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ABSTRACT

We present an O(logd + log logm/n n)-time randomized PRAM al-
gorithm for computing the connected components of an n-vertex,
m-edge undirected graph with maximum component diameter d .
The algorithm runs on an ARBITRARY CRCW (concurrent-read,
concurrent-write with arbitrarywrite resolution) PRAMusingO(m)
processors. The time bound holds with good probability.1

Our algorithm is based on the breakthrough results of Andoni et
al. [FOCS’18] and Behnezhad et al. [FOCS’19]. Their algorithms run
on the more powerful MPC model and rely on sorting and comput-
ing prefix sums inO(1) time, tasks that take Ω(logn/log logn) time
on a CRCW PRAM with poly(n) processors. Our simpler algorithm
uses limited-collision hashing and does not sort or do prefix sums. It
matches the time and space bounds of the algorithm of Behnezhad
et al., who improved the time bound of Andoni et al.

It is widely believed that the larger private memory per processor
and unbounded local computation of the MPC model admit algo-
rithms faster than that on a PRAM. Our result suggests that such
additional power might not be necessary, at least for fundamental
graph problems like connected components and spanning forest.
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1 INTRODUCTION

Computing the connected components of an undirected graph is
a fundamental problem in algorithmic graph theory, with many

1To simplify the statements in this paper we assumem/2 ≥ n ≥ 2 and d ≥ 1.With
good probability means with probability at least 1 − 1/poly((m logn)/n); with high

probability means with probability at least 1 − 1/poly(n).
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applications. Using graph search [32], one can find the connected
components of an n-vertex,m-edge graph in O(m) time, which is
best possible for a sequential algorithm. But linear time is not fast
enough for big-data applications in which the problem graph is of
internet scale or even bigger. To find the components of such large
graphs in practice requires the use of concurrency.

Beginning in the 1970’s, theoreticians developed a series of more-
and-more efficient concurrent algorithms. Their model of com-
putation was some variant of the PRAM (parallel random access
machine) model. Shiloach and Vishkin [29] gave an O(logn)-time
PRAM algorithm in 1982. The algorithm was later simplified by
Awerbuch and Shiloach [5]. These algorithms are deterministic and
run on an ARBITRARY CRCW PRAM withO(m) processors. There
are simpler algorithms and algorithms that do less work but use
randomization. Gazit [13] combined an elegant randomized algo-
rithm of Reif [27] with graph size reduction to obtain an O(logn)-
time, O(m/logn)-processor CRCW PRAM algorithm. This line of
work culminated in theO(logn)-time,O(m/logn)-processor EREW
(exclusive-read, exclusive-write) PRAM algorithms of Halperin and
Zwick [19, 20], the second of which computes spanning trees of the
components as well as the components themselves. On an EREW
PRAM, finding connected components takes Ω(logn) time [9], so
these algorithms minimize both time and work. The Ω(logn) lower
bound also holds for the CREW (concurrent-read, exclusive-write)
PRAMwith randomization, a model slightly weaker than the CRCW
PRAM [11]. For the PRIORITY CRCW PRAM (write resolution by
processor priority), a time bound of Ω(logn/log logn) holds if there
are poly(n) processors and unbounded space, or if there is poly(n)
space and any number of processors [6].

The Halperin-Zwick algorithms use sophisticated techniques.
Practitioners charged with actually finding the connected compo-
nents of huge graphs have implemented much simpler algorithms.
Indeed, such simple algorithms often perform well in practice
[15, 18, 22, 30, 31]. The computational power of current platforms
and the characteristics of the problem graphs may partially explain
such good performance. Current parallel computing platforms such
as MapReduce, Hadoop, Spark, and others have capabilities signifi-
cantly beyond those modeled by the PRAM [10]. A more powerful
model, the MPC (massively parallel computing) model [7] is in-
tended to capture these capabilities. In this model, each processor
can have poly(n) (typically sublinear in n) private memory, and
the local computational power is unbounded. A PRAM algorithm
can usually be simulated on an MPC with asymptotically the same
round complexity, and it is widely believed that the MPC model
admits algorithms faster than the PRAM model [4, 17, 24]. On
the MPC model, and indeed on the weaker COMBINING CRCW
PRAM model, there are very simple, practical algorithms that run
in O(logn) time [25]. Furthermore, many graphs in applications
have components of small diameter, perhaps poly-logarithmic in n.
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These observations lead to the question of whether one can
find connected components faster on graphs of small diameter,
perhaps by exploiting the power of theMPCmodel. Andoni et al. [3]
answered this question łyesž by giving an MPC algorithm that finds
connected components inO(logd log logm/n n) time, where d is the
largest diameter of a component. Very recently, this time bound
was improved to O(logd + log logm/n n) by Behnezhad et al. [8].
Both of these algorithms are complicated and use the extra power of
the MPC model, in particular, the ability to sort and compute prefix
sums in O(1) communication rounds. These operations require
Ω(logn/log logn) time on a CRCW PRAM with poly(n) processors
[6].2 These results left open the following fundamental problem in
theory:3

Is it possible to break the logn time barrier for connected

components of small-diameter graphs on a PRAM (with-

out the additional power of an MPC)?

In this paper we give a positive answer by presenting an ARBI-
TRARY CRCWPRAM algorithm that runs inO(logd+log logm/n n)
time, matching the round complexity of the MPC algorithm by
Behnezhad et al. [8]. Our algorithm usesO(m) processors and space,
and thus is space-optimal and nearly work-efficient. In contrast to
the MPC algorithm, which uses several powerful primitives, we use
only hashing and other simple data structures. Our hashing-based
approach also applies to the work of Andoni et al. [3], giving much
simpler algorithms for connected components and spanning for-
est, which should be preferable in practice. While the MPC model
ignores the total work, our result on the more fine-grained PRAM
model captures the inherent complexities of the problems.

1.1 Computation Models and Main Results

Our main model of computation is the ARBITRARY CRCW PRAM
[34]. It consists of a set of processors , each of which has a constant
number of cells (words) as the private memory, and a large common
memory. The processors run synchronously. In one step, a processor
can read a cell in common memory, write to a cell in common
memory, or do a constant amount of local computation. Any number
of processors can read from or write to the same common memory
cell concurrently. If more than one processor writes to the same
memory cell at the same time, an arbitrary one succeeds.

Our main results are stated below:

Theorem 1.1 (Connected Components). There is an ARBI-

TRARY CRCW PRAM algorithm using O(m) processors that com-

putes the connected components of any given graph. With probability

1 − 1/poly((m logn)/n), it runs in O(logd log logm/n n) time.

The algorithm of Theorem 1.1 can be extended to computing a
spanning forest (a set of spanning trees of the components) with
the same asymptotic efficiency:

Theorem 1.2 (Spanning Forest). There is an ARBITRARYCRCW

PRAM algorithm using O(m) processors that computes the spanning

2Behnezhad et al. also consider the multiprefix CRCW PRAM, in which prefix sum
(and other primitives) can be computed in O (1) time and O (m) work. A direct simu-
lation of this model on a PRIORITY CRCW PRAM or weaker model would suffer an
Ω(logn/log logn) factor in both time and work, compared to our result.
3A repeated matrix squaring of the adjacency matrix computes the connected compo-
nents in O (logd ) time on a CRCW PRAM, but this is far from work-efficient ś the
currently best work isO (n2.373) [12].

forest of any given graph. With probability 1 − 1/poly((m logn)/n),
it runs in O(logd log logm/n n) time.

Using the above algorithms as bases, we provide a faster con-
nected components algorithm that is nearly optimal (up to an addi-
tive factor of at mostO(log logn)) due to a conditional lower bound
of Ω(logd) [8, 28].

Theorem 1.3 (Faster Connected Components). There is an

ARBITRARY CRCW PRAM algorithm usingO(m) processors that com-

putes the connected components of any given graph. With probability

1 − 1/poly((m logn)/n), it runs in O(logd + log logm/n n) time.

