed
that the change affects all but one compromised sensor, and
the detection strategy is to raise a global alarm until two
local CUSUMs exceed the threshold. In [56], a more general
setting was investigated, where an unknown subset of sensors
can be compromised. Sequential detection strategies were
designed by waiting until L local CUSUM statistics exceed the
threshold (simultaneously or not) or by comparing the sum of
the L smallest CUSUM statistics to a threshold. With a proper
choice of L, the above approaches are robust to Byzantine
attacks.

E. Data-efficient Sequential Change Detection

There is usually a cost associated with making observa-
tions in practical engineering applications, e.g., the power
consumption in sensor networks. An extension of Shiryaev’s
formulation (Section was investigated in [11] by in-
cluding an additional constraint on the average number of
observations taken before the change. The cost of observations
after the change is included in the detection delay. Specifically,
whether to take an observation at time ¢ is controlled by an
on-off binary control variable S¢, and S; is a function of all
the information available up to time t — 1. A data-efficient



Shiryaev (DE-Shiryaev) algorithm was constructed in [11],
and was shown to be asymptotically optimal as PFA goes to
zero. The DE-Shiryaev algorithm is also shown to have good
observation cost-delay tradeoff curves: for moderate values of
PFA, for Gaussian observations, the delay of the algorithm is
within 10% of the Shiryaev delay even when the observation
cost is reduced by more than 50%. Furthermore, the DE-
Shiryaev algorithm is substantially better than the standard
approach of fractional sampling scheme, where the Shiryaev
algorithm is used and where the observations to be skipped
are determined a priori in order to meet the observation
constraint. A minimax formulation was further proposed in
[13] to address the scenario when a prior on the change-
point is not available. The DE-CUSUM algorithm developed
in [[13] is shown to be asymptotically optimal as FAR goes
to zero, and significantly outperforms fractional sampling in
simulations. Extensions to composite post-change distributions
were studied in [14], and generalizations to distributed sensor
networks were explored in [[15].

F. High-dimensional Streaming Data

High-dimensional data usually have low-dimensional struc-
tures, such as sparsity and low-rankness, which can be lever-
aged to achieve improved detection performance and compu-
tational efficiency. Meanwhile, missing data is very common
for high-dimensional streaming data. In this section, we review
recent advances in these directions.

1) Sparse Change in Multiple Data Streams: For multi-
ple independent streams of data, a mixture procedure was
developed in [236] to monitor parallel streams for a change-
point that affects only a subset of them (usually sparse). Both
the subset being affected and the post-change distribution are
unknown. The mixture model hypothesizes that each sensor
is affected with a small probability o € (0,1) by the change,
where p is pre-specified. The mixture detection statistic at time
t is defined as

N
> tog [1— o+ ofi(X(™)/ fo(XM)]

n=1

where Xt(") denotes the observation at the n-th sensor and
at time ¢, and N is the number of sensors. Another efficient
global monitoring scheme was proposed in [227]] by combin-
ing hard thresholding with linear shrinkage estimator for the
post-change parameters. In recent works [[121]], [247], a similar
problem was tackled by running local detection procedures
and using the sum of the shrinkage transformation of local
detection statistics as a global detection statistic. This sum-
shrinkage framework was further extended in [248] to be
more robust to outliers using the Box-Cox transformation.
Recent work [53] studied change detection in regimes where
the dimension tends to infinity and the length of the sequence
grows with the dimension.

2) Subspace Change Detection: In many applications, the
change in high-dimensional data covariance structure can be
represented as a low-rank change. For instance, in seismic
signal detection [232f, a similar waveform is observed at a
subset of sensors after the change. Such a change can be

modeled as the covariance matrix shifts from an identity
matrix to a “spiked” covariance model [88]. The subspace-
CUSUM procedure was developed in [232], in which the un-
known subspace in the post-change spiked model is estimated
sequentially and further used to obtain the log-likelihood
ratio statistic. A CUSUM procedure for detecting switching
subspace (from a known subspace to another target subspace)
was studied in [86].

3) Missing Data: In high-dimensional time series, it is
common that we cannot observe all the entries at each time.
The missing components in the observed data handicap con-
ventional approaches. In [234], a mixture type of approach
was proposed by combining subspace tracking with missing
data to model the underlying dynamic of data geometry
(submanifold). Specifically, streaming data is used to track a
submanifold approximation, to measure deviations from this
approximation, and to calculate a series of statistics of the
deviations for detecting when the underlying manifold has
changed.

