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Host phylogeny and host ecology structure
the mammalian gut microbiota at different
taxonomic scales
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Abstract

The gut microbiota is critical for host function. Among mammals, host phylogenetic relatedness and diet are strong
drivers of gut microbiota structure, but one factor may be more influential than the other. Here, we used 16S rRNA
gene sequencing to determine the relative contributions of host phylogeny and host diet in structuring the gut
microbiotas of 11 herbivore species from 5 families living sympatrically in southwest Kenya. Herbivore species were
classified as grazers, browsers, or mixed-feeders and dietary data (% C4 grasses in diet) were compiled from
previously published sources. We found that herbivore gut microbiotas were highly species-specific, and that host
taxonomy accounted for more variation in the gut microbiota (30%) than did host dietary guild (10%) or sample
month (8%). Overall, similarity in the gut microbiota increased with host phylogenetic relatedness (r = 0.74) across
the 11 species of herbivores, but among 7 closely related Bovid species, dietary %C4 grass values more strongly
predicted gut microbiota structure (r = 0.64). Additionally, within bovids, host dietary guild explained more of the
variation in the gut microbiota (17%) than did host species (12%). Lastly, while we found that the gut microbiotas
of herbivores residing in southwest Kenya converge with those of distinct populations of conspecifics from central
Kenya, fine-scale differences in the abundances of bacterial amplicon sequence variants (ASVs) between individuals
from the two regions were also observed. Overall, our findings suggest that host phylogeny and taxonomy strongly
structure the gut microbiota across broad host taxonomic scales, but these gut microbiotas can be further modified
by host ecology (i.e., diet, geography), especially among closely related host species.
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Background
The gut microbiota, which is the collection of microbes
inhabiting the gastrointestinal tract, is essential to host
functioning. In mammals, resident gut microbes pro-
mote the digestive efficiency of their hosts by synthesiz-
ing vitamins, breaking down fiber, and supplementing
the host with energy released from fermentation [1–4].
The gut microbiota also interacts with the host immune

system, and may also modulate behavior [5–7]. Due to
the critical importance of the gut microbiota for host
performance, research has focused on determining the
forces that shape its assembly and composition. Decades
of research show that across vertebrate hosts, the gut
microbiota is predominantly shaped by host phylogeny
and ecology. Closely related host species tend to have
more similar gut microbiotas than more distantly related
host species [8–12] and this congruence between host
phylogenetic relatedness and gut microbiota similarity is
termed “phylosymbiosis” [13–15]. However, gut micro-
biotas can also be further shaped by their host’s ecology,
including their host’s diet, habitat, and geographic
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location [16–19]. Thus, although both of these host fac-
tors may shape the gut microbiota, their relative contri-
butions might be influenced by a variety of variables
including the taxonomic breadth of the host species sur-
veyed, and the diversity of host habitats, diets, and gut
physiologies represented.
If phylosymbiosis is observed, both host phylogenetic

relatedness and ecology could be contributing to the
pattern. Several studies have disentangled the effects of
these two factors and have shown that phylosymbiosis
can be observed among hosts that share habitats or di-
ets, and among hosts that reside in different habitats and
consume different diets. For example, in mice, voles, and
shrews, gut microbiotas tend to be more similar among
closely related host species, despite these animals occu-
pying different habitats and consuming different diets
[20]. In populations of American pikas (Ochotona prin-
ceps) from different mountain ranges, a cladogram of
gut microbiota similarity was congruent with a phyl-
ogeny of host genetic similarity [21]. Among hosts with
overlapping diets, gut microbiotas still exhibit patterns
consistent with phylosymbiosis, as has been documented
for folivorous primates [9]. Furthermore, in 33 species of
sympatric herbivores from the Laikipia region in central
Kenya, host phylogenetic relatedness strongly predicted
gut microbiota composition (r = 0.91), which was weakly
correlated with host diet (r = 0.28) [22], suggesting that
convergence of gut microbiotas among closely related
hosts was not primarily due to similarities in their diet.
Here, we build upon this work and use 16S rRNA gene

sequencing to determine the relative influences of host
phylogenetic relatedness and host ecology in structuring
the gut microbiotas of 11 species of herbivores living
sympatrically in the Masai Mara National Reserve
(henceforth the Masai Mara) in southwestern Kenya. We
survey the gut microbiotas of African buffalo, domestic
cattle, common eland, impala, Kirk’s dik-dik, Thomp-
son’s gazelle, topi, Masai giraffe, common warthog,

plains zebra, and African elephant (Table 1). These spe-
cies represent 5 mammalian families (Bovidae, Elephan-
tidae, Equidae, Giraffidae, and Suidae) and three dietary
guilds: grazers, browsers, and mixed-feeders. Further-
more, we compare the gut microbiotas of conspecific
herbivores from the Masai Mara and Laikipia to deter-
mine the extent to which host geography and/or local
habitat influence gut microbiota composition and pat-
terns of phylosymbiosis. The two regions differ in their
altitude, soils, rainfall, vegetation, mammal densities, and
degree of human disturbance [23–27], any of which
could potentially affect the gut microbiota compositions
of their resident herbivores. Specifically, our study aims
were to survey the gut microbiotas of 11 species of her-
bivores and 1) determine whether host phylogenetic re-
latedness or diet more strongly predict gut microbiota
similarity among these hosts at broad taxonomic scales
(i.e. among all study species) and lesser taxonomic scales
(i.e. among 7 closely related Bovid species), 2) evaluate
the influences of host taxonomy (family and species) and
host dietary guild on gut microbiota composition and di-
versity, and 3) examine the amount of variance in the
gut microbiota explained by host phylogeny and ecology
(i.e., diet, geography) in conspecific hosts from the Masai
Mara (this study) and Laikipia [22]. Collectively, our
findings elucidate the factors shaping the gut microbiota
of hosts at greater and lesser taxonomic scales.

