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Abstract— Green homes require informed energy management
decisions. For instance, it is preferable that a comfortable internal
temperature is achieved through natural, energy-efficient means
such as opening doors or lowering shades as opposed to turning on
the air conditioning. This requires the control agent to understand
the complex system dynamics of the home: will opening the
window raise or lower the temperature in this particular situation?
Unfortunately, developing mathematical models of a suburban
home situated in its natural environment is a significant challenge,
while performing real-world experiments is costly, takes a long
time and depends on external circumstances beyond the control of
the experimenter.

In this paper, we describe the architecture of a physical, small
scale model of a suburban home and its immediate exterior
environment. Specific scenarios can be enacted using Internet of
Things (IoT) actuators that control the doors and windows. We
use a suite of IoT sensors to collect data during the scenario.
We use deep learning-based temporal regression models to make
predictions about the impact of specific actions on the temperature
and humidity in the home.

Index Terms: Smart home modeling, internet of things, temper-
ature regulation.

I. INTRODUCTION

Residential and commercial buildings represent about 40%
of the total energy consumption in the United States [1]. Thus,
making more energy efficient and environmentally responsible
decisions in homes can have a significant economic and envi-
ronmental impact.

Green home technologies aim to find more energy efficient
ways to manage the temperature, humidity, light and other
metrics in the home without sacrificing user comfort. For
instance, whenever possible, the thermal management of the
home should be achieved through natural means such as opening
doors or lowering shades. Such actions can be contrasted with
energy intensive approaches such as central air conditioning.
Such approaches not only reduce the environmental impact of
energy generation, but also have direct economic benefits to
the inhabitants. If we calculate with the average US energy
cost to the customer, 13.2 cents per kWh cost, running an air
conditioning unit for eight hours a day costs an average suburban
home between one hundred ten dollars and two hundred forty
five dollars per month [2].

In order for a green home to take the optimal actions that
lower cost and minimize environmental impact, it needs a high
quality predictive model of the various actions that can be taken.
Due to the complex interactions between internal and external
factors, the geometry of the home and the actuators, such a
predictive model is difficult to build. For instance, opening a
window at night might lower the temperature, while during
the day it might raise it, especially if the window is on the
sunny side of the home. Naturally, this depends on the location
(Arizona versus Minnesota), season and other factors (is the
home shaded by a tree?).

In this paper, we describe the architecture of a small scale
physical model of a suburban home, together with an enclosure
that models the exterior environment. Specific scenarios can be
enacted using Internet of Things (IoT) actuators which control
the doors and windows. We use a suite of IoT sensors to
collect data during the scenario. We use deep learning based
temporal regression models to make predictions about the effect
of specific actions affecting temperature and humidity in the
home.

The remainder of this paper is organized as follows. Section II
review related work. Section III explains the scaled smart home
design and data collection. Experiment details can be find in
Section IV. Results are demonstrated in Section V. Finally, the
paper ends in Section VI with a conclusion.

II. RELATED WORK

Lin et al. [3] examined the relationship between in-home
behavior and indoor air quality based on the data collected from
smart home sensors and chemical indoor air quality measure-
ments. This was done by collecting data from two smart homes
and analyzing the impact of smart home behavior on indoor air
quality, as well as the relationship between different groups of
smart home features and indoor air quality variables. For data
analysis, random forest, linear regression, and support vector
regression machine learning classifiers were used. The study
concludes that there is a strong relationship between in-home
human behavior and air quality and that this observation could
be generalized across multiple smart homes. The temperature



was found to be the most frequently selected feature. The
temperature changes within the homes were caused by multiple
human activities, making it the most impactful feature within
the dataset.

Lee et al. [4] developed a virtual smart home as well as an
agent behavior-based simulation model. The virtual smart home
and the sensors within the house were created in Unity. They
designed a human-like virtual agent which acted based on a
motivation-based behavior planning model. Using the simulated
agent and virtual sensors together, they were able to verify the
smart home structure and the arrangement of the sensors within
the house. They concluded that this was a cheaper alternative for
researchers to simulate a configurable smart home environment
that enables autonomous agent generation.

Jin et al. [5] designed a prediction model for the optimization
of power consumption for heaters within a smart home environ-
ment. They achieved this through the use of a recurrent neural
network (RNN) and long short term memory (LSTM) which
utilized datasets of temperature and humidity collected inside
the house for their prediction models of energy consumption.
They combined these models with a predicted comfort index
to optimize power consumption. The results showed that the
proposed optimization scheme saves energy as well as providing
a comfortable environment at the user-desired temperature and
humidity.

Mateo et al. [6] used different forms of regression to predict
temperature within a larger building. They were able to use ma-
chine learning techniques to accurately predict the temperature
with an average error of about 0.1◦C. This study applied to
larger buildings and only indirectly addresses the prediction of
temperatures within a smart home.

Chen and Irwin [7] present Weatherman, a model that an-
alyzes energy consumption data as well as wind and solar
generation data to predict where on earth a set of coarse energy
consumption data has occurred. Their analysis takes advantage
of the idea of the distinct weather signatures that appear in
different environments around the world. This research applies
to the construction of different earth environments and more
specifically their energy consumption.