4) Sketching to Conquer High-dimensionality: To detect
changes quickly over high-dimensional data, we may need to
conquer the challenges presented by the data’s high dimen-
sionality. Sketching is a commonly used strategy to reduce
data dimensionality, which performs linear projections of high-
dimensional data into a small number of sketches. A GLR
procedure based on data sketches was studied in [237], with
the precise characterization of performance metrics and the
minimum number of sketches needed to achieve good perfor-
mance. Multiple types of sketching matrices can be used, such
as Gaussian random matrices, expander graphs, and network
topology constrained matrices. The sketching procedure is
relevant to large power networks where we cannot place a
sensor on each node or edge. Instead, each sensor will measure
aggregates of the network states at a few edges or nodes. In
[237], the mean-shift detection problem in power networks
is studied, where each measurement corresponds to a linear
combination of the state at an edge, e.g., real power flow.
This leads to a sketching matrix determined by the network
topology.

G. Joint Detection and Estimation

It is common that the distribution after the change is
unknown. For instance, before the change in industrial process
monitoring applications, the production line is in-control and
well-calibrated (thus the distribution before the change is
known). However, after the change, an anomaly causes a
shift to the operation into an unknown status. Therefore, it is
interesting to incorporate estimates of the possible post-change
status into the detection statistic when performing detection;
this problem is related to robust sequential change detection,
as discussed in Section[llI-D1] In other situations, we need to
estimate the post-change distribution in retrospect for iden-
tifying the change. There has been much work establishing
the theoretical foundation for joint detection and estimation.
For instance, [[135] combines the Bayesian formulation of the
estimation and detection and develops an optimal procedure
to achieve a tradeoff between detection power and estimation



quality. In another context, it is also referred to as sequential
change diagnosis [46]. Quickest searching of the change-point
(e.g., quickest search for rare events) has been developed in
(78]I, [79]I, [193].

H. Spatio-temporal Change Detection

When modeling discrete event data, the point process model
[45] is frequently used due to its capability of modeling
the time intervals between events directly. Point processes
assume that time intervals between events are exponentially
distributed. For example, in Poisson processes the intervals
are independent, and in Hawkes processes the intervals are
dependent, and the intensity depends on the events that
occurred in the past [54]. The “autoregressive” nature of
Hawkes processes makes them attractive in modeling temporal
dependence and causal relationships, including market models
[209], earthquake event prediction [144]], inferring leadership
in e-mail networks [57]], and topic models [[75]]. The multi-
dimensional Hawkes process model over networks can model
highly correlated discrete event data [[168]] and capture depen-
dence over networks and propagation of the signal in such
settings.

Detection of changes for point processes has attracted much
attention for both single event stream and multiple streams
over networks (or over multiple locations). For example, there
are works focusing on Poisson processes [76], [179], [246],
and some recent work on one-dimensional [124f], [[153]] and
multi-dimensional (network) point processes [116], [226]. In
particular, [116] studied the change detection for networked
streaming event data and constructed GLR type procedures;
[226] developed the penalized dynamic programming algo-
rithm to detect coefficient changes in discrete-time high-
dimensional self-exciting Poisson processes in an offline set-
ting.

This topic is also related to the multisource quickest
detection problem, mostly assuming independence between
multiple data streams. For instance, the quickest detection
of the minimum of change-points for two independent com-
pound Poisson processes was considered in [21]] and optimal
Bayesian sequential detection procedures were developed.

1. Change Detection-Isolation-ldentification

In addition to detecting the change quickly after it occurs,
sometimes we are also interested in identifying the post-
change model and/or isolating a subset of nodes within a large
network affected by the change. In [47], an asymptotically
optimal Bayesian detection—isolation scheme was proposed
assuming the post-change model is one of the finitely many
distinct alternatives. In a series of works, Nikiforov introduced
a minimax optimal detection-isolation algorithm for stochastic
dynamical systems [137]], developed a recursive variant of
the algorithm that achieves better computational efficiency
[138], and provided an asymptotic lower bound for the mean
detection-isolation delay with constraints on the probability
of false isolation and the average time before a false alarm
[139]. Natural generalizations of CUSUM and SR procedures
for detection-isolation problems were discussed in [[198]]. See
[194], [196]] for more detailed overviews.