Results
Aim 1: determine the strongest predictor of gut
microbiota similarity among herbivore hosts at greater
and lesser taxonomic scales
We conducted partial correlation coefficient tests to de-
termine the relative contributions of host phylogenetic
relatedness and diet in predicting gut microbiota struc-
ture. These tests evaluated the strength of the relation-
ship between host phylogenetic relatedness and gut
microbiota similarity (phylosymbiosis), while

Table 1 List of host study species and their associated metadata

Order Family Species (common name) Dietary Guild Total Samples (N) Analyzed samples (N)

Cetartiodactyla Bovidae African buffalo grazer 18 17

Cetartiodactyla Bovidae Domestic cattle grazer 14 13

Cetartiodactyla Bovidae Common eland mixed feeder 8 8

Cetartiodactyla Bovidae Impala mixed feeder 20 20

Cetartiodactyla Bovidae Kirk’s dik dik browser 37 31

Cetartiodactyla Bovidae Thomson’s gazelle mixed feeder 14 14

Cetartiodactyla Bovidae Topi grazer 19 19

Cetartiodactyla Giraffidae Masai giraffe browser 25 18

Cetartiodactyla Suidae Warthog mixed feeder 9 8

Perissodactyla Equidae Plains zebra grazer 5 5

Proboscidea Elephantidae African elephant mixed feeder 12 12
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controlling for dietary similarity, and assessed the rela-
tionship between host dietary similarity and gut micro-
biota similarity, while controlling for phylogenetic
relatedness. Phylogenetic relatedness was based on di-
vergence times between host species and diet was quan-
tified by %C4 grass values in the diet (e.g. proportion of
monocotyledon grasses consumed relative to trees and
shrubs) previously published for these host species [28–
31] (Table S1).
Although a dendrogram of gut microbiota similarity

did not closely reflect host phylogeny (Fig. 1a), partial
correlation coefficient tests indicated that gut microbiota
similarity increased with host phylogenetic relatedness
even after controlling for dietary similarity (Table 2).
Across the 11 herbivore species, the gut microbiotas
were generally more similar among closely related host
taxa (e.g., buffalo and cattle) than among distantly re-
lated host taxa (e.g., impala and elephant), and the aver-
age strength of the phylosymbiosis signal across
microbiota similarity metrics was 0.74 (Fig. 1b). No rela-
tionship was observed between host dietary similarity
(%C4) and gut microbiota similarity at this broad taxo-
nomic scale (Table 2). Importantly, at a lesser host taxo-
nomic scale, among 7 closely related Bovid species, we
observed the opposite patterns. Gut microbiota similar-
ity did not covary with host phylogenetic relatedness
after adjusting for dietary similarity among these bovid
species (Fig. 1b), but we did find a significant relation-
ship between dietary similarity and gut microbiota simi-
larity (average r = 0.64) (Table 2). In summary, across
broad host taxonomic scales, host phylogenetic related-
ness strongly predicted gut microbiota similarity, but
host diet more strongly predicted gut microbiota struc-
ture at a lesser host taxonomic scale.
PERMANOVA analyses that included categorical vari-

ables for host taxonomy (family or species), dietary guild
(grazer, browser, or mixed feeder) and sample month
echoed the findings described above. Across the sur-
veyed herbivores, host family explained on average ~
23% of the variation in gut microbiota structure,
followed by host dietary guild (10%), and sample month
(8%) (Table 3). Regardless of whether distance matrices
took into account the presence/absence of bacterial taxa,
their proportional abundances, or their phylogenetic re-
latedness, the percent variation explained by each host
factor was consistent. Therefore, for brevity, we only
present PCoA ordination plots using the Bray-Curtis
index. These plots show that gut microbiotas primarily
partition by host family, and also secondarily by host
dietary guild (Fig. 1c). Additionally, we conducted the
same PERMANOVA statistics from above but specified
host species in lieu of the host family term; here, host
species explained on average 30.92% of the variation
across distance metrics, host diet explained 10.44% of

the variation and sample month accounted for 7.93% of
the variance (Table S2). Lastly, within Bovidae, host diet-
ary guild was a slightly stronger predictor of the gut
microbiota than host species or sample month. On aver-
age, host dietary guild accounted for 17.3% of the vari-
ation, whereas host species explained 12.2% of the
variation, and sample month contributed to 7.3% of the
variation (Table 3). PCoA ordinations showed that the
gut microbiotas of bovids clustered by host dietary guild
and host species (Fig. 1d). Collectively, our findings sug-
gest that host phylogenetic relatedness and taxonomy
predict gut microbiota structure across the studied her-
bivores, but among closely related host species, host diet
is the more influential predictor.

Aim 2: evaluate the influences of host taxonomy and host
dietary guild on gut microbiota composition and diversity
Here, we compared gut microbiota taxonomic compos-
ition among the different hosts to identify the bacterial
taxa that were characteristic of particular host families
or dietary guilds. We also examine the extent to which
host taxonomy (family or species) and dietary guild were
associated with gut microbiota alpha-diversity.

Microbiota composition
Our analyses showed that some bacterial taxa were
widely shared among host species and dietary guilds,
whereas others were abundant only in particular host
species. All herbivore gut microbiotas were dominated
by two bacterial phyla, Firmicutes (51% average relative
abundance across samples), and Bacteroidetes (32%) (Fig.
S1). The most abundant bacterial families were Rumino-
coccaceae (30.8%), Rikenellaceae (11.4%), Lachnospira-
ceae (10.9%), and Prevotellaceae (8%) (Fig. 2a). Prevalent
bacterial genera included Alistipes, Bacteroides, Rumino-
coccus, and Treponema (Fig. S2). Only 10 out of 11,930
(0.08%) Amplicon Sequence Variants (ASVs) were
present in 90% of samples pooled across all host species;
7 were assigned to the family Ruminococcaceae, 1 to
Peptococcaceae, and 2 to Lachnospiraceae (Agathobac-
ter). According to a BLAST search against the NCBI
nucleotide database, sequences from the 7 Ruminococca-
ceae ASVs were highly similar to sequences from uncul-
tured Ruminococcaceae strains, uncultured rumen
bacteria, and uncultured anaerobic bacteria. Of these 10
ASVs, only two were abundant across samples (e.g.,
ASV10543 Ruminococcaceae), five were modestly abun-
dant in specific host species (e.g., ASV71 Agathobacter
in elephants), and 3 were present at very low abundances
in all samples (e.g., ASV7824 Peptococcaceae) (Fig. S3).
The latter 3 ASVs do not appear to represent contamin-
ation introduced during DNA extraction and sequen-
cing, as these sequences are highly similar to those
found in rumen and fecal samples.
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Fig. 1 (See legend on next page.)
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Nonetheless, variation in gut microbiota compositions
among host families and dietary guilds was evident. Indi-
cator species analysis showed that the gut microbiotas of
elephants were significantly associated with Endomicro-
biaceae and Desulfobulbaceae, those of zebras with Heli-
cobacteraceae and Deltaproteobacteria, and those of
warthogs with Myxococcales and Coxiellaceae (Fig. 2b).
Giraffe gut microbiotas were highly associated with En-
terobacteriaceae, Bifidobacteriaceae, and Bacillaceae. No
bacterial taxa were strongly and specifically associated
with Bovid hosts. Furthermore, there were bacterial
types that were indicative of specific dietary guilds.
Grazer gut microbiotas were characterized by Sphingo-
bacteriaceae, Flavobacteriaceae, Neisseriaceae, and Len-
tisphaeria (Fig. 2c). Browser gut microbiotas had 11
indicator bacterial taxa, including Bacillaceae, Coriobac-
teriales, Methanomicrobia and Rubrobacteriaceae. Lastly,
the gut microbiotas of mixed feeders were highly associ-
ated with Synergistaceae, Succinivibrionaceae, and
Bacteroidales, among other bacteria.
More fine-scale analysis of the presence and absence

