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ARITHMETIC REPRESENTATIONS OF FUNDAMENTAL
GROUPS II: FINITENESS

DANIEL LITT

ABSTRACT. Let X be a smooth curve over a finitely generated field k, and let
£ be a prime different from the characteristic of k. We analyze the dynamics
of the Galois action on the deformation rings of mod ¢ representations of
the geometric fundamental group of X. Using this analysis, we prove several
finiteness results for function fields over algebraically closed fields in arbitrary
characteristic, and a weak variant of the Frey-Mazur conjecture for function
fields in characteristic zero.

For example, we show that if X is a normal, connected variety over C, the
(typically infinite) set of representations of 71 (X®") into GLy(Qg), which come
from geometry, has no limit points. As a corollary, we deduce that if L is a
finite extension of Qg, then the set of representations of 71 (X?®) into GLn (L),
which arise from geometry, is finite.
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1. INTRODUCTION

The purpose of this paper is to study the representations of the étale fundamental
group 7% (X, %) of a variety X over a finitely generated field k, via an analysis
of the Galois action on 7*(X%,Z). This work was begun in [Lit18], which studied
integral aspects of such representations. In this paper we focus on finiteness results
for representations of these groups. We are motivated by the Shafarevich conjecture
[Fal83, Satz 6], the Fontaine-Mazur finiteness conjectures [FM95, Conjectures 2a and
2b], and the Frey-Mazur conjecture (see the question at the end of the introduction
of [Maz78] for the original question, and the introduction of [BT16] for a corrected
statement), though we prove nothing new about these conjectures.

Part of the goal of this work is to give anabelian approaches to function field
analogues of standard conjectures about representations of Galois groups of number
fields, in the hope that these techniques can be transported to the number field setting.
In particular, most of our main results have purely group-theoretic statements.
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1.1. Main results. Let &k be a finitely generated field, and X/k a curve (a smooth,
separated, geometrically connected k-scheme of dimension 1). Choose an algebraic
closure k of k, and let T be a geometric point of X.

Definition 1.1.1. Let £ be a prime different from the characteristic of k, and let L
be an f-adic field (an algebraic extension of @, or the completion thereof). We say
that a continuous representation

p: w (X5, T) = GLa(L)

is arithmetic if there exists a finite extension &’ of k and a continuous representation
P (X, 7) — GL, (L)

such that p is isomorphic to a subquotient of ﬁ|,n.(1ét( X:.2)

The main examples of arithmetic representations are those arising from geometry
(see Definition 3.1.6 for a precise definition, which is substantially less restrictive
but a bit more complicated than the situation below):

Ezxample 1.1.2. Suppose

f Y - X L
is a smooth proper morphism of varieties over k. Then for any i > 0, any subquotient
of the monodromy representation

m1(Xg, 7) = GL((R' Q) ® L)
is arithmetic. (See Proposition 3.1.9 for a proof of a generalization of this fact.)

The purpose of this paper is to study arithmetic representations, and to apply
this study to the understanding the representations which arise from geometry.

1.1.1. Results on finiteness. If p is a representation of a group into GL,(R) for
some ring R, we denote by ch(p) the characteristic polynomial of p — that is, the
function
ch(p) : G — RJt]
g+ det(tI — p(g)).
Our first main result is:
Theorem 1.1.3. Let ¢ € R be such that 0 < ¢ < 1. Let
p: X5, T) = GL,(Fyr)

be a representation. Then the set of isomorphism classes of semisimple arithmetic

representations
p: (X5, &) = GL,(Cy)
with
ch(p) = ch(p) mod ¢°
is finite.

Here Cy := Qy is the completion of the algebraic closure of Q,. Note that the
equality
ch(p) = ch(p) mod ¢¢
takes place in O¢,/(¢°)[t], which contains Fe-[t].
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Remark 1.1.4. A slight weakening of Theorem 1.1.3 admits a more pithy statement.
Namely, Theorem 1.1.3 implies that the set of semisimple arithmetic representations
of m§*(Xy,z) — GL,(Cy) has no limit points. That is, if {p;} is a sequence of
semisimple arithmetic representations with ch(p;) — ch(p) uniformly, then the
sequence {p;} is eventually constant.

As a corollary, we have the following finiteness result:

Corollary 1.1.5. Suppose L is finite over Qq, with residue field Fyr, ring of integers
Or,, and maximal ideal my,. Then
(1) If p : m{4(X5,2) — GL,(F¢) is a continuous representation, the set of
isomorphism classes of semisimple arithmetic representations (resp. repre-
sentations which arise from geometry)

p: (X5, T) = GL, (L)
with ch(p) = ch(p) mod my, is finite.

(2) If char(k) = 0, the set of isomorphism classes of semisimple arithmetic
representations (resp. representations which arise from geometry)

p: X5, %) = GL, (L)
18 finite.
(8) If char(k) > 0, the set of isomorphism classes of semisimple tame arithmetic
representations (resp. tame representations which come from geometry)

p: (X, ) — GL,(L)
18 finite.
Remark 1.1.6. Theorem 1.1.3 and the parts of Corollary 1.1.5 about semisimple

arithmetic representations are purely group-theoretic statements about the structure
of the arithmetic fundamental group 7{*(X, z).

Remark 1.1.7. Note that if L is replaced by Q; in Corollary 1.1.5 above, the
statement is false, as may be seen by taking X = G,,; in this case m$*(X},Z) ~ Z,
and the arithmetic representations (resp. representations which arise from geometry)
(X5, 7) — Qp  are precisely the characters of finite order, of which there are
infinitely many.

Remark 1.1.8. Corollary 1.1.5(3) is false without the tameness assumption. For
example, one may take X = Af; then Hom(w$*(X}, #),F,) is not finitely generated,
and hence there are infinitely many representations 7¢*(X;,z) — GL,(Qy) with
finite image. Representations with finite image are always arithmetic (and always
arise from geometry). One may, however, replace the tame fundamental group with
any topologically finitely-generated quotient of 7$*(X%, Z).
Remark 1.1.9. One may prove higher-dimensional analogues of Theorem 1.1.3 and
Corollary 1.1.5 by reduction to the case of curves, via a Lefschetz argument.
Moreover, one may deduce results for varieties over arbitrary fields by a standard
spreading-out and specialization argument. For example, Corollary 1.1.5 implies
that if X is a connected, normal variety over C, the set of representations of 71 (X?")
into GL,,(Qy), which arise from geometry, is finite.

Remark 1.1.10. One may deduce a stronger form of Corollary 1.1.5(3) from the
results of this paper; namely, that the set of semisimple arithmetic representations
with bounded Swan conductor is in fact finite. We do not give a proof here.
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1.1.2. A weak analogue of the Frey-Mazur conjecture. Suppose now that
57X, &) = GLy(Fyr)

is absolutely irreducible. Then Theorem 1.1.3 implies (by [Car94, Théoréme 1]) that
given a semisimple arithmetic representation

R Wft(XE,f) — GL,(Zy)

lifting p (note that p® Qy is necessarily absolutely irreducible), there exists d € Qg
such that for any semisimple arithmetic p’ with

g~ pmod %,

we have that 5’ ~ p. (Here Z; is the valuation ring of Q,.) That is, there is a ball of
radius /~¢ around p such that j is the unique semisimple arithmetic lift of p within
this ball. However, the proof of Theorem 1.1.3 gives no way to effectively compute
such a constant d.

Our final main result gives a method to effectively compute such a constant
d > 0, in terms of cohomological invariants of p, as long as char(k) = 0 and p arises
from geometry. This is a weak version of the Frey-Mazur conjecture for function
fields (see e.g. [Maz78, BT16]), which asserts that a monodromy representation
should be determined by its mod ¢? reduction, for £¢ large in terms of the geometric
invariants of X and the dimension of p, if p arises from the Tate module of an
Abelian X-scheme.

Theorem 1.1.11. Let X be a smooth, geometrically connected curve over a finitely
generated field k of characteristic zero, and let T be a geometric point of X. Let

p: ﬂft(X,;,i) — GL,(Qp)

be a representation which arises from geometry, lifting an absolutely irreducible
residual representation p. Then there exists an explicit constant N = N(Xz, c¢(p), ?)
such that any semisimple arithmetic representation

P i (X &) = GL(Qr)
with
ch(p) = ch(p) mod ¢~
satisfies p ~ p. Here c(p) is defined as in Definition 5.1.7.

Remark 1.1.12. The statement of Theorem 1.1.11 is not purely group-theoretic, as
p is required to arise from geometry. However, the proof only requires p to be pure
and geometric in the sense of Fontaine-Mazur — see Remark 5.1.6 for details.

In general, the constant ¢(p) appearing in Theorem 1.1.11 may be bounded
independently of ¢, assuming the Tate conjecture; in particular, assuming the Tate
conjecture, if {p,} is a compatible system of representations of 7$'(X}, Z) arising
from geometry, we have N(c(p¢),¢) — 0 as £ — oo. See Remark 5.4.1 for details.

Without the Tate conjecture, we do not know how to estimate the constant c(p)
appearing in Theorem 1.1.11 above; however, if p has finite image, we may bound
it using a result of Serre [Ser13, Lettre & Ken Ribet, p. 60]. In this case, we have
the following more uniform result, which is a strengthening of the main theorem
of [Lit18]:
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Theorem 1.1.13. Let X, k, % be as in Theorem 1.1.11. Let
p: (X5, %) — GL,(Q)

be a representation which factors through a finite quotient G of m{{(Xy,Z). Then
there exists a sequence of constants Ng(£) > 0 with Ng(£) = 0 as £ — oo such that

if
p: (X5, T) = GL,(Qy)
18 semisimple arithmetic with
ch(p) = ch(p) mod N
we have p @ Qp ~ p.
In other words, Theorem 1.1.3 implies that there is a ball around p ® Q; in which
it is the unique semisimple arithmetic representation of 7¢*(X%,Z). Theorem 1.1.13
implies that the radius of this ball tends to 1 as £ — co. A closely related result was
proven by Cadoret and Moonen [CM18, Theorem B], simultaneously with Theorem
1.1.13.
In particular, for £ > 0, if L is a finite extension of Q; with residue field Fy-,
there is a unique semisimple arithmetic lift of any representation
7 (X5, %) = G — GL,(Fyr)
to GL, (L), namely the obvious one which factors through G. For example, applying
the result in the case p is trivial, we have the following simple consequences:

Corollary 1.1.14. There exists £o(X) > 0, independent of n, such that for £ >
£o(X), the unique semisimple arithmetic representation

p i (X5) = GLn(Za),
which is trivial mod £, is the trivial representation.
Here semisimplicity means that p ® Qy is semisimple.

