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Abstract—Many elderly individuals have physical restrictions
that require the use of a walker to maintain stability while walking.
In addition, many of these individuals also have age-related visual
impairments that make it difficult to avoid obstacles in unfamiliar
environments. To help such users navigate their environment faster,
safer and more easily, we propose a smart walker augmented with
a collection of ultrasonic sensors as well as a camera. The data
collected by the sensors is processed using echo-location based
obstacle detection algorithms and deep neural networks based
object detection algorithms, respectively. The system alerts the user
to obstacles and guides her on a safe path through audio and haptic
signals.

Index Terms IoT, walker, obstacle detection, aging, rehabilitation

I. INTRODUCTION

According to the World Health Organization, there are an
estimated 1.3 billion people globally living with some form
of visual impairment [1]. Particularly among older individuals,
this results in a high chance of co-morbidity with a physical
impairment requiring the use of a mobility aid, such as a walker.
While these individuals might be able to use these devices
to navigate around familiar environments such as their home,
unfamiliar environments could be more difficult. Also, most
conventional mobility aids are not suitable for visually-impaired
individuals. With aids such as a walking cane, the visually-
impaired individual has to make many stops while they are
moving to check their surroundings, resulting in a slow and
tedious process. Most conventional visually-impaired aids are
also not suitable when used in conjunction with mobility devices
or require a network connection that is sometimes not available.

In this paper, we propose a smart walker for visually-impaired
individuals that will convey information about the obstacles
in the user’s path and navigate the user safely away. While
designing the walker, we had in mind the following design
objectives:

1) Design an approach that works in various environments,
specifically outside in a sunlit environment.

2) Provide feedback to the user about what direction to move
the walker in order to avoid collision with the obstacle
currently in its path.

3) Provide feedback to the user if there is a massive obstacle,
such as a door or stairs, so that the user can be safer.

4) Implement a more stable haptic and an audio feedback
system.
5) Ensure that the system is affordable.

We implement two approaches for detecting and navigating
through obstacles. The first approach uses HC-SR04 ultrasonic
sensors powered by a Raspberry Pi, a low-cost, low-power
computing device. Once a sensor detects an obstacle, the sensors
directly to the left and right will aim to detect an obstacle. If
there is no obstacle detected, then that obstacle-free path will
be conveyed to the user. The second approach uses Google’s
TensorFlow Object Detection API to classify obstacles and
depending on the placement of the obstacle on the screen, the
user will be verbally warned of the obstacle in their path.

The remainder of the paper is organized as follows. In Section
II, we review previous work similar to our research problem. In
Section III, we describe the overall design of the walker. We
provide the details of the ultrasonic sensors and TensorFlow’s
Object Detection approaches to detect and navigate obstacles in
Section IV. The evaluations of the proposed approaches through
various scenarios are given in Section V. We conclude and
discuss future improvements in Section VI.

II. RELATED WORK

There are several existing systems designed to help with
navigation of the elderly through various environments as well
as systems to assist with rehabilitation after major surgery.

The smart walker proposed in Zehtabian et al. [2] provides
feedback to users on proper walker usage for rehabilitation
and assists physicians in checking their patient’s rehabilitation
progress. In Khodadadeh et al. [3], the walker’s data stream
is processed by a deep neural network based classifier, which
learns to detect unsafe usage of the walker that could hinder a
patient’s rehabilitation. This classifier can detect in real time if
a user is operating the walker in safe or unsafe patterns.

A similar project [4] has been conducted on a rollator which
uses audio feedback to communicate the presence of obstacles
to the user. This device, called PAM-AID, has two modes: a)
the audio feedback only and b) the feedback while also using
motors to align the wheels in an obstacle-free direction. Garrote
et al. [5] proposed a smart walker (ISR-AIWALKER), which
was implemented using a utility decision and safety analysis



procedure with user intent adjustments learned by reinforcement
learning to help guide a user away from an obstacle.

