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1. Introduction

A book embedding of a graph consists of a linear order of its nodes and a partitioning 

of its edges, so that the nodes can be placed in order on a straight line (the “spine” of 

the book) and the edges in each part can be drawn on a separate half-plane bordered 

by the line (a “page” of the book) so that the edges on the same page do not intersect. 

The objective is to find a book embedding that uses the minimum number of pages. This 

minimum number is called the pagenumber (or book thickness) of the graph.

Book embeddings were introduced in [12] and [3]. They were studied in connection 

with an approach to fault-tolerant VLSI design [5,13], and have applications also in sort-

ing using stacks, in graph drawing, complexity theory, and other areas. Computationally, 

the problem of computing the pagenumber of a graph is hard: it is NP-complete to decide 

whether a planar graph has pagenumber 2 [5,14]. Note that in the case of two pages, the 
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crux of the problem is the node-embedding part (the linear ordering of the nodes): once 

the node ordering is fixed, it is easy to test whether two pages suffice. In general, the 

subproblem of minimizing the number of pages for a given fixed node ordering is itself 

also NP-hard [8].

Graphs with pagenumber one are exactly the outerplanar graphs. Graphs with pa-

genumber two are exactly the planar subhamiltonian graphs, i.e. the subgraphs of planar 

Hamiltonian graphs [3]. In [15,16] we showed that all planar graphs can be embedded in 

four pages, and gave a linear time algorithm for this purpose (references [4] and [9] gave 

earlier algorithms that embed planar graphs in nine and seven pages respectively). In 

the conference paper [15] we stated also that there are planar graphs that require four 

pages, and outlined the approach and the structure of the construction. The present 

paper gives the full details of the construction and the proof that the constructed planar 

graph has pagenumber at least four.

Besides planar graphs, there has been extensive work on book embeddings for various 

other classes of graphs, for example graphs of bounded genus [10,11], bounded treewidth 

[6,7], 1-planar graphs [1].

Before getting into the technical details of the construction and the proof, we make a 

few remarks regarding the issues involved and our approach to address them. To show a 

lower bound of four on the pagenumber of planar graphs means finding a planar graph 

G and showing that no matter how we order its nodes and how we partition its edges 

into three pages, there will be a violation (two conflicting edges on the same page). A 

major obstacle in this regard stems from the computational complexity of the problem: 

The problem is NP-complete, which means that if NP �= coNP , as is widely believed 

to be the case, there is in general no short way to prove the nonexistence of a suitable 

node ordering and edge partitioning for a given graph; that is, any proof has to be in 

general at least superpolynomially long in the size of the graph, and will likely amount 

to examining essentially all (or at least a large number of) possibilities to ensure that 

they do not work. An important difference here is that we do not have to deal with an 

arbitrary general graph, but with a specific graph G of our own design that is suitable for 

our purpose. If there was a very small suitable graph G, then the complexity would not 

be an issue. This is the case for example in the graph coloring problem, where there is 

an extremely small planar graph (namely, K4) that needs 4 colors, so the lower bound is 

trivial. Unfortunately, this does not seem to be the case in the book embedding problem. 

For example, [2] studied experimentally the book embedding problem by formulating it 

in terms of the SAT (Boolean formula satisfiability) problem and using a SAT solver; 

the software handles graphs with up to 500-700 nodes. In their experiments searching 

for planar graphs that require four pages (they tried both random graphs and crafted 

graphs in certain families) none was encountered, which led the authors to hypothesize 

that perhaps three pages are enough for all planar graphs.

The way we deal with the complexity of the problem in our construction is by building 

up the graph (and the proof) in stages, to control the exponential explosion in case 

analysis. As in NP-completeness reductions, we design and use gadgets (‘small’ graphs 
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that have useful properties) as building blocks. We start with a small graph Q1 (10 

nodes) which we analyze in some detail to characterize its book embeddings under some 

strong restrictions. Then we use this gadget to analyze a somewhat larger graph Q2, and 

this is used in turn for a larger gadget Q under weaker restrictions. The gadgets are used 

in the construction of the final graph G that cannot be embedded in three pages. The 

properties we showed for the gadgets restrict significantly the possible book embeddings 

of G and make the analysis tractable.

The rest of the paper is organized as follows. Section 2 provides basic definitions and 

some simple observations. In Section 3 we design the gadgets and prove their properties. 

Section 4 gives the definition of the graph G and proves that G requires four pages.

2. Preliminaries

Let G = (N, E) be a (undirected) graph, and π a linear ordering (a permutation) of 

its nodes. We say that two edges (a, b), (c, d) conflict in the ordering π if π(a) < π(c) <

π(b) < π(d) or π(c) < π(a) < π(d) < π(b); that is, if we place the nodes on a line ordered 

according to π and draw the edges (as curves) on a half-plane bordered by the line, two 

edges conflict iff they intersect. A book embedding of G in k pages consists of (1) a linear 

ordering π of its nodes, and (2) a coloring of its edges with k colors (the “pages”) so 

that conflicting edges in π receive different colors. The pagenumber of G is the minimum 

number k of pages such that G has a book embedding in k pages.

We will usually show in figures a (partial) book embedding in 3 pages by showing the 

positions of the nodes on a line and showing edges of color 1 as red dashed curves, color 

2 as solid blue, and color 3 as dotted green. To simplify notation, we will identify the 

positions of the nodes on the line with the nodes, and refer for example to node a on the 

line (instead of point π(a)), to interval (a, b) of the line (instead of interval (π(a), π(b))), 

and so forth.

Alternatively, a book embedding of a graph G can be defined by a mapping of its nodes 

to (distinct) points on a circle, drawing the edges as straight line segments (chords) inside 

the circle and coloring them with k colors so that intersecting edges receive different 

colors. From such a circle embedding one can obtain a linear embedding by cutting the 

circle at any point and then ordering the nodes on the line in either of the two directions, 

clockwise or counterclockwise (the edges retain their colors). Conversely, given a linear 

embedding, one can obtain a circle embedding by connecting the two ends of the line 

to form a circle that encloses all the edges. Note that a circle embedding corresponds to 

2|N | linear embeddings that are essentially equivalent.

Given a book embedding of a graph G, we will say that an edge exits an interval (a, b)

if one node of the edge is in the open interval (a, b) and the other node is outside the 

closed interval [a, b]. Similarly, for a circle embedding, an edge exits an arc (a, b) if the 

two nodes of the edge are on the two different open arcs of the circle between a and b.

The following proposition gives some basic simple observations that are used through-

out the paper, usually without making explicit reference to the proposition.
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Proposition 1.

(1) If in a book embedding of a graph G there is a path pi between two nodes a, b all 

of whose edges have the same color i, then there is no edge of color i that exits the 

interval (a, b) and connects two nodes that are not on the path pi.

(2) If in a 3-page embedding of G there are paths p1, p2, p3 of all 3 colors 1, 2, 3 respec-

tively between two nodes a, b, then there is no edge that exits the interval (a, b) and 

connects two nodes that are not in any of these paths.

(3) If in a 3-page embedding of G there are paths p1, p2, p3 of all 3 colors 1, 2, 3 between 

two nodes a, b, then for every connected component C of the graph G \ (p1 ∪ p2 ∪ p3)

obtained by deleting the nodes of p1, p2, p3 from G, either all the nodes of C are in 

the interval (a, b) or they are all outside (a, b).