J. Alternative Performance Metrics

Other than what have been presented in this survey, many
alternative performance metrics have also been considered.
For instance, [[161] investigated an exponential penalty of
delay rather than a linear penalty (as used in the definition
of CADD, for instance). Such performance measures can be
more accurate, sometimes for financial applications. In these
cases, the change-point may not represent a time at which
a fundamental shift in the performance occurs, but the com-
pounding of investment growth can be a more suitable measure
of the cost of delay. Similarly, in the health monitoring of
components in aircraft systems, communication networks, and
power grids, the effects of undetected faults can exponentiate
with time. For problems involving estimation, the performance
measures can also involve estimation accuracy, for instance,
change-point location and other parameters involved in the
problem. With many parallel data streams, the error metric
can be the false discovery rate (FDR), which is the expected
ratio of the number of falsely declared data streams to the total
number of declared data streams [33]].

IV. NEW DIMENSIONS
A. Machine Learning and Change Detection

Modern machine learning approaches can be adopted for
solving sequential change detection problems, which we will
review in this subsection.

1) Density Ratio Estimation: Instead of estimating the post-
change density f; as in the GLR procedure, we may estimate
the density ratio fy/fo directly (referred to as density ratio
estimation [192]), based on which we develop sequential
change detection procedures. A data-driven framework using
neural networks was developed in [134]. More specifically,
given two sets of data sampled from the densities of interest,
an optimization problem is defined so that the solution, spec-
ified through neural networks, will correspond to the desired
likelihood ratio function or its transformations and can then
be used for sequential change detection.

2) Anomaly Detection: Change detection is closely related
to anomaly detection, which is a popular topic in machine
learning and data mining, and many machine learning tech-
niques have been developed. In particular, an recurrent neural
network (RNN) based approach computes the detection statis-
tic (referred to as the anomaly score) in an online fashion
and compares with a threshold for anomaly detection [177].
The RNN-based approach can benefit certain situations since
they are known to capture complex temporal dependencies
for multivariate time series. We refer to [30] for a recent
survey on deep learning techniques for anomaly detection.
Developing mathematical theory for RNN-based sequential
change detection is still an open question.

3) Online Learning and Change Detection: Online im-
plementation is one of the most critical aspects of sequen-
tial change detection algorithms in practice. Although many
algorithms enjoy recursive structure, such as CUSUM and
SR procedures, some sequential detection procedures face a
significant hurdle of online implementation due to their non-
recursive nature. For instance, window-limited GLR statistic,



although enjoying robust performance in the presence of
unknown post-change distributions, is not recursive since the
parameters need to be continuously estimated by incorporating
new samples. To tackle this challenge, inspired by online
learning, [26] develops an online mirror descent-based GLR
procedure to update the estimate of the unknown post-change
parameter with new data. Another highly cited work [2[ devel-
ops an online change detection procedure based on Bayesian
computing. In recent work, [208] develops a framework for
joint sequential change detection and online model fitting,
which will be particularly suitable for parameterized models. A
GLR procedure is developed in this framework using estimates
of the unknown high-dimensional parameter obtained by the
gradient descent update.

4) Tracking Data Dynamics: Many sequential data are
dynamic even before the change has happened; for instance,
solar flare detection from satellite video streaming [233]],
[234]. To build methods that work with real-world scenarios,
we need to develop robust methods that can adapt to normal
data dynamics without mislabeling them as change-points.
A possible strategy is to combine tracking with detection.
For instance, [233], [234] developed a procedure to detect
sparse changes when the pre-change high-dimensional data
is time-varying. The data dynamic is captured by tracking
a time-varying manifold using variants of subspace tracking
(e.g., GROUSE [245], PETRELS [39]], or MOUSSE algo-
rithm [234]). Another instance is the network Hawkes process
model, where we may track the Hawkes process through online
learning techniques [67].

5) Active Learning and Change Detection: For certain
applications such as material science and recovering seafloor
depth, data acquisition is expensive. Thus, it is desirable
to collect data that is most useful in a sequential fashion,
which is the theme of active learning (see, e.g., [29], [[190]).
The combination of active learning and change detection was
introduced as active change-point detection (ACPD) problem
in [[74]. The task is to adaptively determine the next input to
detect the change-point in a black-box expensive-to-evaluate
function, with as few evaluations as possible. The method uti-
lizes the existing change detection method to compute change
scores and a Bayesian optimization method to determine the
next input. A CUSUM procedure with an adaptive sampling
strategy to detect mean shifts was developed in [[120].