of bacterial ASVs also revealed that the gut microbiotas
of our studied herbivores contained microbes that were
biased towards particular host species. These were bac-
terial ASVs that were present in 75% of samples for that
host species, and absent in 97% of samples from other
hosts. The gut microbiotas of buffalo, cattle, topi, and

impala mostly contained ASVs that were present in
other herbivores, as < 3% of their ASVs were biased to-
wards any of these host species. Between 4 and 8% of
ASVs comprising the gut microbiota of dik-diks, eland,
elephant, Thompson’s gazelle, and giraffe were biased
towards these host species. Warthogs and zebras how-
ever, harbored more unusual microbiotas, as 70–77% of
their ASVs were rarely detected in the guts of the other
surveyed African mammals.

Microbiota alpha-diversity
Gut microbiota richness, evenness, and phylogenetic di-
versity also varied with host taxonomy (family and
species) and dietary guild (Table 4, Fig. 3). Post-hoc
comparisons revealed that hosts from the Suidae and
Elephantidae families generally harbored less rich and
less even gut microbiotas than the other surveyed host
families (Fig. 3a; Table S3). Moreover, equids harbored
more phylogenetically diverse (PD) gut communities
than all other herbivores (Table S3). Across the three
alpha-diversity metrics, browsers had less diverse gut
microbiotas than grazers or mixed-feeders (Fig. 3a, Table
S4). Similar tests that included host species in lieu of
host family indicated that host species was a strong pre-
dictor of gut microbiota alpha-diversity (Chao1 χ2 =
134.42, Shannon diversity χ2 = 45.86, PD χ2 = 74.31).
Host dietary guild was also associated with microbiota

(See figure on previous page.)
Fig. 1 African herbivore gut microbiotas exhibit patterns consistent with phylosymbiosis. a Phylogenetic tree of host species (left) obtained from
pruning Upham’s et al. 2019 Mammalian supertree, compared against a dendogram (right) of gut microbiota similarity using hierarchical
clustering. b Scatterplot of pairwise host divergence times (in millions of years) vs. gut microbiota similarity (Bray-Curtis distances) across all
sampled herbivores (left) and within the single host family Bovidae (right). The plot on the left has a trendline representing the best fit line of a
linear model regressing Bray-Curtis dissimilarity with host phylogenetic distance, which was added for plotting purposes. c PCoA plots
constructed from Bray-Curtis dissimilarity matrices. Each point represents a sample and is color-coded by host family (left) or host dietary guild
(right). Closeness of points indicates high community similarity. The percentage of variance accounted for by each principal-coordinate axis is
shown in the axis labels. d PCoA plots constructed from Bray-Curtis dissimilarity matrices of bovid species only. Each point is color-coded by host
species (left) or host dietary guild (right)

Table 2 The relative contributions of host phylogenetic relatedness and diet in predicting gut microbiota similarity

Phylogenetic Relatedness Dietary Similarity (% C4 grasses)

R Z stat p.val R Z stat p.val

Across all host study species (11 sp.) (N = 165) Bray-Curtis 0.77 8.90 < 0.0001 0.15 1.09 0.27

Jaccard 0.72 7.50 < 0.0001 0.03 0.27 0.78

Unifrac (weighted) 0.76 8.51 < 0.0001 0.10 0.73 0.46

Unifrac (unweighted) 0.71 7.47 < 0.0001 0.02 0.152 0.87

Across bovids (7 sp.) (N = 122) Bray-Curtis 0.43 2.07 0.05 0.68 3.98 < 0.001

Jaccard 0.35 1.63 0.12 0.69 4.05 < 0.001

Unifrac (weighted) 0.31 1.41 0.17 0.57 2.94 < 0.001

Unifrac (unweighted) 0.29 1.29 0.21 0.63 3.52 0.002

Shown are the rho, test statistic, and p-values associated with partial correlation coefficient tests that evaluated the correlation between 2 variables (e.g. gut
microbiome similarity and phylogenetic relatedness, while controlling for a third (e.g. dietary similarity). The tests were conducted on 4 types of gut microbiome
distance metrics, and significant p-values are bolded
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alpha-diversity, but with a lower effect size (Chao1 χ2 =
16.86, Shannon diversity χ2 = 14.26, PD χ2 = 5.85; all p <
0.001). Post-hoc comparisons indicated that warthogs,
giraffes, and elephants harbored less rich and phylogen-
etically diverse gut microbiotas than most bovids,
whereas zebras harbored the richest gut microbiotas of
the host species surveyed (Table S5). Not as many
species-specific differences were observed when examin-
ing microbiota evenness (Table S5).
Within a single host family (i.e. Bovidae), the gut

microbiotas of buffalo, dikdiks, and gazelles were less
rich, even, and phylogenetically diverse than those of all
other sampled bovids (Fig. 3b, Table S6). In these bovid
hosts, browsers also had less diverse gut microbiotas
than grazers or mixed-feeders (Fig. 3b, Table S4). Add-
itionally, we determined whether similarity in gut micro-
biota alpha-diversity was correlated with dietary
similarity (%C4 grasses in diet), while accounting for
variation in the gut microbiota associated with host
phylogenetic relatedness. Gut microbiota evenness
(Shannon diversity) increased with host dietary similar-
ity, but this was not true of gut microbiota richness or
phylogenetic diversity (partial Mantel Chao1 r = 0.03,
p = 0.34; Shannon r = 0.35, p = 0.028, PD r = 0.097, p =
0.25).

