Session: Full Paper

SPAA 20, July 15-17, 2020, Virtual Event, USA

Connected Components on a PRAM in Log Diameter Time

Sixue Cliff Liu
Princeton University
Princeton, NJ, USA
sixuel@princeton.edu

ABSTRACT

We present an O(log d + log log,,, ,, n)-time randomized PRAM al-
gorithm for computing the connected components of an n-vertex,
m-edge undirected graph with maximum component diameter d.
The algorithm runs on an ARBITRARY CRCW (concurrent-read,
concurrent-write with arbitrary write resolution) PRAM using O(m)
processors. The time bound holds with good probability.

Our algorithm is based on the breakthrough results of Andoni et
al. [FOCS’18] and Behnezhad et al. [FOCS’19]. Their algorithms run
on the more powerful MPC model and rely on sorting and comput-
ing prefix sums in O(1) time, tasks that take Q(log n/loglog n) time
on a CRCW PRAM with poly(n) processors. Our simpler algorithm
uses limited-collision hashing and does not sort or do prefix sums. It
matches the time and space bounds of the algorithm of Behnezhad
et al., who improved the time bound of Andoni et al.

It is widely believed that the larger private memory per processor
and unbounded local computation of the MPC model admit algo-
rithms faster than that on a PRAM. Our result suggests that such
additional power might not be necessary, at least for fundamental
graph problems like connected components and spanning forest.

CCS CONCEPTS

» Mathematics of computing — Graph algorithms; - Theory
of computation — Shared memory algorithms.

KEYWORDS

PRAM,; connected components; hashing

ACM Reference Format:

Sixue Cliff Liu, Robert E. Tarjan, and Peilin Zhong. 2020. Connected Com-
ponents on a PRAM in Log Diameter Time. In Proceedings of the 32nd
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA °20),
July 15-17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3350755.3400249

1 INTRODUCTION

Computing the connected components of an undirected graph is
a fundamental problem in algorithmic graph theory, with many
!To simplify the statements in this paper we assume m/2 > n > 2and d > 1. With

good probability means with probability at least 1 — 1/poly((mlog n)/n); with high
probability means with probability at least 1 — 1/poly(n).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPAA 20, July 15-17, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6935-0/20/07...$15.00
https://doi.org/10.1145/3350755.3400249

Robert E. Tarjan
Princeton University
Princeton, NJ, USA
ret@princeton.edu

359

Peilin Zhong
Columbia University
New York City, New York, USA
peilin.zhong@columbia.edu

applications. Using graph search [32], one can find the connected
components of an n-vertex, m-edge graph in O(m) time, which is
best possible for a sequential algorithm. But linear time is not fast
enough for big-data applications in which the problem graph is of
internet scale or even bigger. To find the components of such large
graphs in practice requires the use of concurrency.

Beginning in the 1970’s, theoreticians developed a series of more-
and-more efficient concurrent algorithms. Their model of com-
putation was some variant of the PRAM (parallel random access
machine) model. Shiloach and Vishkin [29] gave an O(log n)-time
PRAM algorithm in 1982. The algorithm was later simplified by
Awerbuch and Shiloach [5]. These algorithms are deterministic and
run on an ARBITRARY CRCW PRAM with O(m) processors. There
are simpler algorithms and algorithms that do less work but use
randomization. Gazit [13] combined an elegant randomized algo-
rithm of Reif [27] with graph size reduction to obtain an O(log n)-
time, O(m/log n)-processor CRCW PRAM algorithm. This line of
work culminated in the O(log n)-time, O(m/log n)-processor EREW
(exclusive-read, exclusive-write) PRAM algorithms of Halperin and
Zwick [19, 20], the second of which computes spanning trees of the
components as well as the components themselves. On an EREW
PRAM, finding connected components takes Q(log n) time [9], so
these algorithms minimize both time and work. The Q(log n) lower
bound also holds for the CREW (concurrent-read, exclusive-write)
PRAM with randomization, a model slightly weaker than the CRCW
PRAM [11]. For the PRIORITY CRCW PRAM (write resolution by
processor priority), a time bound of Q(log n/loglog n) holds if there
are poly(n) processors and unbounded space, or if there is poly(n)
space and any number of processors [6].

The Halperin-Zwick algorithms use sophisticated techniques.
Practitioners charged with actually finding the connected compo-
nents of huge graphs have implemented much simpler algorithms.
Indeed, such simple algorithms often perform well in practice
[15, 18, 22, 30, 31]. The computational power of current platforms
and the characteristics of the problem graphs may partially explain
such good performance. Current parallel computing platforms such
as MapReduce, Hadoop, Spark, and others have capabilities signifi-
cantly beyond those modeled by the PRAM [10]. A more powerful
model, the MPC (massively parallel computing) model [7] is in-
tended to capture these capabilities. In this model, each processor
can have poly(n) (typically sublinear in n) private memory, and
the local computational power is unbounded. A PRAM algorithm
can usually be simulated on an MPC with asymptotically the same
round complexity, and it is widely believed that the MPC model
admits algorithms faster than the PRAM model [4, 17, 24]. On
the MPC model, and indeed on the weaker COMBINING CRCW
PRAM model, there are very simple, practical algorithms that run
in O(log n) time [25]. Furthermore, many graphs in applications
have components of small diameter, perhaps poly-logarithmic in n.

Session: Full Paper

These observations lead to the question of whether one can
find connected components faster on graphs of small diameter,
perhaps by exploiting the power of the MPC model. Andoni et al. [3]
answered this question “yes” by giving an MPC algorithm that finds
connected components in O(log d log log,,, /,, n) time, where d is the
largest diameter of a component. Very recently, this time bound
was improved to O(logd + log log) n) by Behnezhad et al. [8].
Both of these algorithms are complicated and use the extra power of
the MPC model, in particular, the ability to sort and compute prefix
sums in O(1) communication rounds. These operations require
Q(log n/loglog n) time on a CRCW PRAM with poly(n) processors
[6].2 These results left open the following fundamental problem in
theory:3

Is it possible to break thelog n time barrier for connected
components of small-diameter graphs on a PRAM (with-
out the additional power of an MPC)?

In this paper we give a positive answer by presenting an ARBI-
TRARY CRCW PRAM algorithm that runs in O(log d+loglog,,, /,, n)
time, matching the round complexity of the MPC algorithm by
Behnezhad et al. [8]. Our algorithm uses O(m) processors and space,
and thus is space-optimal and nearly work-efficient. In contrast to
the MPC algorithm, which uses several powerful primitives, we use
only hashing and other simple data structures. Our hashing-based
approach also applies to the work of Andoni et al. [3], giving much
simpler algorithms for connected components and spanning for-
est, which should be preferable in practice. While the MPC model
ignores the total work, our result on the more fine-grained PRAM
model captures the inherent complexities of the problems.

1.1 Computation Models and Main Results

Our main model of computation is the ARBITRARY CRCW PRAM
[34]. It consists of a set of processors, each of which has a constant
number of cells (words) as the private memory, and a large common
memory. The processors run synchronously. In one step, a processor
can read a cell in common memory, write to a cell in common
memory, or do a constant amount of local computation. Any number
of processors can read from or write to the same common memory
cell concurrently. If more than one processor writes to the same
memory cell at the same time, an arbitrary one succeeds.
Our main results are stated below:

THEOREM 1.1 (CONNECTED COMPONENTS). There is an ARBI-
TRARY CRCW PRAM algorithm using O(m) processors that com-
putes the connected components of any given graph. With probability
1 —1/poly((mlogn)/n), it runs in O(logd log logm/n n) time.

The algorithm of Theorem 1.1 can be extended to computing a
spanning forest (a set of spanning trees of the components) with
the same asymptotic efficiency:

THEOREM 1.2 (SPANNING FOREST). There isan ARBITRARY CRCW
PRAM algorithm using O(m) processors that computes the spanning

?Behnezhad et al. also consider the multiprefix CRCW PRAM, in which prefix sum
(and other primitives) can be computed in O(1) time and O(m) work. A direct simu-
lation of this model on a PRIORITY CRCW PRAM or weaker model would suffer an
Q(log n/loglog n) factor in both time and work, compared to our result.

3 A repeated matrix squaring of the adjacency matrix computes the connected compo-
nents in O(log d) time on a CRCW PRAM, but this is far from work-efficient - the
currently best work is O(n?-37%) [12].

360

SPAA 20, July 15-17, 2020, Virtual Event, USA

forest of any given graph. With probability 1 — 1/ poly((mlogn)/n),
it runs in O(log dloglog,,, /,, n) time.

Using the above algorithms as bases, we provide a faster con-
nected components algorithm that is nearly optimal (up to an addi-
tive factor of at most O(loglog n)) due to a conditional lower bound
of Q(logd) [8, 28].