For a dense graph withm = n1+Ω(1), the algorithms in all three
theorems run in O(logd) time with probability 1 − 1/poly(n); if
d = log

Ω(1)
m/n n, the algorithm in Theorem 1.3 runs in O(logd) time.4

Note that the time bound in Theorem 1.1 is dominated by the
one in Theorem 1.3. We include Theorem 1.1 here in pursuit of
simpler proofs of Theorem 1.2 and Theorem 1.3.

1.2 Related Work and Technical Overview

In this section, we give an overview of the techniques in our al-
gorithms, highlighting the challenges in the PRAM model and the
main novelty in our work compared to that of Andoni et al. [3] and
Behnezhad et al. [8].

1.2.1 Related Work. Andoni et al. [3] observed that if every ver-
tex in the graph has a degree of at least b = m/n, then one can
choose each vertex as a leader with probability Θ(log(n)/b) to
make sure that with high probability, every non-leader vertex has
at least 1 leader neighbor. As a result, the number of vertices in
the contracted graph is the number of leaders, which is Õ(n/b)
in expectation, leading to double-exponential progress, since we
have enough space to make each remaining vertex have degree

Ω̃(m/(n/b)) = Ω̃(b2) in the next round and Ω̃(b2i ) after i rounds.5
The process of adding edges is called expansion, as it expands the
neighbor sets. It can be implemented to run in O(logd) time. This
gives an O(logd log logm/n n) running time.

Behnezhad et al. improved the multiplicative log logm/n n factor
to an additive factor by streamlining the expansion procedure and
double-exponential progress when increasing the space per vertex
[8]. Instead of increasing the degree of each vertex uniformly to at
least b in each round, they allow vertices to have different space
budgets, so that the degree lower bound varies on the vertices.
They define the level ℓ(v) of a vertex v to control the budget of v
(space owned by v): initially each vertex is at level 1 with budget
m/n. Levels increase over rounds. Each v is assigned a budget of

b(v) = (m/n)c ℓ(v )
for some fixed constant c > 1. The maximal level

L B logc logm/n n is such that a vertex at level Lmust have enough
space to find all vertices in its component. Based on this idea, they
design an MPC algorithm that maintains the following invariant:

Observation 1.4 ([8]). With high probability, for any two vertices

u and v at distance 2, after 4 rounds, if ℓ(u) does not increase then

4Without the assumption thatm ≥ 2n for simplification, one can replace them with
2(m + n) in all our statements by creating self-loops in the graph.
5We use Õ to hide polylog(n) factors.
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their distance decreases to 1; moreover, the skipped vertexw originally

between u and v satisfies ℓ(w) ≤ ℓ(u).6

Behnezhad et al. proved an O(logd + log logm/n n) time bound
by a potential-based argument on an arbitrary fixed shortest path
P1 in the original graph: in round 1 put 1 coin on each vertex of
P1 (thus at most d + 1 coins in total); for the purpose of analysis
only, when inductively constructing Pi+1 in round i , every skipped
vertex on Pi is removed and passes its coins evenly to its successor
and predecessor (if exist) on Pi . They claimed that any vertexv still
on Pi in round i has at least 1.1i−ℓ(v) coins based on the following:

Observation 1.5 (Claim 3.12 in [8]). For any path Pi in round i

corresponding to an original shortest path, its first and last vertices

are on Pj in round j for any j > i ; moreover, if a vertex on Pi does not

increase level in 4 rounds, then either its predecessor or successor on

Pi is skipped.

The first statement is to maintain the connectivity for every
pair of vertices in the original graph, and the second statement
is to guarantee that each vertex obtains enough coins in the next
round. (Observation 1.5 is seemingly obvious from Observation 1.4,
however there is a subtle issue overlooked in [8] that invalidates the
statement. Their bound is still valid without changing the algorithm
by another potential-based argument, which shall be detailed later
in this section.)

Since the maximal level is L, by the above claim, a vertex on such
a path with length more than 1 in round R B 8 logd + L would
have at least 1.18 logd > d + 1 coins, a contradiction, giving the
desired time bound.

Let us first show a counter-example for Observation 1.5 (not
for their time bound). Let the original path P1 be (v1,v2, . . . ,vs ).
We want to show that the distance between v1 and vs is at most 1
after R rounds, so neither v1 nor vs can be skipped during the path
constructions over rounds. Suppose v1 does not increase level in 4

rounds, then for v1 to obtain enough coins to satisfy the claim, v2
must be skipped. We call an ordered pair (vi ,vi+1) of consecutive
vertices on the path frozen if vi is kept and vi+1 is skipped in 4

rounds. So (v1,v2) is frozen. Let v3 (any vertex after v2 suffices)
be the only vertex on P1 directly connecting to v1 after skipping
v2 in 4 rounds. (Observation 1.4 guarantees that a vertex directly
connecting tov1 must exist but cannot guarantee that there is more
than 1 such vertex on P1.) Note thatv3 cannot be skipped, otherwise
v1 is isolated from P1 and thus cannot connect to vs . Now consider
two cases. If v4 is skipped, then pair (v3,v4) is frozen. If v4 is not
skipped, then assume v4 does not increase level in 4 rounds. For v4
to obtain enough coins, v5 must be skipped because v3 cannot be
skipped to pass coins to v4, so the pair (v4,v5) is frozen. Observe
that from frozen pair (v1,v2), in either case we get another frozen
pair, which propagates inductively to the end of P1. If we happen to
have a frozen pair (vs−1,vs ), then vs must be skipped and isolated
from v1, a contradiction.

Here is a fix to the above issue (formally stated in Lemma 3.10).
Note that only the last vertex v on the path can violate the claim
that there are at least 1.1i−ℓ(v) coins on v in round i . Assuming
the claim holds for all vertices on the current path, one can always

6For simplicity, we ignore the issue of changing the graph and corresponding vertices
for now.

drop (to distinguish from skip) vs and pass its coins to vs−1 (which
must be kept) if they are a frozen pair. So vs−1, the new last vertex
after 4 rounds, obtains enough coins by the induction hypothesis
and the second part of Observation 1.4. By the same argument, the
resulting path after R rounds has length at most 1. Observe that
we dropped O(R) vertices consecutively located at the end of the
path, so the concatenated path connecting v1 and the original vs
has length O(R). Now applying Observation 1.4 to v1, we get that
in 4 rounds, either its level increases by 1 or its successor is skipped.
Therefore, in O(R + L) rounds, there is no successor of v1 to be
skipped and the graph has diameter at most 1 by a union bound
over all the (original) shortest paths.

1.2.2 Our Contributions. Now we introduce the new algorithmic
ideas in our PRAM algorithm with a matching time bound.

The first challenge comes from processor allocation. To allocate
different-sized blocks of processors to vertices in each round, there
is actually an existing tool called approximate compaction, which
maps the k distinguished elements in a length-n array one-to-one
to an array of length O(k) with high probability [2]. (The vertices
to be assigned blocks are distinguished and their names are indices
in the old array; after indexing them in the new array, one can as-
sign them predetermined blocks.) However, the current fastest (and
work-optimal) approximate compaction algorithm takes O(log∗ n)
time, introducing a multiplicative factor [14]. To avoid this, our al-
gorithm first reduces the number of vertices to n/polylog(n) in
O(log logm/n n) time, then uses approximate compaction to re-
name the remaining vertices by an integer in [n/polylog(n)] in
O(log∗ n) time. After this, each cell of the array to be compacted
owns polylog(n) processors, and each subsequent compaction (thus
processor allocation) can be done in O(1) time [16].

