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BIMOLECULAR BINDING RATES FOR PAIRS OF SPHERICAL
MOLECULES WITH SMALL BINDING SITES*

CLAIRE E. PLUNKETT! AND SEAN D. LAWLEY'

Abstract. Bimolecular binding rate constants are often used to describe the association of large
molecules, such as proteins. In this paper, we analyze a model for such binding rates that includes
the fact that pairs of molecules can bind only in certain orientations. The model considers two
spherical molecules, each with an arbitrary number of small binding sites on their surface, and the
two molecules bind if and only if their binding sites come into contact (such molecules are often called
“patchy particles” in the biochemistry literature). The molecules undergo translational and rotational
diffusion, and the binding sites are allowed to diffuse on their surfaces. Mathematically, the model
takes the form of a high-dimensional, anisotropic diffusion equation with mixed boundary conditions.
We apply matched asymptotic analysis to derive the bimolecular binding rate in the limit of small,
well-separated binding sites. The resulting binding rate formula involves a factor that depends on
the electrostatic capacitance of a certain four-dimensional region embedded in five dimensions. We
compute this factor numerically by modifying a recent kinetic Monte Carlo algorithm. We then apply
a quasi chemical formalism to obtain a simple analytical approximation for this factor and find a
binding rate formula that includes the effects of binding site competition/saturation. We verify our
results by numerical simulation.

Key words. patchy particles, binding rates, singular perturbations, Berg—Purcell, Brownian
motion

AMS subject classifications. 35B25, 35C20, 35J05, 92C05, 92C40

DOI. 10.1137/20M1321991

1. Introduction. The association of molecules to form dimers or larger com-
plexes is characterized by bimolecular binding rate constants. To illustrate, consider
two proteins, A and B, which bind to form a complex, C. If [4], [B], and [C] de-
note their respective concentrations, then the law of mass action [24] implies that the
concentration of the complex satisfies the ordinary differential equation (ODE),

for some bimolecular binding rate constant & > 0 (also called a second-order rate
constant). How does one determine k?

Protein-protein binding occurs through interactions between localized binding
sites on each protein. Hence, two commonly assumed [59] conditions for protein-
protein binding are a proximity condition and an orientation condition:

(i) Proteins must be in sufficient proximity to bind.

(ii) Binding sites must be properly oriented to bind.
Smoluchowski’s classical theory [49] provides a formula for the binding rate constant
k if we ignore the orientation condition (ii) (and this theory has had an indelible effect
on how we understand binding kinetics [20, 21]).
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This classical theory involves the probability, p(r), that two spherical proteins (A
and B) diffusing in three dimensions never bind to each other, given that they are
initially separated by distance r. This probability satisfies Laplace’s equation,

2d &

(1.1) 0= ;&p—k 2P for r > R,

where
R:=Rp+Rp>0

is the sum of the protein radii. In particular, R is called the reaction radius and is
the proximity in condition (i) at which the proteins bind. Since proteins that start
far from each other will never bind, we obtain the far-field condition,
(1.2) lim p=1.

T—>00

The classical theory assumes that proteins bind immediately upon contact, which
yields an absorbing boundary condition at the reaction radius,

(1.3) p=0 forr=R.

The solution to (1.1)—(1.3) is simply p(r) = 1 — R/r. Calculating the flux at the
reaction radius yields the classical Smoluchowski bimolecular binding rate constant,
k= ksmolv

(1.4) ksmol := Dtr/ O,pdS = 4x DY R,
r=R

where
D™ :=D% + D} >0

is the sum of the protein translational diffusivities. Plugging typical values for proteins
of R~ 4nm and D" ~ 2.5 x 108 nm?sec™! into (1.4) yields that the Smoluchowski
rate constant is on the order of [43, 59, 60]

ksmol = 7 x 10° M~ tsec 1.

Since this classical calculation ignores the orientation condition (ii) above, kgmol
is an upper bound for binding rates [59, 60]. Indeed, kgmo1 tends to overestimate
experimentally measured rates by several orders of magnitude [43]. How can one
estimate how much the orientation condition (ii) decreases the binding rate compared
to ksmol?

In the literature [27, 59], the orientation condition (ii) is sometimes accounted
for by merely multiplying the rate constant ksme by the product of the geometric
correction factors,

(15) fa := fraction of the A protein surface area covered by binding sites,
’ fB = fraction of the B protein surface area covered by binding sites.

The idea is that each protein collision has probability fafp € (0,1) of having the
binding sites aligned, and so the binding rate should be

(16) kgeo = fAkasmol-
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However, experimentally measured protein-protein binding rates are typically a few
orders of magnitude greater than the simple geometric estimate kgeo [43] (note that
binding sites usually occupy only a small portion of the protein surface, f4 < 1, fp <
1 [59]). While the estimate kg, is simple and intuitive, it vastly underestimates the
binding rate since, due to fine scale properties of Brownian motion, any proteins that
collide once will collide many times in different orientations before they can diffuse
away.

In this paper, we formulate and analyze a mathematical model of protein-protein
binding to derive a bimolecular binding rate constant that includes both the proximity
condition and the orientation condition given above. The model tracks a pair of
diffusing spherical molecules, each with an arbitrary number of small binding sites
on their surface, and the two molecules bind if and only if their binding sites come
into contact (such molecules are often called “patchy particles” in the biochemistry
literature [57, 17, 44, 48, 40, 46, 25]). Our analysis yields a first-principles derivation
and estimate of both (a) how the orientation condition decreases the binding rate
compared t0 kgmor in (1.4) and (b) how purely diffusive processes increase the binding
rate compared to kgeo in (1.6).

Mathematically, our model generalizes the 1917 Smoluchowski model [49] in (1.1)—
(1.4) to include the orientation condition (ii) given above. In fact, our model gener-
alizes the 1977 model of Berg and Purcell [4], as our model reduces to their classical
model if we assume one of the molecules is completely covered by binding sites. By
including the orientation condition (ii), (1.1) becomes a high-dimensional (> seven
dimensions) anisotropic diffusion equation, and the boundary condition (1.3) at the
reaction radius becomes a complicated mixed boundary condition. We apply for-
mal matched asymptotic analysis [36] to this model in the case that the binding
sites on each protein are small and well-separated (corresponding to a small sur-
face area covered by binding sites, f4 < 1, fg < 1). Our analysis yields a binding
rate constant, k = ko, which is much less than the Smoluchowski rate (1.4) and
much greater than the geometric estimate (1.6) across a wide range of parameter
values (that is, kgeo < ko < ksmot). Our binding rate formula involves a dimension-
less factor xy > 0 which is determined by the electrostatic capacitance of a certain
four-dimensional (4D) region embedded in five dimensions. As we do not have an
exact analytical formula for y, we modify a recent kinetic Monte Carlo method [6]
to rapidly compute x numerically. We then combine the quasi chemical formalism
of Solc and Stockmayer [51] with recent asymptotic results [33] to obtain a simple
analytical approximation to y which we show to be fairly accurate. This analy-
sis further yields a binding rate formula that includes the effects of binding site
competition/saturation. We verify our results by numerical simulations of the full
system.

The rest of the paper is organized as follows. In section 2, we describe the model
and summarize our main results. In section 3, we formulate the model more precisely
and analyze the corresponding partial differential equation (PDE). In section 4, we
develop a kinetic Monte Carlo method for computing y. In section 5, we apply
the quasi chemical approximation. In section 6, we verify our results by numerical
simulations. We conclude by discussing applications and related work.

2. Summary of main results. Consider two spherical molecules, A and B,
with respective radii

Ry >0, Rp>0,
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translational diffusivities

D% >0, D% >0,
and rotational diffusivities

D' >0, Dg'>0.
Suppose further that the molecules respectively have

Ny2>1, Np2=>1
small, locally circular binding sites on their surfaces with respective radii
(2.1) caaR4, eapRp,

where £ < 1 is a small dimensionless parameter. The parameters a4 and ap are order
one dimensionless constants which allow the A and B binding sites to differ in size. We
make no assumptions about the arrangements of the binding sites, except that they
are well-separated, which means that the radii of the A binding sites (respectively,
B binding sites) are much less than the typical distance between A binding sites
(respectively, B binding sites). We further allow the possibility that the binding sites
diffuse independently on the surfaces of their respective molecules with respective
surface diffusivities

Dy >0, DR >o0.

To avoid trivial cases, we assume that the following “effective” diffusivities of the
binding sites are strictly positive:

DY = D'+ R2DY™ >0, Dy :=DE'+R’DF" > 0.

Suppose the molecules bind if and only if a binding site on A touches a binding
site on B; otherwise they reflect. That is, the molecules bind if and only if they touch
(proximity condition (i) above) and the point of contact is in a binding site for both
molecules (orientation condition (ii) above). Note that if the binding requirement
was merely that the point of contact is in a binding site for the A molecule (and
DYt = D3t = 0), then we would obtain the 1977 model of Berg and Purcell [4].
Note also that if each molecule has only a single binding site (N4 = Np = 1), then
we obtain the 1971 model of Solc and Stockmayer [50]. See Figure 1 for a schematic
representation of the model.

The initial state of the system can be described by a vector,

(00,00, Ok, k), -, (6N 2N*). (B, 0h). -, (637 %))

(2.2)
€ [Ra + Rp,00) x ([0, 7] x [0,2m)) TVATNE C R3+2Na+2Ns,

which records the 3D location, (7,6, o), of the B molecule relative to the A mol-
ecule, as well as the 2D locations, (0%,¢%) for i € {1,...,Na} and (6%, ¢%) for
j€{l,...,Ng}, of the Ns + Np binding sites on the A and B molecules. Letting p
denote the probability that the two molecules never bind given the initial state (2.2),
we define the bimolecular binding rate constant ko > 0 analogously to (1.4),

(2.3) ko := D" / 8,pdy.,
r=R
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Fi1c. 1. Two spherical molecules diffuse with respective translational diffusivities ij > 0 and
D“Br > 0 and rotational diffusivities qu"t > 0 and D%Ot > 0. The molecules have respectively
Ng > 1 and N > 1 small, locally circular binding sites on their surfaces. The binding sites diffuse
independently on the molecular surfaces with respective diffusivities Dil‘"f >0 and Dﬁ”f > 0. When
the molecules come into contact, they bind if and only if a binding site on the A molecule touches
a binding site on the B molecule; otherwise they reflect.

where D' := DY + D% and the integration is over all possible initial states of the
system (2.2) with » = R := R4 + Rp fixed at the reaction radius.
Using formal matched asymptotic analysis [36], we show that (section 3)

(2.4) ko ~ e3NaNpxksmo, ase — 0+,
where ksmo) is the Smoluchowski rate (1.4) and
X = X()\Aa)‘BvaAuaB) >0

is a dimensionless factor which depends on a4, ap, and the parameters

R2Df

2 T
D e

A = 1+ D .