THEOREM 1.3 (FASTER CONNECTED COMPONENTS). There is an
ARBITRARY CRCW PRAM algorithm using O(m) processors that com-
putes the connected components of any given graph. With probability
1 —1/poly((mlogn)/n), it runs in O(logd + log log,/n n) time.

For a dense graph with m = n1*tQ0) the algorithms in all three

theorems run in O(log d) time with probability 1 — 1/poly(n); if
Q@1
d= logm(/)

Note that the time bound in Theorem 1.1 is dominated by the
one in Theorem 1.3. We include Theorem 1.1 here in pursuit of
simpler proofs of Theorem 1.2 and Theorem 1.3.

n, the algorithm in Theorem 1.3 runs in O(log d) time.*

1.2 Related Work and Technical Overview

In this section, we give an overview of the techniques in our al-
gorithms, highlighting the challenges in the PRAM model and the
main novelty in our work compared to that of Andoni et al. [3] and
Behnezhad et al. [8].

1.2.1 Related Work. Andoni et al. [3] observed that if every ver-
tex in the graph has a degree of at least b = m/n, then one can
choose each vertex as a leader with probability ©(log(n)/b) to
make sure that with high probability, every non-leader vertex has
at least 1 leader neighbor. As a result, the number of vertices in
the contracted graph is the number of leaders, which is O(n/b)
in expectation, leading to double-exponential progress, since we
have enough space to make each remaining vertex have degree
Q(m/(n/b)) = Q(b?) in the next round and Q(b%") after i rounds.’
The process of adding edges is called expansion, as it expands the
neighbor sets. It can be implemented to run in O(log d) time. This
gives an O(log d loglog,,, /, n) running time.

Behnezhad et al. improved the multiplicative loglog,, /, n factor
to an additive factor by streamlining the expansion procedure and
double-exponential progress when increasing the space per vertex
[8]. Instead of increasing the degree of each vertex uniformly to at
least b in each round, they allow vertices to have different space
budgets, so that the degree lower bound varies on the vertices.
They define the level {(v) of a vertex v to control the budget of v
(space owned by v): initially each vertex is at level 1 with budget
m/n. Levels increase over rounds. Each v is assigned a budget of
b(v) = (m/n)cav) for some fixed constant ¢ > 1. The maximal level
L :=log, log,,, nis such that a vertex at level L must have enough
space to find all vertices in its component. Based on this idea, they
design an MPC algorithm that maintains the following invariant:

OBSERVATION 1.4 ([8]). With high probability, for any two vertices
u and v at distance 2, after 4 rounds, if {(u) does not increase then

4Without the assumption that m > 2n for simplification, one can replace the m with
2(m + n) in all our statements by creating self-loops in the graph.
SWe use O to hide polylog(n) factors.

Session: Full Paper

their distance decreases to 1; moreover, the skipped vertex w originally
between u and v satisfies {(w) < €(u).®

Behnezhad et al. proved an O(log d + loglog,,, ,, n) time bound
by a potential-based argument on an arbitrary fixed shortest path
P; in the original graph: in round 1 put 1 coin on each vertex of
Py (thus at most d + 1 coins in total); for the purpose of analysis
only, when inductively constructing P;1 in round i, every skipped
vertex on P; is removed and passes its coins evenly to its successor
and predecessor (if exist) on P;. They claimed that any vertex v still
on P; in round i has at least 1.1:~¢(%) coins based on the following:

OBSERVATION 1.5 (CLAIM 3.12 IN [8]). For any path P; in round i
corresponding to an original shortest path, its first and last vertices
are on Pj in round j for any j > i; moreover, if a vertex on P; does not
increase level in 4 rounds, then either its predecessor or successor on
P; is skipped.

The first statement is to maintain the connectivity for every
pair of vertices in the original graph, and the second statement
is to guarantee that each vertex obtains enough coins in the next
round. (Observation 1.5 is seemingly obvious from Observation 1.4,
however there is a subtle issue overlooked in [8] that invalidates the
statement. Their bound is still valid without changing the algorithm
by another potential-based argument, which shall be detailed later
in this section.)

Since the maximal level is L, by the above claim, a vertex on such
a path with length more than 1 in round R := 8logd + L would
have at least 1.181°6¢ > ¢ 4 1 coins, a contradiction, giving the
desired time bound.

Let us first show a counter-example for Observation 1.5 (not
for their time bound). Let the original path P; be (v1,vy, .. ., vs).
We want to show that the distance between v; and vg is at most 1
after R rounds, so neither v; nor vs can be skipped during the path
constructions over rounds. Suppose v; does not increase level in 4
rounds, then for vy to obtain enough coins to satisfy the claim, v,
must be skipped. We call an ordered pair (v;, v;+1) of consecutive
vertices on the path frozen if v; is kept and v;41 is skipped in 4
rounds. So (v1,v7) is frozen. Let v3 (any vertex after v, suffices)
be the only vertex on P; directly connecting to v; after skipping
vg in 4 rounds. (Observation 1.4 guarantees that a vertex directly
connecting to v; must exist but cannot guarantee that there is more
than 1 such vertex on P;.) Note that v cannot be skipped, otherwise
v1 is isolated from P; and thus cannot connect to vg. Now consider
two cases. If v4 is skipped, then pair (v3, v4) is frozen. If vy is not
skipped, then assume v4 does not increase level in 4 rounds. For vy
to obtain enough coins, vs must be skipped because v3 cannot be
skipped to pass coins to vy, so the pair (v4, vs) is frozen. Observe
that from frozen pair (v1, v2), in either case we get another frozen
pair, which propagates inductively to the end of P;. If we happen to
have a frozen pair (vs_1, vs), then vs must be skipped and isolated
from vy, a contradiction.

Here is a fix to the above issue (formally stated in Lemma 3.10).
Note that only the last vertex v on the path can violate the claim
that there are at least 1.17¢(®) coins on v in round i. Assuming
the claim holds for all vertices on the current path, one can always

®For simplicity, we ignore the issue of changing the graph and corresponding vertices
for now.

361

SPAA 20, July 15-17, 2020, Virtual Event, USA

drop (to distinguish from skip) vs and pass its coins to vs—1 (which
must be kept) if they are a frozen pair. So vs_1, the new last vertex
after 4 rounds, obtains enough coins by the induction hypothesis
and the second part of Observation 1.4. By the same argument, the
resulting path after R rounds has length at most 1. Observe that
we dropped O(R) vertices consecutively located at the end of the
path, so the concatenated path connecting v; and the original v
has length O(R). Now applying Observation 1.4 to v, we get that
in 4 rounds, either its level increases by 1 or its successor is skipped.
Therefore, in O(R + L) rounds, there is no successor of v; to be
skipped and the graph has diameter at most 1 by a union bound
over all the (original) shortest paths.

1.2.2 Our Contributions. Now we introduce the new algorithmic
ideas in our PRAM algorithm with a matching time bound.

The first challenge comes from processor allocation. To allocate
different-sized blocks of processors to vertices in each round, there
is actually an existing tool called approximate compaction, which
maps the k distinguished elements in a length-n array one-to-one
to an array of length O(k) with high probability [2]. (The vertices
to be assigned blocks are distinguished and their names are indices
in the old array; after indexing them in the new array, one can as-
sign them predetermined blocks.) However, the current fastest (and
work-optimal) approximate compaction algorithm takes O(log* n)
time, introducing a multiplicative factor [14]. To avoid this, our al-
gorithm first reduces the number of vertices to n/polylog(n) in
O(loglog,,,, n) time, then uses approximate compaction to re-
name the remaining vertices by an integer in [n/polylog(n)] in
O(log" n) time. After this, each cell of the array to be compacted
owns polylog(n) processors, and each subsequent compaction (thus
processor allocation) can be done in O(1) time [16].

The second challenge is much more serious: it is required by
the union bound that any vertex u must connect to all vertices
within distance 2 with high probability if u does not increase in
level. Behnezhad et al. achieve this goal by an algorithm based on
constant-time sorting and prefix sum, which require Q(log n/loglog n)
time on an ARBITRARY CRCW PRAM with poly(n) processors [6].
Our solution is based on hashing: to expand a vertex u, hash all
vertices within distance 2 from u to a hash table owned by u; if there
is a collision, increase the level of u.” As a result, we are able to
prove the following result, which is stronger than Observation 1.4
as it holds deterministically and uses only 1 round:

OBSERVATION 1.6 (FORMALLY STATED IN LEMMA 3.18). For any
two vertices u and v at distance 2, if £(u) does not increase then
their distance decreases to 1 in the next round; moreover, any vertex
originally between u and v has level at most {(u).