Proof. (1) Let pi be the path a = v0, v1, . . . , vm = b, and let (x, y) be a color-i edge 

whose nodes are not on pi. If a node vj of the path is in the interval (x, y), then the next 

node vj+1 must be also in (x, y) because the edges (vj , vj+1), (x, y) have the same color, 

hence they do not conflict. Thus, by induction, if a = v0 is in the interval (x, y) then all 

the nodes of the path are in (x, y), hence also b. Similarly, if a = v0 is not in the interval 

(x, y) then b is not in the interval (x, y) either. In either case, (x, y) does not exit the 

interval (a, b).

(2) Follows from (1).

(3) Any two nodes x, y of C are connected by a path x = u0, u1, . . . , ul = y that does 

not contain any node of the paths pi. By (2), uj is in the interval (a, b) iff uj+1 is also in 

(a, b). Hence by induction, x = u0 is in (a, b) iff every node of the path, and in particular 

y, is in (a, b). �

We will say that a node u reaches an interval (a, b) (or any subset of the line) if there 

is an edge from u to a node in the interval (a, b) (resp., in the subset). Thus, for example 

by the above Proposition (part 2), if in a 3-page embedding there are paths p1, p2, p3 of 

all three colors between nodes a, b, then the nodes embedded in the interval (a, b) cannot 

reach any nodes outside (a, b) except possibly the nodes of the paths pi.

3. The gadgets

Fig. 1 shows our first “gadget” Q1. We will refer to nodes 1, 2 as the outer terminals, 

to nodes a, b as the inner terminals, and to nodes c1, c2 as the centers. We will use Q1+12

to denote the graph Q1 with the additional edge (1, 2) connecting the outer terminals, 

and we will use Q1 + ab to denote the graph with the additional edge (a, b) connecting 

the inner terminals.

Lemma 1. There is no 3-page embedding of Q1 +12 or of Q1 +ab such that (1) the inner 

terminals a, b lie in the interval (1, 2) between the outer terminals, (2) the centers c1, c2



M. Yannakakis / Journal of Combinatorial Theory, Series B 145 (2020) 241–263 245

Fig. 1. The graph Q1.

Fig. 2. Centers in (a, b).

of Q1 lie in the interval (a, b), and (3) all edges from node 1 to the closed interval [a, b]

use the same color, say color 1, and all edges from node 2 to [a, b] use color 2.

Proof. The proof is by contradiction. Consider any 3-page embedding of Q1 that satisfies 

conditions 1-3 of the lemma. Suppose without loss of generality that the nodes a, b, c1, c2

are laid out in the order shown in Fig. 2; the other possible embeddings with the order 

of a, b and/or c1, c2 reversed, are symmetric. The outer terminals 1,2 are not shown 

explicitly in the figure: one of them, node s ∈ {1, 2} is at the left end of the line and the 

other outer terminal t is to the right of b, but we do not specify which is which so that 

we do not have to distinguish cases; it is irrelevant for the following arguments which 

one of 1,2 is s at the left end and which is t on the right. The edges to 1, 2 are shown 

in the figure as ‘dangling’ segments with only one node. Thus, the red dashed dangling 

edges have color 1 and go to node 1, and the solid blue dangling edges have color 2 and 

go to terminal 2. We shall prove that edge (a, c2) has color 2 and (b, c1) has color 1, as 

shown in the figure.

Edge (a, c2) conflicts with the edge (1, c1) which is colored 1 by the hypothesis, hence 

(a, c2) is colored 2 or 3. Similarly edge (b, c1) conflicts with (2, c2), hence (b, c1) is colored 

1 or 3. The two edges (a, c2), (b, c1) conflict with each other, so they cannot both be 

colored 3. Suppose without loss of generality that (a, c2) is not colored 3, hence it is 

colored 2.

Suppose that edge (b, c1) has color 3. We shall argue that it is impossible then to 

embed legally node d2a. Observe that node c2 cannot reach any node, other than 1,2, 

outside the interval [a, b] because of the color-3 edge (b, c1), the color-1 path (a, 1, b) and 

the color-2 path (a, 2, b). Hence d2a must lie in the interval (a, b). Since the edges from 
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node 2 to this interval are colored 2 and (a, c2) is also colored 2, node d2a must lie in 

the interval (c2, b). Then there is no legal color available for the edge (a, d2a) because it 

conflicts with the color-1 edge (c1, 1), the color-2 edge (c2, 2) and the color-3 edge (b, c1). 

We conclude that the edge (b, c1) does not have color 3, hence it has color 1.

Consider now the possible positions of nodes d1b and d2a. We show first that they must 

be outside the interval (a, b). Suppose that d1b is inside the interval (a, b), to derive a 

contradiction. Since d1b is adjacent to node 1 and edge (c1, b) is colored 1, node d1b cannot 

be in the interval (c1, b), hence it must be in (a, c1). The edge (b, d1b) must be colored 3 

(since it conflicts with the color-1 edge (1, c1) and the color-2 edge (2, c2)). Hence, node 

c2 cannot reach any node, other than 1, 2, outside the interval (a, b) because of the color-1 

path (a, 1, b), the color-2 path (a, 2, b), and the color-3 edge (b, d1b). Therefore, node d2a

must then also be inside the interval (a, b). However, node 2 cannot reach the subinterval 

(a, c2) because of the color-2 edge (a, c2), and node a cannot reach the subinterval (c2, b)

because of the color-1 edge (c1, b), the color-2 path (c2, 2, b) and the color-3 edge (b, d1b)

Thus, there is no legal position for node d2a, contradiction. We conclude that d1b must 

be outside the interval (a, b). By a symmetric argument, d2a also lies outside the interval 

(a, b).

The edges (c1, d1b) and (c2, d2a) must be colored 3, because they exit the interval (a, b)

and there are color-1 and -2 paths (a, 1, b) and (a, 2, b) connecting a and b.

We can prove the lemma now for Q1+ab: The edge (a, b) connecting the inner terminals 

cannot be colored legally because it intersects the color-1 edge (1, c1), the color-2 edge 

(2, c2) and the color-3 edge (c1, d1b). This proves the claim for the graph Q1 + ab.

It remains to prove the claim for Q1 + 12. Since the edges (c1, d1b) and (c2, d2a) have 

the same color, either d1b is to the left of c1 and hence of a, or d2a is to the right of 

c2 and hence of b (or both). Suppose without loss of generality that d2a is to the right 

of b. If it is left of t, i.e., within the same arc (1, 2) in the corresponding embedding 

on a circle, then the edge (a, d2a) must be also colored 3 (because it conflicts with the 

edges (1, b), (2, b)), but then either (a, d2a) or (c2, d2a) conflicts with the edge (c1, d1b), 

a contradiction. We conclude that d2a is right of t, i.e., lies in the opposite arc (1, 2). By 

a symmetric argument, the same holds for the node d1b.

Since (c1, d1b) and (c2, d2a) have the same color (3), hence do not intersect, nodes 

s, a, c1, c2, b, t, d2a, d1b appear in this order. Consider the three edges (d1b, b), (d2a, a), (s, t). 