An autonomous walker that can guide users in navigating in
an indoor environment was explored in Kashyap et al. [6]. This
smart walker uses voice commands to navigate the user through
various indoor environments by using simultaneous location and
mapping(SLAM) and an integrated fall detection system. The
walker recognizes simple phrases spoken by the user and can
guide a user to their desired location while avoiding obstacles.
However, this system is not ideal in an outdoor environment.

Radar sensors are being used in many applications. Since
they do not depend on environment conditions, they can be
very useful for interactive applications such as human activity
recognition [7]. Similarly, the use of ultrasonic sensors in aid
devices for the visually impaired has been previously investi-
gated. In Bhatlawande et al. [8], a system is designed to detect
and identify the distances of obstacles in front of a user through
ultrasonic sensors. These ultrasonic sensors are attached to a belt
and a pair of glasses that the user would wear. Similar to our
design, if there is an obstacle present, the other sensors attached
to the belt will then search for an obstacle-free path and provide
audio feedback to the user about what direction to take in order
to avoid that obstacle. However, this system does not convey
any information about the distance of the obstacle to the user.
The device also cannot detect elevation changes such as stairs or
a curb and cannot be used by individuals with mobility issues.

In Dey et al. [9], ultrasonic sensors are attached to a walking
cane. The sensors are placed to detect obstacles in front, left,
and right of the user with a haptic feedback system in place to
warn the user of an upcoming object. However, this work can
only detect objects within a 5-35 centimeters range and does
not have a navigational guidance system in place.

Hybrid systems have also been implemented in order to create
a mobility device for the visually impaired. In Sahoo et al. [10],
a walking stick comprised of SRFO08 ultrasonic sensors and Fun-
duino water level sensors is implemented. While the ultrasonic
sensors detects any obstacles in the user’s path, the water sensor
is able to detect water accumulation or puddles. There is also
a Global Positioning System (GPS) module embedded in the
walker to provide geolocation and time information. However,
this system is quite difficult and costly to implement. In De Silva
et al. [11], a personal assistive robot was created to navigate
indoor environments. This device relies on the IoT devices
already placed in an indoor environment and uses the received
data from those devices to react to various obstacles around
it. A scalable multi-layered context mapping framework was
developed to use these IoT sensors and process the data received
from them. While this will be able to indicate if an area is void
of obstacles or not, it only conveys this information visually.
The technology is also not able to provide a path to navigate
the user around obstacle-filled areas.

Youm et al. [12] used the TensorFlow framework to develop
tools for helping individuals in emergency situations. The tools
used pose recognition to determine if the user was hurt, and

used this information to sound an alarm.

The use of TensorFlow framework in wearable aids for
visually impaired has been briefly investigated. In Mulfari’s
work [13], a pair of glasses with a camera attached is controlled
by a single board computer running TensorFlow. The camera
captures the user’s surroundings in real time and processed by
TensorFlow’s image classification. Once the objects in the user’s
surroundings are classified, an audio feedback is provided to the
user describing those objects through an earphone. This system
does not inform the user about the distance of these objects or
how to avoid them. It also does not detect any obstacles close
to the ground.

In Nishajith et al. [14], a hat is embedded with a NoIR camera
that use TensorFlow to detect objects. Once the objects are
detected, an audio feedback to the user is be conveyed. However,
this system does not inform the user on how to avoid these
obstacles.

The proposed work builds upon our previous work [15] where
we designed a walker for visually impaired individuals that was
modified with an XBOX 360 Kinect and a haptic feedback
system to detect obstacles. It uses the camera to capture depth
images and averages the depth values across the rows then finds
the slope down the averaged column. Another approach uses the
depth image from the camera to generate a point cloud which
is then analyzed for the largest plane parallel to the z-axis to
detect obstacles. However, the use of a depth-imaging camera
was not useful in detecting obstacles in sunlight.