The idea of increasing the level immediately after seeing a colli-
sion gives a much cleaner proof of Observation 1.6, but might be
problematic in bounding the total space/number of processors: a
vertex with many vertices within distance 2 can incur a collision
and level increase very often. We circumvent this issue by increas-
ing the level of each budget-b vertex with probability ©(b~9) before
hashing. Then a vertex v with at least b% vertices within distance 2
would see a level increase with high probability; if the level does not

"Hashing also naturally removes the duplicate neighbors to get the desired space
bound - a goal achieved by sorting in [3, 8].

Session: Full Paper

increase, there should be at most b® vertices within distance 2, thus
there is a collision when expanding v with probability 1/poly(b). As
aresult, the probability of level increase is Ob%)+1/ poly(b) < b™°
for some constant ¢ > 0, and we can assign a budget of p1+2(0) to a
vertex with increased level, leading to double-exponential progress.
As a result, the total space is O(m) with good probability since
the union bound is over all polylog(n) different levels and rounds,
instead of O(n?) shortest paths.

Suitable combination of the ideas above yields a PRAM algorithm
that reduces the diameter of the graph to at most 1 in O(R) =
O(logd + loglog,, ,, n) time, with one flexibility: the relationship
between the level £(v) and budget b(v) of vertex v in our algorithm
is not strictly b(v) = (m/n)CKU) for some fixed constant ¢ > 1 as in
Behnezhad et al. [8]; instead, we allow vertices with the same level
to have two different budgets. We show that such flexibility still
maintains the key invariant of our algorithm (without influencing
the asymptotic space bound): if a vertex is not a root in a tree in
the labeled digraph, then its level must be strictly lower than the
level of its parent (formally stated in Lemma 3.3).% Using hashing
and a proper parent-update method, our algorithm does not need
to compute the number of neighbors with a certain level for each
vertex, which is required in [3, 8] and solved by constant-time
sorting and prefix sum on an MPC. If this were done by a direct
application of (constant-time) approximate counting (cf. [1]) on
each vertex, then each round would take Q(k) time where k is the
maximal degree of any vertex, so our new ideas are essential to
obtain the desired time bound.

Finally, we note that while it is straightforward to halt when the
graph has diameter at most 1 in the MPC algorithm, it is not correct
to halt (nor easy to determine) in this case due to the different
nature of our PRAM algorithm. After the diameter reaches O(1), to
correctly compute components and halt the algorithm, we borrow
an idea from [25] to flatten all trees in the labeled digraph in O(R)
time, then apply our slower connected components algorithm (cf.
Theorem 1.1) to output the correct components in O(loglog,,,/,, n)
time, which is O(R) total running time.

2 PRELIMINARIES
2.1 Framework

We formulate the problem of computing connected components
concurrently as follows: label each vertex v with a unique vertex
v.p in its component. Such a labeling gives a constant-time test for
whether two vertices v and w are in the same component: they are
if and only if v.p = w.p. We begin with every vertex self-labeled
(v.p = v) and successively update labels until there is exactly one
label per component.

The labels define a directed graph (labeled digraph) with arcs
(v,v.p), where v.p is the parent of v. We maintain the invariant
that the only cycles in the labeled digraph are self-loops (arcs of
the form (v, v)). Then this digraph consists of a set of rooted trees,
with v a root if and only if v = v.p. Some authors call the root of a
tree the leader of all its vertices. We know of only one algorithm in
the literature that creates non-trivial cycles, that of Johnson and

80ur algorithm adopts the framework of labeled digraph (or parent graph) for com-
puting and representing components, which is standard in PRAM literatures, see

§2.

362

SPAA 20, July 15-17, 2020, Virtual Event, USA

Metaxis [23]. Acyclicity implies that when the parent of a root v
changes, the new parent of v is not in the tree rooted at v (for any
order of the concurrent parent changes). We call a tree flat if the
root is the parent of every vertex in the tree. Some authors call flat
trees stars.

In our connected components and spanning forest algorithms
(see the full version of this paper), we maintain the additional
invariant that if the parent of a non-root v changes, its new parent
is in the same tree as v (for any order of the parent changes). This
invariant implies that the partition of vertices among trees changes
only by set union; that is, no parent change moves a proper subtree
to another tree. We call this property monotonicity. Most of the
algorithms in the literature that have a correct efficiency analysis
are monotone. Liu and Tarjan [25] analyze some non-monotone
algorithms. In our faster connected components algorithm (cf. §3),
only the preprocessing and postprocessing stages are monotone,
which means the execution between these two stages can move
subtrees between different trees in the labeled digraph.

2.2 Building Blocks

Our algorithms use three standard and one not-so-standard build-
ing blocks, which link (sub)trees, flatten trees, alter edges, and add
edges, respectively. (Classic PRAM algorithms develop many tech-
niques to make the graph sparser, e.g., in [13, 19, 20], not denser by
adding edges.)

We treat each edge {v, w} as a pair of oppositely directed arcs
(v, w) and (w, v). A direct link applies to a graph arc (v, w) such
that v is a root and w is not in the tree rooted at v; it makes w the
parent of v. A parent link applies to a graph arc (v, w) and makes
w.p the parent of v; note that v and w.p are not necessarily roots.
Concurrent direct links maintain monotonicity while concurrent
parent links do not. We add additional constraints to prevent the
creation of a cycle in both cases. Specifically, in the case of parent
links, if a vertex is not a root in a tree in the labeled digraph, then
its level must be strictly lower than the level of its parent (formally
stated in Lemma 3.3).

Concurrent links can produce trees of arbitrary heights. To re-
duce the tree heights, we use the shortcut operation: for each v
do v.p = v.p.p. One shortcut roughly halves the heights of all
trees; O(log n) shortcuts make all trees flat. Hirschberg et al. [21]
introduced shortcutting in their connected components algorithm;
it is closely related to the compress step in tree contraction [26] and
to path splitting in disjoint-set union [33].

Our third operation changes graph edges. To alter {v, w}, we
replace it by {v.p, w.p}. Links, shortcuts, and edge alterations suffice
to efficiently compute components. Liu and Tarjan [25] analyze
simple algorithms that use combinations of our first three building
blocks.

To obtain a good bound for small-diameter graphs, we need a
fourth operation that adds edges. We expand a vertex u by adding
an edge {u, w} for a neighbor v of u and a neighbor w of v. The key
idea for implementing expansion is hashing, which is presented
below.

Suppose each vertex owns a block of K? processors. For each
processor in a block, we index it by a pair (p, q) € [K] X [K]. For
each vertex u, we maintain a size-K table H(u). We choose a random

Session: Full Paper

hash function h : [n] — [K]. At the beginning of an expansion,
for each graph arc (u, v), we write vertex v into the h(v)-th cell of
H(u). Then we can expand u as follows: each processor (p, q) reads
vertex v from the p-th cell of H(u), reads vertex w from the g-th
cell of H(v), and writes vertex w into the h(w)-th cell of H(u). For
each w € H(u) after the expansion, {u, w} is considered an added
edge in the graph and is treated the same as any other edge.

The key difference between our hashing-based expansion and
that in the MPC algorithms is that a vertex w within distance 2
from u might not be in H(u) after the expansion due to a collision,
so crucial to our analysis is the way to handle collisions. All hash
functions in this paper are pairwise independent, so each processor
doing hashing in each round only needs to read two words, which
uses O(1) private memory and time.

3 FASTER CONNECTED COMPONENTS
ALGORITHM

In this section we prove Theorem 1.3 by presenting a faster algo-
rithm for connected components.

Faster Connected Components algorithm: repeat {EXPAND-
MAXLINK} until the graph has diameter at most 1 and all trees
are flat; run the connected components algorithm from Theo-
rem 1.1 on the remaining graph.

Each iteration of the repeat loop is called a round. The break
condition that the graph has diameter at most 1 and all trees are flat
is tested at the end of each round.

To simplify the presentation, we make the following assumption,
which is removed in the full version of this paper without influ-
encing the asymptotic running time, number of processors, and
success probability.

AssUMPTION 3.1. Let ¢ = 200, at the beginning of the first round
each vertex has a distinct id in [2m/log® n] and owns a space block
of size max{m/n, log® n}/log? n.

The remainder of this section is organized as follows. The de-
tailed method EXPAND-MAXLINK is presented in §3.1. The correct-
ness of the algorithm is deferred to the full version of this paper. In
§3.2, we implement EXPAND-MAXLINK on an ARBITRARY CRCW
PRAM in O(1) time. We prove that the algorithm uses O(m) proces-
sors over all rounds in §3.3. Finally, we show that the graph diameter
is at most 1 and all trees are flat after O(log d +loglog,,, /,, n) rounds
in §3.4. After the graph diameter reaches 1, it is easy to apply The-
orem 1.1 to output the connected components of the input graph
in O(log log,,, /,, n) additional time, giving Theorem 1.3.