The second challenge is much more serious: it is required by
the union bound that any vertex u must connect to all vertices
within distance 2 with high probability if u does not increase in
level. Behnezhad et al. achieve this goal by an algorithm based on
constant-time sorting and prefix sum,which requireΩ(logn/log logn)
time on an ARBITRARY CRCW PRAM with poly(n) processors [6].
Our solution is based on hashing: to expand a vertex u, hash all
vertices within distance 2 fromu to a hash table owned byu; if there
is a collision, increase the level of u.7 As a result, we are able to
prove the following result, which is stronger than Observation 1.4
as it holds deterministically and uses only 1 round:

Observation 1.6 (formally stated in Lemma 3.18). For any

two vertices u and v at distance 2, if ℓ(u) does not increase then

their distance decreases to 1 in the next round; moreover, any vertex

originally between u and v has level at most ℓ(u).

The idea of increasing the level immediately after seeing a colli-
sion gives a much cleaner proof of Observation 1.6, but might be
problematic in bounding the total space/number of processors: a
vertex with many vertices within distance 2 can incur a collision
and level increase very often. We circumvent this issue by increas-
ing the level of each budget-b vertex with probability Θ̃(b−δ ) before
hashing. Then a vertex v with at least bδ vertices within distance 2
would see a level increase with high probability; if the level does not

7Hashing also naturally removes the duplicate neighbors to get the desired space
bound ś a goal achieved by sorting in [3, 8].
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increase, there should be at most bδ vertices within distance 2, thus
there is a collision when expandingv with probability 1/poly(b). As
a result, the probability of level increase is Θ̃(b−δ )+1/poly(b) ≤ b−c

for some constant c > 0, and we can assign a budget of b1+Ω(c) to a
vertex with increased level, leading to double-exponential progress.
As a result, the total space is O(m) with good probability since
the union bound is over all polylog(n) different levels and rounds,
instead of O(n2) shortest paths.

Suitable combination of the ideas above yields a PRAM algorithm
that reduces the diameter of the graph to at most 1 in O(R) =
O(logd + log logm/n n) time, with one flexibility: the relationship
between the level ℓ(v) and budget b(v) of vertex v in our algorithm

is not strictly b(v) = (m/n)c ℓ(v )
for some fixed constant c > 1 as in

Behnezhad et al. [8]; instead, we allow vertices with the same level
to have two different budgets. We show that such flexibility still
maintains the key invariant of our algorithm (without influencing
the asymptotic space bound): if a vertex is not a root in a tree in
the labeled digraph, then its level must be strictly lower than the
level of its parent (formally stated in Lemma 3.3).8 Using hashing
and a proper parent-update method, our algorithm does not need
to compute the number of neighbors with a certain level for each
vertex, which is required in [3, 8] and solved by constant-time
sorting and prefix sum on an MPC. If this were done by a direct
application of (constant-time) approximate counting (cf. [1]) on
each vertex, then each round would take Ω(k) time where k is the
maximal degree of any vertex, so our new ideas are essential to
obtain the desired time bound.

Finally, we note that while it is straightforward to halt when the
graph has diameter at most 1 in the MPC algorithm, it is not correct
to halt (nor easy to determine) in this case due to the different
nature of our PRAM algorithm. After the diameter reaches O(1), to
correctly compute components and halt the algorithm, we borrow
an idea from [25] to flatten all trees in the labeled digraph in O(R)
time, then apply our slower connected components algorithm (cf.
Theorem 1.1) to output the correct components in O(log logm/n n)
time, which is O(R) total running time.

2 PRELIMINARIES

2.1 Framework

We formulate the problem of computing connected components
concurrently as follows: label each vertex v with a unique vertex
v .p in its component. Such a labeling gives a constant-time test for
whether two vertices v andw are in the same component: they are
if and only if v .p = w .p. We begin with every vertex self-labeled
(v .p = v) and successively update labels until there is exactly one
label per component.

The labels define a directed graph (labeled digraph) with arcs
(v,v .p), where v .p is the parent of v . We maintain the invariant
that the only cycles in the labeled digraph are self-loops (arcs of
the form (v,v)). Then this digraph consists of a set of rooted trees,
with v a root if and only if v = v .p. Some authors call the root of a
tree the leader of all its vertices. We know of only one algorithm in
the literature that creates non-trivial cycles, that of Johnson and

8Our algorithm adopts the framework of labeled digraph (or parent graph) for com-
puting and representing components, which is standard in PRAM literatures, see
ğ2.

Metaxis [23]. Acyclicity implies that when the parent of a root v
changes, the new parent of v is not in the tree rooted at v (for any
order of the concurrent parent changes). We call a tree flat if the
root is the parent of every vertex in the tree. Some authors call flat
trees stars.

In our connected components and spanning forest algorithms
(see the full version of this paper), we maintain the additional
invariant that if the parent of a non-root v changes, its new parent
is in the same tree as v (for any order of the parent changes). This
invariant implies that the partition of vertices among trees changes
only by set union; that is, no parent change moves a proper subtree
to another tree. We call this property monotonicity. Most of the
algorithms in the literature that have a correct efficiency analysis
are monotone. Liu and Tarjan [25] analyze some non-monotone
algorithms. In our faster connected components algorithm (cf. ğ3),
only the preprocessing and postprocessing stages are monotone,
which means the execution between these two stages can move
subtrees between different trees in the labeled digraph.

2.2 Building Blocks

Our algorithms use three standard and one not-so-standard build-
ing blocks, which link (sub)trees, flatten trees, alter edges, and add
edges, respectively. (Classic PRAM algorithms develop many tech-
niques to make the graph sparser, e.g., in [13, 19, 20], not denser by
adding edges.)

We treat each edge {v,w} as a pair of oppositely directed arcs
(v,w) and (w,v). A direct link applies to a graph arc (v,w) such
that v is a root andw is not in the tree rooted at v ; it makesw the
parent of v . A parent link applies to a graph arc (v,w) and makes
w .p the parent of v; note that v andw .p are not necessarily roots.
Concurrent direct links maintain monotonicity while concurrent
parent links do not. We add additional constraints to prevent the
creation of a cycle in both cases. Specifically, in the case of parent
links, if a vertex is not a root in a tree in the labeled digraph, then
its level must be strictly lower than the level of its parent (formally
stated in Lemma 3.3).

Concurrent links can produce trees of arbitrary heights. To re-
duce the tree heights, we use the shortcut operation: for each v

do v .p B v .p.p. One shortcut roughly halves the heights of all
trees; O(logn) shortcuts make all trees flat. Hirschberg et al. [21]
introduced shortcutting in their connected components algorithm;
it is closely related to the compress step in tree contraction [26] and
to path splitting in disjoint-set union [33].

Our third operation changes graph edges. To alter {v,w}, we
replace it by {v .p,w .p}. Links, shortcuts, and edge alterations suffice
to efficiently compute components. Liu and Tarjan [25] analyze
simple algorithms that use combinations of our first three building
blocks.

To obtain a good bound for small-diameter graphs, we need a
fourth operation that adds edges. We expand a vertex u by adding
an edge {u,w} for a neighborv of u and a neighborw ofv . The key
idea for implementing expansion is hashing, which is presented
below.

Suppose each vertex owns a block of K2 processors. For each
processor in a block, we index it by a pair (p,q) ∈ [K] × [K]. For
each vertexu, we maintain a size-K tableH (u). We choose a random

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

362



hash function h : [n] → [K]. At the beginning of an expansion,
for each graph arc (u,v), we write vertex v into the h(v)-th cell of
H (u). Then we can expand u as follows: each processor (p,q) reads
vertex v from the p-th cell of H (u), reads vertex w from the q-th
cell of H (v), and writes vertexw into the h(w)-th cell of H (u). For
eachw ∈ H (u) after the expansion, {u,w} is considered an added

edge in the graph and is treated the same as any other edge.
The key difference between our hashing-based expansion and

that in the MPC algorithms is that a vertex w within distance 2
from u might not be in H (u) after the expansion due to a collision,
so crucial to our analysis is the way to handle collisions. All hash
functions in this paper are pairwise independent, so each processor
doing hashing in each round only needs to read two words, which
uses O(1) private memory and time.

