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ABSTRACT: Heme and non-heme iron in biology mediate the
storage/release of NO® from S-nitrosothiols as a means to control
the biological concentration of NO®. Despite their importance in
many physiological processes, the mechanisms of N—S bond
formation/cleavage at Fe centers have been controversial. Herein,
we report the interconversion of NO® and S-nitrosothiols mediated
by Fe"/Fe' chloride complexes. The reaction of 2 equiv of S-
nitrosothiol (Ph;CSNO) with [ClcFe™,]*" results in facile release of
NO* and formation of iron(III) halothiolate. Detailed spectroscopic
studies, including in situ UV—vis, IR, and M0ssbauer spectroscopy,
support the interaction of the S atom with the Fe'' center. This is in
contrast to the proposed mechanism of NO® release from the well-

"SR+ ClzFe!'' + NO*

o

ClyFe! |+ RSNO

- NO*/ RSNO .
CI3Fe”'—SF\’—| interconversion —-NO {FeNO}’
; at labile iron ;
NO* RSNO
release formation
1800 1700 1600 1500

Wavenumber (cm™)

studied “red product” x'-N bound S-nitrosothiol Fe'' complex, [(CN)Fe(x'-N-RSNO)1]*>". Additionally, Fe" chloride can mediate
NO® storage through the formation of S-nitrosothiols. Treatment of iron(III) halothiolate with 2 equiv of NO® regenerates
Ph;CSNO with the Fe" source trapped as the S = 3/2 {FeNO}’ species [Cl;FeNO]~, which is inert toward further coordination and
activation of S-nitrosothiols. Our work demonstrates how labile iron can mediate the interconversion of NO®/thiolate and S-
nitrosothiol, which has important implications toward how Nature manages the biological concentration of free NO®.

B INTRODUCTION

Nitric oxide (NO®) is a crucial secondary signaling molecule
responsible for the regulation of a range of biological processes,
including immune response, smooth muscle relaxation, and
neurotransmission.” However, NO® has a short lifetime in vivo
and quickly reacts with the bioavailable oxygen and superoxide,
forming reactive oxygen and reactive nitrogen species.2 To
mitigate the formation of these reactive species, Nature has
developed specific regulatory strategies that store NO® as air-
stable S-nitrosothiols (RSNOs).” RSNOs can also serve as
signaling molecules to participate in the S-nitrosation of
proteins, which is a precisely regulated post-translational
modification. Dysregulation of RSNO homeostasis has been
linked to several diseases, such as Alzheimer’s disease and
Parkinson’s disease, cancer, diabetes, etc.””

Formation of S-nitrosothiols from free NO® and thiol
requires one-electron oxidation, which can be facilitated by the
single-electron accepting abilities of Fe' or Cu'. Conversely,
Fe'" and Cu' can act as one-electron reducing agents to
promote the release of NO® from S-nitrosothiols via cleavage
of the S—N bond.**~® Several biological iron centers have
been implicated in RSNO decomposition/formation. For
example, heme-iron proteins, such as cytochrome ¢, are
responsible for the coupling of NO® and low-mass thiols to
RSNOs, ie., S-nitrosoglutathione (GSNO) or S-nitroso-L-
cysteine (CysSNO).* In addition to enzymatic heme-iron
centers, exposure of NO® to intracellular labile iron has been
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associated with increased levels of protein S-nitrosation with
simultaneous formation of dinitrosyl iron complexes
(DNICs).'”"" Moreover, the release of NO® from the blood
pressure medication sodium nitroprusside (SNP) [Na],[Fe-
(CN)5(NO)] is thought to proceed through the decom-
position of an iron(II) S-nitrosothiol adduct, [Fe(CN)¢(x'-N-
RSNO)]*7, known as the “red product”.'”"