3.1 Algorithmic Framework

In this section, we present the algorithmic framework of EXPAND-
MAXLINK, the ingredient of each round of Faster Connected Com-
ponent algorithm.

EXPAND-MAXLINK uses the following three subroutines, which
were introduced as building blocks in §2.2:

363

SPAA 20, July 15-17, 2020, Virtual Event, USA

ALTER: for each edge e = {v, w}: replace it by {v.p, w.p}.
SHORTCUT: for each vertex u: update u.p to u.p.p.
MAXLINK: repeat {for each vertex wv: let
arg max,, e N(o).p t(w), if €(u) > {(v) then update v.p
to u} for 2 iterations.

u =

The fourth building block is to expand each vertex v to try to
connect to all vertices within distance 2 from v, which corresponds
to Steps (3-5). We give detailed explanations of the key concepts
and steps after the algorithm.

EXPAND-MAXLINK:

(1) MAXLINK; ALTER.

(2) For each root v: increase {(v) with probability
10log n/b(v)°-1.

(3) For each root v: for each root w € N(v): if b(w) = b(v)
then hash w into H(v).

(4) For each root v: if there is a collision in H(v) then mark
v as dormant. For each vertex v: if there is a dormant
vertex in H(v) then mark v as dormant.

(5) For each root v: for each w € H(v): for each u € H(w):
hash u into H(v). For each root v: if there is a collision
in H(v) then mark v as dormant.

(6) MAXLINK; SHORTCUT; ALTER.

(7) For each root v: if v is dormant and did not increase
level in Step (2) then increase £(v).

(8) For each root v: assign a block of size by(y,) to v.

Level and budget. The level £(v) of a vertex v is a non-negative
integer that can either remain the same or increase by one during a
round. At the beginning of round 1, each vertex v is at level 1 and
owns a block of size by = max{m/n,log® n}/log? n by Assump-
tion 3.1. During a round, some roots become non-roots by updating
their parents. If a vertex remains a root, its level might increase. A
root with level £ is assigned a block of size by = b%'mm at the end
of the round. Given b, a vertex v has budget b(v) := b if the current
block owned by v has size b. Each block of size b is partitioned into
Vb indexed tables, each of size Vb.

Neighbor set. The edges that define the current graph include:
(i) the (altered) original edges corresponding to edge processors,
and (ii) the (altered) added edges in the tables over all rounds of
all vertices. Any vertex within distance 1 of v (including v) in the
current graph is called a neighbor of v. For any vertex v, let N(v)
be the set of its neighbors. In Step (3) we use the old N(v) when
initializing the loop that enumerates N(v). For any vertex set S,
define N(S) == U,yes N(w), and define S.p := {w.p | w € S}.

Hashing. At the beginning of a round, one random hash function
h is chosen. All neighbor roots of all roots use h to do individual
hashing in Step (3). A pairwise independent h suffices, so each pro-
cessor only reads two words. The hashing in Step (5) uses the same
h. For each vertex v, let H(v) be the first table in its block, which
will store the added edges incident on v. Step (5) is implemented
by storing the old tables for all vertices while hashing new items

Session: Full Paper

(copied from the old H(v) and old H(w) in the block of w) into the
new table.

3.2 Implementation

In this section, we show how to implement EXPAND-MAXLINK on
an ARBITRARY CRCW PRAM such that any of the first O(log n)
rounds runs in constant time with good probability.

LEMMA 3.2. With good probability, each of the first O(log n) rounds
can be implemented to run in O(1) time.

Proor. The ALTER (cf. Steps (1,6)) applies to all edges in the
current graph. Since each edge corresponds to a distinct processor,
Step (3) and the ALTER take O(1) time.

Steps (2,4,7) and sHORTCUT take O(1) time as each vertex has
a corresponding processor and a collision can be detected using
the same hash function to check the same location again: there is a
collision in H(v) if a vertex w reads a vertex different from w from
the h(w)-th cell of H(v) (then w can write a flag to the processor of
v to indicate the collision).

In each of the two iterations of MAXLINK, each vertex v updates
its parent to a neighbor parent with the highest level if this level is
higher than £(v). Since a vertex can increase its level by at most 1
in any round (cf. Steps (2,7)), there are O(log n) different levels. Let
each neighbor of v write its parent with level ¢ to the ¢-th cell of
an array of length O(log n) in the block of v. By the definitions of
level and budget, the block of any vertex in any round has size at
least b; = Q(log® n). Therefore, we can assign a processor to each
pair of the cells in this array, such that each non-empty cell can
determine whether there is a non-empty cell with a larger index
in O(1) time. For any non-empty cell, if there is no non-empty cell
with a larger index, it must contain a vertex with the maximum
level. As a result, Steps (1,6) take O(1) time.

By Step (3), any w € H(v) has b(w) = b(v), so each u € H(w)
such that w € H(v) owns a processor in the block of v since \/@
vb(w) = b(v) and any vertex in a table is indexed (by its hash
value). Therefore, together with collision detection, Step (5) takes
O(1) time.

In Step (8), each vertex is assigned a block. The pool of ©(m)
processors is partitioned into ©(log? n) zones such that the pro-
cessor allocation in round r for vertices with level ¢ uses the zone
indexed by (r, £), where r, £ € O(logn) in the first O(log n) rounds.
Since there are ©(m) processors in total and all the vertex ids are in
[2m/log€ n] with good probability (cf. Assumption 3.1), we can use
©(m/log n) processors for each different level and apply approxi-
mate compaction (cf. §1.2.2 and see the full version of this paper)
to index each root in O(1) time with high probability such that
the indices of vertices with the same level are distinct, then assign
each of them a distinct block in the corresponding zone. Therefore,
Step (8) takes O(1) time with good probability by a union bound
over all O(log n) levels and rounds.

Finally, we need to implement the break condition in O(1) time,
i.e., to determine whether the graph has diameter at most 1 and all
trees are flat at the end of each round. The algorithm checks the
following 2 conditions in each round: (i) all vertices do not change
their parents nor levels in this round, and (ii) for any vertices v, w, u
such that w € H(v), u € H(w) before Step (5), the h(u)-th cell in

364

SPAA 20, July 15-17, 2020, Virtual Event, USA

H(v) already contains u. Conditions (i) and (ii) can be checked in
O(1) time by writing a flag to vertex processor v if they do not
hold for v, then let each vertex with a flag write the flag to a fixed
processor. If there is no such flag then both Conditions (i) and (ii)
hold and the loop breaks. If there is a non-flat tree, some parent
must change in the SHORTCUT in Step (6). If all trees are flat, they
must be flat before the ALTER in Step (6), then an ALTER moves
all edges to the roots. Therefore, if Condition (i) holds, all trees
are flat and edges are only incident on roots. Moreover, no level
changing means no vertex increase its level in Step (2) and there is
no dormant vertex in Step (7). So for each root v, N(v) = H(v) after
Step (3) and N(N(v)) = H(v) after Step (5) as there is no collision.
By Condition (ii), the table H(v) does not change during Step (5),
so N(v) = N(N(v)). If there exists root v such that there is another
root with distance at least 2 from v, then there must exist a vertex
w # v at distance exactly 2 from v, so w ¢ N(v) and w € N(N(v)),
contradicting with N(v) = N(N(v)). Therefore, any root is within
distance at most 1 from all other roots in its component and the
graph has diameter at most 1.

Since each step runs in O(1) time with good probability, the
lemma follows. O

3.3 Number of Processors

In this section, we show that with good probability, the first O(log n)
rounds use O(m) processors in total.
First of all, we prove a useful property on levels and roots.

LEMMA 3.3. If a vertex v is a non-root at any step, then during
the execution after that step, v is a non-root, {(v) cannot change, and
1 < £(v) < L(v.p).

Proor. The proof is by an induction on rounds. The lemma
clearly holds at the beginning of the first round by definitions.

In Step (1), each iteration of a MAXLINK can only update the
parent to a vertex with higher level, which cannot be itself. In
Step (2), level increase only applies to roots. The invariant holds
after the MAXLINK in Step (6) for the same reasons as above. In
SHORTCUT (cf. Step (6)), each vertex v updates its parent to v.p.p,
which, by the induction hypothesis, must be a vertex with level
higher than v if v is a non-root, thus cannot be v. In Step (7), level
increase only applies to roots. All other steps and ALTERs do not
change the labeled digraph nor levels, giving the lemma. O

Now observe that in the case that a root v with level ¢ increases
its level in Step (2) but becomes a non-root at the end of the round,
v is not assigned a block of size by(,,) in Step (8). Instead, v owns a
block of size by = bg(y)-1 from the previous round. Since in later
rounds a non-root never participates in obtaining more neighbors
by maintaining its table in Steps (3-5) (which is the only place that
requires a larger block), such flexibility in the relationship between
level and budget is acceptable.