They all intersect a color-3 edge, namely (c2, d2a), (c1, d1b), (c1, d1b) respectively, hence 

they can only use the colors 1, 2. However, the three edges (d1b, b), (d2a, a), (s, t) conflict 

with each other, hence they cannot all be colored with two colors. This proves the lemma 

for Q1 + 12. �

Lemma 2. It is not possible to embed Q1 in three pages, such that (1) the inner terminals 

a, b lie in a subinterval (u, v) between the outer terminals 1,2, (2) both centers c1, c2 lie 

outside the interval [a, b], (3) all edges from node 1 to the interval (u, v) use the same 

color, say color 1, and all edges from node 2 to (u, v) use color 2, and (4) all other edges 

exiting the interval (u, v) (not connecting to nodes 1, 2) are colored 3.
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Fig. 3. Centers outside (a, b).

Fig. 4. The graph Q2 (the triangles are stellated twice more).

Proof. The proof is by contradiction. Assume an embedding as in the lemma. If c1 is 

outside (u, v) then both edges (c1, a), (c1, b) must have color 3 (by condition (4)), and 

similarly for c2. We cannot have both c1, c2 outside the interval (u, v) because then (at 

least) one of the edges (c1, a), (c1, b) would intersect one of the edges (c2, a), (c2, b). 

Therefore, at least one of c1, c2 must be in the interval (u, v).

Assume without loss of generality that c1 is in the interval (u, v), and, since it is not in 

the interval [a, b], assume wlog that it is left of a, i.e., that it is in the subinterval (u, a). 

The edge (c1, b) must be colored 3 because of the edges (1, a), (2, a). Node a cannot have 

any edge exiting the interval (u, b) to a node other than 1,2 because of condition (4), 

the color-3 edge (c1, b) and the color-1 and -2 edges (1, b), (2, b). Therefore, c2 lies in 

the interval (u, b), and since it is not in [a, b], it is in (u, a). Assume without of loss of 

generality that c1 is closer to u than c2; see Fig. 3.

The edge (c2, b) is colored 3, because of the edges (1, a), (2, a). This implies that the 

edge (c1, a) must be colored 1 because of the color-2 edge (2, c2). Consider the possible 

position of node d1a. Node a cannot exit the interval (c1, b) because of the color-1 path 

(c1, 1, b), the color-2 path (c2, 2, b), and the color-3 edge (c1, b). On the other hand, node 

1 cannot reach the interval (c1, a) because of the color-1 edge (c1, a). Furthermore, c1

cannot reach the interval (a, b) because of the color-1 path (a, 1, b), the color-2 path 

(a, 2, b) and the color-3 edge (c2, b) (see Fig. 3). Therefore, there is no legal position for 

node d1a, a contradiction. �

Let Q2 be the graph shown in Fig. 4 where each internal face (triangle) is stellated 

twice more. That is, inside each triangle (e.g. (1, a, d1a), (1, d1a, c1) etc.) we insert a 

center node with edges to the nodes of the triangle, and repeat this once more for each 
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Fig. 5. Centers in and out.

Fig. 6. Centers in and out: Detailed embedding.

resulting triangle; these additional nodes are not shown in the Figure so that it will not 

become too cluttered. Note that Q2 contains many copies of Q1. For example there is 

one copy with outer terminals 1,2 and inner terminals a, b. Another copy of Q1 has outer 

terminals 1, c2 and inner terminals a, c1; another has outer terminals d1a, c2 and inner 

terminals a, c1. And so forth. We will use again Q2 + 12 to denote the graph Q2 with 

the additional edge (1, 2).

Lemma 3. Suppose that in a 3-page embedding of Q2 + 12, (1) the inner terminals a, b

lie in a subinterval (u, v) between the outer terminals 1,2, (2) all edges from node 1 to 

the interval (u, v) use the same color, say color 1, and all edges from node 2 to (u, v)

use color 2, and (3) all other edges exiting the interval (u, v) (not connecting to nodes 1, 

2) are colored 3. Then one of the center nodes c1, c2 is inside the interval (a, b) and the 

other one is outside (a, b) but inside (u, v). Furthermore, the embedding is as shown in 

Fig. 5 (up to reversing the order, switching a, b and/or switching the indices 1, 2). That 

is, if the center node c1 is outside (a, b) and it is in the interval (u, a), then d1b is in the 

interval (b, v) and the edges (c1, c2), (c1, b), (c1, d1b), (a, c2) all have color 3.

Proof. By Lemmas 1, 2, one of the centers c1, c2 must lie outside the interval (a, b) and 

one inside. Assume without loss of generality that c1 is outside (a, b) and c2 is inside. 

The edge (c1, c2) must have color 3 because of the color-1 path (a, 1, b) and the color-2 

path (a, 2, b).

We will show that the embedding conforms to the more detailed Fig. 6 (or a symmetric 

one obtained by reversing the order, switching a, b and/or switching 1, 2). We will do 

this in several steps. First we will show that c1 is in the interval (u, v). Second we will 

show that eb and d2b have the indicated positions. Third, we will identify the positions 

of ea and d1a. Finally, we will identify the position of d1b to complete the proof.

Claim 1. Node c1 is in the interval (u, v).
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Proof. Suppose that c1 is outside (u, v). Then both edges (c1, a), (c1, b) have color 3 by 

condition (3). Since a and b are connected by paths (a, 1, b), (a, 2, b), (a, c1, b) of all three 

colors, no edge can exit the interval (a, b) to any node other than 1, 2, c1. Since c2 is 

inside the interval (a, b), it follows that all the nodes of Q2 in the interior of the graph 

bounded by the cycle (a, c1, b, 2) (which is connected) must be inside the interval (a, b). 

Note that the subgraph bounded by the cycle (a, c1, c2, 2) contains Q1 with c1, 2 as the 

outer terminals and a, c2 as the inner terminals, which are adjacent. The inner terminals 

a, c2 lie in the same arc (c1, 2) (in a cyclic ordering), all edges from c1 to the interval 

[a, c2] must be colored 3 and all edges from 2 to [a, c2] must be colored 2. By Lemma 1, 

at least one of the two centers ea, d2a must be outside the interval [a, c2]. Hence it must 

be in the interval (c2, b), and the edge connecting it to node a must be colored 1 because 

it conflicts with the edges (c1, c2) and (2, c2). Similarly, the subgraph of Q2 bounded by 

the cycle (b, c1, c2, 2) contains Q1 with c1, 2 as the outer terminals and b, c2 as the inner 

terminals, which are adjacent. By a symmetric argument, at least one of the two centers 

eb, d2b must be in the interval (a, c2), and the edge that connects it to b is also colored 

1. Thus, there are two color-1 edges that intersect, a contradiction. We conclude that c1

is in the interval (u, v). �

Since c1 is outside the interval (a, b) (see the beginning of the proof) and is inside the 

interval (u, v) (by Claim 1), it follows that c1 is either in the interval (u, a) or in (b, v). 

Assume without loss of generality that c1 is in the interval (u, a) as in Fig. 5.

Claim 2. Node eb is in the interval (c2, b) and node d2b is in the interval (a, c2). Edge 

(b, d2b) has color 1 and edge (a, c2) has color 3.

Proof. Nodes eb, d2b are both adjacent to nodes c2 and b. Node c2 cannot reach outside 

the interval (c1, b) because of the color-1 path (a, 1, b), color-2 path (a, 2, b) and the color-

3 edge (c1, b). Node b cannot reach the interval (c1, a) because of the edges (1, a), (2, b)

and (c1, c2). Hence eb and d2b must be in the interval (a, b).

