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We numerically examine the ordering, pinning and flow of superconducting vortices interacting with a Santa Fe artificial
ice pinning array. We find that as a function of magnetic field and pinning density, a wide variety of vortex states occur,
including ice rule obeying states and labyrinthine patterns. In contrast to square pinning arrays, we find no sharp peaks
in the critical current due to the inherent frustration effect imposed by the Santa Fe ice geometry; however, there are
some smoothed peaks when the number of vortices matches the number of pinning sites. For some fillings, the Santa
Fe array exhibits stronger pinning than the square array due to the suppression of one-dimensional flow channels when
the vortex flow in the Santa Fe lattice occurs through the formation of both longitudinal and transverse flow channels.

I. INTRODUCTION

In an artificial spin ice (ASI) system'? the states can be
effectively described as spin-like degrees of freedom which
can obey the same ice rules found for the ordering of pro-
tons in water ice? or of atomic spins in certain materials*>.
One of the first artificial spin ice systems was constructed
from coupled magnetic islands in which the magnetic mo-
ment of each island can be described as a single spin!®. In
this system, for specific arrangements of the effective spins at
the vertices, the ground state obeys the ice rules and a ver-
tex at which four spins meet has two spins pointing ’in’ and
two spins pointing “out.” Configurations that obey the ice rule
can have long range order, such as in square ice'-%%, or they
can be disordered, such as in kagomé ice'”. A wide range
of additional geometries beyond square and kagomé ice have
been proposed®!? and realized!'~!>, including mixed geome-
tries which force the formation of excited vertices!%!116. In
addition to studies in magnetic ASI systems, there are several
particle-based realizations of ASI'7, where a collection of in-
teracting particles is coupled to some form of substrate to cre-
ate states that obey the ice rules. Such systems have been stud-
ied for colloidal particles coupled to ordered substrates'322,
magnetic skyrmions?3, and vortices in type-II superconduc-
tors with nanostructured pinning arrays’*>°. The ice rule
obeying states often arise through different mechanisms in
the particle-based systems compared to magnetic ice systems,
since the particle ices minimize Coulomb energy rather than
vertex energy”!3!. In this work we consider vortices inter-
acting with a variation of the ASI geometry which is called a
Santa Fe spin ice.

Santa Fe (SF) spin ice can contain both frustrated and non-
frustrated vertices!0:16:32, forcing some vertices to be in an ex-
cited state. In the particle-based model, this would mean that
some fraction of the particles are close together, whereas the
ground state of a square ice array can avoid such close particle
spacings. In superconducting ASI systems with non-frustrated
ground states, a series of peaks appear in the critical current at
the fields corresponding to ice rule obeying states as well as at
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higher matching fields>>26-28,

Here, we use numerical simulations to investigate the vor-
tex configurations, pinning, and flow patterns in a system with
a Santa Fe ASI geometry. We find numerous different types
of vortex patterns for increasing magnetic field or different
pinning densities. At the the half matching field, the vortex
configurations are close to those expected for the ground state
of the SF ice. Compared to the square pinning lattice, in the
SF ice we find only weak or smeared peaks in the critical cur-
rent or depinning, and we show that the vortex flow patterns
are much more disordered. For dense pinning arrays where
the pinning overwhelms all other energies, the ice rule obey-
ing states vanish but the system forms a labyrinthine pattern.

Il. SIMULATION

We consider a two-dimensional system of N,, vortices inter-
acting with an ordered array of pinning sites which are placed
either in a Santa Fe artificial spin ice pattern or in a square
lattice. The system contains N, pinning sites. The number of
vortices is proportional to the applied magnetic field B, and
N, = N, corresponds to the matching condition B/By = 1.0,
where By is the matching field. There are periodic boundary
conditions in the x and y-directions and the equation of motion
for a vortex i is given by

nQZFlWJrF;’JFFd. (1)
dt

The damping constant 7} is set to unity. The vortex-vortex in-
teractions are repulsive and given by F}* =Y. FoK, (R;;/A )ﬁi s
where K| is the modified Bessel function, R;; is the distance
between vortex i and vortex j, and Fy = @3 /2muoA>. We set
the penetration depth to A = 1.8. In the absence of pinning
sites, the vortices form a triangular lattice. A uniform driving
force FY = F?% is applied to all the vortices, and the system
is considered depinned when the average steady-state vortex
velocity is larger than a non-trivial value.