By the fact that any root v at the end of any round owns a block

. 1.01¢@)-1 .
of size by(y) = by , anon-root can no longer change its level
nor budget (cf. Lemma 3.3), and the discussion above, we obtain:

COROLLARY 3.4. Any vertex v owns a block of size b at the end of
any round where b,y = 101 < p < b%'m[(u)_l = by ifv

is a root, then the upper bound on b is tight.

Session: Full Paper

Secondly, we prove two simple facts about MAXLINK.

LemMA 3.5. For any vertex v with parent v’ and any w € N(v)
before an iteration of MAXLINK, {(w.p) > {(v’) after the iteration;
furthermore, if ((w.p) > {(v) before an iteration, then v must be a
non-root after the iteration.

ProoF. Forany w € N(v), its parent has level max,, e N(w) €(u.p)
at least €(v’) after an iteration of maxrLINK. This implies that if
{(w.p) > €(v) before an iteration, then after that £(v.p) is at least
the level of the old parent of w which is strictly higher than £(v),
so v must be a non-root. O

LEmMMA 3.6. For any root v with budget b at the beginning of any
round, if there is a root w € N(v) with at least b1 neighbor roots
with budget b after Step (1), then v either increases level in Step (2) or
is a non-root at the end of the round with probability 1 — n™>.

PRrROOF. Assume v does not increase level in Step (2). Let w be
any root in N(v) after Step (1). Since each root u € N(w) with
budget b (thus level at least £(v) by Corollary 3.4) increases its level
with probability 10logn/b%! independently, with probability at
least 1 — (1 —10log n/bo'l)bo‘1 > 1—n">, at least one u increases
level to at least £(v) + 1 in Step (2). Since u € N(N(v)) after Step (1),
by Lemma 3.5, there is a w’ € N(v) such that {(w’.p) > £(v) + 1
after the first iteration of MAXLINK in Step (6). Again by Lemma 3.5,
this implies that v cannot be a root after the second iteration and
the following SHORTCUT.]

Using the above result, we can prove the following key lemma,
leading to the total number of processors.

LEmMA 3.7. For any root v with budget b at the beginning of any

round, b(v) is increased to b'-%1 in this round with probability at most
n=> +p70-05,

ProoF. InStep (2), £(v) increases with probability 10 log n/b%1 <
b~%-98 when ¢ > 100, since b > by > log®2 n. If £(v) does increase
here then it cannot increase again in Step (7), so we assume this is
not the case (and apply a union bound at the end).

If there is a root w € N(v) with at least b1 neighbor roots with
budget b after Step (1), then v is a root at the end of the round with
probability at most n=> by the assumption and Lemma 3.6. So we
assume this is not the case.

By the previous assumption we know that at most b1 vertices
are hashed into H(v) in Step (3). By pairwise independency, with
probability at most (%12 /b = b93 there is a collision as the
table has size Vb, which will increase £(v) (cf. Steps (4,7)).

Now we assume that there is no collision in H(v) in Step (3),
which means H(v) contains all the at most b%-1 neighbor roots with
budget b. By the same assumption, each such neighbor root w has
at most b1 neighbor roots with budget b, so there is a collision in
H(w) in Step (3) with probability at most (b%-1)2/vb = b=0-3 By a
union bound over all the |H(v)| < b%! such vertices, v is marked
as dormant in the second statement of Step (4) (and will increase
level in Step (7)) with probability 5702,

It remains to assume that there is no collision in H(v) nor in any
H(w) such that w € H(v) after Step (4). As each such table contains
at most b1 vertices, in Step (5) there are at most b*-? vertices to

365

SPAA 20, July 15-17, 2020, Virtual Event, USA

be hashed, resulting in a collision in H(v) with probability at most
(b%2)2 /b = b1, which increases £(v) in Step (7).

Observe that only a root v at the end of the round can increase
its budget, and the increased budget must be b!-%! since the level
can increase by at most 1 during the round and b = by, at the
beginning of the round by Corollary 3.4. By a union bound over the
events in each paragraph, b(v) is increased to b'-°! with probability
at most b=0-08 4 p=> 4 p=03 4 p=0.2 4 p=0.1 < =5 4 =0.05, O

Finally, we are ready to prove an upper bound on the number of
processors.

LEMMA 3.8. With good probability, the first O(log n) rounds use
O(m) processors in total.

Proor. Using Lemma 3.7, by a union bound over all O(n) roots,
all O(log n) rounds, and all O(log n) different budgets (since there
are O(log n) different levels), with probability at least 1 — n=3, any
root v with budget b at the beginning of any round increases its
budget to b!-°1 with probability at most b=%-%. We may assume that
the (1—n~3)-probability event always holds since a good-probability
result follows from a union bound.

The number of processors for (altered) original edges and vertices
are clearly O(m) over all rounds (where each vertex processor needs
O(1) private memory to store the corresponding parent, vertex id,
hash function, level, and budget). Therefore, we only need to bound
the number of processors in blocks that are assigned to a vertex in
Step (8) in all O(log n) rounds. (In the full version of this paper, we
show that the overhead in Step (8) is O(1) with high probability.)

For any positive integer ¢, let n, be the number of vertices that
ever reaches budget by during the first O(log n) rounds. For any
vertex v that ever reaches budget by, it has exactly one chance to
reach budget by, in a round if v is a root in that round, which
happens with probability at most b,~%-%. By a union bound over
all O(log n) rounds, v reaches budget by, with probability at most
O(log n)-bp=%% < b, 70% wwhen ¢ > 200, since by > by > log® 2 n.
We obtain E[ng,q | ng] < np - bp70%, thus by by = b0 it
must be:

—-0.04 1.01 -0.03
E[ngr1besr | nel < ne-be b =ngbg b

By Markov’s inequality, ng41bpy1 < nebe with probability at
least 1 — by 0% > 1 - b;70-%%, By a union bound over all ¢ €
O(logn), ngby < nyby for all € € O(log n) with probability at least
1-0(logn)-b; %% > 1-b;79-%1 which is 1 - 1/poly((mlog n)/n)
by by = max{m/n,log® n}/log? n and ¢ > 100. So the number of
new allocated processors for vertices with any budget in any of the
first O(log n) rounds is at most nyb; with good probability.

Recall from Assumption 3.1 and by a direct calculation, ny - by =
O(m/log? n) with good probability. Therefore, by a union bound
over all the O(log n) different budgets and O(log n) rounds, with
good probability the total number of processors is O(m). O

3.4 Diameter Reduction

Let R := O(logd + loglog,, ,, n) where the constant hidden in O
will be determined later in this section. The goal is to prove that
O(R) rounds of EXPAND-MAXLINK suffice to reduce the diameter of
the graph to O(1) and flatten all trees with good probability.

Session: Full Paper

In a high level, our algorithm/proof is divided into the following
3 stages/lemmas:

LEmMMA 3.9. With good probability, after round R, the diameter of
the graph is O(R).

LEMMA 3.10. With good probability, after round O(R), the diameter
of the graph is at most 1.

LEMMA 3.11. With good probability, after round O(R), the diameter
of the graph is at most 1 and all trees are flat.

3.4.1 Path Construction. To formalize and quantify the effect of
reducing the diameter, consider any shortest path P in the input
graph, whose length |P| is at most d. Each ALTER (cf. Steps (1,6))
in each round replaces each vertex on P by its parent, resulting
in a path P’ of the same length as P. (Note that P’ might not be a
shortest path in the current graph and can contain loops.) We also
add edges to the graph for reducing the diameter of the current
graph: for any vertices v and w on path P’, if the current graph
contains edge (v, w), then all vertices exclusively between v and
w can be removed from P’, which still results in a valid path in
the current graph from the first to the last vertex of P’, reducing
the length. If all such paths reduce their lengths to at most d’,
the diameter of the current graph is at most d’. In the following,
consider any fixed shortest path P; at the beginning of round 1.
Formally, we have the following inductive construction of paths
for diameter reduction:’

Definition 3.12 (path construction). Let all vertices on P; be active.
For any positive integer r, given path P, with at least 4 active
vertices at the beginning of round r, EXPAND-MAXLINK constructs
P, 11 by the following 7 phases:

(1) The ALTER in Step (1) replaces each vertex v on P, by v’ =
v.p to get path P, 1. For any v’ on Py 1, let v’ be on P, such
thato’.p = v’.

(2) Let the subpath containing all active vertices on P, 1 be Py 2.