Corollary 1.1.15. Let X be a smooth connected curve over C. Then there exists
an integer N = N(X) > 0 such that if
p:m (X)) = GL,(Z)
(1) arises from geometry, and
(2) is trivial mod M for some integer M > N,
then p is trivial.

This latter corollary is immediate from the fact that representations arising from
geometry are semisimple arithmetic.

1.2. Overview of the proof.

1.2.1. Sketch proof of Theorem 1.1.3. The proof proceeds in two steps. First, we
show that any semisimple arithmetic representation into GL,,(Cy) is in fact defined
over Q; (Theorem 3.2.3). This is the only place in the paper in which Lafforgue’s
work is used; we require as input from Lafforgue the fact that if k£ is finite of
characteristic different from ¢ and

p: Wi’t(X, 7) = GL,(Qy)
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is irreducible when restricted to 7$*(Xp, Z), then p ® pV is pure of weight zero. If
one only wishes to prove the parts of Corollary 1.1.5 about representations arising
from geometry, one may avoid this input at the cost of a slightly more complicated
argument.

We reduce to the case of finite fields by a specialization argument. In this case,
we show via a dynamical argument (Corollary 4.1.5), that for ¢ as in the Theorem,
there exists k(c)/k finite such that any p satistying the condition of Theorem 1.1.3
is invariant under the action of Gy (Corollary 4.1.6). Now suppose there were
infinitely many such semisimple p. The condition ch(p) = ch(p) mod ¢¢ defines an
affinoid subdomain of the rigid generic fiber of the space of pseudorepresentations
lifting ch(p); the infinitude of p satisfying the given condition would imply that this
subdomain contains infinitely many Gj,(.)-fixed points. Thus the space of G(.)-fixed
points would be a positive-dimensional rigid space, and hence would have a Cy-point
not defined over Q. This contradicts the result of the previous paragraph.

1.2.2. Sketch proof of Theorem 1.1.11. The proof is a variant on the proof of Theorem
1.2 of [Lit18], replacing the use of the pro-unipotent fundamental group in that
paper with the use of deformation rings. As in the statement of the theorem, let

pr Y (Xg, 7) = GLn(Qe)

be a representation which arises from geometry, lifting an absolutely irreducible
residual representation

p (X5, T) = GLy,(Fyr).
Let S, be the deformation ring of p and Rj; the deformation ring of p.

We define a weight filtration W* on S, and, for o € Z; sufficiently close to 1, we
construct elements o, € G, which act on gry;/ S, via o’ - Id (Theorem 5.1.8). Using
this analysis, we construct a G-stable closed ball U in the rigid generic fiber E;
of R;, containing the point of Ej; corresponding to p, such that the span of the o,
eigenvectors in Oy is dense.

The o,-eigenvectors in Oy are convergent power-series vanishing at the point
of E; corresponding to p; we estimate their coefficients in terms of «. Using this
estimate, we may estimate the radius of a ball U’ in which p is the unique common
zero of these o,-eigenvectors, and hence the unique o,-periodic point of U’. We
thus conclude that it is the unique arithmetic representation contained in U’.

1.3. Comparison to previous work. We first discuss predecessors to Theorem
1.1.3 and Corollary 1.1.5. Deligne showed [Del87] that if X is a normal complex
algebraic variety, there are finitely many representations

TP (X,z) = GL,(Q)

underlying a polarizable variation of Hodge structure, and hence finitely many
such representations which arise from geometry; Corollary 1.1.5 is analogous, but
replaces Q with an f-adic field. Even over C, Corollary 1.1.5 does not follow from
Deligne’s work [Del87], because ¢-adic fields contain number fields of arbitrary degree.
Corollary 1.1.5 does not imply Deligne’s result about variations of Hodge structure,
of course, but it does immediately imply the corollary that there are finitely many
representations

mP(X,z) = GL,(Q)

which arise from geometry.
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Work of Deligne, Drinfel’d, and Lafforgue implies (via automorphic methods)
that if X is a variety over a finite field F,, the set of semisimple Q,-representations
of its Weil group W (X), with fixed rank and bounded wild ramification at infinity,
is finite up to twist by characters of W (F,) [EK12, Theorem 2.1]. Perhaps Theorem
1.1.3 should not be surprising in light this result; indeed, Theorem 1.1.3 may be
deduced from Deligne’s result by combining Theorem 3.2.3 of this paper (to reduce
to proving an analogous statement for Q,-representations) with the dynamical
arguments of Section 4 (to bound the field of definition of a representation satisfying
the hypotheses of the theorem). We provide a slightly different argument for the
sake of self-containedness. As in the case of the previous work mentioned in this
paragraph, this paper relies heavily on Lafforgue’s work.

Theorems 1.1.11 and 1.1.13 are weak variants of the Frey-Mazur conjecture
for function fields; the proofs are a (somewhat involved) variant of the proof
of [Lit18, Theorem 1.2]. There has been much recent work on the function field
Frey-Mazur conjecture for representations arising from families of elliptic curves;
see e.g. [BT16]. Theorem 1.1.13 also has complex-analytic analogues (with rather
different uniformities) in the case of monodromy representations arising from families
of Abelian varieties, in e.g. [Nad89, HT06].

1.4. Acknowledgments. This paper owes a great deal to conversations with Piotr
Achinger, Ana Cadoret, Johan de Jong, Hélene Esnault, Shizhang Li, and Will
Sawin, as well as the three anonymous referees. The author’s work is supported by
NSF grant DMS-2001196.

2. PRELIMINARIES ON DEFORMATION RINGS

We now begin preparations for the proof of Theorem 1.1.3, which will proceed by
analyzing the dynamics of the Galois action on framed deformation rings of residual
representations of 7$*(Xj, #), and on moduli of pseudorepresentations. We first
recall the definitions of the objects in question.

2.1. Basics of deformation rings. Let ¢ be a prime. Let G be a profinite group
satisfying Mazur’s condition (®,) [Maz89, 1.1]:

For each open subgroup of finite index H C G, the set of continuous (@)
homomorphisms Homon (H,Fy) is finite. ¢

Let p: G — GL,(F) be a continuous representation. Write A = W (Fyr) for
the Witt ring of Fyr, and let ¥ be the category of local Artinian A-algebras with
residue field Fy~. Recall that the framed deformation functor

DE 1 6p — Sets
assigns to an object A of € the set of
{p G — GLn(A) | pRAFpr = ﬁ}

In other words, DE parametrizes lifts of p with a fixed basis.
We let Dj; : €A — Sets be the deformation functor which assigns to an object A
of €, the set

{(p: G = GLa(A) | p©aFor = )}/ ~
where here p ~ p’ if there exists an element

v € ker(GL,(A) = GL,(F¢r))
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such that pY¥ = p’. This is Mazur’s notion of ‘strict equivalence’ [Maz89, 1.1].

There is an evident map DﬁD — Djp, given by forgetting the framing.

As G satisfies Mazur’s finiteness condition (®y), DE is pro-representable by a
local Noetherian A-algebra RE with residue field Fyr [Maz89, Proof of Proposition
1]. In general the functor Dj is not pro-representable, though it is if p is absolutely
irreducible; in this case we call the pro-representing object R5. The groups

T, = Hlwi (G, p®p")

form a tangent-obstruction theory for D; [Maz89, 1.6].

In particular, if 75 = 0, D; is formally smooth; as the forgetful natural trans-
formation DE — D; is formally smooth [B6c13, Corollary 1.4.6], this implies Dp';I
is formally smooth as well. In this situation, RE is, by the Cohen structure theo-
rem, non-canonically isomorphic to a power series ring over A; if it exists, R is
non-canonically isomorphic to a power series ring over A as well, with tangent space
canonically isomorphic to 77.

Finally, we recall from [Tay91, 1.1], [Chel4, definition on page 3] the definition of
a pseudorepresentation, which formalizes the algebraic properties of the determinant
of a representation det(p) : R[[G]] — R, where

p:G— GL,(R)
is a representation.

Definition 2.1.1 (Pseudorepresentations). Let A be a commutative ring and R a
not-necessarily commutative A-algebra. Let A — alg be the category of commutative
A-algebras, and let
R: A — alg — Sets
be the functor
S—HR®4S5.

(1) A polynomial law D : R — A is a natural transformation R — A. If B is a
commutative A-algebra, we let Dp : R®4 B — B be the induced map.

(2) A polynomial law D is homogeneous of degreee n if Dg(xb) = b"D(z) for
albe Byr € R®4 B.

(3) A polynomial law D is multiplicative if Dg(1) = 1 and Dp(zy) = Dg(z)Dp(y)
for all B and all z,y € R®4 B.

(4) A d-dimensional pseudorepresentation of R is a multiplicative, homogeneous
polynomial law D : R — A of degree d.

(5) If G is a group, then a d-dimensional A-pseudorepresentation of G is a
homogeneous pseudorepresentation D : A[G] — A of degree d.

(6) If D is a d-dimensional A-pseudorepresentation of G, we define its charac-
teristic polynomial x(g,t) by

d
X(9:8) == Dagg(t — g) = S (~1)'AP (gt~
i=0
for g € G. We define the trace of D to be AP.

(7) If A is a topological commutative ring and G is a topological group, we
say that a d-dimensional pseudorepresentation D of G is continuous if
AP : G — A, defined as above, is continuous for all i. (See [Chel4, Section
2.30].)
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Of course if
p:G— GL,(R)
is a continuous representation, then det op is a continuous n-dimensional pseudorep-
resentation of G.

We will use throughout that if R is an algebraically closed field of characteristic
zero, then a pseudorepresentation is determined uniquely by its trace [Cheld,
Proposition 1.29], and that

p — detop

gives a bijection between isomorphism classes of (continuous) semisimple representa-
tions into GL, (R) and (continuous) n-dimensional R-pseudorepresentations [Chel4,
Theorem 2.12].

Given a d-dimensional pseudorepresentation 7 : G — Fyr, we let

D : €5 — Sets

be the functor which assigns to an Artin A-algebra A with residue field Fyr the set
of d-dimensional pseudorepresentations G — A lifting 7. Chenevier shows [Chel4,
Proposition 3.3] that DE® is pro-representable by a local Noetherian A-algebra
A(7). Given an n-dimensional residual representation p, there is a natural map
D; — DY, o 5 given by sending a deformation of p to its determinant.