Despite the importance of iron centers in facilitating the
formation/decomposition of S-nitrosothiols, the discrete
molecular mechanisms of N—S bond formation/cleavage at
iron sites remain controversial. For example, two mechanisms
have been proposed for S-nitrosothiol formation at heme-iron
sites. The first involves nucleophilic attack of an iron nitrosyl
{FeNO}" species by a thiolate (Scheme 1, top), whereas the
second invokes an Fe'—thiolate intermediate undergoing
further reaction with free NO® (Scheme 1, bottom).'*"
Despite the structural characterization of S-nitrosated heme-
iron ];)lrﬁotleéins,16 spectroscopic support for both mechanisms
exists.
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centers (k'-N vs k'-S) during NO*® release from SNP (Scheme
2). Spectroscopic studies suggest that the “red product”
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[Fe(CN)(k'-N-RSNO)]*~ extrudes a thiyl (RS®) radical to
form a [(CN)FeNO]*~ complex ({FeNO}’) which then
releases free NO®.'”*° However, both experimental®*"** and
computational”>****** studies have demonstrated the thiyl
radical (RS®) expulsion process in Scheme 2 should be
unfavorable since k'-N coordination of S-nitrosothiols
strengthens the S—N bond (Scheme 3). Furthermore, the
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currently proposed mechanism does not explain the rapid
vasodilatory effect of SNP, given the slow rate of NO°
liberation from the {FeNO} [(CN)FeNO]*~ (k = 5.0 X
1075 57, Scheme 2).*°

As the debate for the mechanisms of S-nitrosothiol
formation and decomposition at iron sites continues, the
mechanism of RSNO formation mediated by the labile iron
pool (LIP) also remains ambiguous. Iron within the LIP is
present in both Fe/Fe™ oxidation states and can be
coordinated by various weak field ligands to form high-spin
Fe'l/Fe" complexes.'”**™>* While Kim and Lippard have
investigated the reactivity of NO® with synthetic iron-sulfur
clusters®* ™ and iron(II) thiolates,** " other simple Fe''/Fe"
coordination complexes relevant to the LIP and NO®/S-
nitrosothiol interconversion still warrant continued investiga-
tion.

Herein, we employ Fe'/Fe™ chloride complexes as
simplified models for LIP to investigate the potential roles of
Fe''/Fe" in RSNO formation/decomposition. We demon-
strate that reaction of RSNO with Fe'' chloride complexes
leads to the facile release of NO® from RSNO (Scheme 4).
Spectroscopic studies suggest that the Fe' center interacts with
the S atom before its conversion to iron(III)—halothiolate and
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NO°®. The NO® release from RSNO is reversible, and in the
presence of an additional equivalent of NO®, the iron(III)—
halothiolate captures NO* to afford RSNO. The Fe'" chloride
byproduct is trapped by a second equivalent of NO® to form
stable {FeNO}’ complexes that are inert toward catalytic
decomposition of RSNO. This unique property of high-spin
iron complexes may be a strategy Nature employs to reversibly
regulate the bio-availability of free nitric oxide.