Suppose that eb is in (a, c2), to derive a contradiction. Then the edge (eb, b) must 

have color 1 and (c1, eb) color 3, hence the edge (a, c2) must have color 2. Then there 

is no legal position for node d2a: c2 cannot reach outside the interval (a, b) (because of 

the color-1 path (a, 1, b), the color-2 path (a, 2, b) and the color-3 path (eb, c1, b)), node 

2 cannot reach the interval (a, c2) with color 2, and node a cannot reach the interval 

(c2, b) (because of the color-1 edge (eb, b), the color-2 edge (c2, 2) and the color-3 edge 

(c1, eb)). We conclude that eb is in interval (c2, b).

The subgraph of Q2 bounded by the cycle (c1, c2, 2, b) contains a copy of Q1 with 

c1, 2 as the outer terminals and c2, b as the inner terminals. The inner terminals c2, b

are adjacent, they lie in the same (c1, 2) arc (in the cyclic order), node c1 can reach 

the interval [c2, b] only with color 3 and node 2 can reach [c2, b] only with color 2. The 

conditions of Lemma 1 are satisfied, therefore the interval (c2, b) cannot contain both 

centers eb, d2b. Since eb is in the interval (c2, b), the other center d2b is not, thus it is in 
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the interval (a, c2). The edge (b, d2b) must have color 1 (because of the conflicting edges 

(2, c2) and (c1, c2)), and the edge (2, d2b) has color 2, therefore the edge (a, c2) must have 

color 3. �

Claim 3. Node ea is in the interval (c1, a). Node d1a is in interval (u, c1). Edge (a, d1a)

has color 2.

Proof. Node ea is adjacent to nodes a, c1, c2. Node c2 can only reach the interval (c1, b). 

Node a cannot reach the subinterval (c2, b) (because of the color-1 edge (d2b, b), the 

color-2 edge (c2, 2) and the color-3 edge (c1, c2)) and node c1 cannot reach the subin-

terval (a, c2) (because of the edges (a, 1), (a, 2), (a, c2)). Therefore, ea is in the interval 

(c1, a).

The subgraph of Q2 bounded by the cycle (1, a, c2, c1) contains a copy of Q1

with outer terminals 1, c2, and inner terminals a, c1. The inner terminals are adja-

cent and are in the same (1, c2) arc. Furthermore, all edges from 1 to the interval 

[c1, a] are colored 1, and all edges from c2 to [c1, a] must be colored 3. The condi-

tions of Lemma 1 are satisfied, therefore we cannot have both centers ea, d1a in the 

interval [c1, a]. Since ea is in the interval, it follows that d1a must be outside the in-

terval [c1, a]. Node a cannot reach outside the interval (u, c2) (because of the color-1 

path (c1, 1, b, d2b), the color-2 edge (c2, 2) and the color-3 edge (c1, c2)), and node c1

cannot reach the interval (a, c2). Therefore, d1a must be in the interval (u, c1). It fol-

lows that the edge (a, d1a) must have color 2, since it conflicts with edges (1, c1) and 

(c1, c2). �

Claim 4. Node d1b is in interval (b, v). Edge (c1, d1b) is colored 3.

Proof. Node d1b is adjacent to b, 1, c1. Node b cannot reach the interval (c1, a), node c1

cannot reach the interval (a, c2) and 1 cannot reach (c2, b) (because of the edge (d2b, b)). 

Therefore d1b lies outside the interval (c1, b). First, we claim that it must be in the interval 

(d1a, v). Suppose to the contrary that it lies outside the interval (d1a, v) (possibly even 

outside the interval (u, v)). Then it is easy to see that both edges (d1b, c1) and (d1b, b)

must have color 3: If d1b is outside the interval (u, v) then this holds because of condition 

(3), and if d1b is in (u, d1a) this holds because of the color-1 edge (1, d1a) and the color-2 

edges (d1a, a) and (2, a). Then there is no legal position to place the center f of the 

triangle (b, c1, d1b): If f is outside (u, v) then (f, b), (f, c1) must both have color 3 and 

one of them intersects one of (d1b, c1), (d1b, b). Similarly, if f is in (u, c1), the edge (f, b)

must have color 3 and intersects (d1b, c1). If f is in the interval (c1, b) then (d1b, f) must 

be colored 3 (by condition (3) or because of the edges (1, d1a), (d1a, a), (2, a)) and it 

intersects the edge (c1, b). If f is in the interval (b, v) then (c1, f) must have color 3 

(because of the edges (1, a), (2, a)) and intersects the edge (b, d1b). We conclude that d1b

is in the interval (d1a, v). Hence it is either in (d1a, c1) or in (b, v).

Suppose that d1b is in the interval (d1a, c1), to derive a contradiction. The edge (d1b, 1)

is colored 1 and the edge (d1b, b) must be colored 3, hence the edge (d1a, c1) must be 
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Fig. 7. The quad Q.

colored 2. Consider the subgraph of Q2 bounded by the cycle (a, c2, c1, d1a) and recall 

that all the triangles in Fig. 4 are stellated twice. The subgraph contains a copy of Q1

with c2, d1a as the outer terminals, a, c1 as the inner terminals, which are adjacent, and 

are embedded inside the interval (d1a, c2). Node d1a can reach the interval [a, c1] only 

with color 2 (because of the color-1 edge (d1b, 1) and the color-3 edge (d1b, b)), and c2 can 

reach [a, c1] only with color 3. The center ea of the triangle (c2, c1, a) is inside the interval 

(a, c1). Hence, by Lemma 1, the center g of the other triangle (d1a, c1, a) cannot be in 

the interval (c1, a). This leaves no possible position for the center g of (d1a, c1, a): Node 

c1 cannot reach outside (u, v) or left of d1a (because of the edges (d1b, 1), (d1a, a), (d1b, b)

and condition 3), node a cannot reach inside the interval (d1a, c1) or (b, v), and d1a

cannot reach the interval (a, b).

We conclude that d1b is not in the interval (d1a, c1), hence it must be in the in-

terval (b, v). The edge (c1, d1b) must have color 3 because it conflicts with the edges 

(a, 1), (a, 2). �

This completes the proof of the lemma. �

Let Q be the graph formed by taking 15 copies of Q2, identifying their outer terminals 

1,2, and identifying terminal b of the i-th copy with terminal a of the (i + 1)-th copy; 

i.e., Q is formed by glueing together back-to-back 15 copies of Q2 with the same outer 

terminals, see Fig. 7. We call Q a quad, nodes 1,2 the outer terminals of quad Q and call 

the inner terminals a1, a2, . . . , a16 of the copies of Q2 the inner terminals of Q. We use 

Qi
2 to denote the ith copy of Q2. Let Q + 12 denote the graph consisting of Q and the 

edge (1, 2).

Lemma 4. There is no embedding of Q +12 in three pages such that all the inner terminals 

are embedded in a subinterval of the interval (1, 2), and all edges from nodes 1 and 2 to 

this subinterval use only two (the same two) colors (i.e., one of the three colors is not 

used by any edge connecting nodes 1 and 2 to this subinterval).
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Proof. Consider a book embedding of the nodes of the quad Q with all the inner terminals 

embedded in a subinterval of the interval (1, 2) and edges from 1, 2 to this subinterval 

using two colors. Let u′, u be the inner terminals closest to 1 and v′, v the inner terminals 

closest to 2; thus, if we assume wlog that the embedding on the line starts with terminal 

1, then u′, u are the first two inner terminals and v, v′ the last two. The order of these 

nodes is 1, u′, u, v, v′, 2. Let 1 be the color of the edge (1, v′) and let 2 be the color of the 

edge (2, u′). By the hypothesis, all edges from nodes 1 and 2 to the interval (u′, v′) are 

colored 1 or 2. Since the edge (2, u′) is colored 2, all edges from node 1 to the interval 

[u, v] (including nodes u, v) must be colored 1. Similarly, since the edge (1, v′) is colored 

1, all edges from node 2 to the interval [u, v] (including u and v) must be colored 2. 