6) Detection with Data Privacy: As data privacy has grow-
ing importance in modern applications in social settings, it also
leads to developing private change detection algorithms. Both
offline and online change detection methods through the lens
of differential privacy have been developed in [44]]. A different
privacy-aware sequential change detection method was studied
in [[104], using maximal leakage as the privacy metric, which
is a weaker form of privacy compared with [44].

7) Change Detection for Reinforcement Learning: Rein-
forcement learning is a major type of sequential decision-
making methodology in the era of artificial intelligence. How
to implement reinforcement learning in a non-stationary and
changing environment is still a mostly unexplored area. Re-
cently, there have been some attempts to combine sequential
change detection and reinforcement learning [147], where

change detection algorithms are utilized to detect the transition
of the environment and trigger transitions of reinforcement
learning algorithms.

B. Distribution-free Methods

Distribution-free methods aim to detect the change without
making explicit distributional assumptions on the data. Such
methods are particularly attractive in machine learning, such as
kernel MMD based method discussed in Section[lII-B2} due to
their flexibility in working with complex data. There have been
kernel-based non-parametric methods developed in terms of
change detection, both for the offline setting [8]], [70]], [72] and
the online setting [115]. MMD statistics have also been used
for anomalous sequence detection, for instance, [252], [254].
Besides MMD, other distribution-free methods have been
developed for change detection. For instance, dissimilarity
measures based on the kernel support vector machine (SVM)
were built in [50], and generalized likelihood test directly
using data empirical distributions when the true distributions
are supported on a finite alphabet were constructed in [24],
[105], (1400, [141].

There are many other types of distribution-free non-
parametric tests for change detection developed in various
contents. For instance, the maximal k-largest sample coher-
ence between columns of each observed random matrix was
developed to detect change for large-scale random matrices
[12]. A nearest-neighbors-based statistic was proposed in [32]
to detect the change in sequences of multivariate observations
or non-Euclidean data objects such as network data. The
weighted moving averages were studied in [58] to detect
univariate drifts. A non-parametric approach was developed
in [150] to detect departure from the reference signal with
non-i.i.d. underlying time series. The spectral scan statistic
for change detection over graphs was considered in [178].
Wasserstein distance was used to detect segments of times
series in [38]. In [10], test statistics were constructed using
martingales under the null hypothesis, and the rejection thresh-
old is determined using a uniform non-asymptotic law of the
iterated logarithm.

C. Non-stationary Multi-armed Bandits with Changes

Multi-armed bandit is a class of fundamental problems in
online learning and sequential decision-making. A learning
agent aims to maximize its expected cumulative reward by
repeatedly selecting to pull one arm at each time step. Change
detection can play a role in the scenario where the reward
distributions may change in a piece-wise-stationary fashion at
unknown time steps. To handle dynamic multi-armed bandit
problems, various change detection methods were considered,
including the Page-Hinkley test [73], a windowed mean-shift
detection [243]], CUSUM test [119], and sample mean based
test [25]. Usually, the algorithm will reset once a change is de-
tected. From a Bayesian perspective, the Thompson sampling
strategy equipped with a Bayesian change-point mechanism
was considered in [128]]. The adversarial multi-armed bandit
problem with change points was also considered in [5].



D. Optimization for Change Detection and Estimation

Optimization is becoming a centerpiece in developing mod-
ern machine learning algorithms. Recent advances in convex
optimization have enabled solving many large-scale problems.
A line of research aims to casts (offline) change detection and
estimation (of their locations) as an optimization problem. The
benefits of this optimization-based approach typically include
computational efficiency (when the optimization problem is
convex) and theoretical performance guarantees based on
optimization theory. Below we give some examples.

The univariate change detection for a mean shift using an
optimization approach has been studied in [[117], and perfor-
mance guarantees were established by relating the {5 recovery
error to detection performance. A ¢y-penalized least squares
method was considered in [224]]. By connecting to binary
segmentation methods, change detection and localization for
univariate data in the non-parametric settings was studied in
[148].