Aim 3: examine the amount of variance in the gut
microbiota explained by geographic region among
conspecific hosts
Lastly, we further analyzed the influences of host phylo-
genetic relatedness and host ecology (i.e., diet and geog-
raphy) on the gut microbiota of 8 herbivore species from
two distinct populations in the Masai Mara (this study)
and Laikipia (Kartzinel et al. [22]). The eight herbivore

species overlapping both studies were African buffalo,
domestic cattle, common eland, impala, giraffe, plains
zebra, common warthog, and African elephant. Four of
these 8 species were bovids (buffalo, cattle, eland, and
impala).
We found that gut microbiota structure differed little

between conspecific hosts from the two geographic re-
gions of Kenya, as this factor accounted for < 3% of the
variation in the gut microbiota, on average (PERM
ANOVA analyses, Table S7). The gut microbiotas were
primarily structured by host species and host dietary
guild, which explained on average, 38 and 11% of the
variation, respectively (PERMANOVA analyses, Table
S7); sample month explained an additional 7% of the
variation. Ordination plots confirm these findings and
demonstrate that samples primarily cluster by host spe-
cies (Fig. 4a), although some separation of samples
based on host geographic region is also observed, par-
ticularly among cattle, impala, and giraffe. Patterns con-
sistent with phylosymbiosis were also observed in this
combined dataset, despite herbivore hosts occupying
habitats in Kenya separated by over 300 km, and repre-
senting distinct populations. Gut microbiota similarity
increased with host phylogenetic relatedness even after
accounting for variation attributable to host diet (%C4
grasses) (Table S8), although the strength of the phylo-
symbiosis signal (r = 0.62) was less than that obtained
for Masai Mara herbivores only (r = 0.74), or the value
that was previously reported for the Laikipia herbivores
(r = 0.91) [22]. No relationship was observed between
gut microbiota similarity and dietary similarity after
controlling for variation due to host phylogeny. Among
the four species of bovids that overlapped between the
two studies, neither host phylogenetic relatedness nor

Table 3 Host taxonomy and dietary guild shape the gut microbiotas of African herbivores

Analysis Host factors Bray-Curtis
(% variance
explained)

Jaccard
(% variance
explained)

Weighted Unifrac
(% variance
explained)

Unweighted
Unifrac
(% variance
explained)

Across all host study species (11 sp.)
(N = 165)

Host family 22.34,
p = 0.001

20.62,
p = 0.001

25.90,
p = 0.001

24.29,
p = 0.001

Host dietary
guild

11.20,
p = 0.001

10.17,
p = 0.001

10.04,
p = 0.001

10.30,
p = 0.001

sample month 7.39,
p = 0.001

6.78,
p = 0.001

9.90,
p = 0.001

7.68,
p = 0.001

Across bovids (7 sp.) (N = 122) Host dietary
guild

18.26,
p = 0.001

15.91,
p = 0.001

18.35,
p = 0.001

16.77,
p = 0.001

Host species 15.16,
p = 0.001

13.38,
p = 0.001

8.23,
p = 0.001

12.16,
p = 0.001

sample month 7.56,
p = 0.001

7.03,
p = 0.001

7.59,
p = 0.001

7.17,
p = 0.001

Shown are the R2 values (% variance explained) and p-values for PERMANOVA tests (y ~ sample month + host dietary guild + host taxonomy) based on 4 types of
distance matrices. Bray-Curtis and Weighted Unifrac distance matrices take into consideration the proportions of bacterial taxa, while Jaccard and unweighted
Unifrac take into account only their presence or absence. Both Unifrac distances account for phylogenetic relatedness among bacterial types. Significant p-values
(α = 0.05) are bolded
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host diet (%C4) significantly predicted gut microbiota
similarity (Table S8). The latter findings should be
interpreted with caution, as only 4 host species were
sampled, whereas the same analyses had a larger sample
size (7 host species) when conducted solely on our
Masai Mara dataset.
In this combined dataset, only 3 of 18,039 (0.01%)

ASVs were present across 90% of samples; two were
classified as Ruminococcaceae, and 1 as Lachnospira-
ceae. All 3 ASVs were among the 10 ASVs also

present across 90% of Masai Mara samples. To fur-
ther compare the gut microbiotas of conspecific hosts,
we visualized the relative abundances of the 32 most
abundant ASVs in the dataset. A heatmap of these 32
ASVs demonstrate that there were ASVs that were
found in comparable proportions in conspecific hosts,
as well as ASVs that were differentially abundant
among conspecific hosts (Fig. 4b). For example,
ASV4033 Prevotellaceae is similarly abundant between
buffalo, cattle, and giraffe in the Masai Mara and

Fig. 2 Gut microbiota composition of African herbivores. a Stacked bar plots showing the relative frequency of 16S rRNA gene sequences
assigned to each bacterial family (or order, if a family-level classification could not be assigned) across samples. Samples are grouped by host
species, and each color represents a bacterial family. b Bacterial families significantly associated with particular herbivore families as determined
by indicator species analysis. Differences in these taxa abundances can explain differences in the microbiota among the different groups. Note
how no bacterial taxa were associated with Bovid hosts. c Bacterial families significantly associated with herbivores from different dietary guilds as
determined by indicator species analysis
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Table 4 Microbiota richness, evenness, and phylogenetic diversity vary with host taxonomy and dietary guild

Model Factor Chao 1 Richness Shannon diversity Phylogenetic diversity

Across all study sp.
(11 sp.) (N = 161)

Host family χ2 = 53.58,
p < 0.001

χ2 = 33.45
p < 0.001

χ2 = 18.31
p = 0.001

Host dietary guild χ2 = 79.03
p < 0.001

χ2 = 73.72
p < 0.001

χ2 = 52.61
p < 0.001

Within bovids
(7 sp.) (N = 118)

Host species χ2 = 57.03
p < 0.001

χ2 = 10.81
p = 0.02

χ2 = 50.53
p < 0.001

Host dietary guild χ2 = 19.55
p < 0.0001

χ2 = 33.91
p < 0.0001

χ2 = 10.67
p < 0.01

Shown are the likelihood ratio χ2 test statistics obtained for linear mixed effects models specifying host dietary guild and host family as predictor variables,
sample date as a random effect, and an alpha-diversity metric as a dependent variable. A similar model restricted to bovids was also constructed; it specified host
species instead of host family. Significant p-values (α = 0.05) are bolded

Fig. 3 Host taxonomy and dietary guild are associated with gut microbiota diversity in African herbivores. a Boxplots of microbiota evenness
(Shannon diversity) among host families and dietary guilds across all studied herbivores, and b) among host species and dietary guilds within the
family Bovidae. Boxes that do not share any letters represent statistically significant comparisons; see Tables S3-S6 for all post-hoc comparisons.
Thicker dots represent outlier values
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Laikipia, but ASV15828 Kiritimatiellae appears to be
enriched in cattle from Laikipia compared to cattle
from the Masai Mara.
To further extend these analyses and identify additional

ASVs that may be differentially abundant among conspe-
cifics (e.g., Masai Mara elephants vs. Laikipia elephants),
we also conducted Linear Discriminant Analysis Effect
Size (LEfSe) for each host species. Roughly 30% of the
ASVs in the gut microbiotas of each host species were
enriched in hosts from one population relative to the
other (Table S9). ASVs that were typically enriched
were classified as Ruminococcaceae, Lachnospiraceae,