Because of the color-1 path (u, 1, v) and the color-2 path (u, 2, v), all other edges that 

exit the interval (u, v) (and are not going to 1,2) must be colored 3. Thus, the conditions 

of Lemma 3 are satisfied for every copy of Q2 whose inner terminals are in the interval 

(u, v). Since there are 16 inner terminals, there are at least three consecutive terminals 

ai, ai+1, ai+2 that are not in the set {u, u′, v, v′}, i.e. that are embedded in the interval 

(u, v). Thus, there are two consecutive copies of Q2, for which Lemma 3 holds.

Consider any copy of Q2 with inner terminals in the interval (u, v). Observe from the 

conclusion of Lemma 3 (see Fig. 5) that the inner terminals a, b are connected by paths 

of all 3 colors, (a, 1, b), (a, 2, b), (a, c2, c1, b), and thus no edge can exit the interval (a, b)

unless it connects to 1, 2, c1 or c2. Second, observe that there are nodes of Q2 outside the 

interval (a, b) on both sides, e.g. the nodes c1, d1b. Applying these observations to the i-th 

and (i + 1)-th copy of Q2, tells us that ai cannot lie inside the interval (ai+1, ai+2), and 

similarly ai+2 cannot lie inside the interval (ai, ai+1). For, suppose to the contrary that 

ai is in (ai+1, ai+2). Since no edge of the i-th copy Qi
2 can exit the interval (ai+1, ai+2), 

all nodes of Qi
2 must lie inside the interval (ai+1, ai+2), contradicting the fact that some 

nodes must lie on both sides outside (ai, ai+1). Therefore, ai is outside the interval 

(ai+1, ai+2). Similarly ai+2 is outside the interval (ai, ai+1).

Thus, we may assume without loss of generality that the nodes ai, ai+1, ai+2 appear 

in this order. Observe from Lemma 3 for each of copy of Q2 that there is a color-3 edge 

e (edge (c1, d1b) in Fig. 5) that connects two nodes of Q2 that lie outside, and on both 

sides, of the interval (a, b) and that furthermore, one of these two nodes of the edge e

(node c1 in Fig. 5) has a color-3 edge to an inner terminal (b in Fig. 5). Let ei be the edge 

e for Qi
2, and ei+1 for Qi+1

2 . The left endpoint of ei is left of ai and the right endpoint is 

right of ai+1, and since it cannot be in the interval (ai+1, ai+2) (no edge that does not 

belong to Qi+1
2 can exit this interval unless it goes to 1 or 2), it must be right of ai+2. 

Similarly, the left endpoint of ei+1 must be left of ai and the right endpoint right of 

ai+2. Since the edges ei, ei+1 both have color 3, they are nested. Suppose without loss of 

generality that ei is nested inside ei+1. Then neither endpoint of ei+1 can have a color-3 

edge to ai+1 or ai+2, because it would conflict with ei. This contradicts Lemma 3. �

We remark that the properties of Lemmas 3 and 4 depend crucially on the fact that 

in Q2 we included the edge (c1, c2) between the two centers rather than the edge (a, b)
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Fig. 8. The Graph G. (There are quads attached to the edges.)

between the two inner terminals. It can be shown that with the edge (a, b) instead, 

even after stellating the faces an arbitrary number of times, and gluing back-to-back an 

arbitrary number of copies of the resulting graph, yields a graph that does not have the 

property of Lemma 4: the graph can be embedded between the two outer terminals so 

that all edges to each outer terminal have the same color.

Attaching quads to the edges of a graph restricts the possible embeddings into 3 pages. 

The following lemma illustrates how Q can be used. The lemma will be used often in 

the sequel.

Lemma 5. Consider a graph H formed by taking a triangle (A, B, C) on the plane, at-

taching (adding) a quad to each edge of the triangle, by identifying the outer terminals of 

the quad with the nodes of the edge. There is no embedding of H in three pages such that 

all inner terminals of the quads are embedded in the arc (B, C) that does not contain A

and all edges from A to the inner terminals have the same color.

Proof. Suppose that there is such a 3-page embedding, consider its linearization with 

A lying outside the interval (B, C). Assume first that among all the inner terminals 

of the quads, the one embedded closest to B does not belong to the AB quad, i.e., it 

belongs to the AC or the BC quad. Let u be this terminal and assume wlog that the 

edge (u, C) has color 1. All the inner terminals of the AB quad are in the interval (u, C); 

this interval can be reached from A and B only with colors 2 and 3. By Lemma 4 this 

is impossible.

Therefore, the inner terminal u closest to B belongs to the AB quad. By a symmetric 

argument, the inner terminal v closest to C belongs to the AC quad. The edges (A, u)

and (A, v) have the same color, say color 1. Then all inner terminals of the BC quad are 

in the interval (u, v) and B and C can reach this interval only with colors 2 and 3. This 

is impossible by Lemma 4. �

4. The graph

Our ‘hard’ graph G is constructed as follows. Take a long path p = (x1, x2, . . . , xn), 

of n nodes, where n is sufficiently large, say n = 1000. Take two other nodes 1, 2 and 

connect them to all the nodes xi of the path, as in Fig. 8. This forms 2(n − 1) triangles, 
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Fig. 9. Crossing vertical edges.

which we call the big triangles. Subdivide each big triangle to three small triangles by 

inserting a center node and connecting it to the 3 nodes of the triangle. Inside each small 

triangle, attach a copy of the quad Q to each edge of the triangle, and add a central 

node connecting it to the three nodes of the triangle and the innermost inner terminals 

of the three quads. The construction is shown in Fig. 8 (except for the quads attached 

to the edges, which we omitted for clarity). Note that all small triangles as well as all 

big triangles satisfy the conditions of Lemma 5. Note also the copies of Q1 with outer 

terminals 1,2 and inner terminals xi, xi+1. We call the nodes 1, 2 the terminals of G, 

we call the n nodes x1, . . . , xn the vertical nodes of G, and call the edges (xi, xi+1) the 

vertical edges.

We will show that G cannot be embedded in three pages. For this purpose, fix any 

3-page embedding of G. We will show that the embedding has to satisfy a sequence of 

properties, and derive eventually a contradiction.

Given a 3-page circle embedding of G, we designate one of the two arcs between the 

two terminals 1,2 as the major (1,2) arc, and the other as the minor (1,2) arc as follows: 

the major arc is an arc (1,2) that contains at least half of the vertical nodes, and the 

other (1,2) arc is the minor arc (if both (1,2) arcs contain exactly half of the vertical 

nodes, we arbitrarily designate one as the major and the other as the minor arc). Let z1

be the node in the major arc that is closest to node 1 and adjacent to 2, and let z2 be the 

node in the major arc that is closest to node 2 and adjacent to 1 - see Fig. 9. We show 

first that there are not many vertical edges (xi, xi+1) with nodes on both (1,2) arcs.

Lemma 6. There are at most 4 vertical nodes xi in the arc (z1, z2), whose successor xi+1

on the path p is in the minor arc (1,2).