3 FASTER CONNECTED COMPONENTS

ALGORITHM

In this section we prove Theorem 1.3 by presenting a faster algo-
rithm for connected components.

Faster Connected Components algorithm: repeat {expand-
maxlink} until the graph has diameter at most 1 and all trees
are flat; run the connected components algorithm from Theo-
rem 1.1 on the remaining graph.

Each iteration of the repeat loop is called a round. The break

condition that the graph has diameter at most 1 and all trees are flat
is tested at the end of each round.

To simplify the presentation, we make the following assumption,
which is removed in the full version of this paper without influ-
encing the asymptotic running time, number of processors, and
success probability.

Assumption 3.1. Let c = 200, at the beginning of the first round

each vertex has a distinct id in [2m/logc n] and owns a space block
of size max{m/n, logc n}/log2 n.

The remainder of this section is organized as follows. The de-
tailed method expand-maxlink is presented in ğ3.1. The correct-
ness of the algorithm is deferred to the full version of this paper. In
ğ3.2, we implement expand-maxlink on an ARBITRARY CRCW
PRAM inO(1) time. We prove that the algorithm usesO(m) proces-
sors over all rounds in ğ3.3. Finally, we show that the graph diameter
is at most 1 and all trees are flat afterO(logd+ log logm/n n) rounds
in ğ3.4. After the graph diameter reaches 1, it is easy to apply The-
orem 1.1 to output the connected components of the input graph
in O(log logm/n n) additional time, giving Theorem 1.3.

3.1 Algorithmic Framework

In this section, we present the algorithmic framework of expand-
maxlink, the ingredient of each round of Faster Connected Com-
ponent algorithm.

expand-maxlink uses the following three subroutines, which
were introduced as building blocks in ğ2.2:

alter: for each edge e = {v,w}: replace it by {v .p,w .p}.
shortcut: for each vertex u: update u .p to u .p.p.
maxlink: repeat {for each vertex v: let u B

argmaxw ∈N (v).p ℓ(w), if ℓ(u) > ℓ(v) then update v .p

to u} for 2 iterations.

The fourth building block is to expand each vertex v to try to
connect to all vertices within distance 2 from v , which corresponds
to Steps (3-5). We give detailed explanations of the key concepts
and steps after the algorithm.

expand-maxlink:

(1) maxlink; alter.
(2) For each root v: increase ℓ(v) with probability

10 logn/b(v)0.1.
(3) For each root v : for each rootw ∈ N (v): if b(w) = b(v)

then hashw into H (v).
(4) For each rootv : if there is a collision inH (v) then mark

v as dormant. For each vertex v: if there is a dormant
vertex in H (v) then mark v as dormant.

(5) For each root v : for eachw ∈ H (v): for each u ∈ H (w):
hash u into H (v). For each root v : if there is a collision
in H (v) then mark v as dormant.

(6) maxlink; shortcut; alter.
(7) For each root v: if v is dormant and did not increase

level in Step (2) then increase ℓ(v).
(8) For each root v : assign a block of size bℓ(v) to v .

Level and budget. The level ℓ(v) of a vertex v is a non-negative
integer that can either remain the same or increase by one during a
round. At the beginning of round 1, each vertex v is at level 1 and
owns a block of size b1 B max{m/n, logc n}/log2 n by Assump-
tion 3.1. During a round, some roots become non-roots by updating
their parents. If a vertex remains a root, its level might increase. A

root with level ℓ is assigned a block of size bℓ B b1.01
ℓ−1

1 at the end
of the round. Given b, a vertex v has budget b(v) B b if the current
block owned by v has size b. Each block of size b is partitioned into√
b indexed tables, each of size

√
b.

Neighbor set. The edges that define the current graph include:
(i) the (altered) original edges corresponding to edge processors,
and (ii) the (altered) added edges in the tables over all rounds of
all vertices. Any vertex within distance 1 of v (including v) in the
current graph is called a neighbor of v . For any vertex v , let N (v)
be the set of its neighbors. In Step (3) we use the old N (v) when
initializing the loop that enumerates N (v). For any vertex set S ,
define N (S) B ⋃

w ∈S N (w), and define S .p B {w .p | w ∈ S}.

Hashing. At the beginning of a round, one random hash function
h is chosen. All neighbor roots of all roots use h to do individual
hashing in Step (3). A pairwise independent h suffices, so each pro-
cessor only reads two words. The hashing in Step (5) uses the same
h. For each vertex v , let H (v) be the first table in its block, which
will store the added edges incident on v . Step (5) is implemented
by storing the old tables for all vertices while hashing new items

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

363



(copied from the old H (v) and old H (w) in the block ofw) into the
new table.

3.2 Implementation

In this section, we show how to implement expand-maxlink on
an ARBITRARY CRCW PRAM such that any of the first O(logn)
rounds runs in constant time with good probability.

Lemma 3.2. With good probability, each of the firstO(logn) rounds
can be implemented to run in O(1) time.

Proof. The alter (cf. Steps (1,6)) applies to all edges in the
current graph. Since each edge corresponds to a distinct processor,
Step (3) and the alter take O(1) time.

Steps (2,4,7) and shortcut take O(1) time as each vertex has
a corresponding processor and a collision can be detected using
the same hash function to check the same location again: there is a
collision in H (v) if a vertexw reads a vertex different fromw from
the h(w)-th cell of H (v) (thenw can write a flag to the processor of
v to indicate the collision).

In each of the two iterations of maxlink, each vertex v updates
its parent to a neighbor parent with the highest level if this level is
higher than ℓ(v). Since a vertex can increase its level by at most 1
in any round (cf. Steps (2,7)), there are O(logn) different levels. Let
each neighbor of v write its parent with level ℓ to the ℓ-th cell of
an array of length O(logn) in the block of v . By the definitions of
level and budget, the block of any vertex in any round has size at
least b1 = Ω(log3 n). Therefore, we can assign a processor to each
pair of the cells in this array, such that each non-empty cell can
determine whether there is a non-empty cell with a larger index
in O(1) time. For any non-empty cell, if there is no non-empty cell
with a larger index, it must contain a vertex with the maximum
level. As a result, Steps (1,6) take O(1) time.

By Step (3), any w ∈ H (v) has b(w) = b(v), so each u ∈ H (w)
such thatw ∈ H (v) owns a processor in the block ofv since

√

b(v) ·
√

b(w) = b(v) and any vertex in a table is indexed (by its hash
value). Therefore, together with collision detection, Step (5) takes
O(1) time.

In Step (8), each vertex is assigned a block. The pool of Θ(m)
processors is partitioned into Θ(log2 n) zones such that the pro-
cessor allocation in round r for vertices with level ℓ uses the zone
indexed by (r , ℓ), where r , ℓ ∈ O(logn) in the first O(logn) rounds.
Since there are Θ(m) processors in total and all the vertex ids are in
[2m/logc n] with good probability (cf. Assumption 3.1), we can use
Θ(m/logn) processors for each different level and apply approxi-
mate compaction (cf. ğ1.2.2 and see the full version of this paper)
to index each root in O(1) time with high probability such that
the indices of vertices with the same level are distinct, then assign
each of them a distinct block in the corresponding zone. Therefore,
Step (8) takes O(1) time with good probability by a union bound
over all O(logn) levels and rounds.