We will also at several places in this text use the rigid-analytic moduli space of
pseudorepresentations. Briefly, if An is the category of rigid-analytic spaces over
Qy, and

E* . An — Sets

is the functor which associates to X the set of d-dimensional pseudorepresentations
G — 0(X), Chenevier shows that E*" is represented by a quasi-Stein rigid analytic
space, which we will denote E4 [Chel4, Theorem D]. Chenevier shows that Ey is
the disjoint union of the rigid generic fibers of the A(7), where 7 ranges over all
residual d-dimensional pseudorepresentations [Chel4, Theorem F).

Finally, if p : G — GL,(F,) is an n-dimensional representation of G, there is
for each ¢ € R with 1 > ¢ > 0 an affinoid subdomain of F, given by the set of
pseudorepresentations D : G — Q; with x(g,t) = ch(p) mod ¢¢. We denote this
subdomain by Ej .. Let

E;= |J Epe

1>¢>0

2.2. Galois actions on deformation rings. Let X be a normal, geometrically
connected variety over a finitely generated field k of characteristic different from
¢; let © € X (k) be a rational point. Choose an algebraic closure k of k, and let
7 € X (k) be the geometric point of X associated to z. The fact that z is a rational
point means that the pair (X, ) has an action by Gy := Gal(k/k); hence G}, acts
on 7$" (X%, 7).

Let

P X5, &) — GLy(Fyr)

be a continuous representation. We will now apply the discussion of the previous
section to the case G = n¢*( Xy, 7).

As ¢ # char(k), n$(X}, %) satisfies Mazur’s finiteness condition (®,) (by the
finite-generation of Hj (X 7> Fe), where X' is any finite étale cover of X), and hence
DE is pro-representable by a local Noetherian A-algebra RE.
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Now G}, acts on 7t (X%, Z), and hence on the space of pseudorepresentations of
7¢%(X%,Z), denoted E,, as above. Moreover, as GL, (F;) is finite, there exists a
finite index subgroup H; C G}, so that for each h € Hy, p" = p. That is, for each
v € m$t (X}, T), g € Hy, we have

p(v?) = p(7)-
Let k; = kH1, so Hy = Gk,. Then for any A-deformation
b XG, &) — GL,(A)
of p, and any g € Gy, , the representation
p = (g~ p(v))
is another A-deformation of p. Hence Gy, acts on Dj via its action on 7$*(X}, 7),

and hence on R; if it exists. An identical argument shows that Gy, acts on E; . for
each ¢ with 1 > ¢ > 0, and on A(det op).

3. PROPERTIES OF ARITHMETIC REPRESENTATIONS

3.1. Basic properties. We now establish some basic properties of arithmetic
representations.

Proposition 3.1.1. Let K =Q; or K = C; := Qy. Let
p i (X5, 7) = GLy(K)
be a continuous, semisimple representation. Then the following are equivalent:

(1) There exists a finite extension k' of k and a continuous representation
b Xy, Z) — GLy(K)

such that plra(x, z) = p-
(2) p is arithmetic.
(3) There exists an open subgroup H C Gy, such that for all h € H, p" ~ p.
(4) There exists an open subgroup H C Gy, such that for all h € H, Tr(p"(g)) =

Tr(p(9))-
Proof. Clearly (1) = (2) and (3) = (4).
We now show that (2) = (3). By definition, there exists a finite extension &’
of k and a continuous representation

p: T (Xpr, Z) — GLn(K)

such that p is a subquotient of p| s (x, 7). Let S be the (finite) set of isomorphism
classes of irreducible representations of 7¢*(Xy, ) appearing as subquotients of
ﬁ|ﬂ.1ét (x;.,5), and let S C S be the set of irreducible representations appearing as
subquotients of p. G permutes S (acting via its outer action on 7$*(X%, %)), and
thus we may set H to be the finite-index subgroup of Gy fixing each element of S.
As p is semisimple, this implies that (3) holds.

The fact that (4) = (3) is immediate from [Tay91, Theorem 1].

Finally, we show (3) = (1). We may immediately reduce to the case that

p is irreducible. Now let k' = k¥ be the fixed field of H C G}, so that H = G}.
Without loss of generality, we may assume that the exact sequence

1— Wft(X,;,i) — ﬂi’t(Xk/,i) -Gy —1
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splits (if not, replace &’ with a finite extension so that X has a rational point, giving
such a splitting), so that

T Xpr, T) = 75 (X, ) X G
For each h € H, choose an isomorphism
miptSp
— as p is irreducible, v, is well-defined up to scaling, by Schur’s lemma. Thus the
assignment
~v:H — PGL,(K)
h = [n]

is a well-defined (continuous) homomorphism. We claim that  lifts to an honest
representation H — GL,,(K). Indeed, the obstruction to lifting v from a projective
representation to an honest representation is a class « € H*(H,Q/Z). Choose H’

such that Res?, (o) = 0. Let 4 : H — GL,(K) be a choice of lift.
Now we may set

p=pxy.
O

Remark 3.1.2. A similar argument appears in [EG20, Proposition 4.6] and [EG18,
Proposition 3.1].

Corollary 3.1.3. Let K = Qq or Cy. Let p: n{{(Xy, %) — GL,(K) be arithmetic.
Then its semisimplification p® is arithmetic as well.

Proof. Let S be the set of irreducible subquotients of p. The arithmeticity of p
implies that there exists an open subgroup of Gy, which stabilizes S; hence p* is
arithmetic by Proposition 3.1.1(4). O

Motivated by Proposition 3.1.1, we make the following definitions.

Definition 3.1.4 (Field of moduli and field of definition). Let p : (X}, z) —
GL,(Qy) be a semisimple arithmetic representation.
(1) Let H C Gy, be the stabilizer of p; by Proposition 3.1.1(3), H is open. We
say that the fixed field of H, k! is the field of moduli of p.
(2) If K is such that there exists j : 7$%(Xys, Z) — GL,,(Qy) such that Plast(x
p, we say that k is a field of definition of p.

~

ij)

If k£ is a number field, and p is irreducible, the field of moduli equals the field of
definition:

Theorem 3.1.5. Suppose k is a number field, X a geometrically connected k-variety,
and x € X (k) is a rational point. Let k be an algebraic closure of k and T the
geometric point of X associated to x. Let

p: Wlét(XlEvf) - GLn(@)
be a continuous irreducible representation. Then the following are equivalent:

(1) For each g € Gy, := Gal(k/k), p? ~ p.
(2) There exists a representation p: w{{(X,z) — GL,(Qy) such that

P Plr(xy )
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Proof. Clearly (2) = (1). We now show that (1) = (2). As in the proof of
Proposition 3.1.1, we obtain a projective representation

v : Gy — PGL,(Qy);
as the sequence
1= 78(X5,Z) = 7YX, ZT) - Gp — 1
splits (because z is a rational point), it is enough to lift v to an honest representation
¥ : G — GL,(Qy).
But such a lift exists by a result of Tate (see [Ser77, Theorem 4]). O

Definition 3.1.6. Let L be an algebraic extension of QQ;. A continuous representa-
tion
p: X5, T) = GL, (L)

(assumed to be tame when restricted to every curve in Xj, if char(k) > 0) arises from
geometry if there exists an algebraically closed field F' with k C F', and a smooth
proper map f:Y — U, (where Y is an F-variety and ¢ : U < X is a Zariski-open
subset), such that p ® Qy is conjugate to the monodromy representation associated
to a lisse subquotient of R (¢ o f).Qy.

Remark 3.1.7. See [KS10] for a discussion of various notions of tameness for covers
of higher-dimensional varieties. These subtleties will be more or less irrelevant for
us, as our main results are all about the case of curves.

Remark 3.1.8. The tameness assumption in Definition 3.1.6 is necessary to allow
arbitrary algebraically extensions of the base field; in general if £ C F' is an extension
of algebraically closed fields, the map

ﬂ'(lét(XFa f) - ﬂ'(lét(Xfca j)
is not an isomorphism, if char(k) > 0.

Proposition 3.1.9. Let L be an algebraic extension of Qg, and let
p i (X5 7) = GL(L)
be a representation which arises from geometry. Then p is arithmetic.

Proof. This is a standard spreading-out and specialization argument; we include a
sketch for the reader’s convenience.

Let F' be an algebraically closed extension of k such that there exists an F-variety
Y and a smooth proper map f : Y — U (where + : U — Xp is a Zariski-open
subset) with p ® Q, conjugate to the monodromy representation associated to a
lisse subquotient of R (1o f).Qg. There exists a finitely-generated k-algebra R C F,
R-schemes % and %, isomorphisms s : Y = #p,t : U = %p, a smooth proper
morphism g : # — %, and an open embedding 7 : % — Xg such that the diagram

Y%>@F
T
U—— U

commutes. Now specializing to a closed point z of Spec(R), we find that (R%(7 o
9)-+Q¢) has a lisse subquotient with the same geometric monodromy representation
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as the lisse subquotient of R(z0 f),.Qy associated to p. (That is, under the canonical
surjection

T(X ) - T (X, )

the two representations are identified.) Hence the representation in question is
arithmetic as desired. (]

3.2. Rigidity. We now prove a rigidity statement for arithmetic representations;
this, along with some results in f-adic dynamics proved in Section 4, will be the
main ingredient in the proof of Theorem 1.1.3.

Lemma 3.2.1 (Compare to [BHK'19, Corollary 5.12]). Let k = F, be a finite field
with algebraic closure k, C/k a smooth affine curve, and ¢ a prime not dividing
char(k). Let x € C(k) be a rational point, and T the associated geometric point of
C. Let

p: 7' (Cr, T) = GLn(Qy)
be a continuous irreducible arithmetic representation. Let A be a local Artinian
Qq-algebra with residue field Qp and let

p i w(Cra7) = GLa(A)

be a deformation of p such that Tr(p®*) = Tr(p), where ¢, is the Frobenius at x.
Then p ~ p Qg A.

Proof. Let W (k) := Z - Frob C Gal(k/k) be the subgroup of the Galois group of
k generated by Frobenius. Let the Weil group of C, denoted W(C'), be the fiber
product

W(C) =W (k) X gaig/r) 75" (C, 7) ——= W (k)

| |

(0, 7) Gal(k/k).