Proof. By contradiction. Suppose that there are 5 such vertical nodes xi in (z1, z2) whose 

successor xi+1 is in the minor arc (1,2). Denote these 5 nodes as a1, . . . , a5 in the order 

that they appear in (z1, z2), and let their successors be b1, . . . , b5 respectively. Assume 

wlog that edge (1, z2) has color 1 and edge (2, z1) has color 2 (they intersect so they 

must have different colors). The 5 vertical edges (a1, b1), . . . , (a5, b5) intersect both edges 

(1, z2), (2, z1), so they must all have color 3, hence they do not intersect each other; see 

Fig. 9. The edges (1, a2), . . . (1, a5) must have color 1 because they intersect (a1, b1) and 
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(2, z1). Similarly the edges (2, a1), . . . (2, a4) must have color 2 because they intersect 

(a5, b5) and (1, z2). Note that a node inside the arc (a2, a3) can reach nodes other than 

nodes 1,2 only in the same arc or the arc [b2, b3], because of the color-1 path (a2, 1, a3), 

the color-2 path (a2, 2, a3) and the color-3 edges (a2, b2), (a3, b3). Similarly, a node inside 

the arc (a3, a4) can reach nodes other than nodes 1,2 only in the same arc or the arc 

[b3, b4]. Node a3 can only reach nodes in the arcs [a2, a3, a4] and [b2, b3, b4].

Similar observations hold for the edges connecting nodes 1, 2 to the vertical nodes 

b1, . . . , b5 on the minor arc (1,2). Edges (1, b5), (2, b1), must have color 1 or 2 because 

they intersect (a2, b2). If (1, b5) has color 1 then (2, b1) must have color 2, hence all edges 

(1, b2), . . . (1, b5) must have color 1 and all the edges (2, b1), . . . (2, b4) must have color 2. 

If (1, b5) has color 2 then (2, b1) must have color 1, all edges (1, b2), . . . (1, b5) have color 

2 and the edges (2, b1), . . . (2, b4) have color 1. (Fig. 9 depicts the latter case.) In either 

case, note again that a node in the arc (b2, b3) can reach nodes other than 1,2 only in 

the same arc or the arc [a2, a3]. Similarly, a node inside the arc (b3, b4) can reach nodes 

other than 1, 2 only in the same arc or the arc [a3, a4]. Node b3 can only reach nodes in 

the arcs [b2, b3, b4] and [a2, a3, a4].

Consider the big triangle (1, a3, b3) of G. From the observations in the previous two 

paragraphs it follows that either all the internal nodes of this triangle are in the strip 

(a2, a3) ∪ (b2, b3) or they are all in the strip (a3, a4) ∪ (b3, b4). Assume without loss of 

generality that they are in the strip (a2, a3) ∪ (b2, b3) (the argument is the same in the 

other case). Any edge from a3 to the arc (b2, b3) must be colored 3 and likewise any edge 

from b3 to the arc (a2, a3) must be colored 3, therefore there cannot exist both kinds of 

edges. Hence, either all the inner terminals of the quads attached to edges (1, a3), (a3, b3)

are in arc (a2, a3) or all inner terminals of the quads attached to the edges (1, b3), (a3, b3)

are in arc (b2, b3). Assume wlog that the former holds, i.e. all the inner terminals of the 

quads attached to edges (1, a3), (a3, b3) are in arc (a2, a3).

If the inner terminal closest to a3 belongs to the (1, a3) quad, then the edge connecting 

it to 1 must be colored 1, hence all edges from the inner terminals of the (a3, b3) quad 

to a3 must be colored 2 or 3 and all edges from these inner terminals to b3 must be 

colored 3, contradicting Lemma 4. On the other hand, if the inner terminal closest to 

a3 belongs to the (a3, b3) quad, then the edge to b3 is colored 3, hence all edges from 

the inner terminals of the (1, a3) quad to a3 must be colored 1 or 2 and all edges from 

these inner terminals to 1 must be colored 1, contradicting again Lemma 4. The lemma 

follows. �

We view the 3-page embedding as an embedding on the line, starting with one of 

the terminals, followed by the major (1,2) arc (which is now an interval on the line), 

then the other terminal, followed by the minor arc (1,2). We will focus on the interval 

(1, 2) corresponding to the major arc. Let z1 (resp. z2) be again the node in the interval 

(1, 2) that is closest to node 1 (resp. 2) and is adjacent to 2 (resp. 1). Define the stretch

between two points u, v, of the linear embedding, denoted str(u, v), to be the number of 

vertical nodes in the interval (u, v).
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Lemma 7.

(1) If u, v are two nodes in the interval (1, 2) connected by an edge then str(u, v) ≤

15.

(2) If u, v are two nodes in the interval (z1, z2) that have incident edges that exit the 

interval [1, 2] then str(u, v) ≤ 15.

Proof. The proof is essentially the same for both parts. Suppose that u, v are two nodes 

as in part (1) or (2) of the lemma such that str(u, v) > 15. We will derive a contradiction. 

If there is an edge (u, v), say of color 3, then all edges from the terminals 1, 2 to all the 

nodes in the interval (u, v) must use the other two colors 1, 2. On the other hand, if 

u, v are in the interval (z1, z2) and there are two edges incident to them that exit the 

interval [1, 2], then both edges intersect the edges (1, z2) and (2, z1), which themselves 

intersect each other. Therefore, the two exiting edges incident to u and v must have the 

same color, say color 3, and thus again all edges from the terminals 1, 2 to all the nodes 

in the interval (u, v) must use the other two colors 1, 2.

Let y1, y′

1 (respectively, y2, y′

2) be the vertical nodes in the interval (u, v) that are 

closest to 1 (resp. to 2). So, if we assume wlog that u is closer to 1 (than v is) and v is 

closer to 2, then the order of these nodes is 1, u, y1, y′

1, y′

2, y2, v, 2 (or the reverse). The 

other vertical nodes in the interval (u, v) lie between y′

1 and y′

2. Assume without loss of 

generality that (1, y2) has color 1 and (2, y1) has color 2. Then all edges from 1 to the 

vertical nodes in the interval (u, v), except possibly y1 have color 1, and all edges from 

2 to the vertical nodes in (u, v), except possibly y2, have color 2.

Let xi be any vertical node in the interval (u, v) such that xi, /∈ {y1, y′

1, y2, y′

2, x1, xn}, 

xi+1 /∈ {y1, y′

1, y2, y′

2, xn} and xi+1 is in the interval (1, 2) (i.e., xi+1 is not in the minor 

arc (1,2)). By Lemma 6 there are at most 4 vertical nodes xi in the interval (z1, z2) whose 

successor xi+1 is in the minor arc (1,2). Since there are at least 16 vertical nodes in (u, v), 

we can choose xi to be a vertical node in (u, v) that satisfies the above conditions.

Claim 5. Node xi+1 is in (u, v) and there is no other vertical node embedded between xi

and xi+1.

Proof. Suppose that xi+1 is not in (u, v). Then the edge (xi, xi+1) must have color 3 

because it conflicts with the color-1 path (y′

1, 1, y′

2) and the color-2 path (y′

1, 2, y′

2). In 

case (1) of the statement of the lemma, where there is an edge (u, v) of color 3, we get a 

contradiction. In case (2) where there are color-3 edges incident to u and v that exit the 

interval (1, 2), there is again a contradiction because xi+1 lies in the interval (1, 2), and 

therefore (xi, xi+1) intersects one of the exiting edges incident to u, v. In either case we 

conclude that xi+1 is in (u, v).