Finally, we need to implement the break condition in O(1) time,
i.e., to determine whether the graph has diameter at most 1 and all
trees are flat at the end of each round. The algorithm checks the
following 2 conditions in each round: (i) all vertices do not change
their parents nor levels in this round, and (ii) for any verticesv,w,u
such that w ∈ H (v), u ∈ H (w) before Step (5), the h(u)-th cell in

H (v) already contains u. Conditions (i) and (ii) can be checked in
O(1) time by writing a flag to vertex processor v if they do not
hold for v , then let each vertex with a flag write the flag to a fixed
processor. If there is no such flag then both Conditions (i) and (ii)
hold and the loop breaks. If there is a non-flat tree, some parent
must change in the shortcut in Step (6). If all trees are flat, they
must be flat before the alter in Step (6), then an alter moves
all edges to the roots. Therefore, if Condition (i) holds, all trees
are flat and edges are only incident on roots. Moreover, no level
changing means no vertex increase its level in Step (2) and there is
no dormant vertex in Step (7). So for each rootv , N (v) = H (v) after
Step (3) and N (N (v)) = H (v) after Step (5) as there is no collision.
By Condition (ii), the table H (v) does not change during Step (5),
so N (v) = N (N (v)). If there exists root v such that there is another
root with distance at least 2 from v , then there must exist a vertex
w , v at distance exactly 2 from v , sow < N (v) andw ∈ N (N (v)),
contradicting with N (v) = N (N (v)). Therefore, any root is within
distance at most 1 from all other roots in its component and the
graph has diameter at most 1.

Since each step runs in O(1) time with good probability, the
lemma follows. □

3.3 Number of Processors

In this section, we show that with good probability, the firstO(logn)
rounds use O(m) processors in total.

First of all, we prove a useful property on levels and roots.

Lemma 3.3. If a vertex v is a non-root at any step, then during

the execution after that step, v is a non-root, ℓ(v) cannot change, and
1 ≤ ℓ(v) < ℓ(v .p).

Proof. The proof is by an induction on rounds. The lemma
clearly holds at the beginning of the first round by definitions.

In Step (1), each iteration of a maxlink can only update the
parent to a vertex with higher level, which cannot be itself. In
Step (2), level increase only applies to roots. The invariant holds
after the maxlink in Step (6) for the same reasons as above. In
shortcut (cf. Step (6)), each vertex v updates its parent to v .p.p,
which, by the induction hypothesis, must be a vertex with level
higher than v if v is a non-root, thus cannot be v . In Step (7), level
increase only applies to roots. All other steps and alters do not
change the labeled digraph nor levels, giving the lemma. □

Now observe that in the case that a root v with level ℓ increases
its level in Step (2) but becomes a non-root at the end of the round,
v is not assigned a block of size bℓ(v) in Step (8). Instead, v owns a
block of size bℓ = bℓ(v)−1 from the previous round. Since in later
rounds a non-root never participates in obtaining more neighbors
by maintaining its table in Steps (3-5) (which is the only place that
requires a larger block), such flexibility in the relationship between
level and budget is acceptable.

By the fact that any root v at the end of any round owns a block

of size bℓ(v) = b
1.01ℓ(v )−1
1 , a non-root can no longer change its level

nor budget (cf. Lemma 3.3), and the discussion above, we obtain:

Corollary 3.4. Any vertex v owns a block of size b at the end of

any round where bℓ(v)−1 = b
1.01ℓ(v )−2
1 ≤ b ≤ b1.01

ℓ(v )−1
1 = bℓ(v); if v

is a root, then the upper bound on b is tight.
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Secondly, we prove two simple facts about maxlink.

Lemma 3.5. For any vertex v with parent v ′ and any w ∈ N (v)
before an iteration of maxlink, ℓ(w .p) ≥ ℓ(v ′) after the iteration;
furthermore, if ℓ(w .p) > ℓ(v) before an iteration, then v must be a

non-root after the iteration.

Proof. For anyw ∈ N (v), its parent has levelmaxu ∈N (w ) ℓ(u .p)
at least ℓ(v ′) after an iteration of maxlink. This implies that if
ℓ(w .p) > ℓ(v) before an iteration, then after that ℓ(v .p) is at least
the level of the old parent ofw which is strictly higher than ℓ(v),
so v must be a non-root. □

Lemma 3.6. For any root v with budget b at the beginning of any

round, if there is a root w ∈ N (v) with at least b0.1 neighbor roots

with budget b after Step (1), then v either increases level in Step (2) or

is a non-root at the end of the round with probability 1 − n−5.

Proof. Assume v does not increase level in Step (2). Let w be
any root in N (v) after Step (1). Since each root u ∈ N (w) with
budget b (thus level at least ℓ(v) by Corollary 3.4) increases its level
with probability 10 logn/b0.1 independently, with probability at

least 1 − (1 − 10 logn/b0.1)b0.1 ≥ 1 − n−5, at least one u increases
level to at least ℓ(v)+ 1 in Step (2). Since u ∈ N (N (v)) after Step (1),
by Lemma 3.5, there is a w ′ ∈ N (v) such that ℓ(w ′.p) ≥ ℓ(v) + 1
after the first iteration of maxlink in Step (6). Again by Lemma 3.5,
this implies that v cannot be a root after the second iteration and
the following shortcut. □

Using the above result, we can prove the following key lemma,
leading to the total number of processors.

Lemma 3.7. For any root v with budget b at the beginning of any

round, b(v) is increased to b1.01 in this round with probability at most

n−5 + b−0.05.

Proof. In Step (2), ℓ(v) increaseswith probability 10 logn/b0.1 ≤
b−0.08 when c ≥ 100, since b ≥ b1 ≥ logc−2 n. If ℓ(v) does increase
here then it cannot increase again in Step (7), so we assume this is
not the case (and apply a union bound at the end).

If there is a rootw ∈ N (v) with at least b0.1 neighbor roots with
budget b after Step (1), then v is a root at the end of the round with
probability at most n−5 by the assumption and Lemma 3.6. So we
assume this is not the case.

By the previous assumption we know that at most b0.1 vertices
are hashed into H (v) in Step (3). By pairwise independency, with
probability at most (b0.1)2/

√
b = b−0.3 there is a collision as the

table has size
√
b, which will increase ℓ(v) (cf. Steps (4,7)).

Now we assume that there is no collision in H (v) in Step (3),
which meansH (v) contains all the at most b0.1 neighbor roots with
budget b. By the same assumption, each such neighbor rootw has
at most b0.1 neighbor roots with budget b, so there is a collision in
H (w) in Step (3) with probability at most (b0.1)2/

√
b = b−0.3. By a

union bound over all the |H (v)| ≤ b0.1 such vertices, v is marked
as dormant in the second statement of Step (4) (and will increase
level in Step (7)) with probability b−0.2.

It remains to assume that there is no collision in H (v) nor in any
H (w) such thatw ∈ H (v) after Step (4). As each such table contains
at most b0.1 vertices, in Step (5) there are at most b0.2 vertices to

be hashed, resulting in a collision in H (v) with probability at most
(b0.2)2/

√
b = b−0.1, which increases ℓ(v) in Step (7).

Observe that only a root v at the end of the round can increase
its budget, and the increased budget must be b1.01 since the level
can increase by at most 1 during the round and b = bℓ(v) at the
beginning of the round by Corollary 3.4. By a union bound over the
events in each paragraph, b(v) is increased to b1.01 with probability
at most b−0.08 + n−5 + b−0.3 + b−0.2 + b−0.1 ≤ n−5 + b−0.05. □

Finally, we are ready to prove an upper bound on the number of
processors.

Lemma 3.8. With good probability, the first O(logn) rounds use
O(m) processors in total.

Proof. Using Lemma 3.7, by a union bound over all O(n) roots,
all O(logn) rounds, and all O(logn) different budgets (since there
are O(logn) different levels), with probability at least 1 − n−3, any
root v with budget b at the beginning of any round increases its
budget tob1.01 with probability at mostb−0.05. Wemay assume that
the (1−n−3)-probability event always holds since a good-probability
result follows from a union bound.

The number of processors for (altered) original edges and vertices
are clearlyO(m) over all rounds (where each vertex processor needs
O(1) private memory to store the corresponding parent, vertex id,
hash function, level, and budget). Therefore, we only need to bound
the number of processors in blocks that are assigned to a vertex in
Step (8) in all O(logn) rounds. (In the full version of this paper, we
show that the overhead in Step (8) is O(1) with high probability.)