III. DESIGN

For both of our approaches, the walker is a standard four-
wheeled rollator. In the first approach, there are seven HC-
SR04 ultrasonic sonar distance sensors attached to the lower
half of the walker and angled towards the floor. A Raspberry Pi
operates these sensors and processes the data collected through
the sensors. Two vibration motors are attached to the walker,
one on each handlebar, providing navigational feedback to the
user. In the second approach, obstacle detection and navigational
feedback are performed by TensorFlow on a laptop computer
with a Logitech C270 HD Webcam attached to the lower half of
the walker. The navigational system in this approach is conveyed
through an audio feedback by the laptop.

With the ultrasonic sensors and Logitech Webcam, the IoT-
enabled walker is able to detect and navigate through obstacles
in various environments, specifically outside in a sunlit envi-
ronment. Whereas other sensors, such as the Microsoft Kinect
uses an infrared sensor to process the distance; resulting in
the infrared rays of the sun to hinder these results. The use
of the HC-SR04 sensors and TensorFlow framework contribute
towards an affordable design that costs on the order of tens of
dollars.

After an obstacle is detected, the navigational guidance sys-
tem determines which direction to move the walker in order to
avoid collision with the obstacle currently in its path. In order
to determine the most efficient navigational guidance system,
haptic and audio feedback systems are designed and tested. The



haptic feedback system conveys information about obstacles in
three different categories: close, mid-range, and far. For each
category there is a specific vibration intensity assigned to it: high
vibration for close range to low vibration for far range. When
an obstacle is detected, the direction of the obstacle-free path is
determined and the corresponding vibration motor vibrates. For
example, if the path to the right of the walker is more obstacle-
free, the vibration motor attached to the right handlebar will
start vibrating indicating for the user to move in that direction.

The audio feedback system conveys information about ob-
stacles by warning the user that an obstacle is approaching
and suggesting the user the direction in order to avoid it. For
massive obstacles such as doors, stairs, cars, and trucks, the
verbal warning also specifies what obstacle is approaching and
how to avoid it. For example, if a door is in the user’s path
and there is an obstacle-free path to the left, the audio feedback
system will verbally convey “Door approaching, Move Left.”
This provides an extra layer of caution for the users and allows
them to safely move through these environments. Currently,
the audio feedback is conveyed through the laptop computer’s
speakers.

IV. PROPOSED APPROACHES
A. Background

The HC-SRO04 [16] sensor is an ultrasonic sensor that gen-
erates a sound wave at a frequency above the range of human
hearing. The sensor transmits this wave forward as a trigger. If
there is an object in the sensors path, the sound wave bounces
back to the sensor as an echo.

HC-SR04 has four pins: VCC, Trig, Echo, and Gnd. The VCC
pin powers the sensor with +5V. The Trig pin is the input pin,
which needs to be set to a high state for 10 microseconds to
generate the sound wave. The Echo pin is the output pin, which
is set to a high state equal to the amount of time it takes to
receive the returned sound wave. The ground pin is connected
to the ground of the system.

A Raspberry Pi is a highly efficient, low-cost, small com-
puting device that consists of General Purpose Input/Output
(GPIO) pins. This allows the Raspberry Pi to interface with
the ultrasonic sensors.

TensorFlow is an open-source platform for machine learning
models, developed by Google. TensorFlow Object Detection
API is a framework and uses deep neural networks for object
classification [17]. TensorFlow can also be used to train object
detection models that can identify what set of objects may be
present in a video stream and provide the locations of those
objects.

TensorFlow represents these models using dataflow graphs. A
graph consists of nodes connected to each other as inputs and
outputs. Each node represents a specific operation. The weights
of these nodes are also necessary for the graphs; however, they
are not stored inside the same file. Instead, they are in separate
checkpoint files, where the Variable ops in the graph will load
them after being initialized [18]. In order to be more efficient,

the graph definition and checkpoint files are frozen together in
a single file, which is used for object detection.