> 1, AB = 1+

That is, x describes how the effective orientational diffusivities of A and B contribute
to the binding rate. We modify a recent kinetic Monte Carlo method [6] to rapidly
and accurately compute x (section 4).

In section 5, we combine recent asymptotic results [33] for the case that one of
the molecules is completely covered in binding sites with a heuristic quasi chemical
approximation [51] to obtain a simple analytical approximation to x,

asap(aalp +apia)
A

(2.5) Xqc(Aa, AB,aa,ap) == ~ x(Aa,AB,aa,ap).

Using the kinetic Monte Carlo method of section 4 we find that the relative error in
the approximation (2.5) is less than 16% for (R2D%/ D%, R2D%/D%) € [10-2,10)?
and ay = ap = 1. Further, the analysis in section 5 yields the following bimolecular
binding rate formula which includes the effects of binding site competition/saturation:

€3NANB

(2.6)  Fo:= 1/x+e*n(Na/(apAB) + Np/(Aaaa)) +e3NaNp

ksmol S (07 ksm01)~
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In particular, (2.6) agrees with (2.4) in the limit ¢ — 0 and has the correct limiting
behavior if Ng — oo and/or A4 — oo and/or Ng — oo and/or A\g — co. That is,
€CLA/\ANA

(2.7 lim ko= lim ko=

— e kimol =t ka
Np—o00 AB—00 T+ eaaraNg smo ’

where k, is the binding rate derived in [33] for the case that the B molecule is
completely covered in binding sites (of course, the analogous statement to (2.7) holds
if Ny — oo and/or Ayx — 00). Note that since x ~ xqc, for simplicity we could
replace x by Xqc in the definition of ko and obtain similar results. In section 6, we
compare our theoretical results to numerical simulations in order to (i) verify (2.4)
and (ii) show that (2.6) is a good approximation to the bimolecular binding rate even
away from the limits in (2.7).

3. Matched asymptotic analysis. In this section, we derive the binding rate
formula (2.4). We begin by describing the stochastic binding model.

3.1. Stochastic problem formulation. Consider first the case of zero rota-
tional diffusion. That is, suppose that D' = Dt = 0 and DS > 0, D3 > 0. We
show below that our results are quickly extended to the general case fot >0, Dg?t >
0, D3 >0, Dt > 0 with D := Dt + R=2D5t > 0, DS .= DIt + R=2D5yt > 0,

Fixing the reference frame on the A molecule, the state of the system at time
t > 0 can be described by the 3D position in spherical coordinates of the center of
the spherical B molecule,

(3.1) (X (t), B0(t), Bo(t)) € [R, 00) x [0,7] x [0, 2),

and the 2D positions of the A and B binding sites. We denote the spherical angular
coordinates of the center of the ith A binding site at time ¢t > 0 by

(3.2) (04 (t), 4 (1)) € [0,7] x [0,27), i€ {l,...,Na}.

Rather than tracking the centers of the B binding sites, it is convenient to track the
positions of their antipodal points on the B molecule at time ¢ > 0, which we denote
by

(3.3) (O5(t), @45 (t)) € [0,7] x [0,27), i€ {l,...,Np}.

Naturally, the coordinates in (3.1) and (3.2) take the center of the A molecule to be
their origin, while the coordinates in (3.3) take the center of the B molecule as their
origin. All three sets of coordinates use the same z-direction to define their north
poles.

Since the molecules have respective translational diffusivities D% and D%, it fol-
lows that the coordinates in (3.1) satisfy the following stochastic differential equations
(SDEs) with D' := D% + D%:

AX (1) = i(l?;dt +VaDE AW (1),
(54 0 = e+ K W)
d®o(t) = )((t)i?l()&)(t)) dWa, (1),
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where Wx, Weg,, and Wg, are independent standard Brownian motions. The coor-
dinates in (3.2) satisfy

Deft
tan(© (¢))

(3.5)
. 2Deff

de(t) = dt + /2D dWe (1),

where Wey, and Wi are independent standard Brownian motions. Similarly, the
coordinates in (3.3) satisfy

D
(36) tan(©(t))
: ' /9 et

ddi,(t) = mdw%(t), ie{l,...,Ng},

where Wer, and Wi, are independent standard Brownian motions. Note that D%

dey(t) = dt + 1 /2DH dWes (1),

has units of length squared per time, whereas fo and DeBff have units of inverse time.
For a pair of angular spherical coordinates, (8',¢’) € [0, 7] x [0, 27), and a polar
angle € € (0,7/2], define the spherical cap

L, e) == {(0,9) € [0,7] x [0,27) : (6 — 0")> + sin*(0") (¢ — ¢)* < £%}.

Each A binding site is the spherical cap on the A molecule centered at (3.2) with polar
angle ea 4. Similarly, each B binding site is the spherical cap on the B molecule cen-
tered at the point that is antipodal to (3.3) with polar angle eap. Figure 2 illustrates
this geometry for the case of a single binding site on each sphere, N4 = Ng = 1.

It is readily apparent (see Figure 2) that the ith A binding site and the jth B
binding site are in contact at time ¢ > 0 if and only if X(¢) = R and the angular
position of the B molecule is in the intersection of the two spherical caps,

(B0(t), Do(t)) € L(Oh(t), (1), aa) NT(O%(1), D5 (1), can).

It follows that this problem is equivalent to (i) a set of N spherical caps and a set
of Np spherical caps which all diffuse independently on the surface of a sphere with
radius R and (ii) a point particle at position (X (t), ©¢(t), ¢o(t)) that diffuses exterior
to this sphere and is absorbed at the sphere if and only if it hits the intersection of
an A spherical cap with a B spherical cap (otherwise it reflects from the sphere). In
particular, the A and B molecules bind if and only if this point particle reaches the
intersection of these two sets of spherical caps (see Figure 2(c)).
Let 7 > 0 denote the random time when the two molecules bind,

(3.7)
ri=inf {t > 05 X(t) = R, (Qo(t), ®o(t)) € Aa(O(1), ®a(t) N Ap(On(t), ®p(t)) },

where we have defined the unions of the A and B caps respectively as

Aa(©4(t), ®a(t)) := UIAT(O4 (1), @} (1), caa),
Ap(O5(1), ®5(1)) = UAT(O5(t), D (1), can),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/15/21 to 128.110.184.55. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

BIMOLECULAR BINDING RATES 155

reflect

Fic. 2. (a) The B molecule (blue sphere) with radius Rp touches the A molecule (gray sphere)
with radius R4 if and only if their centers are distance R = R4 + Rp apart. An A binding site (red
region) is a spherical cap with polar angle €. The B molecule hits an A binding site if and only if
the center of the B molecule hits a spherical cap (green region) with angle € on the sphere of radius
R. (b) The red region is a B binding site and the yellow region is its antipodal region on the B
molecule. The green region is the same cap as the yellow region, but placed on the sphere of radius
R. The A molecule (gray sphere) hits a B binding site (red region) if and only if the center of the
B molecule (blue sphere) is in the green region on the sphere of radius R. (c) The A and B binding
sites are in contact if and only if the center of the B molecule (black dot) is on the sphere of radius
R in the intersection of the spherical caps of the A binding site (green region) and the antipodal
B binding site (blue region). The black dot diffuses with translational diffusivity D' and the green
and blue regions diffuse independently on the surface of the sphere with respective diffusivities Diﬂ
and D%ﬁ. In this figure, each sphere has one binding site, Ny = Ng = 1.

and the vectors of angles,

O4(t) :== (©4(1),...,004 (1) € [0, 7N,
Da(t) = (DY (t),...,DN4(t)) € [0,2m) N4,
Op(t) := (Of(t),...,057 (1)) € [0,7]""
Dp(t) = (BL(1),...,dR" (1) € [0, 27r)

Let p(r, 00, ©0,04, 04,05, 05) denote the probability that the molecules never bind,
conditioned on the initial state of the system,

(3.8)
p(r,60, 00,04, 04,08, 08) :=P(1 = 00| X(0) = r,00(0) = by, P (0) = 0,
©4(0) = 04,24(0) = 9a,0p(0) =05, 5(0) = ¢p),

where the arguments of the function are the initial state of the system, r € [R, c0),

(9()’900) € [Ovﬂ—] X [07277)7
(GA’QDA) = ((9114,4,0,14)7 ) (OXA7<)01XA)) € ([0771-] X [07271.))1\714
(05, ¢8) = (05, ¢B), -, (037, ¢5")) € ([0,7] x [0,2m))"

3.2. PDE boundary value problem. Define the elliptic operators

Na Np
(3.9) La:=)Y LY, Lp=> L,
i=1 i=1
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where £ denotes the Laplace-Beltrami operator acting on (6%, ¢%),
(3.10) Ly = (sin(0%)) 20,1, o, + cot(04)g, + Dgi i, i€ {1,...,Na},

and similarly for £%. Let Ag denote the Laplacian acting on (r, 6y, ¢o),
2 1

(3.11) Ao = =0, + Orr + — Lo,
r r

where Ly acts on (6, @o) as in (3.10).
It is straightforward to show that p satisfies the following elliptic PDE:

(3.12) 0= (D"A¢+ DYLa + DY Lg)p, r>R.

Since molecules starting far from each other will never bind, we obtain the following
far-field condition which is identical to (1.2):

(3.13) lim p=1.

T—00

Finally, since the molecules bind if the binding sites are in contact and otherwise
reflect, we obtain the following mixed boundary conditions at the reaction radius
r=R:

= R, (00, ¢0) € A(0a,pa) N A0, pB),

= Ra (907 SDO) ¢ A(0A7 SDA) M A(GB, SOB)

The PDE boundary value problem in (3.12)—(3.14) generalizes the classical Smolu-
chowski model in (1.1)—(1.3).