B RESULTS AND DISCUSSION

Reactivity of Fe'' Chloride with S-Nitrosothiols. We
began our investigation by preparing an iron(II) halide
complex soluble in aprotic solvents. Treatment of PPNCI
(PPN = bis(triphenylphosphine)iminium) with anhydrous
Fe''Cl, in acetone affords PPN,[ClsFe",]. The spectroscopic
characterizations of the PPN,[ClsFe',] complex match those
reported in the literature.*® The analogous TBA salt of iron(II)
trichloride was isolated as colorless crystals by the addition of
TBACI (TBA = tetrabutylammonium) to anhydrous Fe"CL,.
Single-crystal X-ray diffraction analysis indicates that the Fe'
centers exist in two types of coordination environments, as
[ClgFe",]*” and monomeric [ClFe(H,0)]~ (Figure S29).
The aqua ligand could be a result of H,O in either TBACI or
Fe''Cl,. Next, we monitored the reaction of [ Cl,Fe™,]*~ with S-
nitrosotriphenylmethanethiol (Ph;CSNO) with UV—vis spec-
troscopy at low temperature. The structural difference between
the PPN and TBA salts of the Fe™ chlorides in the solid state
does not impact their reactivity with S-nitrosothiols (Figures
S8, $9). Addition of 2 equiv of PhyCSNO to [ClgFe",]*” in a
1:1 mixture of THF and CH;CN at —50 °C affords a dark
brown complex with UV—vis absorption bands at 520 nm (e =
1000 M~ cm™) and 630 nm (¢ = 970 M™' em™) (Figure 1,
brown trace), which slowly converts to a green species at room
temperature with absorbances at 365 nm (¢ = 1080 M™'
cm™'), 480 nm (e = 410 M™! cm™"), and 660 nm (& = 320
M cm™") (Figure 1, green trace). The final green complex
was identified as S = 3/2 TBA[CLFeNO], which can be
independently synthesized by treatment of [ClsFe",]*” with
NO* (Figures S1, $4).>” On the basis of the absorptivity of
[CL;FeNO], the yield of TBA[Cl;FeNO] was approximately
quantitative. The [CL,FeNO]~ anion was observed first by
Kohlschiitter™® and structurally characterized by van Eldik,*'
Beck,” and Klifers.” The S = 3/2 spin state of [Cl;FeNO]~
was established recently based on SQUID measurement” and
our Evans method study (see Supporting Information (SI)).
The [Cl;FeNO]™ complex is remarkably stable to oxygen and
moisture, and no decomposition of PPN[CL,FeNO] solid was
observed even after storage under ambient conditions for
several days.
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Figure 1. In situ UV—vis spectra of the treatment of [Fe,Cls]*~ with 2
equiv of PhyCSNO at —50 °C in 1:1 THF/CH,CN (0.5 mM). The
brown intermediate [Cl;Fe(SCPh;)]™ (Apaa = 520 nm (e = 1000
M em™), 2,00 = 630 nm (& = 970 M™' cm™")) was converted after
15 h (scan rate 30 min) to [CLiFeNO]~ (green trace) (A, = 365
nm (e = 1080 M~ em™), A0 = 480 nm (£ = 410 M~ em™), A3
=660 nm (¢ =320 M™' cm™) .
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Two possible mechanisms could explain the formation of
[CLLFeNO]~ (Scheme 5). On the basis of the proposed
mechanism of NO® release from SNP (Scheme 2), one could
envision coordination of PhyCSNO to the Fe' center to form
an Fe" k'-N S-nitrosothiol adduct, followed by thiyl radical
extrusion to afford [CLLFeNO]~ (Mechanism A, Scheme 5,
top). However, Mechanism A contradicts the chemical
reactivity of metal S-nitrosothiols described in Scheme
3.82122 Therefore, an alternative mechanism in which the
Fe'' center interacts with the S atom warrants consideration
(Mechanism B, Scheme S, bottom). In this case, NO* is
released from the proposed [Cl;Fe(x'-S-Ph;CSNO)]~ adduct,
then recaptured by [ClgFe',]>” generated from the decom-
position of [Cl;Fe™-SCPh;]™. The key difference between
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these two mechanisms is the identity of the brown
intermediate prior to the formation of [Cl;FeNO]~ (high-
lighted in gray, Scheme 5). In Mechanism A, the brown
intermediate should be [Cl;Fe(x'-N-Ph;CSNO)]~, whereas,
for Mechanism B, it should be either [Cl;Fe(k'-S-
Ph;CSNO)]™ or [Cl;Fe™-SCPh,]™.

Characterization of the Fe"' Halothiolate Intermedi-
ate. To further discern the two proposed mechanisms, we set
out to identify the initial brown intermediate that absorbs at
520 and 630 nm. On the basis of Mechanism B, the brown
intermediate could be [ClFe(x'-S-Ph;CSNO)]™, or if NO*
release has already occurred, the iron(III)—halothiolate
[CL,Fe™-SCPh,]™. We began our studies by first attempting
to generate [Cl,Fe"-SCPh;]™ from an independent reaction
between TBA[Cl,Fe''] and NaSCPh;. As shown in Figure 2,

PhsCS |
[ClaFel- NaSCPh3 | u major species, some
¢ ~NaCl CI/":e., [Fe""Cly(SR),J~ impurities
o ©
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Figure 2. Comparison of initial UV—vis spectra resulting from the
reaction between [Fe,Cls]*~ and PhyCSNO at —50 °C in 1:1 THE/
CH,CN (0.5 mM, brown trace); the reaction between TBA[CI,Fe™]
and 1 equiv of NaSCPh; at —20 °C (0.5 mM, red trace).

the in situ UV—vis spectrum of the reaction of TBA[CI,Fe™]
with 1 equiv of NaSCPh; in CH;CN/THF (red trace) shows a
good match with the brown intermediate. Further, the reaction
between FeCly and TBA(SCPh;) leads to the formation of the
same spectrum, albeit at a lower spectroscopic yield (Figure
S11). In addition, the predicted UV—vis spectrum of [Cl;Fe'-
SCPh,]~ by time-dependent density functional theory (TD-
DFT) at the TPSSh/def2-TZVP level correlates well with the
experimental data (Figure S30). Additional independent
experiments examining the reaction between [ClsFe',]*” and
varying equivalents of NaSCPh; (Figure S12) also excluded
the possibility of an Fe'' thiolate species being the identity of
the brown intermediate.