Rikenellaceae, Clostridiales, Bacteroidales, and Kiritima-
tiellae (Fig. 4c). Herbivore species from Laikipia tended to
be enriched in Methanocorpusculum, Clostridiales, and
Kiritimatiellae ASVs relative to Masai Mara herbivores
(Fig. 4c). Masai Mara gut microbiotas were overrepre-
sented by Lachnospiraceae and Treponema ASVs. Inter-
estingly, hosts from both geographic regions could be
enriched in taxonomically similar ASVs. For example,
eland in Laikipia were enriched in 3 ASVs classified as
Prevotellaceae, Rikenellaceae, and Ruminococcaceae, re-
spectively, and eland from the Masai Mara were enriched
in 3 different ASVs that were also classified as

Fig. 4 The gut microbiotas of conspecific African herbivores broadly converge, but also exhibit differences in their ASV abundances. We
compared the gut microbiotas of eight species of herbivores residing in both the Masai Mara (this study) and Laikipia (Kartzinel et al. 2019)
regions in Kenya. a PCoA plot constructed from Bray-Curtis dissimilarity matrices. Each point represents a sample and is color-coded by host
species; shape shading indicates geographic region (empty circles: Masai Mara, filled circles: Laikipia). b Heatmap of the 32 most abundant
bacterial ASVs residing in the gut microbiotas of Masai Mara and Laikipia herbivores. Samples are grouped by host species, and are color-coded
by host geographic region. c ASVs enriched in Masai Mara or Laikipia herbivores as determined by LEfSe. Each dot represents a unique ASV and
is color-coded by host geographic region. A total of 212 ASVs are displayed (those with LDA > 3.2) and their family or genus level classification
are on the x-axis
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Prevotellaceae, Rikenellaceae, and Ruminococcaceae
(Fig. 4c). These findings suggest that variation in the gut
microbiotas of these herbivore conspecifics is observable
at the level of specificity of bacterial ASVs.

Discussion
Principal findings of study
The primary purpose of this study was to determine the
relative contributions of host phylogenetic relatedness
and dietary guild in structuring the gut microbiotas of
11 species of sympatric African herbivores. We also
compared the gut microbiotas of herbivores from the
Masai Mara to herbivores from Laikipia, Kenya to deter-
mine the extent to which two distinct populations of
identical herbivore species varied in their gut microbio-
tas. We found that gut microbiotas were highly species-
specific, but also varied with host ecology, including host
diet and sample month, particularly among closely re-
lated Bovid species. Furthermore, gut microbiota similar-
ity increased with host phylogenetic relatedness at a
relatively broad host taxonomic scale, but at a lesser
taxonomic scale, host diet (%C4 grasses) was the stron-
gest predictor of gut microbiota similarity. Lastly, al-
though the gut microbiotas of conspecific herbivore
hosts converged and primarily clustered by host species,
variation among conspecifics in the relative abundances
of their bacterial ASVs were also observed. Collectively,
our findings suggest that mammalian gut microbiotas
are strongly shaped by host phylogenetic relatedness and
taxonomy, but they can be further modified by host
ecology, including host diet and geography.

Aim 1: determine the strongest predictor of gut
microbiota similarity among herbivore hosts at greater
and lesser taxonomic scales
Our results showed that phylosymbiosis was observed
across the relatively broad host taxonomic scale encom-
passing multiple herbivore families, i.e. among 11 species
of herbivores living sympatrically in the Masai Mara.
Patterns of phylosymbiosis have been documented ex-
tensively in many vertebrate groups, including primates,
rodents, ruminants, carnivores, reptiles, and insects [9–
12, 22, 32, 33]. Evidence of phylosymbiosis among host
species living in sympatry specifically, has been previ-
ously documented in seven species of deer mice [34], six
species of Malagasy mammals [35], twelve species of le-
murs [36], and nine species of diurnal, non-human pri-
mates [37].
The mechanisms and processes that yield patterns of

phylosymbiosis have not yet been elucidated, but host
ecological and phenotypic traits are likely acting as filters
and thus shaping microbial community assembly.
Closely related hosts are potentially colonized by taxo-
nomically similar microbes due to similarities in their

morphology, anatomy, digestive physiologies, and im-
mune system components [38–40]. Specifically, related
hosts may possess similar antimicrobial peptides and
toll-like receptors that serve to filter the same bacterial
clades from the environment [41, 42]. Closely related
hosts may further develop immune tolerance via adap-
tive immunity to the same symbiotic, commensal, and
transient microbes [41, 42]. Lastly, some closely related
hosts may also possess similar social group structures
and pathways for transmitting microbes among group-
mates, thereby contributing to patterns of phylosymbio-
sis [43–46]. Overall, accumulation of differences in traits
as hosts diverged from one another could potentially
provide enough niche differentiation in the gut to
promote the divergence of their symbiotic bacterial
communities.
At a lower host taxonomic scale, within our sampled

group of closely related Bovid species in the Masai Mara,
variation in the gut microbiota was more strongly associ-
ated with host diet than host species, and we did not de-
tect a pattern congruent with phylosymbiosis with this
dataset. Similarly, other studies report that among
closely related hosts, host ecology more strongly predicts
the structure of the gut microbiota than host related-
ness. For example, in lemurs (Eulemur spp., Propithecus
spp.), phylosymbiosis was observed across but not within
two host lineages, and within host lineages, host habitat
(dry forest vs. rainforest) was significantly correlated
with gut microbiota diversity [36]. In populations of yel-
low (Papio cynecephalus) and anubis baboons (Papio
anubis), gut microbiota dissimilarity did not increase
with host genetic distance, but did vary with their habi-
tat’s soil chemistry [47]. Because the bovids surveyed
here are closely related, their gut microbiotas are already
very similar, and variation can result from fine-scale dif-
ferences in diet (proportions of grass vs. shrubs vs. trees
consumed) [48–51]. Nonetheless, some of the variation
in the gut microbiota of bovids is not attributable to host
diet and can be explained by host phylogenetic related-
ness. Thus, even among closely related host species, both
ecological and evolutionary forces shape gut microbial
communities.