=0, r
(3.14) b
orp=0, r

3.3. Outer expansion. We now apply formal matched asymptotic analysis to
the (3+2N4 +2Np)-dimensional PDE boundary value problem in (3.12)—(3.14). Our
approach follows the methods employed in [36] to analyze a similar 3D problem. These
formal methods are related to the strong localized perturbation analysis pioneered in
[55, 56].

It is straightforward to show that p has the following behavior at far-field:

C
(3.15) l—-p~—, 7—=00,
r

for some constant C' € (0, R). In an analogy to electrostatics, we refer to C' as the
capacitance. It follows that the bimolecular binding rate in (2.3) is related to the
capacitance by

C
(3.16) ko = Kamol.

It is convenient to work with the following rescaling of p:

__r

(3.17) vi= g

We expect that (i) v has boundary layers near the absorbing boundary conditions and
(ii) C = O(e?) as € — 0. We thus introduce the outer expansion,

(3.18) v~ ey dug
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where vg is a constant and v; is a function. The outer expansion (3.18) is valid away
from the boundary layers. We note that one can derive the scaling C' = O(e?) by
considering the case of zero rotational and surface diffusion analyzed in section 6.1
below.

Using the definition of v in (3.17) and plugging the outer expansion (3.18) into
(3.12) implies that vy satisfies

0= (D"Ay+ DL, 4+ DY)y, r >R,

3.19 . ) ) )
B =0, 1= R, (Bovp0) £ { UM {0 i)} 1 ] U2 (8. )} )

Notice that the binding sites have shrunk to points from the perspective of the outer
solution ;.

3.4. Inner expansion. We now determine the singular behavior of v; as
(7', 9?4; QDLLAa 0JB7 SDJB) - (Ra 007 %0, 007 900) for some 7 € {17 EER NA}a VAS {13 ceey NB}
First, introduce the stretched coordinates,

zi=e (5§ 1),
ta=e (0% — 6o),
(3.20) pai=¢"'sin(0o)(ph — %o);
tB = 6_1(9% — 00),

PB = 6_1 Sln(eo)(@jB - SOO)

We note that t4,pa depend on i and tp,pp depend on j, but we suppress this de-
pendence to simplify notation. Next, introduce the linear combinations,

TA = c11ta + ci2tB,
ya = diipa + di2ps,
xp = ca1ta + Ccoolp,
yp = d21pa + d22pp,

where the eight constants,

(3.21) €11, C12, €21, C22, d11, d12, da1, d22,
are yet to be determined. We then define the inner solution

(3.22)

w(Z7$A7yA7:EBa yB) = w<2a$A7yA,CCB7yB§ (007 @0)7
(0,00, (04 0l ), (057 04, (034, 00)

R N (N A N (A A NN (A ERES)
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11 i1 i1
::/U<R+8Rza9079007(eAaQOA)P")(HA ’QDA )a
C12TB — C22% A di12yB — do2ya
O +e| DB RTAN 4 — :
0 <012021 - 011022> 0 <sm(90)(d12d21 - d11d22)>
i i —1 -1
<9A+1790/;r1)7"'7 (92“‘7&’*), (9}3>w}3),~-~, (933 0% )
€21TA — CLIZB do1ya — dnys
O+ AT UTB ) e -
0 <612€21 - 611022> 70 (SID(QO)(dlzdm - d11d22)>

(0. (agB,gagB)).

In words, the inner solution w zooms in on (r, 0%, ¥4, 9{97 gpfg) near (R, 6o, 0,00, ¢0)-

We now choose the constants in (3.21) so that the inner solution satisfies an
isotropic diffusion equation to leading order as ¢ — 0. The definition of the inner
solution in (3.22) implies that

v(r,60, 0,04, 94,0B,08)
=w(e (r/R—1),c11ta + ciatp, d11pa + di2ps,
c21ta + caotp, do1pa + da2ps),
= w(e  (r/R — 1),c1ie (0 — 00) + croe (05 — bo),
dyie ™" sin(00) (9’ — @o) + diae ™" sin(00) (¢ — %o),
o161 (0% — 00) + case (6% — 6o),
dore™" sin(00) (s — po) + daze ™' sin(60) (¥} — o))

We now calculate the leading order terms in the differential operator,
L := D" Ag + DY L4 + DF'Lp,

where Ay, L4, and Lp are defined in (3.9) and (3.11). Specifically,

?Lv = O(e) + R2D"w,, + R_QD"{(—CM — 12)* Wy 424 + (—C21 — €22)*Wa gy

+2(—c11 — c12)(—c21 — €22)Wa 40p

+ (—d11 — di2)*wy,y, + (—da1 — do2)*wy,y,
+ 2(—dy1 — d12)(—da1 — d22)wyAyB}

+ Djﬁ{cflwmm + B Wapap + 2€11C21Wa 4y
+ d%lwyAyA + d%lwyByB + 2d11dorwy }

+ Derf{c%waMA + CooWypap + 2C12C20Wy 4

2 2
+ dioWy,ys + dioWypys + 2d12d20Wwy g, }»
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which upon collecting terms shows that w satisfies the following leading order equation
ase — 0:

0=w+ {(011 + c12)” + Dacty + DBC%Q}wawA
+ {(du +di12)? + Dadjy + DBd%2}wyAyA
+ {(021 +¢22)? + Dacsy + Dscﬁz}wmm
+ {(d21 +da2)? + Dadj, + DBd§2}wyByB
+ 2{(011 +c12)(ca1 + e22) + Dacricar + DBCI2022}wazB
+ 2{(d11 + di2)(do1 + do2) + Dadindar + DBd12d22}wyAyB + O(e),
where we have defined the ratios
(3.23) D, :=R?D¥/DY  Dp:= R*DY /D",

We now choose the constants in (3.21) so that all the pure second derivative terms
have the same coefficient and the mixed partial derivative terms vanish. In particular,
C11,C12,C21,C22 must satisfy

1= (011 + 012)2 + DAC%l + DBC%Q,
(3.24) 1= (co1 + ¢22)? + Dacyy + Dpco,
0 = (c11 + c12)(c21 + c22) + Daciicar + Dpciacas,
and dy1,d12,d21, d2o must satisfy the same equations. We thus have six nonlinear

equations for the nine constants in (3.21). There is not a unique solution. Neverthe-
less, we choose the following solution:

ci1 :=dy = /\Zl7 c12 :=d2 :=0,
(3.25) L1 1
Cop = dyy = AT e gy = dyy = A
where

(326) )\A = 1 +DA, )\B = \/1 +DB.

(We have not investigated all the solutions to (3.24), but we have investigated some
other solutions and found that the asymptotic behavior of the binding rate kg in (2.3)
that ultimately results does not depend on the choice of solution to (3.24).) By the
choice (3.25), we note that
04 =060+ E%,

C11

YA
11 8in(o)’
(cuzp — ca124)

C11€22
(c11yB — c21Y4)

C11C22 sin(90)

pA=o+EeE
(3.27)
O =0y +¢

$YB =¢ot+¢
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By construction, the inner solution in (3.22) is harmonic in the five variables,
(z,24,Y4,28,YB), to leading order. Indeed, if we introduce the inner expansion,

w~€_3w0+---,

then the calculation above implies that wqy is harmonic in half of five-dimensional
space, (Z7 TA,YA,TB, yB) € (07 OO) X R47
(3.28)

(azz + aZL’AIA + ayAyA + aszB + ayByB)wO =0, 2>0, (-TAyyAaxB>yB) € R4'

Furthermore, the boundary conditions at z = 0, are

(3.29)
2 2
c c
wo =0, 2z2=0, z4%+ya® <cia3, (363 - 2195,4) + (yB - 213JA> < chyaf,
cn c11
0,wy =0, 2z =0, otherwise.
In words, wy = 0 if the following three conditions are satisfied simultaneously, (i)

z =0, (ii) (za,ya) is in a disk of radius c¢;1a4 > 0 centered at (0,0), and (iii) (xp, yB)
is in a disk of radius coap > 0 centered at %(mm ya). Otherwise, 0, wo =01if z = 0.

To derive (3.29), note that if » = R and (6, o) € T'(0y, ¢'y,ca4)NT(8, ¢y, cap),
then v = 0. By definition, (6o, ¢o) € T'(0%y, ¢%y,ca4) means

(6o — 0%4)* +sin®(04) (w0 — ¥%4)? < %a’,
and using (3.27), we find that this implies

2 2 0 O 2,2
(330) 62xTA + S ( 20 + 2(5))6 yA
¢t ¢34 sin“(6p)

< 5—:2@124.

Taking terms of lowest order in ¢ in (3.30) and simplifying yields the condition z 42 +
ya? < c?1a? in (3.29). The condition (zp — %xA)Q—i—(yB — ?Tiy,q)2 < c3,a% in (3.29)
is obtained similarly.

3.5. Matching. It follows from electrostatics [22] that wq has the far-field be-
havior

(3.31)

00(0117021,022,@14,@3)
wy ~afl— 3
p

), as pi= /22 + 242+ ya? + x5+ yp? — 0,

where « is a constant to be determined by matching to the outer solution, and
Co = CO(DAa DB) aAa, bB)

is a constant depending on D4, Dp,a4,bp. In particular, ¢y is the electrostatic ca-
pacitance of the following 4D region embedded in R?:

R = {(Za$AyyA,$vaB) S Rs 2= Oa $A2 +yA2 < C%la?éh

2 2
C21 C21 2 92
TB— —TA| +|yB——Yya| <cpap,.
C11 C11

(3.32)
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For the remainder of this section, we carry out our calculations in terms of ¢y. In
section 4, we develop a numerical method to calculate cg.