Observe that as p is arithmetic, we may after replacing k with a finite extension
assume that there exists an isomorphism 7 : p = p®; as p is irreducible, 7 is
well-defined up to scaling. Our choice of v extends p to a W(C') representation,
well-defined up to a character of W (k). After twisting by a character of W (k) we may
assume that this W (C')-representation has finite determinant, by [Del80, Proposition
1.3.4], and thus that corresponds to a lisse £-adic sheaf of weight zero on C, by work
of Lafforgue [Laf02, Corollaire VII.8]. Thus p ® p¥ (which doesn’t change when one
twists p by a character and is hence well-defined as a representation of W(C')) has
weight zero as well.

Let m4 be the maximal ideal of A, and let I C A be a non-zero ideal with
my - I =0, so that

0—>1I—-A—-B—=0
is a small extension of local Artinian Q-algebras with residue field Q. Let
5 7 (Cp7) = GLa(A)

be a deformation of p satisyfing the hypotheses of the theorem, i.e. p ®p k ~ p
and Tr(p%=) = Tr(p). By induction on the length of A we may assume that
p®aB~pRg B.
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Now p and p ®@A are deformations of p ®g, B; the space of deformations of
p ®g,; B is a torsor for

H' (n*(Cp,2), p@ p") @ 1 = H' (Cpp@ pY) © 1
(where the equality follows as affine curves are K(m,1)’s). Thus [p] — [p ®g, A] gives

a well-defined class in H(7{*(Cg, %), p® p¥) @ 1.
By [Car94, Théoréme 1], 5%+ ~ p; clearly p ®g; A is also ¢ -invariant. Hence

8] = [p ©g; Al € (H' (77" (C, 2), p@ p*) @ )™
But recall that p® p¥ has weight zero; thus by Weil II [Del80], H (7$*(C%, 7), p®

p¥) has weights in {1,2}. In particular (H'(7$*(C%,2), p ® p¥) ® 1) = 0. So
p = p®g, A as desired. O

Remark 3.2.2. The proof of Lemma 3.2.1 is the only place in this paper where the
work of Lafforgue is used, where we need above that p ® pV has weight zero.

We now deduce that all semisimple arithmetic representations into GL,,(Cy) are
defined over @Q,. Note that by compactness any continuous representation p of
7€t (Xy, 2) into GL,(C,) is conjugate to a representation into GL,(O¢,); hence
ch(p) is valued in Oc,. We will use this fact below without comment.

Theorem 3.2.3. Let X be a normal, geometrically connected curve over a finite
field k, and let ¢ be a prime different from the characteristic of k. Suppose that

p: 7 (X, @) = GLn(Cy)
is semisimple arithmetic, and that there exists r such that the characteristic polyno-

mial of p satisfies
ch(p)(g) mod mg,, € Fer[t]

for all g € 7{4(X%,Z). Then p is in fact defined over Qq, i.e. there exists a
representation
p: Wlet(Xfwi') — GLn(Qe)
such that the representation p ®g,; Cy is conjugate to p.
Before the proof, we need a few simple lemmas. Recall below that A = W (F,r).

Lemma 3.2.4. Let m be an integer and A C Oc, /™ a finitely-generated Wy, (Fyr)-
algebra with A/(AN mﬁce/gm) = TFp. Then A is in Ga, i.e. it is a local Artinian
W (Fyr)-algebra with residue field For. In particular, A is finite.

Proof. A is finitely generated over W ([F,r), hence Noetherian.

We claim A is local with maximal ideal my = AN W, fem Indeed, A/my = Fyr
by assumption, so m,4 is maximal; we claim that every element of m4 is nilpotent.
But indeed, this is true for every element of W, fem-

All that remains is to prove that A is Artinian, i.e. that my4 itself is nilpotent.
But A is a Noetherian ring, so this follows from the fact that every element of m 4
is nilpotent. ([

Lemma 3.2.5. Let G be a group and H C G a finite-index subgroup. Let k C k' be
an extension of algebraically closed fields of characteristic zero. Suppose

p:G— GL,(K)
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is a representation, such that for each h € H, Tr(p(h)) € k. Then for all g € G,
Tr(p(g)) € k.

Proof. 1t suffices to show that if A is a matrix with entries in &', and
Tr(A™) € k

for some positive integer r and all integers s, then Tr(A) € k. But the statement
implies immediately (using the assumption that k has characteristic zero) that the
eigenvalues of A" lie in k; hence by the fact that & is algebraically closed, the same
is true for the eigenvalues of A. (I

Lemma 3.2.6. Let
p: i (Xp, @) — GLn(F)
be a representation whose associated pseudorepresentation ch(p) : G — Fy[t] factors

through Fy-[t] for some integer r, as in the statement of Theorem 3.2.3. Then p has
finite image.

Proof. The result follows by an argument identical to the proof of [dJ01, Proposition
2.8-Lemma 2.10]. O

Finally, we record the following fact for which we were unable to find a reference:

Lemma 3.2.7. Let
p: (X5, T) — GL,(Cy)

be a continuous representation. Then p is conjugate to a representation into
GL,(0¢,), i-e. there exists a n{t(Xp, ¥)-stable Oc,-lattice.

Proof. The proof is essentially the same as the usual proof for representations into
GL,(K), with K finite over Qp, with an additional complication arising from the
fact that ¢, is not Noetherian. Let A C C} be any O¢,-lattice. Then A is open
in C and hence its stabilizer T' in 7$(X}, Z) is open. Thus I is of finite index in
7¢%(X%,Z). Now let A’ be the sum of gA, g € 7$*(X,Z). As I is finite index in
7% ( Xy, 7), A’ is finitely-generated, and it is evidently 7$*(X}, Z)-stable.

It remains to show that A’ is isomorphic to O¢, as an Oc,-module. But A’ is
finitely-generated and torsion-free, hence flat (as ¢, is a Bézout domain), hence
free, as desired. O

Proof of Theorem 3.2.3. The proof is analogous to the proof of the fact that a rigid
complex representation of a finitely generated (discrete) group is defined over Q,
where rigidity comes from Lemma 3.2.1; we must overcome technical difficulties
coming from the fact that we are working with profinite, as opposed to discrete,
groups. We first reduce to the case that p is tame; then we reduce to the case that
it is both tame and irreducible; then we show (using the theory of deformation
rings recalled in Section 2) that p is conjugate to a representation defined over a
Zg-algebra which is topologically of finite type. The rigidity statement of Lemma
3.2.1 then implies that we may take this algebra to be finite over Z,.

By [Tay91, Theorem 1], it suffices to show that for each g € 7${*( X%, Z), Tr(p(g)) €

Qe
Step 1. We first reduce to the case that p is tame. By Lemma 3.2.7 we may let

Pint : Wft(X,;,a_:) — GL,(0¢,)
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be an integral model of p (i.e. pint ® C; is conjugate to p), and let

R 7T(13t(Xj€, z) = GL,(Fy)
be the residual representation associated to pi,. As the statement about traces is
insensitive to conjugation, we may replace p with pi ® Cy. By the assumption on

characteristic polynomials and Lemma 3.2.6, p factors through GL,,(F,) for some
r’; we rename 7’ as r and abuse notation to refer to the representation

7 X%, T) = GLn(Fer)
as p as well. Let X’ be a finite étale cover of X so that ﬁ|ﬁ'¢(x§c’f) is trivial; then
p|ﬁ<t (X1,7) has pro-¢ image and is hence tame. Note that this restriction operation
preserves both semisimplicity and arithmeticity. We claim it suffices to prove that

the tame representation p|,r;<t( X1 ,7) is defined over Q.

Indeed, 7{*(X£, Z) is finite-index in 7" (X}, Z), so the claim follows from Lemma

3.2.5. So for the rest of the proof, we assume p is tame and semisimple arithmetic.

Step 2. We now reduce to the case where p is both tame and irreducible. Indeed,
our (tame, semisimple, arithmetic) p is a direct sum of irreducible constituents; if
each is defined over Qy, then their direct sum is as well. Each irreducible constituent
remains tame and arithmetic.

So for the rest of the proof, we assume p is tame, irreducible, and arithmetic.
After replacing p with a conjugate representation (which remains, tame, irreducible,
and arithmetic by definition), we may assume that there exists

Pint - Wl(Xkyi‘) — GLn(ﬁCe)

with p = pint ® Cp, with residual representation p. Again it suffices to show that the
traces of such a p lie in Q. We fix such a p, with integral model pi,; and residual
representation p for the rest of the proof.

Step 3. We now show that such a (tame, irreducible, arithmetic) p is in fact
defined over a Zy-algebra topologically of finite type.

Let RE be the framed deformation ring of p, as in Section 2. For each positive
integer m, let p,, be the representation defined by the composition

P T X, T) P G L (Oc,) = GLy(Oc, /™).

tame

The group 7{*™¢( X3, Z) is topologically finitely generated; choose a finite set of
topological generators ;. Let A, be the subring of O¢, /¢™ generated over W, (F-)
by the matrix entries of p, (7). Ap is in €4 by Lemma 3.2.4. Hence A,, is its
own profinite completion (indeed, it is finite), so the representation p,, factors
continuously through GL,,(4,,).

Hence, p,, is classified by a map

RE — Ay — Og, /0™

for all m. There is a natural surjection A,, — A,,—1 induced by reducing the matrix
entries of p,,(7;) mod ¢™~1 turning the (A,,) into a pro-system of objects in %} .
Hence for all m we have a commutative diagram

RY A Oc, /0"

N

Ap_1 — O¢, /L.
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Thus the representation p;, is classified by a map
fp : Rpl;l — Oc,;

let S be the image of fp inside of O¢, (note that we have here shown that RE
satisfies a somewhat stronger property than its defining universal property, namely
that it represents the framed deformation functor on all inverse limits of finite local
A-algebras). The surjection RE — S gives a representation

ps 1" (Xz, ) = GLy(S)

such that ps ®g Cp ~ p, by construction. That is, ps is a model of p over a
Noetherian local W (IF;r)-algebra. Indeed, S is topologically of finite type over Zy, —
it is a continuous quotient of R':I and R';' is topologically of finite type over Z,.
Step 4. We now complete the proof There exists a finite-index subgroup
H C Gal(k/k) such that for each h € H, Tr(p) = Tr(ps), as the same is true for p,
by the definition of arithmeticity. Now by e.g. [Chel4, Proposition GJ, there exists a
Zariski-open subset U™* C Spec(S[1/4]) such that for each point z : Spec(Qg) — U™
of U it the representation p, := pg ®g Qy is irreducible. Choose such a pomt and
let S be the completion of S at z; as .S is an integral domain, S injects into S. But
by Lemma 3.2.1, Tr(ps ®g S)(g) C Qq for each g € n (X, ). Hence the same is
true for p, and thus p is defined over Q; by [Tay91, Theorem 1], as desired. (]

4. DYNAMICS OF DEFORMATION RINGS

4.1. The local dynamical Mordell-Lang conjecture. We now prove some gen-
eral facts about continuous pro-finite group actions on A[[z1,- -, 2x]], which will
be used in the proof of Theorem 1.1.3 and related results. The main technical tool
is a uniform local version of the dynamical Mordell-Lang conjecture (Lemma 4.1.3);
it is surely well-known to experts, but we include a proof as we were unable to find
a version with the required uniformities in the literature.