Multivariate change detection using an optimization ap-
proach has also been studied. For instance, a dynamic pro-
gramming approach was developed for recovering an unknown
number of change-points from multivariate autoregressive
models [225]. A network binary segmentation method for
change detection was proposed in [223]], which has been
extended for covariance matrix change detection in [222].
Finally, the work [[191]] combined the filtered derivative with
convex optimization methods to estimate change-points for
multi-dimensional data.

V. MODERN APPLICATIONS

Sequential change detection has traditionally been used in
industrial process monitoring applications, which was proba-
bly the original motivation for change detection procedures to
be developed in the early days. The wide adoption of change
detection in industrial quality engineering and manufacturing
initiates the field of statistical process control (SPC) (see, e.g.,
[143], [[182]). Recently, there have been many more modern
applications for sequential change detection, and we present a
selection of them here.

A. Smart Grids

The sequential change detection methodology has been
recently successfully applied for sequential line outage de-
tection in power transmission systems. In modern smart grids,
high-speed synchronized voltage phase angle measurements
are taken from phasor measurement units (PMU). Based on
PMU measurements, a linearized incremental small-signal
power system model was developed in [37]. Once a line
outage occurs, there is a change in the covariance matrix of
incremental phases, by monitoring which, line outages can
be detected and identified using sequential change detection
algorithms. In [171], the transient dynamics of the power
system following a line outage is further incorporated. The
D-CUSUM algorithm was then developed to incorporate the
dynamic nature of the line outage in [[171] (see Section
for more details).

There have been other works on sequential change detection
for smart grids. The generalized local likelihood ratio test
was applied for voltage quality monitoring [/114], photovoltaic
systems [36], attack detection in the multi-agent reputation
systems [113]], wide-area monitoring [112], and cyber-attacks
detection in discrete-time linear dynamic system [92], [93].
The decentralized detection with level-triggered sampling was
considered in [241]. In [77], a general stochastic graphical
framework for modeling the bus measurements and a data-
adaptive data-acquisition and decision-making processes were
designed for the quickest search and localization of anomaly
in power grids.

B. Cybersecurity

Cybersecurity has become a critical problem with the de-
velopment of wireless communication, networking, and the
Internet of things. It is of practical importance to detect attacks
and intrusions in real-time from network streaming data, e.g.,
denial-of-service attacks, worm-based attacks, port-scanning,
and man-in-the-middle attacks. The sequential change de-
tection approach is a natural fit since the attacks usually
change network traffic distribution. In [203]], multi-channel
generalizations of the CUSUM procedure and non-parametric
tests were proposed. In [204], adaptive sequential methods
were proposed for early detection of subtle network attacks,
utilizing data from multiple layers of the network protocol.
In [202], a multi-cyclic detection procedure based on the SR
procedure was proposed. In [199], score-based CUSUM and
SR procedures were exploited for network anomaly detection,
and a hybrid detection system was proposed. The application
to cybersecurity was also discussed in books [[194], [196], and
recent reviews [84], [85].

C. Sensors Networks

Sensor networks collecting sequential data have been widely
used for geophysical, environmental, traffic, and internet traffic
monitoring applications, which we will briefly summarize in
this subsection.

Seismology is experiencing rapid growth in the quantity
of data. Earthquake detection aims to identify seismic events
in continuous data — a fundamental operation for seismology
[242]. Modern ultra-dense seismic sensor arrays have obtained
a massive amount of continuous data for seismic studies,
and many such data are publicly available through IRIS [1].
In the old days, network seismology treated seismic signals
individually - one sensor at a time - and detected an earthquake
upon multiple impulsive arrivals consistent with a source
within the Earth [87]. Recently, with advances in sensor tech-
nology, which bring densely sampled data, high-performance
computing and high-speed communication, we are able to use
a network-based detection by exploiting correlations between
sensors to extract coherence signals. This will enhance the
systematic detection of weak and unusual events that currently
go undetected using individual sensors. Detecting such weak
events is very crucial for earthquake prediction [[145], [219],
oil field exploration, volcano monitoring, and deeper earth
studies [80]. Towards this goal, in [232], a subspace-CUSUM



procedure was developed for network-based detection by ex-
ploiting the low-rank subspace structure induced by waveform
similarity.

Sensor networks have also been deployed to monitor drink-
ing water safety from the water tower to private residences.
Sequential change detection using residual chlorine concentra-
tion measurements from the sensors network was developed
in [65]]. Methods have also been developed for monitoring
river contamination [34], [35[], which specifically consider the
spatio-temporal correlation in observations along the sensor
network due to water dynamics.