The matching condition is that the near-field behavior of the outer expansion as
(r, 0,04, 0%, ¢%5) = (R, 00, 0,00, o) must agree with the far-field behavior of the
inner expansion as p — oco. That is,

6_31]0 + (%} + e~ 5_3w0 + - , asS (T, 927 SO,LAa 9JB? %0:78) — (R7 90a $o, 907 Qo)a P — OQ.
Using (3.22) and (3.31), it follows that
@ = o,

and that v; has the singular behavior as (r, 0%, ¢, 9%7 gofg) — (R, 00,0, 00, ¢0),
v1 ~ —voco | (5 — 1)% + 11 (0% — 60) + ¢y sin®(60) (9% — ¥0)?

i C i 2
(3.33) + 55 (0% — 60) + i(% )
—3/2
. 1 C i 2
+w%mﬂ%xwg~mw7§wA—w»

3.6. Distributional form of the singularity. Writing the singular behavior
(3.33) in distributional form for each i € {1,...,Na} and j € {1,..., Ng}, the prob-
lem in (3.19) becomes

(3.34) 0= (D"Ag+ DLy + DS LR v, >R,
Na Np

_ wko (0% —6o) o, 5(6% —6o) o, _
(3.35) Opvr = 5 ;; <in(@0) 3(¢s — o) in(@0) 5l — o), T =R,
where
4 2
C11C22

To derive the distributional form (3.35) of the singular behavior (3.33), assume
that a function f satisfies (3.34)-(3.35). To derive the singular behavior of f as
(r, 0%, 9%, 0%, %) — (R, 00, 0,00, p0), define the inner solution g analogously to
(3.22) and introduce the inner expansion

(3.36) g~ 57390 EERRRE

By the same argument that led to (3.28), we have that go is harmonic in the five
variables (z,z4,y4,2p,yp) for z > 0,

(3.37)
(822 + axAxA + aZ/AZJA + 83?3583 + ayByB)go =0, z>0, (JCA,yA,CCB7yB) € R4'

Furthermore, go satisfies the following boundary condition at z = 0:

(3.38) 990 = voKocT15,6(x4)5(ya)5(x)S (yp).
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To derive (3.38), first recall that f satisfies the boundary condition in (3.35), then use
that g is defined analogously to w in (3.22), and finally use the expansion in (3.36) to
obtain

Koe? - -
890 = U_o . 0€ sle®A s - Z{A 5 E(anB 217 4) 5 E(0111/13 .021yA) .
sin” (o) €11 c11sin(6p) C11C22 c11¢20 sin(fy)
Using the identity 6(ax) = 0(z)/|a| and simplifying then yields (3.38).
The solution to (3.37)—(3.38) is

—1

(3.39) 90= 773 (

wkochehs) (2 +a% + 9 + o + )Y

Matching the far-field behavior of e 3¢y with the near-field behavior of f shows that
f indeed has the singular behavior in (3.33). To derive (3.39), note that the 5D
Laplacian Green’s function is

G(a7 b) = G((a17a27a37a47a5)7 (bla b27 b37 b47b5))
5 —-3/2
-1 , -1
82 (;(‘“ —b) > ~ 8r2la—b|?

and satisfies AG = §(a — b). To derive this, we integrate over a 5D sphere centered
at b (denoted by B(b)), to obtain

AGda:/ DG dS, = iz/ L 45,1,
B(b) 9B (b) 872 Jopw) lla— bl

where dS, denotes the surface element and we have used that the surface area of a

5D unit sphere is $72. The solution (3.39) follows.

3.7. Finding the capacitance C and bimolecular reaction rate kg. Inte-
grating the PDE (3.34) over the region

(T7 0147 YA, 0B7 ¥B, 007 900) € (R7 R/) X E7 where ¥ := ([0771-] X [07 27r))1+NA+NB

)

for R' > R and using the divergence theorem and the boundary condition (3.35), we
obtain

R/
0= / / (DY Ag + DL 4 + DL )v; r2dr dS
»JR

(3.40) :D“l /E Orv1|p=r R?d% — /Z Opv1|p—p R*dY

= Dp¥ l / Opv1|p—p R?dY — (4W)NA+NB_1v0K0RNANB],
p
where

NA NB
s = (sin 6, A0, d<p0> ( [[sin6, a6, d<pf4> < [ sin 63 a0, d%) .

i=1 j=1
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Now, by the far-field behavior of p in (3.15), the definition of v in (3.17), and the
expansion in (3.18), it follows that vy ~ —1/r as r — oo. Hence,

27 T
/ / Opv1 |r—p R?dAY — (4m)NatNe+l a5 R — 0.
© 6

0,¢4,98=0J00,04,05=0

Therefore, taking R — oo in (3.40) and solving for vy yields

L (m? —(mPhd,  —ddhd
NANBRKO 4NANBR7T2CO NANBRCO.

Vo

Therefore, (3.15)—(3.18) yields the leading order behavior of C' as € — 0,

N 53 NANBRCO

C :€3NANBxR, ase — 0,

40%1052
where we have defined
Co Co
(3.41) X:=-——5 =(DaDp+Ds+ Dp)—.
4c? 3y 4

Finally, upon using the relation in (3.16), we obtain the asymptotic behavior of the
bimolecular reaction rate constant,

(3.42) ko ~ e NaNpxkemo, ase — 0.

Note that x > 0 is a dimensionless constant which measures the how the ratios of the
diffusivities D4 and Dp (see (3.23)) and the relative binding site sizes a4 and ap (see
(2.1)) affect the bimolecular binding rate in the limit of small binding sites.

The calculation above was for the special case D" = D' = 0 with

(3.43) DY = DWW + R2DY™ >0, Dy :=DE'+ R ’DF" > 0.
However, the final result (3.42) still holds in the general case that
(3.44) DY >0, D* >0, D}™ >0, DF™ > 0,

as long as (3.43) holds.

To see why this is the case, note that including rotational diffusion merely in-
troduces correlations in the SDEs in (3.5) and (3.6). That is, if D' > 0, then
the position of the ith A binding site, (0% (t),®%(¢)), and the position of the jth A
binding site, (67, (t), ®’,(t)), are no longer independent (since their positions depend
on the rotational path of the A molecule, which is common to both binding sites).
These correlations in binding site positions would change the PDE satisfied by p in
(3.12). However, our analysis above shows that the leading order result in (3.42) is
independent of the arrangement of binding sites (as long as they are well-seperated),
and therefore (3.42) must still hold in the general case of (3.43)—(3.44).

4. A kinetic Monte Carlo method for calculating x. The asymptotic be-
havior of the bimolecular binding rate constant kg given in (3.42) depends on x, which
depends on the constant ¢q in the far-field behavior (3.31) of the leading order inner
solution wy satisfying (3.28)—(3.29). In particular, ¢g is the electrostatic capacitance
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of the 4D region R in (3.32) embedded in R®. Notice that ¢ = co(Da, Dp,ap) is a
function of the three dimensionless parameters

Dy :=R’D/DY >0, Dp:=R*DSE/D" >0, ape(0,1],

since we can without loss of generality take ap < a4 = 1.

In this section, we develop a kinetic Monte Carlo method for rapid numerical
calculation of ¢y. Our approach uses a recent algorithm that was devised by Bernoff,
Lindsay, and Schmidt to calculate the capacitance of 2D regions embedded in R? [6].

4.1. Probabilistic interpretation. The method relies on a probabilistic inter-
pretation of the PDE boundary value problem (3.28)—(3.29) satisfied by the leading
order inner solution wg. Let

(4.1) Z(t) = (Z(t), Xa(t), Ya(t), Xp(t), Y5(t)) € R®

be a standard 5D Brownian motion. Define the first time that this process reaches
the region R in (3.32),

(4.2) 7o :=1inf{t > 0:Z(t) € R}.

It is straightforward to show that the leading order inner solution wy satisfying (3.28)—
(3.29) can be written as

(4.3) wo(2,24,Y4,7B,yB) = vo(1 — q(2,74,Y4,7B,YB)),

where ¢ is the probability that Z eventually reaches R, conditioned on the initial
position of Z,

Q(vaAJJAyl"B,Z/B) = P<T0 < o0 | Z(O) = (ZaanyAa$B7yB))'

Furthermore, the function ¢ must be harmonic for z # 0, which in 5D spherical
coordinates is

4 1
(4.4) <pap + Dpp + p2£<4>> q=0, z#0,

where p := /22 + 2% + 4 + 2% + y5? is the radius and £*) denotes the Laplace—
Beltrami operator on the 4-sphere. Further, ¢ satisfies the boundary conditions at
z =0,

(4.5)

2 2
C21 C21
q=1, 2z=0, acA2+yA2 <c?1a124, rp— —2a | +|yp— —ya <c§2a2B,
C11 C11
0.q =0, z=0, otherwise.

Let G(p) denote the average of ¢ over the surface of the 5D ball of radius p > 0
centered at the origin. Now, notice that if z =0 and p > 0 is such that

2
2 92 C21

p > po =ci10 + <<c> criaa + 022a3> )
11
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then (4.5) ensures 9,q = 0. In particular, pg is the smallest radius which guarantees
the reflecting boundary condition in (4.5) is satisfied. Therefore, integrating (4.4) over
the surface of the 5D ball of radius p > pg centered at the origin, using the divergence
theorem, and interchanging integration with differentiation yields the following ODE

for q(p),
4 _
(4.6) <p8p + app)‘l =0, p>po.

The general solution to (4.6) is g(p) = K1p~2 + K3 for constants K, Ko € R. The
relation (4.3) and the far-field behavior of wg in (3.31) implies K2 = 0 and K7 = ¢o.

4.2. Kinetic Monte Carlo algorithm. We have shown in the previous sub-
section that we can find ¢y by calculating the probability, g(p), that the 5D Brownian
motion Z in (4.1) eventually reaches the region R defined by (3.32), conditioned that
Z is initially uniformly distributed on a ball of radius p > pg. Roughly speaking, we
therefore approximate g(p) by simulating M > 1 diffusive paths of Z and calculat-
ing the proportion of these M paths which reach R before some large outer radius
Poo = Po-

However, simulating these diffusive paths with a standard time discretization
scheme would be incredibly computationally expensive. Indeed, the Brownian motion
would have to take many steps to reach the outer radius po, unless the discrete time
step At > 0 is taken very large. On the other hand, the time step At > 0 would need
to be taken very small in order to accurately resolve the dynamics of Z near R.

We therefore develop a kinetic Monte Carlo method which avoids these issues
[6]. This kinetic Monte Carlo method breaks the simulation process into two steps,
where each step corresponds to a simpler diffusion problem that can be exactly and
efficiently simulated. The method then alternates between these steps until the sim-
ulation reaches a break point. The method takes very large time steps and generates
statistically exact paths of Z. Indeed, in calculating ¢y from this method, the only
error stems from the finite outer radius po, < oo and the finite number of diffusive
paths M < oo (as opposed to error stemming from a nonzero time step). Furthermore,
the computational efficiency of the method allows us to mitigate these two sources of
error by taking po, and M very large. For example, simulating M = 10° paths with
Poo = 10° takes roughly 10 seconds on a standard personal laptop computer.