B. Approach 1: HC-SR04 Ultrasonic Sensors

The use of HC-SR04 ultrasonic sensors to detect obstacles
was similar to Dey et al. [9]. According to the HC-SR04 data
sheet, these sensors can provide 2-400 centimeters non-contact
measurement function up to a 3 millimeter accuracy with a
measuring angle of 15 degrees. Since the measuring angle is
small, we attach seven sensors across the width of the walker
and angle them slightly to the ground to detect obstacles close
to the ground, so every obstacle can be detected in the walkers
path. In order to detect obstacles that are parallel to the walker,
we attached one sensor each to the left and right side of the
walker and angled them outwards (see Figure 1). To eliminate
possible interference issues, each sensor transmits a sound wave
and calculates the distance in sequential order. We store these
distance measurements in an array for further use.

Fig. 1.

The walker configured with ultrasonic sensors

To calculate the distance of the obstacle, we use the formula:
Distance = Speed x Time 1)

Speed is the speed of sound in centimeters (34300 cm/sec)
and time is the number of milliseconds it takes for the sound
wave to reach that obstacle. Using the sensors, we record the
time it takes for the Trig pin to send out the ultrasonic wave
and for the Echo pin to receive the reflected wave. However,
the time recorded is double of the actual time it takes for the
sound wave to reach the object. So, this measurement needs to
be divided by 2, which results in the correct distance of the
object from the walker, as shown in Algorithm 1.

After each sensor calculates the distance that the ultrasonic
wave traveled, the sensor that measured the smallest distance
will indicate that the closest obstacle is directly in front of it.
Using the previously stated array, we check the other sensors
distance measurements to the left and right of that sensor that
returned the largest distance. If the sensors to the left calculated
a larger distance than the sensors to right, then the path to the
left is more obstacle free, as shown in Algorithm 2. In order to
convey this information to the user, the left handlebar vibrates.



Algorithm 1 Approach 1: Detecting Obstacle’s Distance
1: setTrig(High)

LeaveTrigStatefor1Oms

setTrig(Low)

while inputEcho(Low) do
start = startTimer()

end while

while inputEcho(High) do
end = endTimer()

end while

TimeElapsed = start - end

: Distance = (TimeElapsed x 34300) / 2

R A
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If the sensors to the right calculated a larger distance, then the
right handlebar would vibrate.

If all the sensors calculate an obstacles distance within a 5
cm range, then a large obstacle, such as a wall or stairs, is
in the walkers pathway. In that situation, the distances of the
sensors that are facing parallel to the walker is utilized. Using
that distance array, the program compares which sensor recorded
the larger distance. If the left parallel sensor recorded a larger
distance, that means there is an open path to the left and the left
handlebar vibrates. If the right parallel sensor recorded a larger
distance, the right handlebar would vibrate, indicating that the
path is open to the right.

Algorithm 2 Approach 1: Finding the Safest Path away from
the Obstacle

1: sensorDistance = getsDistance();

2: if sensorDistance < 200 cm then

3:  AlertUserObstacleDistance()

4 if sensorDistanceleft > 200 cm then

5 moveWalkerLeft

6:  else if sensorDistanceRight > 200 cm then
7 moveWalkerRight

8 else

9 checkParallelSensors()

10:  end if

11: else

12:  moveForward

13: end if

C. Approach 2: Object Detection with TensorFlow

In order to detect obstacles in real time, we implemented
TensorFlows Object Detection API with OpenCV. In the Tensor-
Flow environment running on our laptop, we use the model that
is already trained on the Open Images data set using TensorFlow.
We extract the frozen inference graph of that model !. We then
create a label map that loads all the labels and maps the indices
to the various category names such as door, stairs, person. All

nstallation instruction is available here: github.com/nafisam/vision_walker-
2019/tree/master/TensorFlow

of the detection boxes, classes, accuracy scores, and number of
detections are defined through tensors, which are generalization
of the vectors. The external webcam is then turned on and each
frame of the live stream is captured and processed. We run
the actual detection through each frame and draw a box around
every classified object with a confidence score greater than 70%
with the name of the object written on the box as shown in
Figure 2.

Fig. 2. Object Detection of door and car with TensorFlow.