Since neither xi nor xi+1 is y1 or y2, the edges (1, xi), (1, xi+1) are colored 1 and the 

edges (2, xi), (2, xi+1) are colored 2. Suppose that there is another vertical node xj, in 

the interval between xi and xi+1 (see Fig. 10). Then the edge (1, xj) has color 1, and 
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Fig. 10. Vertical node between xi, xi+1.

the edge (2, xj) has color 2. Therefore, the edge (xi, xi+1) must have color 3. No edge 

can exit the interval (xi, xi+1), other than edges to 1, 2, because of the color-1 path 

(xi, 1, xi+1), the color-2 path (xi, 2, xi+1) and the color-3 edge (xi, xi+1). Since xj is in 

this interval, then all vertical nodes of the path p between xj and xi or xi+1 must be in 

this interval. That is, if j < i, then xj+1, . . . , xi−1 must be in the interval (xi, xi+1); if 

j > i + 1, then xi+2, . . . , xj are in the interval (xi, xi+1).

Suppose without loss of generality that j < i, hence xi−1 is in (xi, xi+1). Consider 

the triangles (1, xi−1, xi), (2, xi−1, xi). Their interior nodes must all be in the interval 

(xi, xi+1) because xi−1 is in this interval (refer to Fig. 10 with xi−1 in place of xj). If all 

the inner terminals of the quad attached to the edge (1, xi) are in the interval (xi−1, xi+1), 

then all edges connecting them to 1 must have color 1 and all edges to xi must have color 

3, contradicting Lemma 4. Similarly, if all the inner terminals of the quad attached to the 

edge (2, xi) are in the interval (xi−1, xi+1), then all edges connecting them to 2 must have 

color 2 and all edges to xi must have color 3, contradicting again Lemma 4. It follows that 

at least one inner terminal from each of the two quads attached to edges (1, xi), (2, xi)

must be in the interval (xi, xi−1); the edges connecting these inner terminals to 1 and 

2 respectively are colored 1, 2. Hence edge (xi, xi−1) is colored 3. Because of the color-

1 and -2 paths (xi, 1, xi−1) and (xi, 2, xi−1), no edge to a node other than 1, 2, can 

exit the interval (xi, xi−1), hence all the interior of the triangle (1, xi−1, xi) (as well as 

(2, xi−1, xi)) must lie in this interval. All the edges from node 1 to the inner terminals 

must use color 1, so this contradicts Lemma 5. �

Assume without loss of generality that xi+1 is embedded right of xi. Let y be the 

vertical node left of xi and z the vertical node right of xi+1. Since xi, xi+1 are in (u, v)

and are not among {y1, y′

1, y2, y′

2}, the nodes y, z exist, and the edges from y, xi, xi+1, z

to 1 are colored 1 and the edges to 2 are colored 2.

Claim 6. If a node adjacent to both xi, xi+1 (other than 1, 2) is outside the interval 

(xi, xi+1) then it must be either in the interval (y, xi) or in the interval (xi+1, z). In the 

former case y = xi−1 and in the latter case z = xi+2.

Proof. Let w be a node adjacent to both xi, xi+1 (other than 1, 2) that is outside the 

interval (xi, xi+1). Assume without loss of generality that w is to the right of the interval 

(xi, xi+1). (The argument is symmetric if w is to the left of the interval.) Note that w �= z, 

since w is adjacent to both xi, xi+1, hence it is not a vertical node, and z is a vertical 

node. If w is right of z, then both edges (w, xi), (w, xi+1) have color 3 (because they 

intersect the color-1 and -2 paths (y, 1, z), (y, 2, z)), thus there is a color-3 path between 
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Fig. 11. Embedding in Claim 6.

xi and xi+1. There are also color-1 and -2 paths (xi, 1, xi+1), (xi, 2, xi+1), hence no edge 

can exit the interval (xi, xi+1) to a node other than 1, 2, w, and any other node adjacent 

to both xi, xi+1 must be inside (xi, xi+1). This implies in particular that the center of 

either the triangle (1, xi, xi+1) or the triangle (2, xi, xi+1) is in the interval (xi, xi+1), 

and hence all the nodes of the triangle are in this interval. This contradicts Lemma 5

because the interval is reachable from node 1 only with color 1 (and from node 2 only 

with color 2).

We conclude that w is in the interval (xi+1, z) - see Fig. 11. The edge (xi, w) has color 

3 because it intersects (1, xi+1), (2, xi+1). Node xi+1 cannot reach any node other than 

1, 2 left of xi nor right of z because of the color-1 and -2 paths (xi, 1, z), (xi, 2, z) and the 

color-3 edge (xi, w). Since xi+1 �= xn from our choice of xi, node xi+1 has a successor 

xi+2 on the path p, and xi+2 must lie in the interval (xi, z). By Claim 5, xi+2 cannot be 

in the interval (xi, xi+1), hence it must be z. �

We can finish now the proof of the lemma. Applying Lemma 1 to the copy of Q1

with outer terminals 1, 2 and inner terminals xi, xi+1, we deduce that at least one of the 

centers of the triangles (1, xi, xi+1), (2, xi, xi+1) must be outside the interval (xi, xi+1). 

Let w be this center. By Claim 6, w is either in (y, xi) or in (xi+1, z). Assume wlog 

that w is in (xi+1, z) - see Fig. 11. Then z = xi+2 by Claim 6. The edge (xi, w) has 

color 3 (because it intersects (1, xi+1), (2, xi+1)), hence xi+1 cannot reach outside the 

interval (xi, xi+2) and xi+2 cannot reach inside (xi, xi+1). Therefore, all nodes (other 

than 1, 2) adjacent to both xi+1, xi+2, e.g. the centers of the triangles (1, xi+1, xi+2) and 

(2, xi+1, xi+2) must be inside the interval (xi+1, xi+2). This contradicts Lemma 1 for the 

copy of Q1 with outer terminals 1, 2 and inner terminals xi+1, xi+2. �

We will concentrate on a region of the interval between the terminals that has the 

properties indicated in the following lemma.

Lemma 8. There is a subinterval I of the interval (1, 2) such that (1) no edge from a node 

in I exits the interval (1, 2), (2) all edges from one terminal to I use only one color, and 

all edges from the other terminal use the other two colors, and (3) I contains at least 

240 vertical nodes.

Proof. Let again z1 (resp. z2) be the node in the interval (1, 2) that is closest to 1 

(resp. 2) and is adjacent to 2 (resp. 1). Assume wlog that the edge (1, z2) has color 

1 and the edge (2, z1) has color 2. All edges from 1 to nodes in the interval (z1, 2)

have color 1 or 3, and similarly all edges from 2 to nodes in (1, z2) have color 2 or 
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Fig. 12. Subintervals of the major interval (1,2).

3. Let g2 be the node in the interval (z1, z2) closest to 2 that has a color-3 edge to 

1 if there is such a node (see Fig. 12); otherwise let g2 = z1. Similarly, let g1 be the 

node in the interval (z1, z2) closest to 1 that has a color-3 edge to 2, if there is such 

a node, otherwise let g1 = z2. From the definitions, all edges from 1 to the (open) 

interval (g2, 2) have color 1, and all edges from 2 to the interval (1, g1) have color 2. 

Clearly, g2 must be left of (or equal to) g1 because two color-3 edges cannot intersect. 