To describe the method, notice that the 5D Brownian motion Z in (4.1) can be
visualized as a pair of 3D Brownian motions,

Xa(t) = (Xa(t),Ya(t), Z(t)) € R?,
Xp(t) == (X5(t),Yp(t), Z(t) € R,

with independent x and y coordinates and identical z coordinates. Therefore, the 5D
Brownian motion in Z reaches the region R in (3.32) if and only if X 4 and X g reach
the z = 0 plane in R3 while (i) X4 is in a disk of radius c1;a4 centered at the origin
and (ii) Xp is in a disk of radius copap centered at 21 XA

After initially placing the “particle” Z on the 5D sphere of radius p centered at
the origin according to a uniform distribution, the method employs the following two
stages developed by Bernoff, Lindsay, and Schmidt [6] (originally developed for 3D
diffusion). We note that Stage II is the classical “walk-on-spheres” method due to
Muller in 1956 [38].
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e Stage I: Projection from bulk to plane. The particle is projected to the z = 0
plane following the exact distribution given below. If the particle lands in R,
then this event is recorded and the trial ends. If not, the algorithm proceeds
to Stage II.

e Stage II: Projection from plane to the bulk. A distance v > 0 is calculated
which is less than or equal to the distance from the current particle location
to R. The particle is then projected to a uniformly chosen random point on
the 5D sphere with radius v, centered at the current particle location. If the
particle reaches a distance that is larger than p,, from the origin, then this
event is recorded and the trial ends. If not, the algorithm returns to Stage I.

We now describe the basic idea behind the method. The method aims to simulate
whether a diffusing particle eventually reaches the region R. In order to reduce
computational cost, the method skips directly simulating intermediate steps of the
diffusing particle before the particle could possibly reach R. Since R is a subset of
the z = 0 plane, Stage I skips simulating all the steps until the particle reaches z = 0.
Then, if the particle is in R, the simulation ends. If the particle is not in R, then it is
some positive distance vy > 0 away from R. So, Stage II moves the particle a distance
v with v € (0, vp] (calculating the exact distance vy is difficult). With probability one,
this new position is not on the z = 0 plane and is thus in the “bulk.” At this point, if
the particle is a large distance (poo) from the origin, then we assume that the particle
will never reach R, and so the simulation ends. Otherwise, the simulation returns to
Stage 1.

To calculate the distribution in Stage I, we first sample the random time it takes

Z to reach z = 0, which is [6]
2
S Y
A\ erfe N (U) )

where U ~ uniform(0,1) is uniformly distributed on [0, 1]. Then, if Z is at position
(2,24,y4,2B,yB) € R® at the start of Stage I, the position at the end of Stage I is

(OazA7yA7$BayB) + Vv Zt*(07§17§25537€4) € R57

where &1, &3, €3, &4 are independent standard normal random variables.

In Stage II, we want to propagate the particle as far as possible, while ensuring
that the particle cannot reach R during this propagation [6, 38]. Let ¢y > 0 be the
time at the start of Stage II. If the algorithm is in Stage II, then it must be the case
that Z(to) ¢ R, and thus

d1 = ||XA(t0)|| —ry > 0, and/or dg = ||XB(t0) — SXA(tQ)H — T > 07
where
T1 = Ci11a4, T2 :=C2aB, S:= 021/0117

and || - || denotes the standard Euclidean norm. Now, if Z(t1) € R for t; > t¢ and
di > 0, then it must be the case that

[Xa(ty) = Xa(to)]| = di.
Similarly, if Z(¢;) € R for t; > tp and da > 0, then it must be the case that

(4.7) s Xalty) = Xalto)]] + |1 Xp(t1) — Xp(to)|] > da.
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A straightforward calculus exercise shows that the minimum distance, ||Z(t1)—Z(to)]|,
subject to the constraint (4.7) is

ds
Vit

Therefore, if we define the distance

— d dy
V = 1max 1, ﬁ s

then it follows that the 5D sphere of radius v centered at Z(tp) ¢ R cannot intersect
R. Hence, Stage II places the particle uniformly on the boundary of this 5D sphere
(the uniform distribution follows from symmetry of Brownian motion).

In Figure 3, we plot x = (DaDp+Da+Dpg)co/4 (see (3.41)) as a function of Dy
and Dp using the above kinetic Monte Carlo method. For each pair of D4, Dpg, the
value of ¢y used in y is computed from M = 10® trials with outer radius p, = 10°.
This figure shows that x is an increasing function of D4, Dp (as expected) and that
X varies between roughly x ~ 0.17 and x ~ 0.63 for (D4, Dp) € [1072,10)%. In
particular, x varies by less than a factor of 4 as D4 and Dp each vary 3 orders of
magnitude.

Notice that the symmetry in the full binding model of section 3 implies that x
must be symmetric in D4, Dp (that is, x(Da, D) = x(Dp,D4)). To test this, we
computed y for

> 0.

(48) (D4, Dg) € {0.01,0.02,0.05,0.1,0.15,0.2,0.3,0.4,0.5, 1,2, 3,5,10}> C R?

for a total of 14% = 196 distinct pairs of D4 and Dp values (we take aq = ap = 1).
For each pair, g is computed from M = 102 trials with outer radius po, = 10°. Using
this data, the maximum relative difference, |x(Da,Dg) — x(Dp,Da)|/x(Da, Dg),
for the 196 pairs in (4.8) is 0.0013, which is well within the expected error due to
M = 10% < oo trials (see section 4.3 below). This symmetry is a necessary self-
consistency check, as it is not a priori clear from the PDE boundary value problem

1r 0.2
e Dy =102
0.8 === Dy = 101
e Dy =1
—_— D4 =10 =
0.6 >
= =
0.4 PP L LAt ! K
---l‘:-;‘l::"l‘l“'“'“.m'”' 3/ un® ““‘\0\.\’ mmie DA = 1072
"‘!\‘l\::\‘ni\"" punust® o * Dy = 101
0.2 fa+ 0p o e Dy =1
" N — D, =10
O 2 4 6 8 10 005 101 10° 10!
DB DB

Fic. 3. Left: The factor x > 0 as a function of Dp := 1132D°Bﬂr/Dtr for different values of
Dy = RQDZH/D”. The curves for Dy = 102 and Dy = 10! are almost indistinguishable.
Right: The relative error between x and the approzimation xqc in (5.14). In both panels, the values
of x are computed from M = 108 trials of the kinetic Monte Carlo method of section 4 with outer
radius poo = 10° and aq = ap = 1.
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in (3.28)—(3.29) that ¢y is symmetric in D4, Dp (though these simulations indicate
that it is).

4.3. Accuracy. In calculating ¢y from the method described above, the only
error stems from the finite outer radius p,, < oo and the finite number of diffusive
paths M < oo. In this subsection, we estimate the error as a function of po, and M.

If P, denotes the probability measure conditioned that Z starts uniformly on the
5D sphere of radius p > pg centered at the origin, then it follows from the analysis in
section 4.1 that

C
w9) alp) = ,7?3 =P, (70 < 00) = P,(10 < 7). <00)+P,(7, <79 <00)
= PP(TO < Tpoo) +IP)P(TP:>0 < 7o < OO)’

where 79 is the first time Z reaches R (see (4.2)) and 7,_ is the first time Z reaches
distance po, from the origin (the final equality in (4.9) follows from the fact that
Tpe < 00 with probability one).

Notice that the numerical algorithm actually approximates a probability that is
bounded above by P,(79 < o0) and below by P,(79 < 7,_). In particular, it is
bounded above by P,(19 < 0o) since the algorithm neglects some paths which first
reach distance ps, and then reach R (if the algorithm terminates in Stage IT). Further,
it is bounded below by P,(19 < 7,_ ) since the algorithm includes some paths which
first reach distance po, and then reach R (since the particle may reach distance poo
in Stage I before reaching the z = 0 plane). In light of (4.9), we thus want to show
that P,(7,.. < 70 < 00) is small if poc > p. Notice that P,(7, < 70 < 00) is the
probability of paths that first reach distance p, from the origin, and then reach R.
Since particles that start at distance po, from the origin have probability roughly
cops of reaching R, it follows that P,(7,. < 70 < 00) decays like p52 as po grows.

More precisely, subtracting P,(t9 < 7,.) from (4.9), multiplying by p*, and
dividing by c¢g yields

(4.10) 0< ‘0 — p3PP(TO < Tpa) _ P?’]Pp(Tpoo <1 < oo)

Co Co

Now, it follows from the strong Markov property that

Py(7p., <70 <o00) < inf P(1y < 00| Z(0) =x) = pCTO +0(p2), as poo — 00.

1
X ER: x| =poc 3,

Therefore, (4.10) implies that the relative error between cg and p>P, (19 < 7o) decays
like p23,

0<

Co —pS]P)p(TO <7'p00) _ < p
Poo

3
- ) +0(p2),  as peo — 00.
0

In our simulations, we take ps, = 10, and p to be order one, which means the relative
error in approximating ¢y that stems from p,, < oo is on the order of 10715, As an
aside, we note that we could take smaller values of p,, and still obtain very accurate
results, but the computational cost of the algorithm depends very weakly on ps.
Estimating the error in the approximation that stems from a finite number of
trials, M < oo, is a basic problem in statistical inference. Each kinetic Monte Carlo
trial is an independent realization of a Bernoulli random variable with parameter
Po€ (Pyo(10 < 7y ), Pp(m0 < 00)) C(0,1), and we are estimating py by the fraction
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Prxme € [0,1] of trials which terminate in Stage I. Given an estimate pyme formed
from M trials, the 100(1 — )% confidence interval for py can be estimated by [1]

22 Pkm (1 — Pkm ) + 22 /(4M) Z2 -
P “a/2 ﬂ:za/Q c c a/2 1+ a/2 7

2M M M

where z. denotes the 1 — ¢ quantile of the standard normal distribution. That is,
po € [p—,p+] with approximate probability 1 — a. Applying this statistical test to
our simulations which use M = 108 trials, we find that for each of the 196 choices
of parameters (D4, Dp) in (4.8), our estimate of ¢y has a relative error of less than
0.002 with probability 1 — a = 0.95.