(3) After Step (5), set i as 1, and repeat the following until i >
|Pr 2| —1:letv” := Py 2(i),if v’ is a root and does not increase
level during round r then: if the current graph contains edge
(v’, Pr,2(i + 2)) then mark P, 5(i + 1) as skipped and set i as
i+2;elsesetiasi+ 1.

(4) For each j € [i + 1,|Py 2| + 1], mark P, »(j) as passive.

(5) Remove all skipped and passive vertices from P » to get
path Py 5.

(6) Concatenate P, 5 with all passive vertices on Py, 1 and Py 2
to get path Py 6.

(7) The ALTER in Step (6) replaces each vertex v on Py ¢ by v.p
to get path Pr4.

For any vertex v on P, that is replaced by v’ in Phase (1), if v’ is
not skipped in Phase (3), then let © be the vertex replacing v’ in
Phase (7), and call © the corresponding vertex of v in round r + 1.

LEmMMA 3.13. For any non-negative integer r, the Pr41 constructed
in Definition 3.12 is a valid path in the graph and all passive vertices
are consecutive from the successor of the last active vertex to the end
of Pr1.

For any i € [|P| + 1], let P(i) be the i-th vertex on P.

366

SPAA 20, July 15-17, 2020, Virtual Event, USA

Proor. The proof is by an induction on r. Initially, P; is a valid
path by our discussion on ALTER at the beginning of this section: it
only replaces edges by new edges in the altered graph; moreover,
the second part of the lemma is trivially true as all vertices are active.
Assuming P, is a valid path and all passive vertices are consecutive
from the successor of the last active vertex to the end of the path.
We show the inductive step by proving the invariant after each of
the 7 phases in Definition 3.12. Phase (1) maintains the invariant. In
Phase (2), P,z is a valid path as all active vertices are consecutive
at the beginning of P, ;1 (induction hypothesis). In Phase (3), if a
vertex v is skipped, then there is an edge between its predecessor
and successor on the path; otherwise there is an edge between v
and its successor by the induction hypothesis; all passive vertices
are consecutive from the successor of the last non-skipped vertex
to the end of Py 2 (cf. Phase (4)), so the invariant holds. In Phase (6),
since the first passive vertex on Py 3 is a successor of the last vertex
on P, 5 and the last passive vertex on Py is a predecessor of the
first passive vertex on P, 1 (induction hypothesis), the invariant
holds. Phase (7) maintains the invariant. Therefore, P, is a valid
path and all passive vertices are consecutive from the successor of
the last active vertex to the end of Py41. O

Now we relate the path construction to the diameter of the graph:

LEmMMA 3.14. For any positive integer r, the diameter of the graph
at the end of round r is O(maxp, |Py 2| +r).

ProoF. Let P; be from s to t. By an induction on the number
of ALTERs and Lemma 3.13, the corresponding vertices of s and ¢
are still connected by path P, at the end of round r. Note that by
Lemma 3.13, Pr41 can be partitioned into two parts after Phase (2):
subpath P, 5 and the subpath containing only passive vertices. Since
in each round we mark at most 2 new passive vertices (cf. Phases
(3.4)), we get |Pry1| < |Pp 5| +2r < |Pp 2|+ 2r.If any path P, that
corresponds to a shortest path in the original graph have length
at most d’, the graph at the end of round r must have diameter at

most d’, so the lemma follows. m]

It remains to bound the length of any Py 2 in any round r, which
relies on the following potential function:

Definition 3.15. For any vertex v on Py, define its potential ¢1(v) =
1. For any positive integer r, given path P, with at least 4 active ver-
tices at the beginning of round r and the potentials of vertices on P,
define the potential of each vertex on P41 based on Definition 3.12
as follows:
e For each v replaced by v.p in Phase (1), ¢r,1(v.p) = ¢r(v).
o After Phase (4), for each active vertex v on P, 3, if the suc-
cessor w of v is skipped or passive, then ¢, 4(v) = ¢, 1(v) +
Br.1(w).
o After Phase (6), for each vertex v on Py, if v is active on
Py 2, then ¢y 6(v) = ¢r 4(v), otherwise ¢, 6(v) = ¢r,1(v).
e For each v replaced by v.p in Phase (7), ¢r+1(v.p) = ¢r ¢(v).

We conclude this section by some useful properties of potentials.

LEMMA 3.16. For any path P, at the beginning of roundr > 1,
the following holds: (i) ¥, ep, ¢r(v) < d + 1; (ii) for any v on Py,
¢r(v) > 1; (iii) for any non-skipped v on Py and its corresponding
vertex 0 on Pri1, ¢r+1(0) = ¢r(v).

Session: Full Paper

ProorF. The proof is by an induction on r. The base case follows
from ¢(v) = 1 for each v on P; (cf. Definition 3.15) and |Py| < d.
For the inductive step, note that by Definition 3.15, the potential of
a corresponding vertex is at least the potential of the corresponding
vertex in the previous round (and can be larger in the case that
its successor is skipped or passive). This gives (ii) and (iii) of the
lemma. For any vertex u on P, 3, if both u and its successor are ac-
tive, then ¢, (u) is presented for exactly 1 time in 3, cp, ¢r(v) and
2wep,,, Pr+1(v) respectively; if u is active but its successor w is
skipped or passive, then ¢, (u)+¢,(w) is presented for exactly 1 time
in each summations as well; if u and its predecessor are both passive,
then ¢, (u) is presented only in 3., e p, ¢r(); the potential of the last
vertex on Py » might not be presented in };,cp, ., #r+1(v) depend-
ing on i after Phase (3). Therefore, 3. ,,ep,,, #r+1(v) < Xyep, ¢r(v)
and the lemma holds.]

3.4.2 Remaining Proofs: Proof of Lemma 3.9. First of all, we need
an upper bound on the maximal possible level:

LEMMA 3.17. With good probability, the level of any vertex in any
of the first O(log n) rounds is at most L := 1000 max{2, loglog,, /, n}.

Proor. By Lemma 3.8, with good probability the total number
of processors used in the first O(log n) rounds is O(m). We shall
condition on this happening then assume for contradiction that
there is a vertex v with level at least L in some round.

Ifloglog,,/, n < 2, then m/n > nt/4, By Corollary 3.4, a block
owned by v has size at least

2000-2
by 101 > 520 > (m/n/log2 n)?° > (nl/s)20 =nt > m?,

which is a contradiction as the size of this block owned by v exceeds
the total number of processors O(m).

Else if loglog,,/,, n > 2, then by Corollary 3.4, a block owned by
v has size at least

lL—Z

99910g10gm/nn
bll.O > bl

1.01 > bl(logm/n)t > blslogm/n ")

Whether m/n < log®n or not, if ¢ > 10, it must be b; =

max{m/n,log¢ n}/log?n > \/m/n. So the value of (1) is at least
n* > m2, contradiction. Therefore, the level of any vertex is at most

L. O
We also require the following key lemma:

LEMMA 3.18. For any rootv and anyu € N(N(v)) at the beginning
of any round, let u’ be the parent of u after Step (1). If v does not
increase level and is a root during this round, then u’ € H(v) after
Step (5).

To prove Lemma 3.18, we use another crucial property of the al-
gorithm, which is exactly the reason behind the design of MAXLINK.

LEMMA 3.19. For any rootv and anyu € N(N(v)) at the beginning
of any round, if v does not increase level in Step (2) and is a root at
the end of the round, then u.p is a root with budget b(v) after Step (1).

Proor. By Lemma 3.3, v is a root during this round. For any
w € N(v) and any u € N(w), applying Lemma 3.5 for 2 times,
we get that £(v) < €(w.p) and {(v) < {(u.p) after the MAXLINK in
Step (1). If there is a u € N(N(v)) such that u.p is a non-root or
{(u.p) > £(v) before the ALTER in Step (1), it must be £(u.p.p) > £(v)
by Lemma 3.3. Note that u.p is in N(N(v)) after the ALTER, which

367

SPAA 20, July 15-17, 2020, Virtual Event, USA

still holds before Step (6) as we only add edges. By Lemma 3.5, there
isaw’ € N(v) such that £(w’.p) > €(v) after the first iteration of
MAXLINK in Step (6). Again by Lemma 3.5, this implies that v cannot
be a root after the second iteration, a contradiction. Therefore, for
any u € N(N(v)), u.p is a root with level £(v) (thus budget b(v))
after Step (1). O

With the help of Lemma 3.19 we can prove Lemma 3.18:

Proor oF LEMMA 3.18. For any vertex u, let N’(u) be the set of
neighbors after Step (1). First of all, we show that after Step (5), H(v)
contains all roots in N’(N’(v)) with budget b, where b is the budget
of v at the beginning of the round. For any root w € N’(v), in
Step (3), all roots with budget b(w) in N’(w) are hashed into H(w).
If there is a collision in any H(w), then v must be dormant (cf.
Step (4)) thus increases level in either Step (2) or (7), contradiction.
So there is no collision in H(w) for any w € N’(v), which means
H(w) 2 N’(w). Recall that v € N’(v) and we get that all roots with
budget b(w) = b from N’(N’(v)) are hashed into H(v) in Step (5).
Again, if there is a collision, then v must be dormant and increase
level in this round. Therefore, N’(N’(v)) € H(v) at the end of
Step (5).