As above, let A = W (Fyr); endow A with the usual absolute value | - |, so that
|¢le =1/¢. Let R = Al[x1,--- ,xn]]. Let A{xq, -+ ,zn) be the Tate algebra on N
variables, i.e. A(zq, -+ ,2xn) C R is the set of power series

E aI.IJI

Iezgo

with |az|e — 0 as |I] = 320 i; — oo
We now recall the “/-adic analytic arc lemma,” in a form due to Poonen [Pool4],
building on results of Bell, Ghioca, and Tucker [BGT10]:

Lemma 4.1.1 (¢-adic analytic arc lemma, [Poo14, Theorem 1]). Let f € Alxq, - ,zn)V
satisfy f(x) =x mod (¢ for some ¢ > ;25. Then there exists g € A{z1,- -+ ,xn,n)
with g(x,m) = f™(x) for each m € Zxg.

In other words, iterates of analytic self-maps of the closed unit ball which are
sufficiently close to the identity may be f-adically interpolated.

Using Lemma 4.1.1, we will prove a uniform local version of the dynamical
Mordell-Lang conjecture. Let R = A[[z1, - , 2,]], and let U(R) be the rigid generic
fiber of R; this is the open unit ball. If L is a ¢-adic field, an L-point of U(R) is a
continuous A-algebra homomorphism R — L. For 1 > ¢ > 0 a positive real number,
let U.(R) C U(R) be the closed ball of radius ¢~¢ around any A[1/¢]-point of U(R).
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Note that U.(R) is independent of the choice of A[1/¢]-point, by the ultrametric
inequality. In particular, if

2 AHxl"" ’mN]] ;A[['Tlv"' ,l'NH

is a continuous automorphism, then ¢ restricts to an automorphism of U.(R) for
all ¢ < 1. An L-point z: R — L of U(R) lands in U.(R) if |z(x;)|e < £~€ for all i.
Each U.(R) is an affinoid subdomain of U(R).

If # C Oc,[[x1,- -+ ,xnN]] is an ideal, we let V(.#) C U(R) be the set

V() = A{z ] 2(7) = {0}}.
We call a set which arises this way a closed analytic subset of U(R). The dynamical
Mordell-Lang conjecture asks for a characterization of the set of m € Z>( such that
©™(z) C V(), where ¢ is an analytic automorphism of U(R) and z € U(R) — it
asserts that this set is semilinear.

Definition 4.1.2 (Semilinear sets). A set A C Z>¢ is semilinear with period M if
it is the union of a finite set with finitely many residue classes modulo M. That is,
it is a union

SU{ai—‘:-jM‘aiCT,jEZzo}
where S C Z> is finite and T' C {0,1,--- , M — 1}.

Lemma 4.1.3 (Uniform local dynamical Mordell-Lang conjecture). Let ¢ € R be a
real number with 1 > ¢ > 0. Then there exists M = M(c, ", N) with the following
property: if

¢ R=Allz1, -, zn]] = Aflzy, -+, zn]]
is a continuous automorphism of A-algebras, z € U.(R), and & C O¢,[[x1,- - ,zN]|
is a proper ideal, then the set

{meZzo| " (2) e V(S)}
18 semilinear with period M.

Proof. Let ¢ be a rational number with ¢ > ¢/ > 0, so that U, (R) contains U.(R);
it suffices to prove the theorem with ¢ replaced by ¢’. Choose a (possibly ramified)
finite extension A’ of A so that there exists @ € A’ with ||, = £~¢. There exists
M; depending only on ¢/, N, " such that 1 (x) = x mod w. Let

soov Lo

P(x) = —¢"H (@ x).
Note that ¢ lies in A’(zy, -+ ,znx)". Then there exists My > 0 depending
only on ¢, ¢, N such that $M2 satisfies the hypotheses of Lemma 4.1.1; let ¢ €
Nz, - ,zn,n)Y be such that ¥(x,m) = ¢M2™(x) for each m € Zx¢, and let
M = M;Ms;. Note that 9 is an N-tuple of convergent power series in the z; and
the variable n, which we view as a variable in an auxiliary Tate algebra.

Let f € .#. Without loss of generality |f(0)|, < £~ as otherwise V(.#) N

U (R) = (; in particular, ﬁ(%f, m) converges for any m € A’. We have

{meZso | ¢™(2) €V(f)} ={m € Zxo | z0¢™(f) =0}
M-—1
= |+ MmeZso|z0™Mm(f) =0,m € Zzo}
=0

-fim)) =0,m € Z>o}.

={j+Mm€EZ>y|zo J o w'ﬂl
> 2 p
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But the functions m +— zo @’ o (w-9(L - f,m)),j =0, -+ M — 1 are f-adic analytic
in m; hence they either have finitely many zeroes in Z>q or are identically zero.

Thus for each f € .Z, the set of m € Z>¢ such that ¢ (z) € V(f) is semilinear
with period M. We have

{m € Zso | 9" (2) € V(F)} = [ {me Lz | ¢™(2) € V()
fes

But an arbitrary intersection of sets which are semilinear with period M is semilinear
with period M, from which we may conclude the result. O

Remark 4.1.4. Note that the constant M of Lemma 4.1.3 is independent of ¢.

Corollary 4.1.5. Let R be a local Noetherian A-algebra. Then for any affinoid
subdomain U of the rigid generic fiber of R, there exists an integer M = M (U) such

that: If ¢ : R = R is an automorphism such that U is -stable, any p-periodic point
z of U satisfies oM (2) = z.

Proof. Let mp be the maximal ideal of R. Write R = S/ _#, where S = A[[zq,--- ,zn]]
with N = dimmp/m% and # C m% is an ideal, so the rigid generic fiber of R is a
closed analytic subset of the open unit ball. We may lift ¢ to an automorphism @
of Al[z1, -+ ,zn]] (indeed any lift of ¢ to an endomorphism of A[[z1, -+ ,z,]] is an
isomorphism, as the induced map on mg/ m% is invertible by our choice of S). By
quasicompactness of affinoids, U is contained in U,.(S) for some ¢ with 1 > ¢ > 0.
Now let z : R — L be a @-periodic point of U; it is a @-periodic point of U.(S). Let
# C S be the maximal ideal cutting out z, i.e. .# = ker(S — R = L). Now the
result follows from Lemma 4.1.3, applied to z, .#; note that the integer M coming
from Lemma 4.1.3 only depends on U, and not on ¢, z, etc. O

We now apply this result to the case where R is a deformation ring. Recall
from Section 2 that if p is a residual representation of 7¢'(Xy,z) and detop is
the associated pseudorepresentation, we denoted the deformation ring of det op by
A(det op). For ¢ with 1 > ¢ > 0, we let E; . be the affinoid of the rigid generic fiber
of A(detop) consisting of pseudorepresentations with trace equal to the trace of p
mod ¢¢.

Corollary 4.1.6. Let X be a smooth, geometrically connected curve over a finite
field k of characteristic p, and let £ be a prime different from p; let Frob € Gy, be
the Frobenius element. Let

p: X5, T) = GL,(Fyr)

be a continuous representation such that p*™" ~ p, so Frob acts on E5. Then for

any ¢ with 1 > ¢ > 0, there exists M € Z~q such that any Frob-periodic point of
E5 . is fized by Frob™.

Proof. By the assumption that p'™° ~ 5, Frob acts on A(detop); now we are in

precisely the situation of Corollary 4.1.5, setting R = A(detop), » = Frob, and
U=E;.. O

Remark 4.1.7. Unwinding the proof, we used Lemma 4.1.1 to interpolate the action
of the powers of Frob on A(det op). We knew a priori that there was a continuous
interpolation (coming from the action of Gy, on A(detop)) — the input of Lemma
4.1.1 is required to see that this action is locally analytic.
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4.2. Finiteness. We now prove Theorem 1.1.3 and Corollary 1.1.5.

Proof of Theorem 1.1.3. The proof proceeds by reduction to the case where k is a
finite field.
Step 1. We first prove the theorem under the assumption that k is finite. Let

P X5, &) — GLy(Fyr)

be a residual representation as in the statement of the theorem; let A(det op) be the
deformation ring of the pseudorepresentation corresponding to p, defined in Section
2. Let Ej . be the affinoid of the rigid generic fiber of A(detop), also defined in
Section 2. After extending k, we have that p is G-fixed (as it has finite image) and
hence that Gy, acts on A(detop) and Ej.; arithmetic representations correspond
to Gg-periodic Cy-points of E; . (after Theorem 3.2.3, we may assume they are
Q-points). It suffices to show that there are finitely many such points of Ej .

But we are in the situation of Corollary 4.1.6 — there exists M such that any
G-periodic point of Ej; . is fixed by Frob™. Consider the set of all Frob™-fixed
points; this is an analytic subset of Ej; .. By the Weierstrass preparation theorem,
if it is infinite, it is in fact a positive-dimensional rigid space. Hence it contains a
Cy-point not defined over Q. But such a point would be the pseudorepresentation
associated to a semisimple arithmetic representation (by [Tay91, Theorem 1]) over
Cy, not defined over Qy, contradicting Theorem 3.2.3.

Step 2. We now reduce to the case of finite fields via a spreading-out and
specialization argument. Let X’ be the finite étale cover of X defined by ker(p) C
m1(Xj, T). After replacing k with a finite extension, we may assume that X’ and
the finite étale map X’ — X are in fact defined over k. Let Z’ be a geometric point
of X’ lying over z. It suffices to prove the theorem with X replaced by X’ and p
replaced with the trivial representation. Indeed, any semisimple representation p
i (X5, ®
Trft(Xé,:E
such subquotients. So we rename X’ as X and assume p is trivial.