Analysis of the brown intermediate with Maossbauer
spectroscopy further supports its assignment as an Fe'' thiolate
species. Independent generation of [Cl;*"Fe(SCPh,)]~ from
the reaction between TBA[CL,*"Fe'"] and 1 equiv of NaSCPh,
displays a Mossbauer spectrum similar to that produced from
the reaction between TBA,[Cl"Fe,] and 2 equiv of
Ph,;CSNO (See Supporting Information, Figures S19, S20).
Both spectra display peaks corresponding to two major
species—the first one (ca. 40%) exhibiting isomer shift and
quadrupole splitting values identical to that of TBA,[Cl,-
SFelL] (6= 1.16 mm s}, |AEq| = 2.86 mm s™' (Figure S16)).
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Inorg. Chem. 2021, 60, 5190—-5197


http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c00203/suppl_file/ic1c00203_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c00203/suppl_file/ic1c00203_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c00203/suppl_file/ic1c00203_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c00203/suppl_file/ic1c00203_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c00203/suppl_file/ic1c00203_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.1c00203/suppl_file/ic1c00203_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00203?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00203?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00203?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00203?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00203?fig=sch5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00203?fig=sch5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00203?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00203?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00203?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00203?fig=fig2&ref=pdf
pubs.acs.org/IC?ref=pdf
https://dx.doi.org/10.1021/acs.inorgchem.1c00203?ref=pdf

Inorganic Chemistry

pubs.acs.org/IC

The second component (ca. 60%) displays an isomer shift of &
= 0.38 mm s~ and quadrupole splitting value of IAEq| = 0.94
mm s~', which was assigned as [CLFe""(SCPh;)]”. These
parameters are different from those of TBA[Cl,*"Fe''] (Figure
S$18), which has an isomer shift value of § = 0.23 mm s~ and a
quadrupole splitting of IAEq| = 0.53 mm s~ (Table 1).

Table 1. Solution Mossbauer Parameters

complex (major component) & (mm/s) AEq (mm/s)
TBA,[Cl"Fe",] 1.16 2.86
TBA[CI,*"Fe''] 0.23 0.53
TBA[CL,>"Fe'"] + NaSCPh, 0.38 0.94
TBA,[Cl*"Fe",] + 2 PhyCSNO 0.38 0.93

Despite our UV—vis and M0ssbauer experiments providing
spectroscopic evidence for the assignment of the brown
intermediate as an Fe thiolate species, we were unable to
obtain structural data on the putative [Cl;Fe™-SCPh,]™. Our
inability to structurally characterize [ClyFe-SCPh,]™ could be
due to (1) the decomposition of [Cl;Fe™-SCPh,]™ to Ph;CS-
SCPh; and [ClFe",]*” (see Supporting Information) or (2)
the labile nature of the chloride ligands leading to complicated
ligand scrambling that can generate other [ClFe''-
(SCPhy),_.]~ (x = 1, 2, 3, 4). Indeed, titration experiments
of NaSCPh; into TBA[CI,Fe"], and TBA(SCPh;) into FeCl,
at —40 °C show formation of distinctly different species as
additional amounts (1—5 equiv) of thiolate are added to Fe'™
(Figures S13, S14). Nonetheless, with a 3:1:1 stoichiometry of
CI™:Fe™:Ph;CS™, we believe the major iron(III) halothiolate
species in solution at the low temperatures at which our studies
were conducted is [Cl,Fe"-SCPh;]™.