The pinning sites are modeled as localized traps of radius 7,
with the form F = — Zjlvp FyRix exp(—R%k/rlz,)lAl,-k where Rj is
the distance between vortex i and pin k, and we set r, = 0.6.
We match our system geometry to the experiments on square
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FIG. 1. (a) Blue dots indicate the pinning sites arranged in a Santa
Fe AFI geometry with d = 0.825. (b) The vortex positions (black
dots) and pinning locations (blue dots) for the system in panel (a)
at B/By = 1/2, where the ice rule is mostly obeyed but there are
scattered excitations present (red dots). (¢c) B/By = 1.0. (d) B/By =
L.5.

vortex ice systems?>, where d is the distance between two pin-
ning sites. In Fig. 1(a) we show an example of a Santa Fe pin-
ning array containing four cells. Each cell is divided into eight
elementary rectangular plaquettes in which the pinning sites
can be grouped into pairs that are spaced a distance d = 0.825
apart. The vortex configurations are obtained by simulated
annealing from a high temperature.

Ill.  RESULTS

In Fig. 1(b) we show the vortex configurations in the SF
geometry for a system with d = 0.825 at B/By = 1/2. Since
the vortices are repulsive, they move as far away from each
other as possible; however, when pinning is present, there is
a competing pinning energy that favors having the vortices
occupy the pinning sites. At B/By = 1/2, two neighboring
pinning sites can be regarded as a single double well trap. An
individual vortex can occupy one end of this double trap, de-
termining the direction of the effective spin. The lowest en-
ergy per vertex would have two effective spins pointing “out”
(away from the vertex) and two effective spins pointing “in”
(toward the vertex); however, due to the geometric constraints,
there must be some vertices with two spins in and one spin
out, giving an energy higher than the ground state. A single
cell in the SF ice contains four rectangular plaquettes that sur-
round an inner square. In Fig. 1(b), most of the vortices in
the rectangular regions can form the two-out, two-in ground

FIG. 2. (a) The critical depinning force F. vs B/Bg for the SF sys-
tem in Fig. 1(a) (blue curve) with d = 0.825 and for a square pin-
ning array (red curve). The matching field By is for the SF array; in
these units, the matching field for the square array is at MISMATCH
WITH TEXT - FIX 1.25B. The labels a and b indicate the values of
B/By at which the images in Fig. 3 were obtained. (b) The critical
depinning force F. vs B/By for SF systems with different densities
of d = 0.4 (green curve) and d = 1.8 (blue curve).

state; however, in the inner square there are several locations
where two vortices are close together in neighboring pins, cre-
ating a high energy excitation. The overall configurations is
close to the expected ice rule obeying state with forced exci-
tations, as predicted for the magnetic version of the SF spin
ice!®32. In Fig. 1(c) we illustrate the vortex configurations
for B/By = 1.0 at the commensurate field. Figure 1(d) shows
the configurations at B /B¢ = 1.5, where there are numerous
instances of individual pinning sites capturing two vortices to
form a vortex dimer state, along with several cases where vor-
tices are located in the interstitial regions in the middle of the
rectangular plaquettes. In this case, there is no long range or-
der. For B/ By = 2.0 and 2.5 (not shown), the system remains
disordered.

In Fig. 2(a) we plot the critical depinning force F. which
is proportional to the critical current as a function of B/By
for the SF system in Fig. 1 and for a square pinning lattice.
The x axis is normalized by the matching field By for the SF
lattice, and in these units the matching field of the square lat-
tice falls at MISMATCH WITH CAPTION - FIX 1.286B,.
The square lattice exhibits a pronounced peak in F, at the
matching field similar to that found in other studies of vor-
tex pinning on square substrates’>3*. In the SF lattice, there
is instead a broadened peak in F. around the first matching
field. For a square ice system at B = By /2, previous work
has shown that a peak corresponding to the ice rule obeying
ground state appears in the critical current that is as large as
the matching peak at B/By = 1.0%. For the SF array, there
is no peak at B/By = 1/2 due to the high energy excitations
that are enforced by the SF geometry to exist. Figure 2(a)
shows that the overall pinning strength of the SF lattice is
generally smaller than that of the square lattice due the fact
that there are fewer pins; however, there are several regimes
where the depinning force for the SF geometry is higher than
that of the square array, particularly for B/B,; > 1.0. This
is due to the tendency for the vortices in the square lattice
to form easy flow one-dimensional channels along the sym-
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FIG. 3. The vortex trajectories for the system in Fig. 2(a) with
d = 0.825 at B/B¢ = 1.67. (a) The SF lattice exhibits winding
labyrinthine flow channels. (b) The square lattice has easy flow one-
dimensional channels. The different colors correspond to different
times.