To get the distance of these classified objects from the walker,
we use the formula [13]:

Width of Object x Focal Length @)
Pixel Width

We subtract the x-coordinates of the bounded box to calculate
the pixel width of the object. To determine the real-world width
of the object, we divide the pixel width by 75, which is the Dots
Per Inch (DPI) resolution of the camera. This results in the width
of the object in inches which is converted to centimeters. We
multiply this measurement by 3 in order to have the calculated
width within a 10% error margin of the actual width.

Distance =

Fig. 3. Example of Region of Interest coordinate system implementation.
We implemented a coordinate Region of Interest (ROI) to
create a navigational guidance system for the user. An ROI is
a portion of an image that is filtered or an area that another
operation is performed upon. We defined the boundaries of the
ROI as a three box grid system that stretched horizontally across
the width of the screen (See Figure 3). Anything outside of this
region is essentially not processed. If an obstacle appears in
the ROI, then its distance is calculated and the placement of
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it is processed. If the obstacles bounded box left x-coordinate
is greater than the ROI left boundarys x-coordinate, then the
obstacle is on the right side of the walker and a verbal warning
for the user to move left should be heard. If the obstacles
bounded box right x-coordinate is less than the ROI right
boundarys x-coordinate, then the obstacle is on the left side
of the walker and a verbal warning to go right is given (See
Algorithm 3). When the obstacles coordinates are within the
ROI, then a verbal warning to stop should be heard, indicating
there is a large, unavoidable obstacle in the users path. As an
extra layer of precaution, when massive obstacles such as stairs,
doors, cars, or trucks are detected within the ROI, a verbal
warning with that obstacle name is provided. For example, if
a door is detected within the users path, the verbal warning
“Door approaching” would be given to the user.

Algorithm 3 Approach 2: Finding the Safest Path away from
the Obstacle
1: if DetectedObstacleinROI then

2:  if ObstacleLeftXCoord > ROILeftBoundXCoord then
3: WarnObstacleRight
4: moveWalkerLeft
5:  else if ObstacleRightXCoord < ROIRightBoundXCoord
then
6 WarnObstacleLeft
7: moveWalkerRight
8: else if ObstacleWithinCenter then
9 stopWalker
10:  end if
11: end if
V. RESULTS

The different approaches were evaluated on their abilities
to detect various types of obstacles in an outdoor and inside
environment and determine the distances of these obstacles from
the walker (See Table I). These obstacles’ actual distance from
the walker was measured with a tape measure and compared to
the distances measured by the different approaches. The ability
to detect an obstacle-free environment was also evaluated.

TABLE I
DISTANCE MEASUREMENT

Obstacle HC-SR04 Sensors | TensorFlow Actual Distance
Wall 92.3 cm 82.9 cm 91.9 cm

Door 54.6 cm 40.3 cm 53.7 cm

Person 110.2 cm 120.9 cm 110.3 cm

Stairs 52.3 cm 54.9 cm 51.8 cm

Curb 86.9 cm 100.3 cm 87.3 cm
Backpack 42.6 cm 39.5 cm 42.5 cm

Empty Hallway | No Obstacle No Obstacle | No Obstacle

An evaluation of each approaches’ navigational guidance
system was also performed. The test compared both approaches’
performance along with a conventional walker/cane in eight
different scenarios with an audio and haptic feedback. The first

and second scenarios were obstacle-free indoors and outdoor
environments, respectively. The user had to avoid collision with
walls for the indoor environment and curbs and cars for the
outdoor environment. For the remaining scenarios, there were
ten obstacles that the user had to avoid. These obstacles were
dispersed at three various levels: high, medium, and low. At
high levels of dispersion, the obstacles were far away from
each other. At medium levels of dispersion, the obstacles were
closer to each other and at low levels of dispersion, the obstacles
are densely clusters around each other. Each level of obstacle
dispersion was evaluated indoors and outdoors. The test subjects
were individuals without any visual impairment or mobility
issues. Their eye sight was covered with a blindfold during the
tests and the average number of objects they collided with was
recorded (See Table 2). The time it took to maneuver through
these scenarios was also measured (See Table 3).