In Situ IR Study of the Conversion of [Cl¢Fe",]*~ to
[CI;FeNO]” by Ph;CSNO. The in situ UV—vis and
Mbssbauer data so far suggest that reaction of [ClgFe',]*”
with Ph;CSNO first leads to the formation of an iron(III)
halothiolate and free NO®. The iron(III) halothiolate then
slowly decomposes to disulfide and [ClgFe",]*”, which

captures free NO*® to form the [Cl;FeNO]~ complex (Scheme
S, Mechanism B). Further support of Mechanism B was
provided by an in situ time-resolved solution IR study.
Addition of [ClgFe",]*” to a solution with 2 equiv of
Ph,;CSNO in THF-dg at —70 °C results in a decrease of the
peak at 1493 cm™' corresponding to PhyCSNO. Upon further
warming of the reaction mixture to —50 °C, a new band at
1792 cm™ appeared, which was attributed to TBA[Cl;FeNO]
(Figure 3, left).”” An '“N-labeling experiment confirmed that
Ph;CSNO and [CLFeNO]™ were the only species observed
with '*N-sensitive stretches over the course of the reaction (see
SI, Figures S24, S25). Importantly, the initial decay of
Ph;CSNO was not accompanied by the formation of
[Cl,FeNO]~ (Figure 3, right). The 15 s time intervals at
which the IR spectra were monitored allowed the time gap (ca.
90 s, see SI, Figures S22, S23) between these two events to be
determined. The delay in [Cl;FeNO]~ formation provides
further assent that free NO® was first released into the
headspace, where it was unobservable by solution IR until it
was recaptured by [ClgFe',]*™ as [Cl;FeNO]", consistent with
Mechanism B (Scheme S, bottom). These results are also in
agreement with our UV—vis studies, where the formation of
[Cl;FeNO]~ was observed concurrently with the slow decay of
the brown intermediate.

In situ UV—vis, M0ssbauer, and IR spectroscopic studies
allow us to conclude that NO® release likely proceeds through
coordination of the S atom to Fe' prior to S—N bond cleavage.
Otherwise, the concurrent formation of [Cl;FeNO]™ and
consumption of Ph;CSNO would be expected. The proposed
mechanism is also consistent with the reactivity profile of metal
S-nitrosothiol complexes—k'-S coordination weakens the S—N
borllgl, making the release of NO® more favorable (Scheme
3)."

RSNO Formation from Putative Iron(lll) Halothiolate.
As many NO® release/storage mechanisms are reversible in
Nature,” we next investigated whether the Fe'/Fe™ chloride
couple can carry out the formation of S-nitrosothiol. Lancaster
et al. proposed that the LIP can promote RS—NO bond
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Figure 3. Left: Selected in situ solution IR spectra of the reaction between [Fe,Cls]*~ and PhyCSNO in THF-dg, 30 mM (from red to purple
traces), showing the decrease in (NO) = 1493 cm™' (PhyCSNO) and the appearance of 2(NO) = 1792 cm™" ([CI;FeNO]~) upon warming.
Right: Normalized peak heights of Ph;CSNO (blue) and TBA[CL;FeNO] (green) versus time and temperature (yellow) shows a 90 s delay

(shaded gray) in TBA[CL;FeNO] formation.
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formation based on the observation that the cellular protein S- Scheme 6
nitrosation levels stron§1y depend on the concentration of 0 —-
labile/chelatable iron.'”"" To this end, we first generated the i —|
putative [CLFe'SCPh;]™ by treating Fe™Cl; with TBA- ’?‘
(SCPh;) at —78 °C and subjected this reaction mixture to Fe, Switch effect of
. - . . . e |
sequential additions of NO®. In situ solution IR spectroscopy Cl 2 Cl  NO allows RSNO
was utilized to monitor and quantify product formation. After release from Fe'
the addition of 2 equiv of NO*® at —78 °C and upon warming -
the reaction mixture to —50 °C, we observed concurrent
formation of peaks at 1792 and 1493 cm™" (Figure 4), assigned 1/2 PhyCSSCPhs > Ph;CSNO
1/2 [ClgFes)]
PhseCS |
Fe'lCl, 3C| ] 2NO (g)
* — I ———="% PhyCSNO
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Figure 4. Selected in situ IR spectra of the reaction between
[CLFe™SCPh,]™ and 2 equiv of NO*® in 9:1 THF-dy/CD,CN at —80
°C (30 mM). At —50 °C, formation of PhyCSNO (v(NO) = 1493
cm™) and TBA[CL,FeNO] (¢(NO) = 1792 cm™) was observed.