Teich et al. [8] explore and present a prototype of a neural
network to maintain comfortable temperatures in the smart home
in an energy-efficient way. The presented model automatically
supervises and re-trains its components based on activities
within the home. This allows for the simplification of the
tenant’s lives through the home’s automated services.

Kim et al. [9] propose different probability-based algorithms
for the recognition of human activities while it could be applied
to other domains such as healthcare. The research focuses on the
recognition of patterns of behavior, multiple behaviors at once,
and the ambiguity of different actions. This theoretical research
relates to human activity and modeling patterns of such within
a home environment utilizing machine learning models.

Cook et al. [10] designed a smart home that acts as an intel-
ligent agent. The goal is to accurately predict inhabitant action
prediction. The prediction algorithm used a back-propagation

Fig. 1. Scaled home prototype.

neural network that made a final prediction for the home
based on a series of algorithm accuracies that the network
generated based on the data within the home and through the
algorithms. The prediction algorithm facilitated an adaptive and
automated environment that meant to improve the experience of
its inhabitants.

III. THE SCALED SMART HOME

A. Design

Our scaled home models the architecture of a typical small
suburban home in the Southeast US. The home has two bed-
rooms, a bathroom, a living room and a kitchen with an attached
dining room. The model was built using plywood for the walls
and floor, wooden posts for supporting beams, and acrylic plastic
for the roof.

Inside the house, we placed seven sensors: one in each room,
and two in the living room and kitchen due to the size of the
rooms. Each sensor gathers data on temperature and humidity.
Additionally, we attached fifteen Adafruit’s Raspberry Pi micro
Servo motors, eight to the doors and seven to the windows as
actuators for opening and closing them. The prototype of the
scaled home can be seen in Fig. 1.

The temperature and humidity were measured using the
DHT11 sensors, which have a low power requirement and
small size, allowing them to be inserted into the rooms of the
scaled home. These sensors provide an accuracy of ±5% in
the humidity range of 20 to 80%, and ±2 ◦C in the temperature
range of 0-50 ◦C. We balanced the positions of the sensors such
that if there were multiple sensors in a room, they were placed
on opposite sides of the room, otherwise each sensor was placed
in the middle of its assigned room.

B. Data collection

Two different Raspberry Pi were employed to collect data
from the scaled home. One of them was used for collecting
temperature and humidity information from the seven embedded
sensors as well as switching the heat lamp and the fan on and
off while the other one controlled fifteen motors for opening



and closing the scaled home doors and windows. All changes
in motor and sensor status have been thoroughly recorded.

One problem was that the Pi with all of the motors did
not have enough power supply to handle the standing current
and simultaneous running of motors. To solve this, we used an
Adafruit Pi HAT, a module that adds an external power source
to the Pi. This allowed us to keep all fifteen motors hooked up
to one Pi.

One of our objectives was to learn a model that can predict
the temperature inside the home based on known variables such
as the state of the lamp and fan and the open/closed state of the
doors and windows. To provide training data for the learning
process, we run a number of randomized scenarios to study a
wide range of combinations of doors and windows being opened
or closed under various environmental conditions. The sunlight
and the wind were modeled by using states of the heat lamp and
the fan. Over the course of experiments stretching over eighteen
hours, we turned the lamp on and off every fifteen minutes,
turned the fan on and off every five minutes, opened random
doors and windows to let the air circulate through the home
every thirty seconds. To model the movement of the sun, three
different lamp positions were used throughout the experiment.
At each interval, we recorded the temperature and humidity
from all the sensors. Thus, approximately 900 rows of data were
collected, each containing a timestamp, state of the lamp, state
of the fan, the humidity and temperature information for each
sensor and the state of each door and window.

IV. EXPERIMENTS

For the experiments, we are following two main goals:
• Data analysis in order to study the temperature and humid-

ity changes based on the state of the doors and windows,
the heating lamp and the fan.

• Temperature and humidity prediction for each room to
analyze the generalizability of the model.

The code for data collection and experimentation is
currently hosted at https://github.com/tjburns/
not-a-SmartHome.

A. Scaled home data analysis

One of the challenges of collecting data from smart home test
beds is having a robust and continuous data collection from the
sensors [11]. In this section, we aim to study how temperature
and humidity change against the time based on the state of
the heating lamp and the fan. This can help us to evaluate
the robustness of our data collection procedure from the scaled
home.

In developing machine learning models for a specific func-
tionality, especially when you are using a simulation for data
collection, it is very important to have a dataset that can
represent the real world features. Considering that, we briefly
study the collected data from each room before using the
prediction model and investigate the patterns in data over time.

We simulate the days and nights by turning on and off the
heating lamp and changing the direction and location of the

TABLE I
SELECTED VALUES FOR HYPERPARAMETERS OF THE REGULARIZED LSTM.

Hyperparameters Values
time steps 10
number of features 32
learning rate 0.001
training steps 700
size of hidden layer 16
λ (regularization factor) 0.5
batch size 16

lamp and the fan. We expect that these variations change the
temperature and humidity respectively in the scaled home.