Aim 2: evaluate the influences of host taxonomy and host
dietary guild on gut microbiota composition and diversity
Across the surveyed herbivores, gut microbiota compos-
ition, diversity, and structure varied with host taxonomy.
Species-specificity of the gut microbiota is widespread,
and is commonly reported in the majority of compara-
tive gut microbiome studies [11, 52–54]. Host species
may vary in their body size, behavior, neuroendocrine
system, immune function, and metabolism, any of which
could potentially influence the structure of their gut
microbiotas [39, 40, 55, 56]. When comparing gut
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microbiota alpha-diversity, results showed that warthogs
and elephants harbored less diverse gut communities
than did the other sampled herbivores. Due to their
omnivory, warthogs have a greater dietary breadth than
the other studied herbivores, yet they harbored less di-
verse microbiotas. This is in accordance with prior
findings, which report that the most diverse diets do
not always correlate with the most diverse gut micro-
biotas [22, 57, 58]. Furthermore, analyses showed that
browsers had the least diverse gut microbiotas, poten-
tially because they consume vegetation that has a
higher lignin content and a lower fiber digestibility than
grass [50]. Specialized bacterial metabolisms may be re-
quired to digest this tougher plant material. Addition-
ally, group size has been shown to correlate with gut
microbiota diversity [59, 60], and the browsers in our
study (giraffes, dikdiks) typically forage in smaller
groups than do grazers (buffalo, zebras) and mixed-
feeders (gazelles, impala), which forage in herds. Fre-
quent social interactions and interactions with a greater
number of individuals is known to promote species
richness in individual gut microbiotas [60, 61].
Similar to findings from a plethora of microbiome

studies, the gut microbiota structure of the studied her-
bivores also varied with host diet. Hosts from each diet-
ary guild consume food sources that vary in their
structure, chemistry, and nutrition quality; these require
morphological, physiological and behavioral adaptations
[62, 63]. For example, grazers mostly feed on grasses,
which have thicker cell walls, a lower protein content, and
use the C4 photosynthetic pathway compared to the
leaves, shrubs, and woody vegetation consumed by
browsers, which have a higher protein content, and use C3

photosynthesis [62, 63]. To efficiently extract energy from
these different food sources, browsers and grazers evolved
adaptations in their salivary chemistry, tooth morphology,
gut structure, and speed of digestion [64, 65]. These adap-
tations, along with the actual nutrients hosts are providing
to their microbes, potentially contribute to gut microbiota
divergence among hosts from different dietary guilds.
Despite differences in the gut microbiota among host

species and dietary guilds, there were some features of
the gut microbiota that were shared across individuals
from multiple species. Across our surveyed herbivores,
the most abundant bacterial taxa in the gut microbiota
were Ruminococcaceae, Rikenellaceae, Lachnospiraceae,
and Prevotellaceae which represent core taxa previously
found in the gut microbiotas of many ruminants and
herbivores in general, including cervids and bovids [8,
66], equids [67], elephants [68], and giraffes [69]. Rumi-
nococcaceae and Lachnospiraceae have also been found
in the guts of folivorous primates [3] and in domestic
pigs [70, 71]. Members of these bacterial families are re-
sponsible for digesting the cellulose, hemicellulose,

lignin, and protein found in vegetation, and fermenting
these into short-chain fatty acids (SCFAs) [72]. SCFAs
represent usable forms of energy for the hosts [73] and
contribute to host colonocyte growth, communication,
immune defense, and anti-inflammatory responses [1].
These bacterial taxa also possess fiber-degrading capabil-
ities and can provide their hosts with protection against
ingested toxic plant secondary metabolites [74]. Interest-
ingly, 7 of the 10 ASVs that were present in 90% of
Masai Mara herbivores were classified as Ruminococca-
ceae and were sequences highly similar to uncultured
Ruminococcaceae strains extracted from bovine, ovine,
and caprine rumens [75], suggesting that these “core”
microbes may be functionally important for the host,
and/or are easily acquired from the environment.

Aim 3: examine the amount of variance in the gut
microbiota explained by geographic region among
conspecific hosts
While gut microbiota structure was primarily associated
with host species and phylogeny in the combined Masai
Mara and Laikipia dataset, differences in gut microbiota
composition between conspecific hosts from the two
populations were also evident. Herbivores of the same
species may possess similar evolutionary trajectories,
physiologies, and behaviors, and thus may be providing
microbes with similar niches for colonization, which is
why at a broad level their gut microbiotas converge.
However, the two geographic regions do vary in their
climate, soil geochemistry, plant communities, and resi-
dent herbivore species [23–27, 76], and potentially in
their bacterial species pools, which could lead to the
fine-scale microbiota differences among conspecifics.
This finding was supported by our data; according to
LEfSe analyses, over 30% of ASVs were differentially
enriched between Masai Mara and Laikipia hosts. Laiki-
pia herbivores for example, tended to be enriched in
ASVs classified as Methanocorpusculum, Clostridiales,
and Kiritimatiellae, while Masai Mara herbivores had an
overrepresentation of ASVs belonging to Lachnospira-
ceae and Treponema. Abundances of the methanogenic
Methanocorpusculum are related to forage type and geo-
graphic location in cattle [77], and in the mammalian
gut, Lachnospiraceae are associated with a high-fat diet
[78]. Furthermore, in the bovine rumen, Treponema de-
grade hemicellulose and their growth increases in the
presence of pectin [79, 80], a carbohydrate abundant in
non-woody plants. This suggests that differences in the
ASV abundances between conspecific hosts likely reflect
fine-scale differences in their diets and habitats. Interest-
ingly, both Clostridiales and Lachnospiraceae are major
microbial taxa of the mammalian gut and comprise fer-
mentative bacteria that synthesize SCFAs from the hy-
drolysis of starches and sugars [72]; thus, conspecific
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hosts can be enriched in taxonomically distinct microbes
that perform similar functions. Future studies should
examine whether phylosymbiosis is evident at the
functional level in the gut metagenomes of African her-
bivores and in metazoan taxa in general. A recent study
by Milani and colleagues reports that gut microbiome
functional profiles varied with host dietary category
(carnivore, piscivore, herbivore) across 24 species of
mammals [81]. These gut microbiome functional profiles
might also vary with host phylogeny. Such studies will
be necessary to further our understanding of the pro-
cesses and mechanisms potentially underlying patterns
of phylosymbiosis.
Lastly, we found that phylosymbiosis was also evident

among conspecific African herbivores living in allopatry,
although the strength of the phylosymbiotic signal was
slightly reduced compared to that observed for either
sympatric population considered in isolation. Overlap in
gut microbiota structure is thought to be lower in allo-
patric animal populations than in sympatric animals due
to variation introduced by habitat, dietary differences, and
the spatial limits of bacterial dispersal [12]. It is important
to note that differences between the gut microbiotas of
Laikipia and Masai Mara conspecifics could also be poten-
tially attributable to differences in sampling, DNA extrac-
tion, and sequencing protocols between the two studies
[82–84]. Collectively, our findings show that mammalian
gut microbiotas converge among closely related host spe-
cies and among conspecifics, but can be differentiated
with variation introduced by the host’s ecology.