as [Cl;FeNO]~ and Ph;CSNO, respectively.””* The
estimated yields of [CL;FeNO]™ and Ph;CSNO were 67%
and 50%, respectively, based on the IR absorbances (see
Supporting Information, Figures S24, S25). The Fe' center
facilitates the oxidative coupling of thiolate and NO® to form
Ph;CSNO by acting as an electron acceptor and undergoing
reduction to Fe', which may be trapped by additional NO® to
form [Cl;FeNO]". The presence of an additional equivalent of
NO?® is critical to prevent the reverse reaction, that is, the
release of NO*® from PhyCSNO, as Fe"" complexes are known
to lead to the decomposition of RSNO to disulfide and NO*
(Scheme 6). The robust Fe-NO® interaction impedes the
displacement of the NO* ligand by S-nitrosothiol and prevents
the catalytic decomposition of RSNO (Scheme 6). Such a
“switch effect” of NO® represents a key difference between Fe
and Cu mediated S-nitrosothiol formation; the strong
interaction between high-spin Fe' (S = 5/2) with NO™ (S
= 1) is not shared by Cu.® In fact, some of us, and Hayton et
al, have shown that the interaction of Cu" and NO* is highly
reversible.**"

To confirm that [CLFeNO]™ does not participate in RS—
NO bond formation, we investigated its reaction with thiolate
(Scheme 7). Treatment of PPN[CL,;FeNO] with sodium tert-
butyl thiolate affords a red-colored solution with strong
absorbances at 360 nm (¢ = 6670 M™* cm™) and 475 nm
(¢ = 4360 M™' cm™'), which were assigned as PPN-
[(tBuS)3FeNO].36 Titration of tert-butyl thiolate to a solution
of PPN[CL;FeNO] in the UV—vis spectrometer confirmed the
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3:1 stoichiometry (Figure S6). While the titration of NaSCPh,
to PPN[CI;FeNO] displays similar UV—vis spectra (Figure
S7), employing fert-butyl thiolate allowed us to calculate the
yield of the product [(‘BuS);FeNO]~ based on reported molar
extinction coefficients. The spectroscopic yield of [(‘BuS);-
FeNO]™ was determined to be 99%, indicating that the
{FeNO}’ motif is robust, while the Cl~ ligand exchange occurs
with ‘BuS~.*°

Electronic Structure of [CI;FeNO]~, [CI;CuNO], and
Cl;FeNO. The inertness of [Cl;FeNO]~ toward nitrosation of
thiolate and the irreversible binding of NO® at [CLyFe'] ™ are a
crucial part of Mechanism B proposed in Scheme 5. These
properties of [Cl;FeNO]™ are in sharp contrast to its Cu
analogue [Cl;CuNO]~, which exhibits both reversible binding
with NO® and nitrosative reactivity toward thiolates. To gain
more insight into the different reactivities of [Cl;FeNO]™ and
[Cl;CuNO]", we utilized complete active space self-consistent
field (CASSCF) computations to further understand their
electronic structure (Figure 5). Some of us*® and
others®”***®* have shown that CASSCF calculations can
provide a detailed understanding of the correlation of
electronic structure and reactivity of metal-nitrosyls. The
state-specific CASSCF calculations were performed in each
complex’s well-established spin state, S = 3/2 for [Cl;FeNO]~
and S = 0 for [C13CuNO:|_.39’46’50 After screening various
combinations of metal 3d, NO-6%, and NO-z* orbitals, we
chose an active space of [9e,130] for [CLFeNO]™ and
[10e,130] for [Cl;CuNO]~. These active spaces include (i)
bonding and antibonding orbitals of NO-z* with metal-d,,.,
(ii) bonding and antibonding orbitals of NO-6* with metal-d 7,
(iii) nonbonding d_;/,, as well as (iv) the next five
unoccupied orbitals lowest in energy, which are often based
on metal 4d or ancillary ligands CI~ (see Supporting
Information). We found that 4d orbitals and ancillary orbitals
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Figure S. Partially occupied, covalent metal-NO frontier orbitals resulting from CASSCF calculations of the electronic ground states of (A)
[CLFeNO]™ [9¢,130], (B) [CL;CuNO]~ [10e,130], and (C) CL,FeNO [6e, 130].