Now let X be the unique smooth proper geometrically connected curve containing
X, and let D = X \ X; after extending k& we may assume D = {z1,--- ,x;} where
the x; are rational points of X; after a further extension, we may assume the
geometric point T of X comes from a k-rational point z of X. There exists an
algebra R C k, finitely generated over Z, and a smooth curve 2 /R with disjoint R-
points &, &1, -+, & so that (27,€,&1,--- &)k ~ (X, 2,21, -+ ,7;). Let z € Spec(R)
be a closed point with residue field «(z) such that char(x(z)) # ¢, and choose an

algebraic closure k(z) of k(z). The specialization map

Sp: Wf(Xfc?j) - 7T{((y\ {517 T ,&})@, 5@) (4'2‘1)

of m*(X%, Z) is a subquotient of Ind ?)(p|”?°(xi@'))' There are finitely many

is an isomorphism, where 74 denotes the pro-¢ completion of 7¢* (see [LO10, Corollary
A.12), for example). Let zZ € Spec(R)(k(z)) be the geometric point of Spec(R)
associated to z and our choice of algebraic closure of x(2), and let F' € G(.) be the
Frobenius. R R

Let R be the completion of R at z and let K be the fraction field of R. Choose an
algebraically closed field K containing K and an embedding k < K. These choices
give a natural map Gz — Gy (and hence a natural action of G= on (X5, T).
There is also a natural surjective map 7 : Gz — G(2), again given by specialization.
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The key property of the map 4.2.1 we will use is that it is equivariant for the Galois
action, in the sense that for g € G,v € (X5, T),

sp(g-7) = 7(g) - sp(7)-
This follows from e.g. the proof of [LO10, Corollary A.12].
Now we claim that any arithmetic representation p of 7$*( X}, Z) which is residually
trivial (and hence factors through 7 (X}, Z)) gives an arithmetic representation of
Pt (2 \{&, - ,gi})@, f@), via the isomorphism 4.2.1. Indeed, it suffices to

show that there exists M such that ¥’ M p. By arithmeticity, for any element of
g € Gy, in the image of G'z, some power of it fixes p; hence the same is true for the
action of 7(g) on p, by the Galois-equivariance of the map 4.2.1. As 7 is surjective,
we may choose g with m(g) = F, giving the claim.

Thus we may replace k with x(z) and X with 27\ {&1,---,&}; as k() is finite,
we have reduced to the case of finite fields, which was proven in Step 1. O

We now deduce Corollary 1.1.5.

Proof of Corollary 1.1.5. We first prove the statements about semisimple arithmetic
representations.

Let L be a finite extension of QQy, as in the statement, with valuation ring
01, maximal ideal my, and residue field F~. There are finitely many continuous
representations

(X5, %) = GL,(Fer),
(resp. ¥ (X}, 7) — G L, (Fyr) in characteristic p > 0) as 75 (X5, Z) (resp. w42 (X, 7))
is topologically finitely-generated. Given this, (2) and (3) follow from (1). So we
fix p as in the statement; we wish to show that there are finitely many semisimple
arithmetic GL,,(L)-valued representations p with ch(p) = ch(p) mod my.

Let ¢ € R be such that 0 < ¢ < vg(x) for any = € my; such a c¢ exists because L is
discretely valued. Now any arithmetic representation p admits a $*( X, 7)-stable
O'1-lattice M; let ppy = M/mp M. By our choice of ¢, we have

ch(p) = ch(p) mod ¢°.

Hence there are only finitely many possibilities for p, by Theorem 1.1.3.

We now deduce the required statements for representations which arise from geom-
etry. But such representations are arithmetic by Proposition 3.1.9, and semisimple
by [Del80, Corollaire 3.4.13]. O

5. AN ANALOGUE OF THE FREY-MAZUR CONJECTURE
We now begin preparations for the proof of Theorem 1.1.11.

5.1. Weight filtrations on deformation rings. Let X be a smooth, affine, geo-
metrically connected curve over a finitely generated field k of characteristic 0, and
let ¢ be a rational point of X; choosing an algebraic closure of k, ¢ gives rise to a
geometric point ¢ Let X be the unique smooth, proper, geometrically connected
k-curve containing X as an open subscheme. Let

E ﬂ'ft(X,;,E) — GL,(Qy)

be an arithmetic representation of 7$*(Xp, ¢). The Leray spectral sequence for the
inclusion
j: X=X
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gives an exact sequence
0 — H' (X5, jsp) = H' (Xj g0, p) = H* (X5, R jup) = H*(Xp,5up)  (5.1.1)
where we here identify p with the associated lisse /-adic sheaf.
Definition 5.1.2. The weight filtration on H*(Xj 4, p) is defined by
W'H" (Xg 4,p) =0 for i <0
WlHl (XE,ét’ p) = Hl(yl},j*p)
WiHl(Xl_c,émp) = HI(XE7ét7p) for i > 2.
By [Del80, Théoreme 2], this agrees with the usual, geometrically-defined weight
filtration on H' (X} ¢, p) if p arises from geometry and is pure of weight zero.
Now suppose p is irreducible, and let S, be its deformation ring (pro-representing
the functor of continuous deformations of p on the category of local Artinian Q-
algebras with residue field Q). See e.g. [Cheld, Section 4] for the relation between
this ring and Chenevier’s moduli of pseudorepresentations. Note that for two given

basepoints ¢, & of X, the associated deformation rings are canonically isomorphic,
so we do not include ¢ in the notation. Let

puniv : ﬂ-?t(XI::’ 6) — GL"(SP)

be the universal deformation of p.
Because X is an affine curve,

Sp 2@[[$1,"' ’xN]]

non-canonically, where N = dim H* (X}, p ® p"). Let m, be the maximal ideal of
S,. We have

m,/m? =~ H' (X, p p*)"

canonically; let W*(m,/m?) be the dual filtration to the filtration given in Definition
5.1.2.

Definition 5.1.3 (Weight filtration on S,). Let
WiSp =S, for i >0,
WS, =m,
W3S, = m?, + W*Z(mp/mf,)
and

WS, = Y (WT'S,) - (WIS,) for m > 2.

i+j=m

Remark 5.1.4. If X is proper, W~* = m/ for i > 0. In general, it is immediate from
the definition that

W2 cm, cWw™!
for ¢ > 0.
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Replace k with a finite extension so that Gy acts on S,. The goal of this section
is to construct, for o € Z; sufficiently close to 1, an element o, € G such that
0o acts on gr;vi S, via the scalar a'. We first prove the analogous statement for
H 1(X,5’ét, p® pY), where p is irreducible and arises from geometry.

So we assume p is irreducible and arises from geometry. Note that, as p is
irreducible, there exists by definition (after replacing k& with a finite extension) a
representation

po 7y (X, €) = GLn(Q)
such that ﬁ|ﬂ_(1ét( X, = p, arising from the (-adic cohomology of some X-scheme.
Given this choice of p, Gy acts canonically on H*(Xg, p® p¥). As p is irreducible
p® pY is pure of weight zero, and hence Weil II [Del80] implies H(Xz,p ® p¥) is
mixed with weights in {1, 2}, with the weight filtration given as in Definition 5.1.2.

Lemma 5.1.5. Let

p: (X5, E) = GL,(Qy)
be an irreducible representation which arises from geometry. Then for o € Z;
sufficiently close to 1, there exists o € Gy, such that o, acts on griy, H (Xz, p@ pY)
via o - Id, and on

(griy H' (X5, p® p")) & H°(Xg, R'ju(p® p"))
via o - 1d .
Proof. This is similar to [Lit18, Lemma 2.10], [Hin88, Lemme 12], or [Bog80a,
Theorem 3], with some mild additional complications arising from the fact that
we do not assume p arises from the monodromy action on the Tate module of an
Abelian C-scheme. For simplicity of notation, we set
V=H' (X, pp")oH (X, Rj.(p®p")),

and we let

v: G — GL(V)
be the Galois representation we are studying. We assume k is a number field; the
general case follows by the argument of [Ser13, Letter to Ribet of 1/1/1981, §1]. The
weight filtration on V is inherited from that of H(Xp, p@p¥); H*(Xj, R« (p@pY))
is pure of weight 2. o

Step 1. Let p : 7$4(Ck,¢) — GL,(Q;) be an extension of p to the arithmetic
fundamental group, as in the discussion before the statement of the lemma; then p
is defined over L for some L/Q, finite. We abuse notation and write
p T (Cr,€) — GLy, (L)

for some choice of descent of our original representation to a model over L. Let V7,
be the descent of V to L obtained from p, and let

¥ : G — GL(VL)

be the associated Galois representation.
Viewing V7, as a Qg-vector space (of dimension [L : Q] - dimy, V1), we let

Y"1 Gr = GLy1.g,(Qr)

be the associated Q,-adic represenation. We also fix a Gg-stable Z,-lattice in this
representation; when we refer to Z,-points in the following paragraph, we are giving
GLy[1:q,),0, the Ze-structure coming from this lattice.
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We first show that the image of 4’ is open in the Z,-points of its Zariski-closure;
in Step 2, we will study this Zariski closure. By [Bog80b, Théoréeme 1], it is enough
to check that 4" is Hodge-Tate at primes above £. But for any prime v above £,
the lisse sheaf associated to p ® p¥ is a de Rham local system on Cj, in the sense
of [LZ17], and hence its cohomology group

H'Y(Cr,p@pY)
is de Rham by [DLLZ18, Theorem 1.1], for example.

Moreover, we claim that H°(Xj, R'j.(p ® p¥)) is de Rham. This is a local
computation at each point of X \ X; after replacing the local ring at each point
by a ramified extension, we may assume by resolution of singularities that p comes
from the cohomology of a semistable X-scheme and conclude by e.g. the weight
spectral sequence for this semistable scheme. (Alternately, this can be deduced
from [DLLZ18, Corollary 4.3.4].) Hence it is Hodge-Tate, which completes the proof
of openness.