For any positive integer ℓ, let nℓ be the number of vertices that
ever reaches budget bℓ during the first O(logn) rounds. For any
vertex v that ever reaches budget bℓ , it has exactly one chance to
reach budget bℓ+1 in a round if v is a root in that round, which
happens with probability at most bℓ

−0.05. By a union bound over
all O(logn) rounds, v reaches budget bℓ+1 with probability at most
O(logn)·bℓ−0.05 ≤ bℓ

−0.04 when c ≥ 200, sincebℓ ≥ b1 ≥ logc−2 n.
We obtain E[nℓ+1 | nℓ] ≤ nℓ · bℓ−0.04, thus by bℓ+1 = bℓ

1.01, it
must be:

E[nℓ+1bℓ+1 | nℓ] ≤ nℓ · bℓ−0.04 · bℓ1.01 = nℓbℓ · bℓ−0.03.

By Markov’s inequality, nℓ+1bℓ+1 ≤ nℓbℓ with probability at
least 1 − bℓ

−0.03 ≥ 1 − b1
−0.03. By a union bound over all ℓ ∈

O(logn), nℓbℓ ≤ n1b1 for all ℓ ∈ O(logn) with probability at least
1−O(logn) ·b1−0.03 ≥ 1−b1−0.01, which is 1−1/poly((m logn)/n)
by b1 = max{m/n, logc n}/log2 n and c ≥ 100. So the number of
new allocated processors for vertices with any budget in any of the
first O(logn) rounds is at most n1b1 with good probability.

Recall from Assumption 3.1 and by a direct calculation, n1 · b1 =
O(m/log2 n) with good probability. Therefore, by a union bound
over all the O(logn) different budgets and O(logn) rounds, with
good probability the total number of processors is O(m). □

3.4 Diameter Reduction

Let R B O(logd + log logm/n n) where the constant hidden in O

will be determined later in this section. The goal is to prove that
O(R) rounds of expand-maxlink suffice to reduce the diameter of
the graph to O(1) and flatten all trees with good probability.
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In a high level, our algorithm/proof is divided into the following
3 stages/lemmas:

Lemma 3.9. With good probability, after round R, the diameter of

the graph is O(R).

Lemma 3.10. With good probability, after roundO(R), the diameter

of the graph is at most 1.

Lemma 3.11. With good probability, after roundO(R), the diameter

of the graph is at most 1 and all trees are flat.

3.4.1 Path Construction. To formalize and quantify the effect of
reducing the diameter, consider any shortest path P in the input
graph, whose length |P | is at most d . Each alter (cf. Steps (1,6))
in each round replaces each vertex on P by its parent, resulting
in a path P ′ of the same length as P . (Note that P ′ might not be a
shortest path in the current graph and can contain loops.) We also
add edges to the graph for reducing the diameter of the current
graph: for any vertices v and w on path P ′, if the current graph
contains edge (v,w), then all vertices exclusively between v and
w can be removed from P ′, which still results in a valid path in
the current graph from the first to the last vertex of P ′, reducing
the length. If all such paths reduce their lengths to at most d ′,
the diameter of the current graph is at most d ′. In the following,
consider any fixed shortest path P1 at the beginning of round 1.
Formally, we have the following inductive construction of paths
for diameter reduction:9

Definition 3.12 (path construction). Let all vertices on P1 be active.
For any positive integer r , given path Pr with at least 4 active
vertices at the beginning of round r , expand-maxlink constructs
Pr+1 by the following 7 phases:

(1) The alter in Step (1) replaces each vertex v on Pr by v ′
B

v .p to get path Pr,1. For any v ′ on Pr,1, let v ′ be on Pr such
that v ′.p = v ′.

(2) Let the subpath containing all active vertices on Pr,1 be Pr,2.

(3) After Step (5), set i as 1, and repeat the following until i ≥
|Pr,2 |−1: letv ′

B Pr,2(i), ifv ′ is a root and does not increase
level during round r then: if the current graph contains edge
(v ′, Pr,2(i + 2)) then mark Pr,2(i + 1) as skipped and set i as
i + 2; else set i as i + 1.

(4) For each j ∈ [i + 1, |Pr,2 | + 1], mark Pr,2(j) as passive.
(5) Remove all skipped and passive vertices from Pr,2 to get

path Pr,5.
(6) Concatenate Pr,5 with all passive vertices on Pr,1 and Pr,2

to get path Pr,6.
(7) The alter in Step (6) replaces each vertex v on Pr,6 by v .p

to get path Pr+1.

For any vertex v on Pr that is replaced by v ′ in Phase (1), if v ′ is
not skipped in Phase (3), then let v be the vertex replacing v ′ in
Phase (7), and call v the corresponding vertex of v in round r + 1.

Lemma 3.13. For any non-negative integer r , the Pr+1 constructed

in Definition 3.12 is a valid path in the graph and all passive vertices

are consecutive from the successor of the last active vertex to the end

of Pr+1.

9For any i ∈ [ |P | + 1], let P (i) be the i-th vertex on P .

Proof. The proof is by an induction on r . Initially, P1 is a valid
path by our discussion on alter at the beginning of this section: it
only replaces edges by new edges in the altered graph; moreover,
the second part of the lemma is trivially true as all vertices are active.
Assuming Pr is a valid path and all passive vertices are consecutive
from the successor of the last active vertex to the end of the path.
We show the inductive step by proving the invariant after each of
the 7 phases in Definition 3.12. Phase (1) maintains the invariant. In
Phase (2), Pr,2 is a valid path as all active vertices are consecutive
at the beginning of Pr,1 (induction hypothesis). In Phase (3), if a
vertex v is skipped, then there is an edge between its predecessor
and successor on the path; otherwise there is an edge between v
and its successor by the induction hypothesis; all passive vertices
are consecutive from the successor of the last non-skipped vertex
to the end of Pr,2 (cf. Phase (4)), so the invariant holds. In Phase (6),
since the first passive vertex on Pr,2 is a successor of the last vertex
on Pr,5 and the last passive vertex on Pr,2 is a predecessor of the
first passive vertex on Pr,1 (induction hypothesis), the invariant
holds. Phase (7) maintains the invariant. Therefore, Pr+1 is a valid
path and all passive vertices are consecutive from the successor of
the last active vertex to the end of Pr+1. □

Nowwe relate the path construction to the diameter of the graph:

Lemma 3.14. For any positive integer r , the diameter of the graph

at the end of round r is O(maxPr |Pr,2 | + r ).

Proof. Let P1 be from s to t . By an induction on the number
of alters and Lemma 3.13, the corresponding vertices of s and t
are still connected by path Pr+1 at the end of round r . Note that by
Lemma 3.13, Pr+1 can be partitioned into two parts after Phase (2):
subpath Pr,2 and the subpath containing only passive vertices. Since
in each round we mark at most 2 new passive vertices (cf. Phases
(3,4)), we get |Pr+1 | ≤ |Pr,5 |+ 2r ≤ |Pr,2 |+ 2r . If any path Pr+1 that
corresponds to a shortest path in the original graph have length
at most d ′, the graph at the end of round r must have diameter at
most d ′, so the lemma follows. □

It remains to bound the length of any Pr,2 in any round r , which
relies on the following potential function:

Definition 3.15. For any vertexv on P1, define its potential ϕ1(v) B
1. For any positive integer r , given path Pr with at least 4 active ver-
tices at the beginning of round r and the potentials of vertices on Pr ,
define the potential of each vertex on Pr+1 based on Definition 3.12
as follows:

• For each v replaced by v .p in Phase (1), ϕr,1(v .p) B ϕr (v).
• After Phase (4), for each active vertex v on Pr,2, if the suc-
cessorw ofv is skipped or passive, then ϕr,4(v) B ϕr,1(v)+
ϕr,1(w).