TABLE 11
NAVIGATIONAL GUIDANCE SYSTEM (OBSTACLES HIT)

. Dispersion of HC-SR04 TensorFlow
Environment| oy BN O Walker/Cane| (o P el with Audio
Hallway Empty 0 0 0
Outdoors Empty 1 1 0
Hallway High 2 1 1
Outdoors High 4 3 0
Hallway Medium 3 2 1
Outdoors Medium 2 4 1
Hallway Low 3 3 2
Outdoors Low 3 3 2

TABLE III
NAVIGATIONAL TIME

. Dispersion of HC-SR04 TensorFlow
Environment Obsliacles Walker/Cane with Haptic| with Audio
Hallway Empty 2:31 2:14 2:15
Outdoors Empty 3:34 3:40 3:30
Hallway High 2:48 2:33 2:32
Outdoors High 3:48 4:02 3:50
Hallway Medium 3:15 3:09 2:57
Outdoors Medium 3:54 3:59 3:42
Hallway Low 3:45 4:21 4:19
Outdoors Low 3:51 4:57 4:32

Based on the results of the various trials, the ultrasonic sensor
approach was more successful in identifying the distances of
obstacles from the walker. The sensors were able to calculate
the distance within 2 centimeters of the actual distance, while
the TensorFlow approach calculated a measurement around 20
centimeters of the actual distance. This discrepancy is due to the
measurement error of the width of the objects. Both approaches
were able to identify an obstacle-free hallway.

The ultrasonic sensor and TensorFlow approaches were more
effective than a conventional walker when navigating through
clear or spaces with a high dispersion of obstacles. With spaces
with a low dispersion of obstacles, the TensorFlow approach
with audio feedback was the most successful in its navigational
guidance system. This approach was able to guide the user



quickly across various environments with different dispersion
of obstacles and help them avoid colliding with these obstacles.
Compared to the ultrasonic sensors with haptic feedback, the
TensorFlow-implemented walker was able to navigate through
the various environments faster and more accurately. Due to
the guidance system that informed the user which direction was
more obstacle-free, there were less obstacle collisions. Overall,
the TensorFlow-implemented walker collided with less obstacles
than the ultrasonic sensors. The ultrasonic sensors angle to the
ground was continuously shifting due to the unstable wooden
frame, so many false obstacles were processed such as uneven
pavement.

It was observed that the audio feedback was able to provide
an extra layer of safety for the user, as it warned them of
stairs, doors, cars, and trucks. The user was able to use that
information and had more success with avoiding those obstacles
as opposed to the haptic feedback where none of the obstacles
were classified.

Other studies on cognitive load of audio and haptic feedback
in assistive systems such as [19], suggest that blind people prefer
haptic feedback over audio feedback for short range navigation
tasks, however, they prefer audio feedback for other tasks such
as orientation, communication and alerts. Further testing of these
feedback systems with different approaches would provide more
information about the efficacy of each system.

VI. CONCLUSION

In this paper, we designed and implemented an IoT-enabled
smart walker that was able to detect obstacles in a user’s path
and provide feedback to the user about which direction to move
in order to avoid those obstacles. The walker was capable of
calculating the distances of those obstacles and conveying it
to the user, along with classifying certain dangerous obstacles
for an extra safety precaution. The first approach used HC-
SR04 ultrasonic sensors to detect obstacles while the second
approach implemented TensorFlow’s Obstacle Detection APIL.
Both approaches were fully functional in various environments,
including outside in a sunlit environment.

Further improvements to this walker include improving the
distance accuracy of the TensorFlow approach, retraining the
TensorFlow model to classify more obstacles, specifically differ-
ent types of walls, improving the sensors’ navigational system’s
accuracy in maneuvering walls, create a more stable holding
frame for the sensors, and eliminate the need of a laptop
computer to run the TensorFlow approach. Further testing of the
different feedback systems would also be beneficial in evaluating
the efficacy of both approaches.
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