4.4. Stokes—Einstein relation. In this subsection, we briefly discuss how x
varies as a function of the relative sizes of the A and B molecules if we assume that the
Stokes—Einstein relation holds and that there is no surface diffusion D3 = Dyt = 0,
In particular, the Stokes—Einstein relation implies

keT [ 1 1 kgT kgT
Dtr — Dtr Dtr e Sl B . Drot — Drot —
AT (RA ’ RB)’ A T8RP TP 8en(Rp)?

where kp is Boltzmann’s constant, T is temperature, and 7 is the viscosity of the
medium. Therefore, recalling that R := R4 + Rp, we obtain that D4 and Dp are
merely geometric factors [5, 33],

_ Ry

R*D 3
DA - Dtr = -

3 —1 —1
—15(1"‘5)7 Dp = Dir —15 (1+&),

where we can without loss of generality take the B molecule to be smaller than the
A molecule,

(4.11) =2 <1,

If we further assume that the A and B binding sites have respective radii eR4
and eRp for some ¢ < 1 (meaning a4 = ap), then the bimolecular binding rate kg in
(3.42) simplifies to

ko ~ ESNANBX(E)ksmoh as € — 0,

where x : (0,1] — (0,00) is a function of the single parameter ¢ in (4.11). Using the
kinetic Monte Carlo method above, we find that y = x(§) is a decreasing function of
€ € (0,1] and that

(412)  x({5)~0.89, x(1)=~046, x(3)~033, x(3)~030, x(1)=0.29.

Hence, (4.12) reveals that x varies very little as a function of £ € (0,1], unless ¢ is
very small.

5. Incorporating binding site competition. The asymptotic behavior of the
bimolecular binding rate kg in (3.42) is in the ¢ — 0 limit. In particular, formula (3.42)
is not valid if we fix € > 0 and take N4 — oo and/or Np — oo. Indeed, formula (3.42)
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grows without bound as N4 and/or Np grows, whereas ko must always be bounded
above by ksmol. However, it is immediately clear that if N4 — oo (or Ng — 00), then
ko should simply approach the binding rate for the case of one molecule completely
covered by binding sites and one molecule partially covered (i.e., one homogeneous
molecule and one heterogeneous molecule). Specifically, we expect that

(5.1) ko — ka as Np — oo,

where k4 is binding rate constant for a homogeneous B molecule and a heterogeneous
A molecule. In the case of small, well-separated binding sites, this k4 was recently
shown in [33] to be well-approximated by

N
(5.2) ko sy = —LATATAE 4, where Ay = \/1

N RQDf&Jt + quurf.
T+ AaNaaae

Dtr

In fact, the limiting behavior in (5.2) must also hold if Ag — oo, since the B binding
sites effectively cover the B molecule in this limit (see [33, 32, 29] for more on this
phenomenon).

The basic reason that the asymptotic behavior in (3.42) breaks down for fixed
e > 0 and sufficiently large N (or sufficiently large Ag, N4, or A4) is that the binding
sites begin to “compete” for the flux in this limit. To obtain a formula for ky which
includes the effects of competition between binding sites, we adopt the heuristic quasi
chemical formalism of Sole and Stockmayer’s 1973 study of a single binding site model
[61]. In addition to yielding such a formula for ko, we find that by combining this
approach with (5.2), we obtain a simple analytical approximation for x.

5.1. Quasi chemical formalism of Solc and Stockmayer [51]. The quasi
chemical formalism is a heuristic approximation that collapses the infinite-dimensional
state space of a diffusion-based binding model into a discrete state space model with
six states. In this discrete state model, the molecules can be far from each other, close
to each other, or bound, and if they are close, then we distinguish whether or not a
binding site of A (respectively, B) is aligned toward B (respectively, A). This model
is depicted in Figure 4, where A 4+ B denotes that the molecules are far from each
other, P denotes that the particles have bound and formed an irreversible product,
and A*B¥* denotes the four possible close states with the + superscript denoting
a binding site aligned and the — superscript denoting no binding site aligned. For
example, AT B~ means the molecules are close and an A binding site is aligned toward
B and no B binding site is aligned toward A.

The transition rates between the states are given in Figure 4. Note that the rate
from the far state to a close state is the Smoluchowski rate, kgmo1, multiplied by the
corresponding binding site surface fractions. For example,

A+B— ATB™ atrate fa(l— fB)ksmol > 0,

where f4 € (0, 1] denotes the fraction of the surface of A covered in binding sites and
similarly for fp € (0,1]. Further, k., denotes the rate that the molecules diffuse
away from each other, which is the same for the four states A*B*, and kpinq denotes
the rate that the molecules bind once they are aligned (ATB+ — P). Finally, k,
(respectively, kg) denotes the rate that A (respectively, B) aligns toward B (respec-
tively, A), and the reverse rate is k!, = 1}£A ko (respectively, kj = 1};:3 kg), which

follows from microscopic reversibility [51].
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A+ B
Kl ot “ fafBksmol

P kbina A+B*

P

‘@é// %‘0

(1=fa) fBksmo Lo % ! o
A+B T A-pt T oAtB- = A4B
k;mol £ o fA(l_fB)ksmol

AN

A~ B~
(l_fA)(l_fB)ksmol WL kémol

A+ B

Fic. 4. Chemical reaction diagram for the quasi chemical approzimation.

Writing down the system of mass action ODEs corresponding to the reaction
diagram in Figure 4 and solving for the steady state yields the following effective
bimolecular binding rate constant [51]:

k in A+B+ -1
(5.3) ket := koinalATBT] _ fafBksmol (Kimor/kbind + AaAp + 1),
[Al[B]
where [A][B] denotes the product of the steady state concentrations of A and B mol-
ecules which are far from each other, [AT B*] denotes the steady state concentration
A and B molecules which are close and aligned, and

ra+1 rg+1

Ay = mfm Ap = mev
(5.4) ) . ) -1
Y= + + ,
(1-Aa)(1—-Ap) (A—=Aa)Ap—fp) (1—Ap)(Aa— fa)

and r4 := ka/k;mol and rg := kg/k;mol. Since we assumed in previous sections that

the molecules bind as soon as they are in contact, we take ksmol/kbina — 0 in (5.3),
which yields

fafp

5.5 ket =
(5:5) T Mg+

ksmol .

5.2. One homogeneous molecule and one heterogeneous molecule. If B
is completely covered in binding sites (i.e., fg = 1), then Agp = 1, ¢ = 0, and (5.5)
reduces to

ra+ fa
5.6 Keft = ———2 kool
(5.6) T Ay o

If the N4 locally circular binding sites of radius ea4 R4 > 0 are placed independently
and uniformly on the surface of the A molecule, then the expected surface fraction of
A covered in binding sites is

62(aA)2NA

(5.7) fa=1-cos?™(cay/2) = i

+ 0" ase—0.
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To derive (5.7), note that the curved surface area of a binding site is 2rR% (1 —
cos(ean)). Therefore, if (6%, %) denotes the center of the ith binding site, then

1 27 T ) ] )
fa=1=5= [ [ P(0.0) ¢ UYAT(O. o} za) sin dody
0 0

1 2m ™ ) L Ny )
=1-— ]P’((@,go) §§F(9A,¢A7€a,4)) sin 6 df dy
47 0 0

1 2T ™ 2 RQ (1_ ‘(E )) Na
—1- — / |- Al SR sin 6 df de
N
=1- [1—%(1—008(6@;))} ! =1—cos?™(can/2).

Note that the exact formula fa = 1 — cos?¥4(ga4/2) in (5.7) is valid for any polar
angle eas with eas € (0,7/2) and any integer N4 > 1. In particular, one can take
N4 — oo with a fixed cay € (0,7/2) (which means that the binding sites necessarily
overlap and cover the entire sphere) and obtain the desired result f4 — 1.

In view of (5.6), it remains to determine the ratio r4 := ko /k. ;- In order for

(5.6) to agree with the recent asymptotic results of [33] in (5.2) as € — 0, we need
(5.8) kot ~ eapadaNa/m ase — 0.
Using (5.6), it therefore must be the case that
1
ran~ —AalNgape ase — 0,
™

or equivalently,

2
(5.9) rA N~ ;)\A\/NAfA as fA—>0.

Since we are interested in the case that fa < 1, we simply set

2
(5.10) ra=_Aay Nafa,

so that (5.6) becomes
fa+ 2XaV/Nafa
(511) keff = 3 k511101~
1+ =AavNafa

We note that if we expand the numerator and denominator of (5.11), then we recover
the formula obtained in [33],

AaNaaae/m+ O(e) AalNaaae o _ 2
k = ]{3 mol = —k m O — k' O )
T T MaNaaae/m+0E2) ™ T 1 ¥ AaNjane * ol +0(%) =ka+ O(e7)

5.3. Two heterogeneous molecules. Now we consider the case of two hetero-
geneous molecules (i.e., fa € (0,1) and fg € (0,1)). If we set r4 as in (5.10) and
analogously set g, then we obtain the explicit bimolecular binding rate formula

J— . 2 2
(5.12) ke = _Jafe ksmol, With ra = —Aa\/Nafa, r8 = =XV NafB,
AaAB -l-’l/i T T

and Aa,Ap,v asin (5.4) and fa, fp as in (5.7).
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It is straightforward to check that (5.12) reduces to (5.11) if we take Ng — oo
and/or Ap — oo (and of course the analogous statement holds if N4 — oo and/or
Aa — 00). That is, (5.12) has the correct limiting behavior if one or more of the four
parameters, Na, A4, N, Ap, is taken to infinity.

Does (5.12) have the correct limiting behavior as ¢ — 0?7 Expanding (5.12) yields

(5.13) ket = €3 NaNpXqcksmo + O(e)*, ase — 0,
where

(5.14) Xac(Aa, AB,aa,ap) = aAaB(aA:\lB + aB/\A).
T

Comparing (5.13) with the behavior derived in (3.42), it follows that (5.12) has the
correct behavior as ¢ — 0 if and only if x4 = X.

Using the kinetic Monte Carlo method developed in section 4, we find that xqc #
x. However, it turns out that x4 and x are fairly close, xqc = X. Indeed, we plot the
relative error between xqc and x in Figure 3 and find that this error is less than 16%
for (Da,Dg) = (R?*Df/D" R?D$/D') € [1072,10]? and a4 = ap = 1 (similar
errors were found for other choices of a4 and ap).