• After Phase (6), for each vertex v on Pr,6, if v is active on
Pr,2, then ϕr,6(v) B ϕr,4(v), otherwise ϕr,6(v) B ϕr,1(v).

• For eachv replaced byv .p in Phase (7), ϕr+1(v .p) B ϕr,6(v).

We conclude this section by some useful properties of potentials.

Lemma 3.16. For any path Pr at the beginning of round r ≥ 1,

the following holds: (i)
∑

v ∈Pr ϕr (v) ≤ d + 1; (ii) for any v on Pr ,

ϕr (v) ≥ 1; (iii) for any non-skipped v on Pr,2 and its corresponding

vertex v on Pr+1, ϕr+1(v) ≥ ϕr (v).
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Proof. The proof is by an induction on r . The base case follows
from ϕ(v) = 1 for each v on P1 (cf. Definition 3.15) and |P1 | ≤ d .
For the inductive step, note that by Definition 3.15, the potential of
a corresponding vertex is at least the potential of the corresponding
vertex in the previous round (and can be larger in the case that
its successor is skipped or passive). This gives (ii) and (iii) of the
lemma. For any vertex u on Pr,2, if both u and its successor are ac-
tive, then ϕr (u) is presented for exactly 1 time in

∑

v ∈Pr ϕr (v) and
∑

v ∈Pr+1 ϕr+1(v) respectively; if u is active but its successor w is
skipped or passive, thenϕr (u)+ϕr (w) is presented for exactly 1 time
in each summations as well; ifu and its predecessor are both passive,
thenϕr (u) is presented only in

∑

v ∈Pr ϕr (v); the potential of the last
vertex on Pr,2 might not be presented in

∑

v ∈Pr+1 ϕr+1(v) depend-
ing on i after Phase (3). Therefore,

∑

v ∈Pr+1 ϕr+1(v) ≤
∑

v ∈Pr ϕr (v)
and the lemma holds. □

3.4.2 Remaining Proofs: Proof of Lemma 3.9. First of all, we need
an upper bound on the maximal possible level:

Lemma 3.17. With good probability, the level of any vertex in any

of the firstO(logn) rounds is at most L B 1000max{2, log logm/n n}.

Proof. By Lemma 3.8, with good probability the total number
of processors used in the first O(logn) rounds is O(m). We shall
condition on this happening then assume for contradiction that
there is a vertex v with level at least L in some round.

If log logm/n n ≤ 2, thenm/n ≥ n1/4. By Corollary 3.4, a block
owned by v has size at least

b1
1.012000−2 ≥ b1

20 ≥ (m/n/log2 n)20 ≥ (n1/5)20 = n4 ≥ m2
,

which is a contradiction as the size of this block owned byv exceeds
the total number of processors O(m).

Else if log logm/n n > 2, then by Corollary 3.4, a block owned by
v has size at least

b1
1.01L−2 ≥ b1

1.01
999 log logm/n n

≥ b1
(log

m/n n)10 ≥ b1
8 log

m/n n . (1)

Whether m/n ≤ logc n or not, if c ≥ 10, it must be b1 =

max{m/n, logc n}/log2 n ≥
√

m/n. So the value of (1) is at least
n4 ≥ m2, contradiction. Therefore, the level of any vertex is at most
L. □

We also require the following key lemma:

Lemma 3.18. For any rootv and anyu ∈ N (N (v)) at the beginning
of any round, let u ′ be the parent of u after Step (1). If v does not

increase level and is a root during this round, then u ′ ∈ H (v) after
Step (5).

To prove Lemma 3.18, we use another crucial property of the al-
gorithm, which is exactly the reason behind the design of maxlink.

Lemma 3.19. For any rootv and anyu ∈ N (N (v)) at the beginning
of any round, if v does not increase level in Step (2) and is a root at

the end of the round, then u .p is a root with budget b(v) after Step (1).

Proof. By Lemma 3.3, v is a root during this round. For any
w ∈ N (v) and any u ∈ N (w), applying Lemma 3.5 for 2 times,
we get that ℓ(v) ≤ ℓ(w .p) and ℓ(v) ≤ ℓ(u .p) after the maxlink in
Step (1). If there is a u ∈ N (N (v)) such that u .p is a non-root or
ℓ(u .p) > ℓ(v) before the alter in Step (1), it must be ℓ(u .p.p) > ℓ(v)
by Lemma 3.3. Note that u .p is in N (N (v)) after the alter, which

still holds before Step (6) as we only add edges. By Lemma 3.5, there
is a w ′ ∈ N (v) such that ℓ(w ′.p) > ℓ(v) after the first iteration of
maxlink in Step (6). Again by Lemma 3.5, this implies thatv cannot
be a root after the second iteration, a contradiction. Therefore, for
any u ∈ N (N (v)), u .p is a root with level ℓ(v) (thus budget b(v))
after Step (1). □

With the help of Lemma 3.19 we can prove Lemma 3.18:

Proof of Lemma 3.18. For any vertex u, let N ′(u) be the set of
neighbors after Step (1). First of all, we show that after Step (5),H (v)
contains all roots in N ′(N ′(v))with budget b, where b is the budget
of v at the beginning of the round. For any root w ∈ N ′(v), in
Step (3), all roots with budget b(w) in N ′(w) are hashed into H (w).
If there is a collision in any H (w), then v must be dormant (cf.
Step (4)) thus increases level in either Step (2) or (7), contradiction.
So there is no collision in H (w) for any w ∈ N ′(v), which means
H (w) ⊇ N ′(w). Recall that v ∈ N ′(v) and we get that all roots with
budget b(w) = b from N ′(N ′(v)) are hashed into H (v) in Step (5).
Again, if there is a collision, then v must be dormant and increase
level in this round. Therefore, N ′(N ′(v)) ⊆ H (v) at the end of
Step (5).

By Lemma 3.19, for any u ∈ N (N (v)) at the beginning of any
round, u ′ = u .p is a root with budget b in N ′(N ′(v)) after Step (1).
Therefore, u ′ ∈ H (v) at the end of Step (5), giving Lemma 3.18. □

The proof of Lemma 3.9 relies on the following lemma based on
potentials:

Lemma 3.20. At the beginning of any round r ≥ 1, for any active

vertex v on any path Pr , ϕr (v) ≥ 2r−ℓ(v).

Proof. The proof is by an induction on r . The base case holds
because for any (active) vertex v on P1, ϕ1(r ) = 1 and r = ℓ(v) = 1.
Now we prove the inductive step from r to r + 1 given that the
corresponding vertex v of v ∈ Pr is on Pr+1 and active.

Supposev is a non-root at the end of round r . Ifv is a non-root at
the end of Step (1), then ℓ(v .p) > ℓ(v) after Step (1) by Lemma 3.3,
and ℓ(v) ≥ ℓ(v .p) > ℓ(v); else if v first becomes a non-root in
Step (6), thenv = v .p and ℓ(v .p) > ℓ(v) after Step (6) by Lemma 3.3.
So by the induction hypothesis, ϕr+1(v) ≥ ϕr (v) ≥ 2r−ℓ(v) ≥
2r+1−ℓ(v).

Suppose v increases its level in round r . Let ℓ be the level of v at
the beginning of round r . If the increase happens in Step (2), then v
is a root after Step (1). Whether v changes its parent in Step (6) or
not, the level ofv = v .p is at least ℓ+ 1. Else if the increase happens
in Step (7), then v is a root after Step (6). So v = v and its level is
at least ℓ + 1 at the end of the round. By the induction hypothesis,
ϕr+1(v) ≥ ϕr (v) ≥ 2r−ℓ ≥ 2r+1−ℓ(v).

It remains to assume that v is a root and does not increase level
during round r . By Lemma 3.18, for any u ∈ N (N (v)) at the begin-
ning of round r , the parent u ′ of u after Step (1) is in H (v) after
Step (5). Since v is a root during the round, it remains on Pr,2 af-
ter Phase (2). We discuss two cases depending on whether v is at
position before |Pr,2 | − 1 or not.