have little effect on the results of the calculations, consistent
with previous studies by Kliifers.””* To computationally
estimate the amount of NO™/*/* character in each complex, a
valence bond-like interpretation of the CAS wave function was
applied by following the method laid out by Radon et al.>' The
amount of NO™*/* character in each species is summarized in
Table 2. Intuitively, higher percentages of M"*!-NO" character

Table 2. Results of Valence-Bond Analysis of Metal
Nitrosyls

res. structure [CLLFeNO]~ [CL,CuNO]~ CL,FeNO
M-NO~ 52% 1% 0.25%
M-NO* 40% 86% 93%
M-NO* 2% 10% 4%
others 5% 3% 2%

correlates to NO* transfer (nitrosative) ability, while M"-NO*®
corresponds to free NO® release. We found the CASSCF
results to be roughly consistent with the observed reactivity of
[ClFeNO]™ and [ClL;CuNO]". Specifically, [Cl;FeNO]~
exhibits the lowest NO® character (38%) and NO" character
(2%), consistent with its inability to release free NO® and
perform S-nitrosation. [Cl;CuNO]~ exhibits significant NO*
and NO* character (86% and 10%, respectively) and is capable
of both NO® release and S-nitrosation.*®

We were curious as to whether this qualitative analysis
would allow us to predict the NO* reactivity of Cl;FeNO, the
product of the one-electron oxidation of [CL,FeNO]™. This
theoretical interaction of Fe™Cl, with NO® would result in an
{FeNO}* complex with a spin (S = 2), which would be more
likely to exhibit NO* transferring ability. The geometry of
putative CL;FeNO complex was optimized with DFT in a
variety of spin states (S = 0, 1, 2). The two known non-heme
{FeNO}® complexes both have an experimentally and
computationally determined S 1 (Fe'V-NO™) ground
state;”” however, optimization by B3LYP/def2-TZVP deter-
mined the S = 2 state in Cl;FeNO to be the lowest in energy
by —20.3 kcal/mol. CASSCF calculation on the S = 2 spin
state showed highly covalent bonding character between the Fe
d.2 and NO p, orbitals with 1.35 e” in the bonding orbital and
0.65 e~ in the antibonding orbital (Figure SC), similar to
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[CL,CuNO]™.*® Post-localization recalculation of the CI
coefficients shows CL,FeNO exhibits about 93% Fe'"NO*
character as the leading configuration, and Fe!l-NO*
contributes about 4.6% to the ground state as the second
leading configuration. The increase in NO' character in the
Cl,FeNO complex as compared to the [C;FeNO]™ anion is
consistent with our experimental observation that the Fell
complex, but not Fe'!, is able to mediate an oxidative coupling
reaction to form S-nitrosothiols.

B SUMMARY AND CONCLUSIONS

In contrast to the RS® expulsion mechanism from the x'-N
RSNO species invoked during NO* release from SNP, reaction
of the high-spin [ClyFe']™ motif with S-nitrosothiol generates
iron(III) thiolate and free NO®. Detailed in situ spectroscopic
studies, including UV—vis, Mossbauer, and IR, suggest that
coordination of the S atom to the iron(II) center is necessary
to promote S—N bond cleavage. Importantly, iron(III)
chloride complexes can also promote the formation of S-
nitrosothiol when NO?® is in excess. Our CASSCEF results, when
paired alongside our experimental studies, highlight the
possibility of the use of computation to predict the NO™/*/*
reactivity of a series of metal nitrosyl complexes.

One central question that remains unanswered within the
literature is how Fe centers promote the storage of NO* as S-
nitrosothiols, while also being eflicient for the decomposition
of RSNOs to NO* and disulfide. We believe the answer to this
question lies within the ability of NO*® to irreversibly bind to
the Fe'' center ligated by weak field ligands,”* ™" shutting
down coordination of S-nitrosothiol, which is a crucial step in
its decomposition (Scheme 3). Since [Cl;FeNO]~ can be
easily converted to the DNIC [Cl,Fe(NO),] in the presence
of excess NO°®> our study also provides a potential
explanation for the formation of DNIC and S-nitrosothiol
frequently observed during cellular protein S-nitrosation'”"!
and demonstrates a strategy available to Nature to reversibly
modulate biological NO* concentration with labile iron ions.
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