While the binding rate keg in (5.12) is explicit, the formula is fairly complicated.
A simpler formula that agrees with keg in (5.12) quite well is

EgNANB

5.15) ko =
( ) 0 Xfl+€27T(NA/((IB>\B)JrNB/()\AaA))Jr&?SNANB

ksmol S (07 ksmol)-

Note that since x &~ Xqc, for simplicity we could replace x by xqc in the definition of
ko and obtain similar results. We compare the approximations (5.12) and (5.15) to
stochastic simulations of the full binding model in the next section.

6. Numerical validation. In this section, we present results from two simula-
tion methods to verify our results numerically.

6.1. Zero rotational and surface diffusion. In this subsection, we verify our
asymptotic formula (3.42) for the bimolecular binding rate in the case that Dy =
Dp — 0. First, using the kinetic Monte Carlo method of section 4, we find that

x(Da,Dp) ~0.1459 for Dy = Dp = 10~*

from M = 10'° trials (we take ay = ap = 1). Further, the probability that
x(Da, Dp) € [0.1458,0.1460] for D4 = Dp = 10~* is approximately 0.95 (this follows
by using the method described in section 4.3). Hence, the asymptotic formula (3.42)
becomes

(6.1) ko ~ e3NaNg(0.1459)kemol, €< 1, Dy =Dp < 1.

To verify (6.1), notice that if D4 = Dp = 0, then the spherical caps are immobile.
In particular, the problem becomes equivalent to a single point particle diffusing
exterior to a 3D sphere of radius R which can only be absorbed at the sphere if it
reaches a pair of overlapping A and B spherical caps. Since the caps are immobile,
if they are not initially overlapping, then they will never overlap and the particle is
certain to never reach their intersection.

For simplicity, consider the case that Ny = Ngp = a4 = ap = 1. Notice that
the B cap will overlap with the A cap if and only if the center of the B cap lies in a
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spherical cap of polar angle 2¢ centered at the A cap. Assuming the caps are placed
independently and uniformly on the sphere and noting that the curved surface area of
a cap with polar angle 2¢ is 2w R?(1 — cos(2¢)), the probability that the caps overlap
is

2
2mht (iWRC?OS(%)) = %(1 —cos(2¢)) =2 + O(e*), ase — 0.

We now calculate the probability that the particle reaches the intersection of the
caps, conditioned on the event, E(s), that the distance (the curved geodesic distance
on the sphere) between the centers of the caps is sRe > 0, where s € [0,2). The key
point is that since the caps are immobile, this problem falls into the class of problems
analyzed in [36].

Let P, denote the probability measure conditioned on an initial particle ra-
dius X(0) = r > R and an independent and uniform distribution of the initial
angles (09(0), ®o(0)), (0©%(0),®%(0)) for i € {1,...,Na}, and (0%(0), ®%(0)) for
j € {1,...,Ng}. Recall the definition of 7 in (3.7), and thus 7 < oo is the event
that the particle eventually reaches the intersection of the A and B cap. It follows
immediately from the leading order term in (3.37a) in Principal Result 3.1 in [36] that

(6.2)

(6.3) Py (7 < 00| B(s) ~ 2 ase o0,
2R,

where ¢(s) is the electrostatic capacitance of the magnified “lens” formed by the
intersection of the two spherical caps. That is, suppose w(x,y, z;s) is harmonic in
upper-half space,

(&w + Oyy + 8zz)w =0, z>0,
with mixed boundary conditions at z = 0,
w=1, z2=0,(r—s/2%+¢y* <1, (x+5/2)> +y° <1,
0, w =0, z=0,otherwise.
Then ¢(s) is such that
w(x,y,2;8) ~ ﬁ, as V2 +y2 + 22 = co.
Va2 +y? 422

Now, it is straightforward to check that the probability density that the caps
overlap with separation sRe € [0,2Re) given that they overlap is

Therefore, by conditioning on the value of the overlap distance s € [0,2) and using
(6.2) and (6.3), we obtain

3 2

2
(6.4) Ppr, (1 <o00)~ 52/ P(Ro| E(s))p(s)ds ~ £ c(s)sds, ase—0.
0 4R0 0

Combining (6.4) with (3.16) and (3.15), in order to verify (6.1) we want to show
that

1 2
(6.5) 1/ c(s)sds &~ 0.1459.
0
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We do not have an analytic formula for ¢(s) (except in the case s = 0). However, we
can apply the kinetic Monte Carlo method of [6] to calculate ¢(s) for a range of values
of s € [0,2) in order to numerically compute the integral in (6.4). Taking a uniform
grid of 400 values of s € [0,2) and computing each c(s) value with 107 simulations
(with an outer “escape” radius of 10°) yields

2
/ c(s)sds ~ 0.5806.
0

Using this numerical value for f02 c¢(s)s ds, we obtain

1 r2

= | c(s)sds

M =0.995 ~ 1,
0.1459

which confirms (6.5).

6.2. Monte Carlo simulations of full process. In this subsection, we com-
pare the asymptotic formula for kg in (3.42) and the approximations keg and ko ((5.12)
and (5.15)) to Monte Carlo simulations of the full process in section 3.1. Before de-
scribing our stochastic simulation method in more detail, we first outline the main
points and give the results.

As shown in section 3, the problem is equivalent to (i) a set of Ns-many A
spherical caps and a set of Ng-many B spherical caps that each move on the surface
of a single sphere with radius R and (ii) a point particle that diffuses exterior to
this sphere and is absorbed at the sphere if and only if it hits the intersection of
an A spherical cap with a B spherical cap (otherwise it reflects from the sphere).
The motion of the A spherical caps is governed by their individual surface diffusions
(with surface diffusivity DS*f) and the rotational diffusion of the A molecule (with
rotational diffusivity D), and similarly for B spherical caps.

We thus simulate the path of a single particle with diffusivity D' in R? exterior
to a sphere of radius R > 0 and the paths of the diffusing caps on the surface of
the sphere until the particle either reaches the intersection of the A and B caps or
reaches some large outer radius Ry € (R,0). After repeating this M > 1 times,
we calculate the proportion of particles that reach R.,. A certain modification of
this proportion then yields an approximation to the probability p in (3.8) that the
particle never reaches the intersection of the A and B caps, which then yields an
approximation to ko via (3.15)—(3.16).

Figures 5—6 show very good agreement between our theoretical results and these
stochastic simulations of the full process. Figure 5 plots the asymptotic formula for
ko in (3.42) for different values of the diffusivities D, Dit, DSif and Dt as
a function of the product NyNg € [25,200], where y is computed from the kinetic
Monte Carlo simulations of section 4.

Since the formula ko ~ 2 NaoNpXksmol of (3.42) clearly breaks down for fixed
¢ and large N4 or Np, Figure 6 plots the approximations keg and ko in (5.12) and
(5.15) for larger values of N4 and Np. From this figure, we see that keg ~ ko agrees
well with stochastic simulations. The largest errors tend to occur when Ny = 103
(or Np = 10%), in which case the surface area fraction covered by binding sites is
fa~ Ne?/4= i (or fp = %) This error is expected, since our approximations were
made assuming the surface area fraction is small. We note that the data points in
Figure 6 were computed from either M = 103, M = 10%, or M = 10° simulations of
the full process, depending on the values of N4 and Ng. In particular, we used a
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Fi1G. 5. The asymptotic behavior of ko in (3.42) as e — 0 as a function of the product NoNp
for different values of the diffusivities. In all three plots, the solid lines are e3NoANpx in (3.42)
where x is computed using the kinetic Monte Carlo method of section 4, the squares are results from
M = 105 Monte Carlo simulations of the full process, and the triangles denote the 95% confidence
intervals for the simulation data using the method of section 4.3 (all lines and data are normalized
by ksmol)- In the left plot, Dt = 0, D%t = 1 psurf = 1, DWWt = 0. In the middle plot,
Dot = Dot = D3t = pswt = 1 In the right plot, D9t = D¢t = 1 pswf = pswrf = o,

100

[ — N, =10
—NAZ 102

k()/ ksmol

ek g o
10° 10! 102 108 10° 10! 102 10° 10*
NB NB

FIG. 6. The approzimations keg and ko to the bimolecular binding rate ko as a function of
Np for Na € {10,102,103}. In both plots, the solid curves are keog in (5.12), the dotted curves
are ko in (5.15), the squares are results from Monte Carlo simulations of the full process, and the
triangles denote the 95% confidence intervals for the simulation data using the method of section 4.3
(all curves and data are normalized by ksmo1). The left and right plots have identical data, but the
left plot has a logarithmic vertical axis for better visualization for small values of Ng. In the right
plot, the horizontal dashed lines give imy, o0 kefr- In both plots, we take fot = Dg’t =1 and
Dsurf — Dsurf = 0.

A B

smaller number of simulations for large values of N4 and/or Np as such simulations
are very computationally expensive (fortunately, larger values of N4 and/or Np yield
a higher binding probability, so fewer simulations are needed to get a precise estimate
of ko). We further note that we take D*?* = D' = 1 and D5 = DS = 0 in
Figure 6 to decrease computational cost.

We now describe our simulation method, which is similar to the method used in
[33, 32, 29]. Initially, we place the particle at radius Ry € (R, Roo) and randomly dis-
tribute the caps uniformly on the sphere. The diffusion of the particle (with diffusivity
D), the surface diffusion of the A caps (with diffusivity D5"), and the surface dif-
fusion of the B caps (with diffusivity D3"™) are simulated with the Euler—-Maruyama
method [26]. To increase computational efficiency, we use either a large time step
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(denoted Aty;g) or a small time step (denoted Atgman), depending on the distance
between the particle and the nearest A and B caps.