Step 2. We now show that for any o € Q,, the Zariski-closure of im(v’) contains
elements o, acting as required. By Step 1, this suffices. Let F' € G be a Frobenius
element acting on gri;, (V) with weight i; let Z C im(q’) be the identity component of
the Zariski-closure of { F™},,cz. Z is a commutative, connected, algebraic group over
a field of characteristic zero, and hence Z ~ T x U canonically, where T is a torus
and U is unipotent. After replacing F' with a power, we may assume it lies in Z. In
particular F' admits a unique decomposition F' = F F,,, where Fs € T is semisimple
and F, € U; Fs and F have the same eigenvalues. After possibly replacing Qy
with a finite extension, choose a basis of eigenvectors {e;};—1.... dimg, (V2,) for Fj,
with eigenvalues {);}, and let D C GL,, be the diagonal torus for this basis. Let
I c {1,---,dim(V)} be the set of indices ¢ such that \; has weight 1, and I the
set of indices 4 such that A; has weight 2. The inclusion 7" < D induces a surjection
on cocharacter lattices X (D) — X (T') with kernel K; T is precisely the subtorus of
D cut out by the characters in K. If we identify D with Z4™" via the choice of
basis {e;}, K consists of the vectors ¢ = (a1, - ,adimv) such that

[Ty =1

9

HlAi

where | - | denotes any Archimedean absolute value on Q, by the multiplicativity of
absolute value. In other words,

T I e =1

icly JjEI2

Butifa € K,

aizl
)

where ¢ is the size of the residue field of the prime corresponding to F', and hence

Z a; + 2 Z a; = 0.

iel jel

Hence if V = griy- (V) @ gr, (V) is the unique Fs-equivariant splitting, we have
that
2
a-Tdgs (@D e® Tdgz vy €T,

as desired. (]
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Remark 5.1.6. This lemma is the only place in the proof of Theorem 1.1.11 in
which the geometricity of p is used. In fact, the weaker condition that p extends
to a pure local system on C' which is geometric in the sense of Fontaine-Mazur
suffices — see e.g. the conjecture on page 2 of [LZ17] for a discussion of this
notion. In this case one may deduce the desired p-adic Hodge-theoretic properties
for HY(Cy,p® pV), H*(Cy, R'j.(p ® pV)) for such p from [DLLZ18, Theorem 1.1
and Corollary 4.3.4], for example.

The set of « for which the desired o, exist is an important invariant of the
representation p, which we record in the following definition.

Definition 5.1.7 (Index of homothety). Let p be as in Lemma 5.1.5. Let Z C Z
be the set of o for which there exists o, satisfying the conclusions of Lemma 5.1.5.
Then the index of homothety of p, denoted ¢(p), is the index of Z in Z, . By Lemma
5.1.5, Z is open in Z,, so ¢(p) is finite.

We now give the analogous statement for 5,,.

Theorem 5.1.8. Let

p i (X5, ©) = GLa(Qr)
be an irreducible representation which arises from geometry. Then for o € Z)
sufficiently close to 1, there exists 0o € Gy, such that o, acts on gry, S, via o - 1d.

In fact we will be able to choose the element o, in Theorem 5.1.8 to be inverse
to the element o, constructed in Lemma 5.1.5.

Before giving the proof, we need to analyze the contribution of the inertia
subgroups of m¢*(Xj, ) to the geometry of S,.

Recall that X is the smooth curve compactifying X. Let D = X \ X, and pass to
a finite extension of k so that D = {xy,--- ,2,} for rational points x; € X (k). For
i=1,---,n, let R; be the complete local ring of X at x;; by the Cohen structure
theorem, each R; ~ k[[t]]. Let R; be the completion of R; ® k at its maximal ideal,

and let z; = Spec(Frac(R;)). Let
;i 2 — X
be the natural inclusion. A local computation shows that
H (X RUj(p© pY)) = @ H' (00} (0 © pY)),
i
and that under this identification, the map

H' (Xg,p®pY) = H'(X5, R (p@ p") =P H' (zi,m; (0@ p¥))  (5.1.9)

is given by @®;n;.

Let K; be an algebraic closure of K; := Frac(R;), and let z; be the geometric point
of X associated to z; by this choice. The inclusion 7; : z; = X induces a Galois-
equivariant inclusion ; : Z(1) ~ Gal(K; /K;) < 7% (X, %). Let p; = po~; be the
restriction of p to Gal(K;/K;). (Here we view p as a representation of 7¢*( Xy, %)
rather than 7{'(X},¢) via a change-of-basepoint isomorphism, well-defined up to
conjugacy. Recall from before that for any two choices of basepoint, the resulting
deformation rings S, are canonically isomorphic, so this indeterminacy will not
affect our later constructions.)
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Let S; be a hull for the deformation functor D,, for p; (that is, the functor which
associates to an Artinian Q-algebra A the set of isomorphism classes of representa-
tions Gal(K;/K;) — GLy(A) lifting p;). As K; has cohomological dimension 1, S;
is a smooth complete local Noetherian Q-algebra, with

m;/m; ~ H' (2,0 (p®p*))"

canonically, where m; is the maximal ideal of S;.

The map +; gives a S,-point of D, ; we may choose a lift to \S;, giving a map
v+ S = S, for each i. We must deal with some subtle issues coming from the
non-canonicity of this choice.

Lemma 5.1.10. Suppose |D| > 2. Then

(1) the natural transformation D, — D,, is an epimorphism,
(2) any lift of this map to a map ~; : S; = S, is injective,
(8) its image is stable under the action of Gy, and

(4) the induced Gy-action on S; lifts its action on D,,,.

Proof. We first prove (1). It is enough to show that for each Artin Qg-algebra A,
the map D, — D, is surjective. Let

pi: Gal(K;/K;) — GLn(A)

be an A-point of D,,. We wish to lift it to an A-point of D,.
Recall that if X has genus g, then

|D|

g
Wﬁt(Xkaii) =~ <(L1,b1,- o 7a9ab97>‘17 T 7)‘|D|| H[a“bl] : H >‘j>7
i=1 j=1

where without loss of generality, Gal(K;/K;) C 7¢*(X}, ;) is topologically generated
by A1. We wish to find a representation p of 7¢t(Xg,2;) into GL,(A), lifting p,
where the value of \; is specified, say p(A1) = M. But we may choose arbitrary lifts
of p(a1), p(b1), -, plag), p(by), set p(A1) = M, choose (p(A;)) to be arbitrary lifts
of p(\;) for i =2,--- | |D| — 1, and set

g |D|—-1

(Ao = | [J1aCa:). )] - T A(N)
j=1

i=1

We now prove (2). S; and S, are both power series rings over Q, since Gal(K;/K;)
and 7$*(X}, z;) have cohomological dimension 1. So it is enough to show that the
induced map m;/m7 — m,/m? is injective. But this follows by applying (1) to the
map

D,,(@[d/eQ) — D, (Qele]/€?).

We now prove (3). The image of ~} is generated by the matrix entries of
Puniv(im(7;)). But Gy, preserves im(vy;) by our choice of basepoint. Hence the image
is stable under the G-action, as desired. Hence we have a Gi-action on S; so that
v; is Gi-equivariant, by the injectivity of ~;.
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Finally, we prove (4). For o € G}, we wish to show that the diagram

S —7—>5;

|

(o)
DP-L - DPi

commutes, where o acts as described in the previous paragraph. But this follows
from the fact that the diagram

commutes, and the fact that
D, %% Hom(S;, —)
is an epimorphism, by (2). O

Proof of Theorem 5.1.8. It suffices to prove the theorem after deleting several closed
points of X, so we may assume that |Dg| > 2, where D = X \ X.
From Lemma 5.1.5, we know that for a € Z; sufficiently close to 1, there exists
04 € G acting on
griy m,/m2 = gryy H' (X5, p@p¥)"
via a~¢-1d. We claim that for such a o4, o, ' acts on gri, S, in the desired manner.
Step 1. We first claim that it suffices to show that the exact sequence

0—m2/m3 —m,/m} —m,/m2 0 (5.1.11)
splits o, L-equivariantly. Indeed, multiplication gives an isomorphism
Sym’ (m,/m2) — m) /m/*1,

so the eigenvalues of the o '-action on m//m/*! are contained in {a/,---,a*}.
Thus (by the completeness of S,), m, — m, /m% splits o, l-equivariantly if and
only if sequence (5.1.11) does, because neither a nor a? appears as a generalized
eigenvalue for the o '-action on m3. Such a splitting induces a o, '-equivariant
isomorphism
Sym*(m,/m2) 5 S,

which respects the weight filtrations, where the weight filtration on Sym*(m,/ mf))
is induced from the filtration on mp/m%, by the multiplicativity of the weight
filtration. The element o' € G} clearly acts on Sym”™(m,/m?) as desired (again by
multiplicativity), so we are done.

Step 2. We now show the sequence (5.1.11) does indeed split o, t-equivariantly.
Write

mp/mi =V eV,

where V; is the ai-eigenspace of o '. The o, -action on mf) / mf’, has eigenvalues in
{a?, a3, a*}, so the projection

m,/m = m,/m>2 =V
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splits o, !-equivariantly. Thus it suffices to show that the projection
mp/mf’) — mp/mi — Vs

splits o, L-equivariantly.
We first give an explicit description of the subspace V2 C m,/ m,%. Recall that
mp/m% ~ HY (X5, p ® p¥)V canonically. As before, let X be the unique smooth,

geometrically connected, proper curve containing X, and j : X < X the natural
inclusion. By sequence (5.1.1), V4 is the image of the dual of the natural map

H' (X5, p@p") = H (X5, RYj(p@ pY))

(the second map in sequence (5.1.1)). Recall that this map is described in line
(5.1.9), i.e. it is given by ®;n}, where we identify

HY (X5, Ry (p@p¥) ~ @ H (21,05 (p@ p*))
and
i H (X p@pY) = H' (23,15 (0@ p))
is induced by the inclusion

Now let S;,m; be as in Lemma 5.1.10. The map m;/m7 — m,/m? induced by ~;

is dual to 1}, so
D’ - Dmi/m? = V2

is surjective. As the map above evidently splits o, !-equivariantly (since o' acts
semisimply on its source), it suffices to lift this map to a o !-equivariant map

@mi/miQ — Sp.

By Lemma 5.1.10, we have a Galois-equivariant map
Vi 1S =S,

equivariantly lifting the map D, — D,,. The element o, € G}, acts on m}/ mf“
via o?" - 1d, so the decomposition of S; into o, !-eigenspaces gives an isomorphism

~ r r+1
S; o~ Hmi Jml T

r>0

Let p; : m;/m? — S, be the map induced by this decomposition.

Then the map
PBri: Pmi/m? > m, =S,

is the desired lift of €@, n;", completing the proof. O
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5.2. The integral analysis. In the previous section, we constructed natural ele-
ments o, € G, whose action on the deformation ring of an irreducible arithmetic
Qg-representation we understand well. We now consider an absolutely irreducible
representation

p iy (X5, €) = GLy (Fer),

and we use the results of the previous section to analyze the action of o, on Rjp,
assuming p admits a lift which arises from geometry.

Lemma 5.2.1. Let V be a finite free Zg-module, and T : V.=V an endomorphism.
Let W C V be a T-stable submodule with W, V/W free Zs-modules. Suppose that
Tlw = «-1d, and that T acts on V/W wvia 3 -1d, where o, 3 € Zy,o0 # (3. Let
v eV ®Qy be such that

(1) Tv = pv, and

(2) veV+(WeQ.
Then (o — B) -v e V.