Conclusions
Our study showed that among 11 species of African herbi-
vores living in sympatry, gut microbiotas are highly
species-specific and exhibit patterns congruent with phylo-
symbiosis. However, these gut microbiotas are also shaped
by their host’s ecology, and within closely related bovid
host species, gut microbiota similarity is strongly predicted
by host diet (%C4 grasses in diet and dietary guild) and is
not associated with host phylogenetic relatedness. Further-
more, among eight species of herbivores residing in two
geographic regions in Kenya, gut microbiotas were similar
among hosts of the same species, but also exhibited fine
scale differences in the abundances of their bacterial ASVs.
Overall, these findings suggest that related hosts are pro-
viding microbes with similar niches for colonization, but
these microbial niches are further shaped by host diet,
geography, and local environmental conditions.

Methods
Study location and sampling
Fecal samples (N = 181) were collected opportunistically
from 11 species of herbivores permanently residing in
the Talek and Mara Triangle regions of the Masai Mara

(1°22′19″S, 34° 56′17″E) from March–June 2018
(Table 1). This Reserve is covered by open rolling grass-
land interspersed with seasonal watercourses and riparian
vegetation. It has two rainy seasons (March–May and
November–December, with annual rainfall > 1000mm)
[85], and 81% of our sampling took place during the
rainy months, particularly during the month of March
(Fig. S4). Although the Masai Mara is home to small
resident populations of zebra and wildebeest, millions
of these individuals migrate into the Reserve from
July–October every year. Because our sampling occurred
before July, samples from wildebeest and zebras were
limited.
For fecal sample collection, we either observed animals

defecating or identified species-of-origin based on the
size, shape, and consistency of fresh dung, following
Kartzinel et al. [22]. Samples were then placed in sterile
cryogenic vials and stored in liquid nitrogen until they
were transported on dry ice to Michigan State Univer-
sity, where they remained frozen at − 80 °C until nucleic
acid extraction. For a list of samples and their associated
metadata, see the Github repository for this project
(https://github.com/rojascon/Rojas_et_al_2020_African_
herbivores_gut_microbiome).
While we did not directly collect diet data from the

surveyed herbivores, we used Kingdon’s East African
Mammals [86–89] to classify our study species into
grazers, browsers, and mixed-feeders. To obtain more
fine-scale data on host diet, we also compiled dietary C4
(%) data for these herbivores from previously published
studies (Table S1) [28–31]. Percent C4 values reflect the
proportion of monocotyledon grasses consumed relative
to trees, shrubs, and forbs.

DNA extraction and 16S rRNA gene sequencing
Fecal samples were sent to the University of Illinois
at Chicago (UIC) Sequencing Core for automated
DNA extractions using QIAGEN DNeasy PowerSoil
kits (Valencia, CA, USA). DNA concentrations of the
fecal sample extracts were quantified using Qubit.
The V4 region of the 16S rRNA gene was targeted
for sequencing on the Illumina MiSeq platform at the
Michigan State University Genomics Core, using
published protocols by Caporaso et al. 2012 [90] and
Kozich et al. 2013 [91].

Sequence processing and bioinformatics
Sequences from Masai Mara herbivore gut microbiotas
were processed in R (v.3.6.2) [92] using the Divisive
Amplicon Denoising Algorithm (DADA2) pipeline
(v.1.14.1) [93] to infer amplicon sequence variants (ASVs).
Briefly, reads were filtered for quality, allowing for 2
and 3 errors per forward and reverse read, respectively
(trimLeft = c(10, 10), maxN = 0, maxEE = 2, truncQ = 2).
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Forward reads were trimmed to 240 bp and reverse reads
to 200 bp; these paired-end reads were merged. Sequences
were then dereplicated to remove redundancy and ASVs
were inferred by pooling reads from all samples. Prior
to creating the ASV abundance table, chimeras were
removed and ASVs were taxonomically classified using
the SILVA rRNA gene reference database (v.132) [94]
with an 80% confidence threshold. ASVs taxonomically
assigned as Eukarya, Chloroplasts, or Mitochondria were
removed from the dataset, as were those of unknown
Kingdom origin; 12,938 total ASVs remained. The result-
ing ASV table and the taxonomic designations of the
ASVs are available on GitHub. On average, samples
retained over 70% (± 11%) of their total sequences after
processing in DADA2. Nineteen samples did not amplify
well (< 400 sequences after processing) and were removed
from the dataset. Most of these samples belonged to
browser species (giraffes and dik-diks), suggesting that
there may have been PCR inhibitors in their fecal samples
(e.g., humic acid, tannins) that prevented successful
extraction of DNA or library preparation. Table 1 has
the sample sizes (N) for each study species before
and after this filtering.

Microbiota composition analyses
Statistical analyses and data visualization were com-
pleted in R unless otherwise stated. To visualize
microbiota composition, stacked barplots were con-
structed in ggplot2 (v.3.3.2) [95]. These plots showed
the bacterial phyla, families, and genera with average
relative abundances greater than 1% across samples.
We also identified the ASVs (N = 10) that were
present in > 90% of samples across all host species,
and the relative abundances of these ASVs were dis-
played as heatmaps using the R pheatmap package
(v.1.0.12) [96]. Sequences from the 10 ASVs were
BLASTed against the National Center for Biotechnology
Information (NCBI) Nucleotide database [75] to find
similar biological sequences from known bacterial taxa.
Furthermore, we also identified ASVs that were biased
towards particular host species; these were ASVs that
were present in > 75% of the samples for a particular host
species (e.g., giraffes) and absent in 97% of samples from
the other host species.
To detect the bacterial taxa strongly associated with

particular host families or dietary guilds, we used the
R indicspecies package (v.1.7.9) [97], which calculates
an indicator value for each bacterial taxon based on
its prevalence in a given group and absence in others.
A table of bacterial family relative abundances was
used as input, and significance was assessed via per-
mutation tests using 999 permutations (α = 0.05). Bac-
terial families with indicator values > 0.4 were plotted
in ggplot2.