To implement rotational diffusion, at each time step, all the A caps undergo the
same random rotations about the three Cartesian coordinate axes (and similarly for
the B caps). More precisely, if we define the rotation matrices,

1 0 0 cosw 0 sinw
Ry(w): =10 cosw —sinw]|, Ry(w):= 0 1 0 ;
0 sinw cosw —sinw 0 cosw
cosw —sinw 0
R, (w):= |sinw cosw 0],
0 0 1

and let {(z%, %, 24) Y4 denote the Cartesian coordinates of the centers of the A
caps at the start of a time step of size At > 0, then the centers of these caps at the
end of the time step are

T
Rx(wl)Ry(wg)Rz(W3) yf4 ERB, RS {1,...,NA},
2y

where w1, ws, w3 are three independent realizations of Gaussian random variables with
mean zero and variance 2D'?*A¢ > 0. Importantly, the random variables wy,ws,ws
do not depend on the index i € {1,..., N4}, which means that the random rotation
is common to all of the A caps. The B caps are rotated analogously, though of course
the B caps are rotated independently from the A caps.

In all simulations, we take ¢ = 107" ~ 0.03, D" = R=a4 =ap =1, Ry = 1.1,
Roo = 10, Atpig = 1073, Atgman = 1078, and M € [103,10°] trials.

We now describe more precisely how we estimate kg from the simulation data. Let
P, denote the probability measure conditioned on an initial particle radius X (0) = r >
R and an independent and uniform distribution of the initial angles (©¢(0), ®¢(0)),
(04(0),2%(0)) for i € {1,...,Na}, and (©%(0),®%(0)) for j € {1,...,Ng}. For
a set of M > 1 trials with fraction ¢ € [0, 1] that reach radius R, we obtain the
approximation

(6.6) q~Pr, (TR, <T),

where 7 > 0 is the first time the particle reaches the intersection of A and B caps
(defined in (3.7)), and 7, > 0 is the first time the particle reaches radius R,

TR, = inf{t >0: X(t) = R}
Now, it follows immediately from integrating (3.12) and using (3.15) that
].—RQOZ]PRO(T:OO), Ry > R.

Therefore, to find an approximation for Pr, (7 = 00), we follow [41, 42, 33] to obtain

1—1% =Pr(t=00|7> 71 )Pr(T >TR.)

(67) ~ IPRoo (T = OO)IPRO(T > TRoc) = (1 — %)PRO(T > TRoo)'
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The error in the approximation in (6.7) vanishes as R, /R and/or min{ D, D¢}/ Dt
grows. If we rearrange (6.7) and use (6.6), then we obtain the following numerical
approximation to the capacitance in (3.15):

_ (1—q)RoR
¢~ Roo —qRy

Plugging this approximation for C' into (3.16) yields the numerical approximation
to the bimolecular binding rate ko that is used in plotting the ratio ko/ksmol in
Figures 5-6.

7. Discussion. In this paper, we considered a generalization of the classical
Smoluchowski model for bimolecular binding rates that includes the fact that pairs of
molecules can bind only in certain orientations. This generalization took the form of
a high-dimensional, anisotropic diffusion equation with mixed boundary conditions.
We applied matched asymptotic analysis [36] to this PDE and derived the bimolecular
binding rate in the limit of small binding sites. The resulting binding rate formula
involves a factor, y, that we computed numerically by modifying a recent kinetic
Monte Carlo algorithm [6]. We then applied the quasi chemical approximation [51] to
obtain (i) a formula which includes the effects of binding site competition/saturation
and (i) a simple analytical approximation for x. Our analysis thus constitutes a
hybrid asymptotic-numerical approach [28, 37, 54], as it relied on both asymptotic
analysis and numerical computation.

In our model, both particles are “patchy” or “heterogeneous,” meaning that both
particles contain localized binding sites. The limiting case of one heterogeneous mol-
ecule and one homogeneous molecule (one molecule completely covered in binding
sites) is a classical and well-studied problem [2, 3, 13, 15, 36, 39, 61, 16, 23], dating
back to Berg and Purcell’s landmark 1977 work [4] which yielded the rate constant,

eaANA
kpp =

T+ €GANA smol-

A number of interesting works have modified Berg and Purcell’s formula to account
for the effects of binding site arrangement and curvature of the molecular surface
[2, 3, 13, 15, 36, 39, 61, 16, 33, 23]. In fact, the method of matched asymptotic
analysis that we employed in the present work follows the method employed in [36],
and also similar methods in [10, 11, 12, 29, 32, 7, 8, 34]. These formal methods are
related to the strong localized perturbation analysis pioneered in [55, 56]. Note that
the model of the present work is a strict generalization of the model of Berg and
Purcell.

The model of two heterogeneous molecules that we analyzed in the present work
was studied in the case of a single binding site on each molecule (N4 = Np = 1)
by Solc and Stockmayer in 1971 [50]. In that work, the authors used the symmetry
inherent in the single binding site model to derive an expression for the binding rate
in terms of an infinite series requiring the solution of an infinite system of linear alge-
braic equations [50]. In the absence of a tractable expression for the binding rate for
this single binding site model, subsequent studies have employed either the so-called
closure (constant flux) approximation [52, 35] or the quasi chemical approximation
[51]. Though heuristic, the quasi chemical approximation was shown to be quite accu-
rate for the case of a single, relatively large binding site on each molecule [58]. In the
case of a single small binding site on each molecule, the quasi chemical approximation
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[61] combined with the analysis of Berg [5] predicts that the bimolecular binding rate
has the following approximate asymptotic behavior [58]:

(7.1) ko ~ e3Xpksmol  if € < 1,
where

asap(aalp +ag)
(7.2) Xb = Xb(Aa, Ap,aa,ap) = — 5 AS\% A4)

Comparing (7.2) with our formula for xqc in (5.14) (which approximates the quantity
X determined numerically in section 4), we see that the only difference is the factor
1/(8v/2) = 0.09 in (7.2) versus the factor 1/(4r) ~ 0.08 in (5.14). This difference
arises because (7.2) relies on an approximation of a certain infinite series, whereas
(5.14) depends on the asymptotic predictions of [33] (see (17)—(18a) in [5] and the
discussion surrounding (61) in [33] for more details). Hence, the results in this paper
show that the heuristic prediction (7.1) is quite accurate as ¢ — 0 and extend the
binding rate formula to the case of multiple binding sites.

Related work that studied the binding of spherical molecules with multiple bind-
ing sites (often called molecules with “patches” or simply “patchy particles”) includes
[40, 46, 25]. In particular, reference [40] used Monte Carlo simulations to investi-
gate the relative contributions of translational and rotational diffusion to the asso-
ciation of two or more patchy particles. Reference [46] studied the association of
pairs of patchy particles with a few relatively large patches using lattice models and
lattice-adjacent models, and reference [25] introduced a computational approach for
studying association and dissociation of such patchy particles. In addition to models
with spherical molecules, progress has recently been made in analytically studying
diffusion-influenced reactions for nonspherical molecules [18, 53, 45].

In previous work, the mixed boundary conditions that result from patchy parti-
cles are often approximated by a homogeneous boundary condition through a method
called boundary homogenization [2]. Specifically, one considers the Smoluchowski
problem in (1.1)—(1.2) with the absorbing boundary condition (1.3) at the reaction
radius r = R replaced by a Robin boundary condition (also called a partially absorb-
ing, radiation, third type, impedance, or convective condition [30, 9, 14, 47]),

(7.3) DO.p=kp forr=R,

where k > 0 is the so-called trapping rate parameter (or partial reactivity). Cast
in this form, the problem becomes one of choosing the homogenized trapping rate
in order to approximate the heterogeneous reactivity. Solving (1.1)—(1.2) with (7.3)
yields the following expression for the binding rate k in terms of the trapping rate x,

kR

7.4 k= DU OpdS = — g
( ) /T‘\ZR P 1)tr + KZR !

Solving (7.4) for x yields
Dtr k/ksmol
(7.5) K= <1 syl

Hence, while our results are given in terms of binding rates (i.e., ko, ko, ke, etc.),
these formulas can be translated into the corresponding trapping rates via (7.5).
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Related to the point above, we note that our model assumes that the molecules
bind immediately once the binding sites are in contact. Mathematically, this assump-
tion manifests as the absorbing Dirichlet condition in the mixed Dirichlet/Neumann
boundary conditions in (3.14). This assumption can be relaxed by replacing the
Dirichlet/Neumann conditions in (3.14) by Robin/Neumann conditions of the form

Da?“p = Kpsp, T = R7 (00a QOO) € A(0A7 @A) N A(GB7 @B)v
an = 07 r= R) (HOa 800) ¢ A(9A7 @A) N A(er @3)7

where kps € (0,00) models a finite binding rate of binding sites that are in contact
(Kbs is not to be confused with x in (7.3)). Such mixed Robin/Neumann conditions
are known to affect the leading order behavior in narrow escape problems involving
small targets [19, 31]. Alternatively, a finite binding rate can be modeled by retaining
the absorbing Dirichlet condition in (3.14) and reducing the binding site size to some
“effective” size. This latter perspective is the one taken by Berg and Purcell [4].

In closing, we briefly discuss our results in the context of empirical binding rates.
The Smoluchowski bimolecular binding rate (1.4) for typical proteins is roughly [43,
59, 60]

kemor &~ 7 x 10° M~ sec™ 1.

This rate significantly overestimates experimentally measured rates, which is to be
expected since it ignores orientational constraints in binding. Indeed, empirical rates
are often in the range [43]

7.6 Eemp € [0.5,5] x 106 M~ tsec™ .
(7.6) emp € [0.5,5]

As noted in the introduction, it is tempting to account for the orientational con-
straints by simply multiplying the Smoluchowski rate by a geometric factor given by
the product of the protein surface area fractions covered by binding sites, which yields
the binding rate kgeo := fafBksmol (see (1.5)—(1.6)). However, this simple modifica-
tion yields a binding rate that is typically a few orders of magnitude smaller than
experimentally measured rates. For example, it has been estimated that [43]

(7.7) kgeo ~ 7 x 102 M~ 'sec™!.

Since ksmol overestimates kemp and kgeo underestimates Kemp, it is interesting to note
that the binding rate, kg, satisfies

kgeo < kO < ksmoh

in the limit of small binding sites, ¢ < 1. Indeed, kg0 for our model is

Nae?\ [ Npe? 1
kgeo = < Z > (Z) ksmol = €4NANBT6ksmola

where we have taken a4 = ap = 1 for simplicity. Hence, (3.42) gives

k
iZ‘) ~6% <1 fore< 1.

Therefore, if we take the value (7.7) for kgeo and for definiteness take x = 0.29 from
(4.12), then we obtain that kg is in the typical empirical range (7.6) if e € [1072,1071].
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