By Lemma 3.19, for any u € N(N(v)) at the beginning of any
round, u’ = u.p is a root with budget b in N’(N’(v)) after Step (1).
Therefore, u’ € H(v) at the end of Step (5), giving Lemma 3.18. O

The proof of Lemma 3.9 relies on the following lemma based on
potentials:

LEMMA 3.20. At the beginning of any round r > 1, for any active
vertex v on any path Py, ¢,(v) > 2" ~(),

Proor. The proof is by an induction on r. The base case holds
because for any (active) vertex v on Py, ¢1(r) = 1and r = {(v) = 1.
Now we prove the inductive step from r to r + 1 given that the
corresponding vertex v of v € P, is on P,41 and active.

Suppose v is a non-root at the end of round r. If v is a non-root at
the end of Step (1), then £(v.p) > £(v) after Step (1) by Lemma 3.3,
and €(v) > {(v.p) > €(v); else if v first becomes a non-root in
Step (6), then v = v.p and {(v.p) > {(v) after Step (6) by Lemma 3.3.
So by the induction hypothesis, ¢,+1(D) > ¢r(v) > 27~ >
2r+l—[’(5)‘

Suppose v increases its level in round r. Let ¢ be the level of v at
the beginning of round r. If the increase happens in Step (2), then v
is a root after Step (1). Whether v changes its parent in Step (6) or
not, the level of v = v.p is at least £ + 1. Else if the increase happens
in Step (7), then v is a root after Step (6). So v = v and its level is
at least £ + 1 at the end of the round. By the induction hypothesis,
$r+1(D) = ¢r(v) 2 277 > 2r+1-0@),

It remains to assume that v is a root and does not increase level
during round r. By Lemma 3.18, for any u € N(N(v)) at the begin-
ning of round r, the parent u’ of u after Step (1) is in H(v) after
Step (5). Since v is a root during the round, it remains on P, » af-
ter Phase (2). We discuss two cases depending on whether v is at
position before |P 2| — 1 or not.

In Phase (3), note that if v = P, (i) where i < |Py 2| — 1, then
Py (i + 2) is the parent of a vertex in N(N(v)) after Step (1), which
must be in H(v) after Step (5). Therefore, the graph contains edge
(v, Pr2(i + 2)) and v” = P, (i + 1) is skipped, thus ¢, 4(v) =

Session: Full Paper

ér,1(v) + ¢r,1(v") by Definition 3.15. Since i + 1 < |Prp| + 1, 0" is
an active vertex on Py 1. By the induction hypothesis, ¢, 1(v”) =
¢r(@) = 277C@) (recall that o’ is replaced by its parent v’ in
Phase (1)/Step (1)). If £(v”) > £(v), then applying Lemma 3.5 for
2 times we get that v is a non-root after Step (1), a contraction.
Therefore, ¢, 1(v) > 2r=l@) > or=l(v) gngd dr,a(v) = ¢r1(v) +
¢r,1('0,) > ¢r(U) + 2r—t’(v) > 2r+1—£’(v).

On the other hand, if i > |Py 2| — 1 is reached after Phase (3),
it must be i < |Pr 2| + 1 by the break condition of the loop in
Phase (3). Note that v’ := P, 5(i+1) is marked as passive in Phase (4),
and by Definition 3.15, ¢y 4 = ¢, 1(v) + ¢r,1(v”). Moreover, since
i+1 < |Pra|+1, 7" is an active vertex on P, ;. Using the same
argument in the previous paragraph, we obtain ¢, 4(v) > 2" *+17¢(®),

By Definition 3.15, after Phase (7), ¢r+1(0) = ¢r.6(v) = ¢r,4(v) =
2r+1-t(v) = gr+1-L(?) Ag a result, the lemma holds for any active
vertex v on P41, finishing the induction and giving the lemma. O

ProOOF OF LEMMA 3.9. Let R = logd + L, where L is defined
in Lemma 3.17. By Lemma 3.17, with good probability, {(v) < L
for any vertex v in any of the first O(log n) rounds, and we shall
condition on this happening. By Lemma 3.20, at the beginning of
round R, if there is a path Pg of at least 4 active vertices, then for
any of these vertices v, it must be ¢r(v) > 2R-l() » 2R-L 5 g 5o
Yvepg $r(v) 2 4d > d + 1, contradicting with Lemma 3.16. Thus,
any path Pr has at most 3 active vertices, which means |Pg 3| < 3
by Definition 3.12. Therefore, by Lemma 3.14, the diameter of the
graph at the end of round R is O(R) with good probability. O

3.4.3 Remaining Proofs: Proof of Lemma 3.11. Based on the graph
and any Pg at the beginning of round R + 1, we need a (much
simpler) path construction:

Definition 3.21. For any integer r > R, given path P, with |P,| >
3 at the beginning of round r, EXPAND-MAXLINK constructs Pr4+1 by
the following:

(1) The ALTER in Step (1) replaces each vertex v on P, by v’ =
v.p to get path P, 1. For any v’ on Py 1, let v’ be on P, such
thatv’.p = v’.

(2) After Step (5), let v’ := P 1(1), if v’ is a root at the end of
round r and does not increase level during round r then: if
the current graph contains edge (v’, Py, 1(3)) then remove
P;.1(2) to get path P, 3.

(3) The ALTER in Step (6) replaces each vertex v on P, 3 by v.p
to get path Pr41.

For any vertex v on P, that is replaced by v’ in the first step, if v’ is
not removed in the second step, then let ¥ be the vertex replacing
v’ in the third step, and call T the corresponding vertex of v in round
r+1.

An analog of Lemma 3.13 immediately shows that P, is a valid
path for any r > R + 1. The proof of Lemma 3.10 is simple enough
without potential:

Proor oF LEMMA 3.10. By Lemma 3.9, at the beginning of round
R + 1, with good probability, any Pgry; has length O(R). We shall
condition on this happening and apply a union bound at the end
of the proof. In any round r > R, for any path P, with |P,| > 3,
consider the first vertex v’ on Py 1 (cf. Definition 3.21). If v’ is a

368

SPAA 20, July 15-17, 2020, Virtual Event, USA

non-root or increases its level during round r, then by the first 3
paragraphs in the proof of Lemma 3.20, it must be £(v’) > €(v”) +
1. Otherwise, by Lemma 3.18, there is an edge between v’ and
the successor of its successor in the graph after Step (5), which
means the successor of v’ on Py ; is removed in the second step of
Definition 3.21. Therefore, the number of vertices on P41 is one
less than P, if £(v”) = € (v’) as the level of a corresponding vertex
cannot be lower. By Lemma 3.17, with good probability, the level
of any vertex in any of the O(log n) rounds cannot be higher than
L. As Pgy1 has O(R) vertices, in round r = O(R) + L+ R = O(R) <
O(log n), the number of vertices on any P, is at most 2. Therefore,
the diameter of the graph after O(R) rounds is at most 1 with good
probability. O

Proor or LEMMa 3.11. Now we show that after the diameter
reaches 1, if the loop has not ended, then the loop must break
in 2L + logs 4 L rounds with good probability, i.e., the graph has
diameter at most 1 and all trees are flat.

For any component, let u be a vertex in it with the maximal level
and consider any (labeled) tree of this component. For any vertex
v in this tree that is incident with an edge, since the diameter is
at most 1, v must have an edge with u, which must be a root. So v
updates its parent to a root with the maximal level after a MAXLINK,
then any root must have the maximal level in its component since
a root with a non-maximal level before the MAXLINK must have an
edge to another tree (see the proof of correctness in the full version
of this paper). Moreover, if v is a root, this can increase the maximal
height among all trees in its component by 1.

Consider the tree with maximal height ¢ in the labeled digraph
after Step (1). By Lemmas 3.3 and 3.17, with good probability ¢ < L.
The maximal level can increase by at most 1 in this round. If it is
increased in Step (7), the maximal height is at most [£/2] + 1 after
the MAXLINK in the next round; otherwise, the maximal height is
at most [(£ +1)/2] < [£/2] + 1. If € > 4, then the maximal height
of any tree after Step (1) in the next round is at most (4/5)¢ (the
worst case is that a tree with height 5 gets shortcutted to height 3
in Step (6) and increases its height by 1 in the MAXLINK of Step (1)
in the next round). Therefore, after log; /4 L rounds, the maximal
height of any tree is at most 3.