Sequential monitoring of traffic flow using traffic sensors
has been considered in [166], and a distributed, online, se-
quential algorithm for detecting multiple faults in a sensor
network was presented therein. Recently, Hawkes processes
models for correlated traffic anomalies using data collected
by inductive-loop traffic detectors were developed in [250].

D. Wireless Communications

Sequential change detection has been used for wireless
communications, including online user activity detection for
multi-user direct-sequence/code-division multiple-access (DS-
CDMA) environment [146], detecting “spectrum opportuni-
ties” in the cognitive radio setting by identifying the occupancy
and idle of channels from primary user’s activities [95]], [235].
More recently, [81] established a change detection framework
for low probability of detection (LPD) communication, where
a transmitter, Alice, wants to hide her transmission to a
receiver, Bob, from an adversary, Willie; three different se-
quential tests were considered, including Shewhart, CUSUM,
and SR procedures, to model Willie’s detection process.

E. Video Processing and Computer Vision

Change detection is one of the most commonly encoun-
tered low-level tasks in computer vision and video processing
[163]], and many such problems are essentially sequential.
A plethora of practical algorithms have been developed to
date; for instance, scene change detection [110], street-view
change detection [3]], and change detection in video sequences
[211]. In [48]], a pixel-based weightless neural network (WNN)
method was developed to detect changes in the field of view
of a camera. In [[118]], multiple images from reference and
mission passes of a scene of interest were used to improve
detection performance. There are still many open questions
regarding how to leverage the power of statistical sequential
change detection for computer vision and video processing.
We present an example of solar flare detection from video
sequences in Fig.d which has been considered in several
works along this line including [234].

FE. Social Networks

The wide-spread use of social networks and the great
availability of information networks (e.g., Twitter, Facebook,
blogs) lead to a large amount of user-generated data [91],
which are quite valuable in studying many social phenomena.
One important aspect is to detect change-points in streaming
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Fig. 4. Solar flare detection with the mixture procedure as considered in [234]];
the first minor solar flare at ¢ = 142 is hardly visible, and it is missed entirely
by a baseline detection statistic (sum of CUSUM at each data dimension
without exploiting sparsity in the change: “solar flare”). This also illustrates
the importance of exploiting sparsity in the change.

social network data [90], which may represent the collec-
tive anticipation of or response to external events or system
“shocks” [152]. Detecting such changes could provide a better
understanding of the patterns of social life. In other cases,
early detection of change-points can predict or even prevent
social stress due to disease or international threat, for instance,
detecting self-exciting changes (modeled by network Hawkes
processes) in social networks [116]. A related topic is dis-
tributed hypothesis testing in social networks: [[101] showed
the exponential convergence rate of a Bayesian update scheme
of nodal belief (distribution estimate) in the social learning
setting.

G. Epidemiology

Sequential change detection can potentially play an im-
portant role in public health and disease surveillance. Early
detection of epidemics is a very important topic. In [17],
[18]], Baron cast the early detection of epidemics as a Bayes
sequential change detection problem and proposed an asymp-
totically pointwise optimal stopping rule, which is computa-
tionally efficient for complicated prior distributions arising
in epidemiology. In [244], a modified CUSUM procedure
was proposed for the susceptible—infected-recovered (SIR)
epidemic model to detect change-point in the infection rate
parameter. Moreover, change detection has been incorpo-
rated into studying the intervention’s effectiveness, based on
the premise that the underlying epidemiological model may
change over time due to interventions. Evaluating intervention
measures’ effectiveness requires detecting underlying change-
points, which becomes even more important in the COVID-19
era [249]. Such works include [151]], [228]], which estimate
the change-points in time series to assess the effectiveness
of interventions such as lock-down and mask usage; in [49],
the problem of detecting the growth rate change for the
COVID-19 spread in Germany was studied, where results were
further incorporated into forecasting. There are still many open
questions in this area regarding developing effective sequential
change detection procedures suitable for infectious disease
early detection.

VI. CONCLUSIONS

Our goal in this survey was to provide a glimpse of the past
and recent advances in sequential change detection, and its ap-
plication in various domains. We have covered different types



of sequential change detection procedures, both theoretically
optimal and practical. We also discussed how the intersection
of sequential change detection with other areas has created
interesting new directions for research.
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