Microbiota α-diversity statistical analyses
Prior to alpha-diversity analyses, we controlled for the
potential influences of sequencing depth by subsampling
all samples to 17,000 sequences using the mothur
(v.1.42.3) [98] sub.sample command. Four fecal samples
did not meet this sequence cutoff criterion and were ex-
cluded from all alpha-diversity analyses. Mothur was
used to construct rarefaction curves of ASV richness vs.
sequencing depth (Fig. S5) and Good’s coverage values
averaged 97.78 ± 0.91 across all samples, indicating that
sample coverage was high and appropriate for character-
izing fecal microbiota profiles. These values are compar-
able to those typically reported in other mammalian gut
microbiota studies [8, 99, 100].
Microbiota alpha-diversity was estimated using Chao1

Richness, Shannon diversity, and Faith’s Phylogenetic
Diversity (PD) in R. Chao1 Richness and Shannon indi-
ces were calculated using the phyloseq package (v.1.33.0)
[101]. To obtain measures of Faith’s PD, we constructed
a phylogenetic tree of ASV sequences using phangorn
(v. 2.5.5) [102] and calculated PD using the picante
package (v.1.8.1) [103]. The effects of predictor variables
on each measure of alpha-diversity across all samples
were evaluated via linear mixed models (LMMs) using
the lme4 package (v.1.1.23) [104], specifying host dietary
guild and host family as fixed variables and sample
month as a random effect. A similar model that included
host species as a predictor in lieu of host family was
also evaluated. A third model was built for bovid sam-
ples only, which included host species and dietary
guild as predictors. The significance of each predictor
variable was determined by calculating likelihood ratio
χ2 test statistics (α = 0.05) on the full models using the
car package (v.3.0.7) [105]. These tests were followed
by TukeyHSD post-hoc tests with Benjamini-Hochberg
adjustments to control for multiple comparisons. Box-
plots of microbiota alpha-diversity were generated in
ggplot2.
To further quantify the influence of host diet on the

three metrics of gut microbiota alpha-diversity, we con-
ducted partial Mantel tests with 999 permutations using
the R vegan package (v.2.5.7) [106]. Specifically, we
evaluated whether similarity in gut microbiota alpha-
diversity was associated with similarity in dietary C4(%)
after accounting for variation due to host phylogenetic
relatedness. The 3 matrices used as input were i) a dis-
similarity matrix of gut microbiota alpha-diversity, ii) a
dissimilarity matrix of host %C4, and iii) a matrix of host
divergence times.

Microbiota β-diversity analyses and testing for
phylosymbiosis
In order to determine the relative contributions and
amount of variance explained by host predictor
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variables, permutational multivariate analyses of variance
(PERMANOVA) tests based on Bray-Curtis, Jaccard,
and Unifrac distance matrices were run using vegan.
Bray-Curtis/Jaccard distances were estimated using vegan,
whereas weighted and unweighted Unifrac distances were
estimated using phyloseq. Bray-Curtis and weighted Uni-
frac distances take into account the abundances of bacterial
taxa while Jaccard and unweighted Unifrac metrics only
consider their presence or absence. Both UniFrac metrics
utilize information on the phylogenetic diversity of bacter-
ial members when calculating microbiota similarity. PERM
ANOVA model #1 included sample month, host dietary
guild, and host family as predictors (in this order) and in-
cluded all 11 host species. Model 2 was identical to Model
1, except it included host species in lieu of host family.
Model 3 was similar to Model 2, except it was restricted to
the Bovid dataset (7 host species). Microbiota similarity
and groupings across samples were visualized via Principal
Coordinates Analysis (PCoA) plots.
To test for phylosymbiosis, i.e., the congruence be-

tween host phylogenetic relatedness and gut microbiota
similarity, mean divergence times (mya) were calculated
between every pair of host species in R. First, we re-
trieved 1000 phylogenetic trees that included all species
of Artiodactyla and African elephants (Loxodonta Afri-
cana) from Upham’s et al. (2019) Mammalian supertree
[107]. The trees were randomly sampled from the pos-
terior distribution of Upham’s supertrees (Mammals
birth-death tip-dated DNA-only trees) using the VertLife
online resource (http://vertlife.org/). Each tree was
pruned to include only the species in this study, and
branch lengths (i.e. divergence times between each pair
of host species) were extracted using the R ape package
(v.5.4.1) [108]. All 1000 trees showed the same phylo-
genetic relationships among the study species and matri-
ces of mean divergence times were estimated from those
trees. To determine the strength of the phylosymbiosis
signal relative to influences attributable to host diet, we
conducted partial correlation tests using Spearman cor-
relations with the R ppcor package [109]. These tests
correlated i) gut microbiota dissimilarity with host
phylogenetic distance (divergence times), while control-
ling for dietary similarity (%C4), or ii) correlated gut
microbiota dissimilarity with dietary dissimilarity, while
controlling for host phylogenetic distance.
We visualized the phylosymbiosis findings by plotting

gut microbiota similarity (0–1) against host phylogenetic
divergence time (mya) in ggplot2. We added a trendline
to this plot for plotting purposes; the trendline repre-
sented the best fit line of a linear model regressing
Bray-Curtis dissimilarity with host phylogenetic distance.
We also constructed a consensus phylogeny of our host
species and compared it against a dendrogram of gut
microbiota dissimilarity, which was calculated using

hierarchical clustering with the R stats package [92] and
plotted using the ape package.

Comparisons of Masai Mara and Laikipia herbivores
In order to compare the gut microbiotas of Masai Mara
(1°22′19″S, 34° 56′17″E) herbivores to the gut micro-
biotas of their conspecifics in Laikipia (0°17′33″N, 36°
53′55″E) (> 300 km from the Masai Mara), we down-
loaded all publicly available sequences from Kartzinel
et al. [22], and combined them with the raw 16S rRNA
gene sequences from this study (Masai Mara herbivores).
The sequences from both studies were then processed
together in DADA2. A total of eight herbivore species
overlapped between the two studies: African buffalo, do-
mestic cattle, common eland, impala, giraffe, warthog,
plains zebra, and African elephant. 96% of samples from
Kartzinel et al. [22] and 81% of samples from our study
were collected during the wet seasons in their respective
regions (Table S10), although, in general, Laikipia is
more arid than the Masai Mara, with only 300-600 mm
precipitation annually [26, 110, 111]. For a list of all
samples (N = 305), and their associated metadata, see
the Availability of data and materials section.
The bioinformatics processing and statistical analyses

were performed as described above, with a few exceptions.
In DADA2, forward and reverse reads were trimmed to
240 bp and 150 bp, respectively, to better account for se-
quence quality. Up to 2 errors were allowed per forward
read and up to 4 errors per reverse read. To identify the
strongest predictors of gut microbiota structure, we con-
structed a PERMANOVA model that included sample
month, host geographic region, host dietary guild, and
host species as variables (in this order). PCoA ordinations
and testing for phylosymbiosis were conducted as de-
scribed earlier. To visualize gut microbiota compositions
between Masai Mara and Laikipia herbivores, a heatmap
of the 32 most abundant bacterial ASVs was constructed
using R pheatmap. We furthered compared the gut micro-
biotas of conspecific hosts by conducting Linear discrim-
inant analysis Effect Size (LEfSe) [112] in the Galaxy
platform [113] using default parameters. Only ASVs >
0.01% average relative abundance across samples were in-
cluded in the dataframe uploaded to Galaxy. ASVs that
were enriched in hosts from one geographic region rela-
tive to the other were visualized via diverging dot plots in
R with the ggplot2 package.
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