In Phase (3), note that if v = Pr,2(i) where i < |Pr,2 | − 1, then
Pr,2(i + 2) is the parent of a vertex in N (N (v)) after Step (1), which
must be in H (v) after Step (5). Therefore, the graph contains edge
(v, Pr,2(i + 2)) and v ′

B Pr,2(i + 1) is skipped, thus ϕr,4(v) =
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ϕr,1(v) + ϕr,1(v ′) by Definition 3.15. Since i + 1 ≤ |Pr,2 | + 1, v ′ is
an active vertex on Pr,1. By the induction hypothesis, ϕr,1(v ′) =
ϕr (v ′) ≥ 2r−ℓ(v

′) (recall that v ′ is replaced by its parent v ′ in
Phase (1)/Step (1)). If ℓ(v ′) > ℓ(v), then applying Lemma 3.5 for
2 times we get that v is a non-root after Step (1), a contraction.
Therefore, ϕr,1(v ′) ≥ 2r−ℓ(v

′) ≥ 2r−ℓ(v) and ϕr,4(v) ≥ ϕr,1(v) +
ϕr,1(v ′) ≥ ϕr (v) + 2r−ℓ(v) ≥ 2r+1−ℓ(v).

On the other hand, if i ≥ |Pr,2 | − 1 is reached after Phase (3),
it must be i < |Pr,2 | + 1 by the break condition of the loop in
Phase (3). Note thatv ′

B Pr,2(i+1) is marked as passive in Phase (4),
and by Definition 3.15, ϕr,4 = ϕr,1(v) + ϕr,1(v ′). Moreover, since
i + 1 ≤ |Pr,2 | + 1, v ′ is an active vertex on Pr,1. Using the same
argument in the previous paragraph, we obtain ϕr,4(v) ≥ 2r+1−ℓ(v).

By Definition 3.15, after Phase (7),ϕr+1(v) = ϕr,6(v) = ϕr,4(v) ≥
2r+1−ℓ(v) = 2r+1−ℓ(v). As a result, the lemma holds for any active
vertexv on Pr+1, finishing the induction and giving the lemma. □

Proof of Lemma 3.9. Let R B logd + L, where L is defined
in Lemma 3.17. By Lemma 3.17, with good probability, ℓ(v) ≤ L

for any vertex v in any of the first O(logn) rounds, and we shall
condition on this happening. By Lemma 3.20, at the beginning of
round R, if there is a path PR of at least 4 active vertices, then for
any of these vertices v , it must be ϕR (v) ≥ 2R−ℓ(v) ≥ 2R−L ≥ d . So
∑

v ∈PR ϕr (v) ≥ 4d > d + 1, contradicting with Lemma 3.16. Thus,
any path PR has at most 3 active vertices, which means |PR,2 | ≤ 3

by Definition 3.12. Therefore, by Lemma 3.14, the diameter of the
graph at the end of round R is O(R) with good probability. □

3.4.3 Remaining Proofs: Proof of Lemma 3.11. Based on the graph
and any PR at the beginning of round R + 1, we need a (much
simpler) path construction:

Definition 3.21. For any integer r > R, given path Pr with |Pr | ≥
3 at the beginning of round r , expand-maxlink constructs Pr+1 by
the following:

(1) The alter in Step (1) replaces each vertex v on Pr by v ′
B

v .p to get path Pr,1. For any v ′ on Pr,1, let v ′ be on Pr such
that v ′.p = v ′.

(2) After Step (5), let v ′
B Pr,1(1), if v ′ is a root at the end of

round r and does not increase level during round r then: if
the current graph contains edge (v ′, Pr,1(3)) then remove
Pr,1(2) to get path Pr,2.

(3) The alter in Step (6) replaces each vertex v on Pr,2 by v .p
to get path Pr+1.

For any vertexv on Pr that is replaced byv ′ in the first step, ifv ′ is
not removed in the second step, then let v be the vertex replacing
v ′ in the third step, and callv the corresponding vertex ofv in round
r + 1.

An analog of Lemma 3.13 immediately shows that Pr is a valid
path for any r ≥ R + 1. The proof of Lemma 3.10 is simple enough
without potential:

Proof of Lemma 3.10. By Lemma 3.9, at the beginning of round
R + 1, with good probability, any PR+1 has length O(R). We shall
condition on this happening and apply a union bound at the end
of the proof. In any round r > R, for any path Pr with |Pr | ≥ 3,
consider the first vertex v ′ on Pr,1 (cf. Definition 3.21). If v ′ is a

non-root or increases its level during round r , then by the first 3
paragraphs in the proof of Lemma 3.20, it must be ℓ(v ′) ≥ ℓ(v ′) +
1. Otherwise, by Lemma 3.18, there is an edge between v ′ and
the successor of its successor in the graph after Step (5), which
means the successor of v ′ on Pr,1 is removed in the second step of
Definition 3.21. Therefore, the number of vertices on Pr+1 is one
less than Pr if ℓ(v ′) = ℓ(v ′) as the level of a corresponding vertex
cannot be lower. By Lemma 3.17, with good probability, the level
of any vertex in any of the O(logn) rounds cannot be higher than
L. As PR+1 has O(R) vertices, in round r = O(R) + L + R = O(R) ≤
O(logn), the number of vertices on any Pr is at most 2. Therefore,
the diameter of the graph after O(R) rounds is at most 1 with good
probability. □

Proof of Lemma 3.11. Now we show that after the diameter
reaches 1, if the loop has not ended, then the loop must break
in 2L + log5/4 L rounds with good probability, i.e., the graph has
diameter at most 1 and all trees are flat.

For any component, let u be a vertex in it with the maximal level
and consider any (labeled) tree of this component. For any vertex
v in this tree that is incident with an edge, since the diameter is
at most 1, v must have an edge with u, which must be a root. So v
updates its parent to a root with the maximal level after a maxlink,
then any root must have the maximal level in its component since
a root with a non-maximal level before the maxlink must have an
edge to another tree (see the proof of correctness in the full version
of this paper). Moreover, ifv is a root, this can increase the maximal
height among all trees in its component by 1.

Consider the tree with maximal height ξ in the labeled digraph
after Step (1). By Lemmas 3.3 and 3.17, with good probability ξ ≤ L.
The maximal level can increase by at most 1 in this round. If it is
increased in Step (7), the maximal height is at most ⌈ξ/2⌉ + 1 after
the maxlink in the next round; otherwise, the maximal height is
at most ⌈(ξ + 1)/2⌉ ≤ ⌈ξ/2⌉ + 1. If ξ ≥ 4, then the maximal height
of any tree after Step (1) in the next round is at most (4/5)ξ (the
worst case is that a tree with height 5 gets shortcutted to height 3
in Step (6) and increases its height by 1 in the maxlink of Step (1)
in the next round). Therefore, after log5/4 L rounds, the maximal
height of any tree is at most 3.

Beyond this point, if any tree has height 1 after Step (1), then it
must have height 1 at the end of the previous round since there is no
incident edge on leaves after the alter in the previous round, thus
the loop must have been ended by the break condition. Therefore,
the maximal-height tree (with height 3 or 2) cannot increase its
height beyond this point. Suppose there is a tree with height 3,
then if the maximal level of vertices in this component does not
change during the round, this tree cannot increase its height in the
maxlink of Step (6) nor that of Step (1) in the next round, which
means it has height at most 2 as we do a shortcut in Step (6).
So after L rounds, all trees have heights at most 2 after Step (1).
After that, similarly, if the maximal level does not increase, all
trees must be flat. Therefore, after L additional rounds, all trees are
flat after Step (1). By the same argument, the loop must have been
ended in the previous round. The lemmas follows immediately from
L = O(R) and Lemma 3.10. □
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