Proof. Choose a Zg-basis {e;} of V such that e1,--- , eqimw are a Zg-basis of W.
Then v = Y a;e;, where the a; € Qp, and a; € Z; for i > dim W. We have

T ae; i < dimW

e;, = .
! 561' + Z;h:niw bijej i >dim W
where the b;; € Z,. Now
B-v="Tv
dim W dim V' dim W
= Z aa;e; + Z a; | Be; + Z bijej
i=1 i=dim W+1 j=1
Equating coefficients for e;, we have for each i < dim W,
dim V'
Ba; = aa; + Z ajbji.
j=dim W+1
Hence
dim V/
> imdim w1 @5bji
a; = ’
8-«
whence the result follows. O
Now if

p: (X5, €) = GL,(Qy)
is a lift of p (hence irreducible), the natural induced map R; — S, exhibits S,
as the completion of R,;@@ at the maximal ideal corresponding to p. The map
R; — S, gives S, a natural integral structure (namely the image of the induced
map R,;®Z7 — S,). We now apply the computation in Lemma 5.2.1 to estimate the
denominators required to write down eigenvectors for the o,-action on S, relative
to this integral structure.
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Lemma 5.2.2. Let
p: (X5, ¢) = GL,(Zy)
be a continuous representation lifting p ® Fy, such that p ® Qq arises from geometry.

Let S,i”t C S, be the image of the induced map Ry ® Zy — S,.
Let 0o be as in Theorem 5.1.8. Let x € S, be such that

(1) 04 v =a'w, fori=1 ori=2, and
(2) xe S+ WL,
Then for any r > 1,
H (@ =) | -z€ S’Z,"t + WL
j=i+1

(Here if r = i we take the product above to be the empty product, i.e. 1.)

Proof. This follows by induction on r from Lemma 5.2.1. The case r = i follows
from hypothesis (2) of the lemma. Now let » > 4. Suppose the result holds for r — 1;
we now prove it for r. Let & € S,‘;“t be any element such that

r—1
T = H (@ —ad) | -z2mod W™,
j=i+1
Set
V= (S0 W 4 Z-2) /(S NWTTT,
W= (S nw=r)/(spnw—1,
and
r—1 . )
v= H (@' —af) | -2 mod W1,
j=it1

Then the hypotheses of Lemma 5.2.1 are satisfied by the induction hypothesis, giving
the proof. 0

Lemma 5.2.3. Let o € Z) be an {-adic unit which is not a root of unity. Let s be
the least positive integer such that a® =1 mod ¢; let ¢ =1 if £ = 2 and 0 otherwise.
Then for anyn > 1,

Zw(l —a') < C(a)-n,

where
1

Cla) == (Mas 1)+ ﬁ) te

Proof. This is Lemma 3.10 of [Lit18]. O
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5.3. The proof. We now give the proof of Theorem 1.1.11.

Proof of theorem 1.1.11. Let E; be the rigid generic fiber of R; (this agrees with
the notation of Section 2 by [Chel4, Theorems B and F]); as X is an affine curve,
E; is (non-canonically) analytically isometric to the open unit ball. Then p gives a
Qg-point z, of E;; we may view z, as a map
Zp Rﬁ[l/f] — Qg.
Let m C R;[1/¢] be the kernel of this map, and let S}, be the completion of R[1//]
at m, so that S, ~ S,’J@@. Let m), be the maximal ideal of S}, Let L be the
residue field of S, so that S, is non-canonically isomorphic to L[[zy, -, z,]]; let
S;)“t/ = R; @wr,) 0L C S’;, be the extension of scalars of R; to O, so that S;)r‘t/
is non-canonically isomorphic to Op[[z1,- - ,x,]], where {21, - ,x,,} generate
m}, N S},nt,. Choose such an isomorphism. The rigid generic fiber of S/i)ntl is the open
unit ball over L.
Choose « € Z;' not a root of unity such that
(1) there exists o, € G as in Theorem 5.1.8, and
(2) C(«) is minimal among all « satisfying (1).
(Here C(«) is defined as in Lemma 5.2.3.)
We claim that we may take N = N(c(p),£) to be any rational number greater
than 3C(«); note that this may be bounded from above purely in terms of ¢ and
¢(p), as the notation suggests.

Let 0o € Gi, be as in Theorem 5.1.8. For 1 > r > 0, let U, C Ej be the closed
ball of radius r around p — set-theoretically, this is the set

{5 € Byl ch(3) — ch(p)l¢ < 1.
Note that U, is stable under the o,-action on E;. There is a unique m$'(Xp, ¢)-

lattice V, C p, up to homothety. By [Car94, Théoreme 1], for s € Q, Up-s is
the same as the set of p admitting an 7{'(Xj,¢)-stable Z,-lattice V; such that
ARSI

Let Oy, , be the set of functions on U,-.. Explicitly, under our chosen isomor-
phism S},m/ ~ Op[lx1, - ,2Zm]] and the induced isomorphism S’ ~ L[z, - , Zm]],
Oy, , C S,’J is the subring

{Zaﬂcl GS;)|1)£(G[)+|I|‘84)OO},

topologized via the Gauss norm (which makes it into a Tate algebra). (Here
I'= (i1, ,im) is a multi-index with i; > 0, 2/ = 27" --- 2}, and |I| = 3 i;.)
Choose a basis of integral o,-eigenvectors of m;,/m’pz, and lift it to a set of
oq-eigenvectors {e1, -+, en} of S (we may do this by the proof of Theorem 5.1.8).
After a linear change of coordinates, we may assume e; = x; mod (m/,)?>. We claim

that for s > 2C(«a), we have ey, -+, e, C Oy, ,. Indeed, by Lemma 5.2.2, we have

2r—1
( [Ta- o/’)) o L

i=1

and hence if

I
e = E arix,
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we have
2|I1-1
vears) = = Y vl —a') > —(2I] = 1)C(a) (5.3.1)
1=1

by Lemma 5.2.3, whence the claim follows.
Now choose any s > 3C(«), and suppose that p € Uy-s is arithmetic. We wish
to show that p ~ p. We may view p as a map

25t ﬁU@*S — @7
where vg(z5(;)) > s. By the arithmeticity of p, there exists an integer M such that
25 is equivariant for the natural oM_action on Oy,_,, and the trivial action on Q.

In particular, for each ¢, we have z;(e;) = 0, as e; is a o,-eigenvector.
In other words, viewing the e; as power series in the x;, we have that the

e; = x; + higher order terms,

and (z3(x;)); is a zero of the e; satisfying ve(z;(x;)) > s. We would like to show
that this implies z;(x;) = 0 from our estimate 5.3.1 on the coefficients of the e;. But
indeed, we have

zp(er) = zp(xi) + Z arizp(x")
|1]>2
=0.

Now choose i such that v(z5(z;)) is minimized. Then estimate 5.3.1 and the
ultrametric inequality immediately imply that z;(z;) = 0, as by our choice of s,

velarizp(x")) > ve(zp(:))

for any || > 2. As we chose ¢ minimizing v¢(2;(x;)), this implies that all z;(x;) = 0,
as desired. 0

Remark 5.3.2. From the proof, we see that we may take N to be any rational number
greater than 3C(«), where a € Z; is such that there exists 0, as in Theorem 5.1.8
(or Lemma 5.1.5).

5.4. The case of representations with finite image. Finally, we prove Theorem
1.1.13. The proof is essentially identical to that of the main theorem of [Lit18], with
additional input from a result of Serre, of which we were unaware at the time of
writing [Lit18]. We indicate how to use this additional input below.

Proof of Theorem 1.1.13. By passing to the cover of X defined by ker(n$* (X, ) —
G, we may assume p is trivial. Now the proof is essentially identical to that of
Theorem 1.2 of [Lit18] (which is stated for Qg-representations, but works equally
well for Qg-representations). While Remark 4.3 of [Lit18] indicates that the constant
N of that theorem depends on the index of the image of Gy — GL(H(X},Z¢) in
the Z¢-points of its Zariski closure, in fact it depends only on the set Z of o € Zj
such that there exists o, € Gy, such that o, acts on gr@v HY(X%,Zy) via o' - 1d.

By Remark 3.11 of [Lit18], it suffices to show that the index of Z in Z) is
bounded independent of ¢; indeed, the proof of Theorem 1.2 of [Lit18] shows that
any arithmetic representation trivial modulo ¢°, with s greater than the constant
ro defined in [Lit18, Remark 3.11], is trivial. But direct computation shows that
this constant tends to zero as ¢ — oo if the index of Z in Z; is bounded.
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The case where X has genus zero is covered in [Lit18], so we assume the genus of
X is at least one.

Let X be the unique smooth proper geometrically connected k-curve containing
X, and let D = X \ X. Replace k with a finite extension, so that D = {x1,- -+ , 2., }
for x; € X (k).

Now we claim that Z contains the set of & € Z; so that there exists o/, € Gy,
such that o/, acts on griy H' (X}, Z,) via o - Id. Indeed, gré, H'(Xj, Z¢) is a direct
sum of copies of the cyclotomic character, so by Poincaré duality, any such ¢/, in
fact acts on gr, H'(Xj,Z¢) as desired.

But now, as desired, the index of Z in Z; is bounded independent of £ by a result
of Serre [Serl3, Lettre a Ken Ribet, p. GOLusing that grl, H'(X},Zy) is dual to
the f-adic Tate module of the Jacobian of X. O

Remark 5.4.1. Tt is natural to conjecture that if p, is a compatible system of
irreducible lisse sheaves on a curve, ¢(p¢) is bounded independently of ¢. More
precisely, fix p,q € Z>¢. If k is a number field and f : X — Y is a smooth proper
morphism over k, let H, C Z; be the set of & € Z; such that there exists 0, € Gy,
with o, acting on gri;, HP(Y;, R1f.Qy) via o' - id. We conjecture that the index of
H; C Z; is bounded independent of ¢, and indeed that this index is equal to 1 for
almost all £.

Assuming the Tate conjecture, one may show this index is uniformly bounded
via the argument of [Win02, §2.3]. This gives, by the proof of Theorem 1.1.11,
a much stronger version of Theorem 1.1.11. It implies (on the Tate conjecture)
that if p, is a compatible system of ¢-adic representations arising from geometry
(i.e. the monodromy representation underlying R f,Q, as above), then the constants
N(e(pg), £) of Theorem 1.1.11 tend to zero as £ — oo.
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