metry axis of the pinning array. To more clearly illustrate
this effect, in Fig. 3(a,b) we show the vortex trajectories at
B/By = 1.67 for the SF and square arrays, respectively, from
Fig. 2(a) just above depinning. For the square array, the vortex
motion follows one-dimensional interstitial channels between
the vortices trapped at the pinning sites, while for the SF ar-
ray, the motion occurs through a combination of longitudinal
and transverse flow channels, so that some vortices move per-
pendicularly to the direction of drive at times. The results in
Fig. 2(a) also imply that for an equivalent number of pinning
sites, the SF lattice produces higher pinning than the square
lattice.

In nanomagnetic spin ice systems, the ice rules are lost
as the distance between the magnets is increased due to the
reduction in the pairwise interactions between neighboring
islands®. In the superconducting vortex system, the effec-
tive vortex interaction can be tuned by changing the distance
between adjacent pinning sites. In Fig. 2(b) we plot the de-
pinning force F. versus B/By for two different pinning dis-
tances, the much larger value d = 1.8 which corresponds to
weak vortex interactions, and the much smaller value d = 0.4
which produces strong vortex interactions. At d = 1.8, the
vortices are far enough apart that the pinning dominates their
dynamical behavior, and the overall depinning threshold is
much higher. Additionally, there is no peak at B/By = 1.0,
but instead there is a downward step in the critical current. In
Fig. 4(a,b,c) we show the vortex configurations for the d = 1.8
case at B/By = 0.5, 1.5, and 2.0. For B/By = 1/2, the vertex
populations are random rather than obeying the ice rule states.
For B/By = 1.5 and 2.0, there is a combination of doubly oc-
cupied sites and interstitial vortices. For a denser pinning lat-
tice with d = 0.8, there are no peaks at B/By = 1/2 or 1.0 and
the overall pinning force is reduced. Since the pinning radius
is fixed, at the smaller d the pinning sites begin to overlap, cre-
ating paths of low potential along which the vortices can flow,
reducing the effectiveness of the pinning. This also produces
increasingly labyrinthine vortex configurations, as shown in
Fig. 4(d.e,f) for B/By = 1/2, 1.5, and 2.0. For higher fields
at this value of d, the labyrinthine like pattern persists. In an
actual superconducting material in this regime, the vortices
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FIG. 4. (a,b,c) The pinning site locations (blue dots) and vortex po-
sitions (black dots) for the system in Fig. 2(b) at d = 1.8 with weak
vortex interactions where the ice rule is lost. (d,e,f) The same for the
system in Fig. 2(b) with d = 0.4, where the pinning sites begin to
overlap, creating labyrinth-like vortex states. (a,d) B /B¢ =0.5. (b,e)
B/By = 1.0. (c,f) B/By = 2.0.

could merge to form multi-quanta states which would have to
be studied using a model different than the point-like vortex
model we consider here.

IV. SUMMARY

We have numerically investigated vortex configurations,
pinning and dynamics in a system with a Santa Fe artificial
ice pinning site arrangement. This pinning geometry forces
some vertices to occupy higher energy states. At half filling,
the vortex configurations we observe are close to the ground
state expected for the magnetic Santa Fe ice, with most of the
vertices in low energy ice rule obeying states but with a small
number of high energy vertices present. The critical depinning
currents do not show a peak at the half matching field, but ex-
hibit a rounded peak near the fist matching field. For certain
fillings, the Santa Fe ice has higher pinning than a square pin-
ning array array because the vortex flow in the Santa Fe ice
runs both transverse and parallel to the driving direction, as
oppose to the strictly parallel flow that occurs in the square
array. For dense pinning arrays where the pinning sites be-
gin to overlap, we find that the vortices can form an intricate
labyrinthine state in the Santa Fe ice.
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