Beyond this point, if any tree has height 1 after Step (1), then it
must have height 1 at the end of the previous round since there is no
incident edge on leaves after the ALTER in the previous round, thus
the loop must have been ended by the break condition. Therefore,
the maximal-height tree (with height 3 or 2) cannot increase its
height beyond this point. Suppose there is a tree with height 3,
then if the maximal level of vertices in this component does not
change during the round, this tree cannot increase its height in the
MAXLINK of Step (6) nor that of Step (1) in the next round, which
means it has height at most 2 as we do a SHORTCUT in Step (6).
So after L rounds, all trees have heights at most 2 after Step (1).
After that, similarly, if the maximal level does not increase, all
trees must be flat. Therefore, after L additional rounds, all trees are
flat after Step (1). By the same argument, the loop must have been
ended in the previous round. The lemmas follows immediately from
L = O(R) and Lemma 3.10. O

Session: Full Paper

REFERENCES

[1] Miklés Ajtai. 1990. Approximate Counting with Uniform Constant-Depth Cir-

[10

[11

[12

[13

[14

[15

[16

]

]

]

]

]

cuits. In Advances In Computational Complexity Theory, Proceedings of a DIMACS
Workshop, New Jersey, USA, December 3-7, 1990. 1-20. https://doi.org/10.1090/
dimacs/013/01

Selim G. Akl. 1989. Design and analysis of parallel algorithms. Prentice Hall.
Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong.
2018. Parallel Graph Connectivity in Log Diameter Rounds. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October
7-9, 2018. 674-685.

Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. 2019. Massively Parallel Al-
gorithms for Finding Well-Connected Components in Sparse Graphs. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019. 461-470. https:
//doi.org/10.1145/3293611.3331596

Baruch Awerbuch and Yossi Shiloach. 1987. New Connectivity and MSF Algo-
rithms for Shuffle-Exchange Network and PRAM. IEEE Trans. Computers 36, 10
(1987), 1258-1263.

Paul Beame and Johan Hastad. 1989. Optimal bounds for decision problems on the
CRCW PRAM. J. ACM 36, 3 (1989), 643-670. https://doi.org/10.1145/65950.65958
Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication Steps for
Parallel Query Processing. 7. ACM 64, 6 (2017), 40:1-40:58.

Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and
Vahab S. Mirrokni. 2019. Near-Optimal Massively Parallel Graph Connec-
tivity. In 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019. 1615-1636. https:
//doi.org/10.1109/FOCS.2019.00095

Stephen A. Cook, Cynthia Dwork, and Rudiger Reischuk. 1986. Upper and Lower
Time Bounds for Parallel Random Access Machines without Simultaneous Writes.
SIAM §. Comput. 15, 1 (1986), 87-97.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107-113. https://doi.org/10.1145/
1327452.1327492

Martin Dietzfelbinger, Miroslaw Kutylowski, and Rudiger Reischuk. 1994. Exact
Lower Time Bounds for Computing Boolean Functions on CREW PRAMs. .
Comput. Syst. Sci. 48, 2 (1994), 231-254. https://doi.org/10.1016/S0022-0000(05)
80003-0

Francois Le Gall. 2014. Powers of tensors and fast matrix multiplication. In
International Symposium on Symbolic and Algebraic Computation, ISSAC "14, Kobe,
Japan, July 23-25, 2014, Katsusuke Nabeshima, Kosaku Nagasaka, Franz Winkler,
and Agnes Szant6 (Eds.). ACM, 296-303. https://doi.org/10.1145/2608628.2608664
Hillel Gazit. 1991. An Optimal Randomized Parallel Algorithm for Finding
Connected Components in a Graph. SIAM J. Comput. 20, 6 (1991), 1046-1067.
https://doi.org/10.1137/0220066

Joseph Gil, Yossi Matias, and Uzi Vishkin. 1991. Towards a Theory of Nearly
Constant Time Parallel Algorithms. In 32nd Annual Symposium on Foundations
of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. 698-710. https:
//doi.org/10.1109/SFCS.1991.185438

Steve Goddard, Subodh Kumar, and Jan F. Prins. 1994. Connected components
algorithms for mesh-connected parallel computers. In Parallel Algorithms, Pro-
ceedings of a DIMACS Workshop, Brunswick, New Jersey, USA, October 17-18, 1994.
43-58.

Michael T. Goodrich. 1991. Using Approximation Algorithms to Design Parallel
Algorithms that May Ignore Processor Allocation (Preliminary Version). In 32nd

369

[17

(18]

[19

™
=

[21

[22

[23

[24

[25]

™
S

[27

[28

[29

[30

=
=

[32

[33

(34

SPAA 20, July 15-17, 2020, Virtual Event, USA

Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico,
1-4 October 1991. 711-722.

Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, Searching,
and Simulation in the MapReduce Framework. In Algorithms and Computation -
22nd International Symposium, ISAAC 2011, Yokohama, Japan, December 5-8, 2011.
Proceedings. 374-383. https://doi.org/10.1007/978-3-642-25591-5_39

John Greiner. 1994. A comparison of parallel algorithms for connected compo-
nents. In Proceedings of the sixth annual ACM symposium on Parallel algorithms
and architectures, SPAA 1994. ACM, 16-25.

Shay Halperin and Uri Zwick. 1996. An Optimal Randomised Logarithmic Time
Connectivity Algorithm for the EREW PRAM. J. Comput. Syst. Sci. 53, 3 (1996),
395-416.

Shay Halperin and Uri Zwick. 2001. Optimal randomized EREW PRAM algorithms
for finding spanning forests. Journal of Algorithms 39, 1 (2001), 1-46.

Daniel S. Hirschberg, Ashok K. Chandra, and Dilip V. Sarwate. 1979. Computing
Connected Components on Parallel Computers. Commun. ACM 22, 8 (1979),
461-464. https://doi.org/10.1145/359138.359141

Tsan-Sheng Hsu, Vijaya Ramachandran, and Nathaniel Dean. 1997. Parallel
implementation of algorithms for finding connected components in graphs. Par-
allel Algorithms: Third DIMACS Implementation Challenge, October 17-19, 1994 30
(1997), 20.

Donald B. Johnson and Panagiotis Takis Metaxas. 1997. Connected Components

in O (log"3/2 n) Parallel Time for the CREW PRAM. 7. Comput. Syst. Sci. 54, 2
(1997), 227-242.

Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A Model of
Computation for MapReduce. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorilhms, SODA 2010, Austin, Texas, USA, January
17-19, 2010. 938-948. https://doi.org/10.1137/1.9781611973075.76

S. Cliff Liu and Robert E. Tarjan. 2019. Simple Concurrent Labeling Algorithms
for Connected Components. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA. 3:1-3:20.

Gary L. Miller and John H. Reif. 1985. Parallel Tree Contraction and Its Appli-
cation. In 26th Annual Symposium on Foundations of Computer Science, Portland,
Oregon, USA, 21-23 October 1985. 478-489.

John H Reif. 1984. Optimal Parallel Algorithms for Graph Connectivity. Technical
Report. HARVARD UNIV CAMBRIDGE MA AIKEN COMPUTATION LAB.
Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. 2018. Shuffles and
Circuits (On Lower Bounds for Modern Parallel Computation). 7. ACM 65, 6
(2018), 41:1-41:24. https://doi.org/10.1145/3232536

Yossi Shiloach and Uzi Vishkin. 1982. An O(log n) Parallel Connectivity Algorithm.
J. Algorithms 3, 1 (1982), 57-67.

Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2014. A simple and practical
linear-work parallel algorithm for connectivity. In 26th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’14, Prague, Czech Republic -
June 23 - 25, 2014. 143-153. https://doi.org/10.1145/2612669.2612692

Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. 2018. Shortcut-
ting Label Propagation for Distributed Connected Components. In Proceedings
of the Eleventh ACM International Conference on Web Search and Data Mining,
WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018. 540-546.

Robert E. Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM
. Comput. 1, 2 (1972), 146-160.

Robert E. Tarjan and Jan van Leeuwen. 1984. Worst-case Analysis of Set Union
Algorithms. J. ACM 31, 2 (1984), 245-281.

Uzi Vishkin. 1983. Implementation of Simultaneous Memory Address Access in
Models That Forbid It. J. Algorithms 4, 1 (1983), 45-50.

	Abstract
	1 Introduction
	1.1 Computation Models and Main Results
	1.2 Related Work and Technical Overview

	2 Preliminaries
	2.1 Framework
	2.2 Building Blocks

	3 Faster Connected Components Algorithm
	3.1 Algorithmic Framework
	3.2 Implementation
	3.3 Number of Processors
	3.4 Diameter Reduction

	References