B. Regularized LSTM-based temperature/humidity prediction

In our previous scaled smart home, Ling et al. [12], we
collected humidity and temperature data for the entire home but
not each room separately. In current scaled home prototype, we
have sensors in each room as well as in the kitchen; therefore,
we collected humidity and temperature data from all the rooms
and the kitchen. The inputs to our model (i.e. features) are
state of the doors and windows, temperature and humidity in
previous and current time steps. The output is the temperature
and humidity in the target room for the next time step.

Recurrent neural networks (RNNs), such as long short-term
memory networks (LSTMs), are used as a basic block for
many applications in sequence learning and prediction. From
our previous scaled home, Ling et al. [12], we concluded that
the long short term memory (LSTM) model was the more
accurate machine learning model over a fully connected neural
network (FCNN). Considering that, we decided to focus on the
creation of an LSTM model applied to the data we collected
from the new scaled home prototype. However, as Rafiq et
al. [13] propose, “regularization” can improve the performance
of the LSTM models. Therefore, we impose commonly used L2
regularization on weights of the LSTM network to improve the
generalization of the model [14].

We use 80% (' 720 data points) of the data for training
and 20% (' 180 data points) of the data for testing. In our
experiments, we consider λ = 0.5 for the regularization factor
of the L2 regularizer. Table I presents the hyperparameters of
the Regularized LSTM model we used for training phase. Our
model is able to predict temperature and humidity of each room
in the home for the next time step, based on the states of
the doors and windows, the heat lamp and the fan of current
and previous time steps. In the results section (section V), we
compare the accuracy on train and test sets and analyze the
generalizability of the prediction model.

V. RESULTS

A. Evaluation of the data collection procedure

In Fig. 2-top, we present the recorded temperatures from the
home against time, with dotted vertical lines showing the times
that the lamp changed states, from on to off respectively over
the course of the day. In Fig. 2-bottom, we show the recorded

https://github.com/tjburns/not-a-SmartHome
https://github.com/tjburns/not-a-SmartHome


Fig. 2. Temperature (top) and humidity (bottom) recorded from each of the
sensors within the home.

humidity from each room against time, again with the dotted
lines showing the same information about the lamp state.

As expected, the temperature within the home rises quickly
when the lamp is on and falls gradually when it is turned off.
The inverse is true for humidity, it decreases when the lamp is
turned on and rises when it is turned off.

B. Temperature/humidity prediction using regularized LSTM
model

In Fig. 3, loss of the training step is shown for each room,
with 80% of the data points for training set and 700 epochs.
The reason that the loss on training data does not reach near
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Fig. 3. Loss of Regularized LSTM model with train set size of 80% (' 720
data points) after 700 epochs.

TABLE II
ACCURACY OF REGULARIZED LSTM PREDICTION MODEL ON TRAIN AND

TEST SETS FOR EACH ROOM AFTER 700 EPOCHS.

Prediction Target Accuracy on Train Accuracy on Test
Bathroom Humidity 0.90 0.51
Bathroom Temperature 0.91 0.72
Bedroom1 Humidity 0.94 0.83
Bedroom1 Temperature 0.97 0.93
Kitchen Humidity 0.87 0.31
Kitchen Temperature 0.91 0.79
Dining room Humidity 0.85 0.62
Dining room Temperature 0.98 0.99
Living room1 Humidity 0.74 0.54
Living room1 Temperature 0.83 0.63
Living room2 Humidity 0.79 0.69
Living room2 Temperature 0.85 0.87
Bedroom2 Humidity 0.94 0.47
Bedroom2 Temperature 0.97 0.70

0 is that we used regularization to train the LSTM network in
order to increase generalizability of the model.

We have also listed the accuracy of the prediction model on
train and test sets for each room in Table II. It can be seen
that the accuracy of the model for predicting the temperature
for the next time step based on features in current and previous
time steps is much better than the accuracy of predicting the
humidity. The model can learn (or memorize) the humidity in
the train data, however, the size of the train data or the selected
features to predict the humidity are not sufficient enough to have
better results on test set.

The accuracy of a model for each room with test set size of
20% and seven hundred epochs is shown in Fig. 4.

VI. CONCLUSION

Our goal was to construct a scaled home prototype to collect
real life data from the home to be used in machine learning
models. We analysed the collected dataset in order to validate
the correctness of the data collection phase. We were able to
create multiple LSTM models on the data and evaluate them.
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Fig. 4. Accuracy of model with test set size of 20% after 700 epochs.

We investigated different approaches such as alleviating the
overfitting problem by using regularized LSTM model. Our
model was successful in predicting the temperature and the
humidity was also predicted to some degree.

The next step in our research is to collect more data from the
scaled home through additional realistic scenarios for multiple
days. This research is an starting point to design prototypes
which can simulate the different environments and weather
conditions of homes more accurately. This would give us a
good benchmark to investigate models that can more accurately
predict the temperature and humidity within the home.

Another interesting area of research in this context would be
to learn a policy for the scaled home. In other words, to have a
smart agent which is able to understand which actions would be
appropriate to change the humidity and also temperature within
the home based on the environment conditions to maintain a
more comfortable environment.
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