If there is an edge incident to a node u in the interval (z1, z2) that exits the interval 

(1, 2), it must have color 3 and thus u must be between g2 and g1. If there are such 

exiting edges, then let f1 be the leftmost node in (z1, z2) that has such an edge and 

f2 be the rightmost such node. By Lemma 7, str(f1, f2) ≤ 15. If there are no such 

edges that connect a node in (z1, z2) to a node outside (1, 2), then let f1 = g1, f2 =

g2.

The intervals (z1, f1), (f2, z2) have the following properties:

(1) No edge from a node in these intervals exits (1, 2).

(2) All edges from node 1 to (f2, z2) have color 1, and all edges from node 2 to (z1, f1)

have color 2.

(3) The total number of vertical nodes in the two intervals is at least n
2 − 20 =

480.

The interval among (z1, f1), (f2, z2) that has the maximum number of vertical nodes 

satisfies the conditions of the lemma. �

We call the subinterval I of Lemma 8 the prime region. Assume wlog for the remainder 

that all edges from the prime region I to terminal 1 have color 1, and edges to terminal 

2 have color 2 or 3; there are no edges from I that exit the interval (1, 2).

By Lemma 7, if a node in the prime region I has stretch distance more than 15 from 

the endpoints of I, then all its adjacent nodes (except 1,2) are also in the prime region. 

Let xi, i �= n be any vertical node in the prime region that has stretch distance more 

than 50 from its endpoints. Then all the nodes that are within distance 3 from xi in the 

graph G \ {1, 2} are also in the prime region. This implies in particular that xi+1 is also 

in the prime region, and so are all nodes adjacent to xi or xi+1 in G (except 1,2) and 

their adjacent nodes. The edges from 1 to xi, xi+1 are both colored 1. The edges from 2 

to xi, xi+1 are colored 2 or 3; we show next that they have the same color.

Lemma 9. Let xi, i �= n be any vertical node in the prime region that has stretch distance 

more than 50 from its endpoints. The edges (2, xi), (2, xi+1) have the same color.
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Proof. Suppose that the edges (2, xi), (2, xi+1) have different colors, say 2, 3 respectively. 

We will derive a contradiction. Assume wlog that xi is left of xi+1. We distinguish cases 

depending on the color of the edge (xi, xi+1).

Case 1: (xi, xi+1) has color 1. Consider the inner terminals of the quads attached to 

the edges (1, xi) and (1, xi+1). They must be in the prime region (since they are adjacent 

to xi or xi+1), but they cannot be in the interval (xi, xi+1) (since it has color 1).

Observe from the definition of Q2 that the two inner terminals a, b are connected by 

two paths of length 2, where the intermediate node of each path is adjacent to one of 

the terminals. Therefore, any two inner terminals of a quad Q are connected by a path 

consisting of nodes that are adjacent to either outer terminal, where every other node 

of the path is an inner terminal. In particular, any two inner terminals of the quads 

attached to the edges (1, xi) and (1, xi+1) are connected by a path of nodes that are 

adjacent to node 1. All of the nodes of these paths must be in the prime region because 

they have distance at most 2 in the graph G \{1, 2} from xi or xi+1. None of these nodes 

can be in the interval (xi, xi+1) because the edge (xi, xi+1) is colored 1. Furthermore, 

there cannot be an edge connecting a node in the prime region left of xi to a node right 

of xi+1 because of the edges (1, xi), (2, xi), (2, xi+1) that have colors 1, 2, 3 respectively. 

Therefore, either all the inner terminals of both quads are left of xi or they are all right 

of xi+1. In the former case, the quad of (1, xi+1) contradicts Lemma 4 because all edges 

from the inner terminals to 1 have color 1 and the edges to xi+1 must have color 3 

(because they intersect (1, xi), (2, xi)). In the latter case, the quad of (1, xi) contradicts 

Lemma 4 because all edges from the inner terminals to 1 have color 1 and the edges to 

xi must have color 2 (because they intersect (1, xi+1), (2, xi+1)).

Case 2: (xi, xi+1) has color 2 or 3. Assume wlog that (xi, xi+1) has color 2 (the case 

of color 3 is symmetric). Consider the triangles (1, xi, xi+1), (2, xi, xi+1) and the quads 

attached to their edges. If one of the inner terminals is right of xi+1 then all of them 

must be there (within the prime region), because the edge (1, xi+1), the path (2, xi, xi+1)

and the edge (2, xi+1) use all 3 colors, hence there cannot be an edge from a node right 

of xi+1 to a node (other than xi) left of xi+1. Node xi can reach nodes right of xi+1 only 

with color 2. By Lemma 5, the inner terminals of the quads of the triangles (1, xi, xi+1), 

(2, xi, xi+1) cannot be right of xi+1, hence they are all left of xi+1.

If there is an edge from xi+1 to a node left of xi, then the edge must be colored 

3 (because of the edges (1, xi), (2, xi)), in which case node 2 cannot reach the interval 

(xi, xi+1) (because the edge (xi, xi+1) was assumed to have color 2). Then all inner 

terminals of the quad for the edge (2, xi+1) must be left of xi and their edges to 2 and 

xi+1 are colored 2 or 3, contradicting Lemma 4.

Therefore, there is no edge from xi+1 to a node left of xi, hence all inner terminals 

of the quads for the edges (1, xi+1) and (2, xi+1) are in the interval (xi, xi+1). All edges 

from this interval to 1 have color 1 and to 2 have color 3 (because of the edge (xi, xi+1)). 

Suppose that the closest inner terminal to xi+1 belongs to the (1, xi+1) quad, then its 

edge to 1 has color 1. Consider the quad of the edge (2, xi+1): the edges from the inner 

terminals to 2 and xi+1 have color 2 or 3, contradicting Lemma 4. Similarly, if the closest 
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inner terminal to xi+1 belongs to the (2, xi+1) quad, then its edge to 2 has color 3, hence 

the edges from the inner terminals of the quad of the edge (1, xi+1) to 1 and xi+1 have 

colors 1 and 2, contradicting again Lemma 4. �

Let xi, i /∈ {1, n −1, n} be a vertical node in the prime region that is at stretch distance 

more than 80 from the endpoints of the prime region. Then both its successor xi+1 on 

the path p and its predecessor xi−1 are also in the prime region, at stretch distance more 

than 60 from its endpoints. Therefore, the edges from node 1 to xi−1, xi, xi+1 have all 

color 1, and the edges from node 2 to xi−1, xi, xi+1 have all the same color (2 or 3) by 

Lemma 9. Assume without loss of generality that xi is left of xi+1, and that the edges 

from 2 to xi−1, xi, xi+1 have color 2. Using the same argument as in Claim 5 (in the proof 

of Lemma 7), we can deduce that xi−1 is not embedded between xi and xi+1. (If xi−1 is 

in (xi, xi+1) then the edge (xi, xi+1) must have color 3 (because (1, xi−1) has color 1 and 

(2, xi−1) has color 2), hence nodes 1 and 2 can reach the interval (xi, xi+1) only with 

colors 1 and 2 respectively. The argument in the last paragraph of the proof of Claim 5

applies then verbatim.) Similarly, xi+1 is not between xi and xi−1. Therefore, xi−1 is 

left of xi. Similarly, since xi+1 is at stretch distance more than 60 from the endpoints of 

the prime region, its successor xi+2 is also in the prime region, and it is right of xi+1. All 

edges from xi−1, xi, xi+1, xi+2 to terminal 1 are colored 1, and all their edges to terminal 

2 have the same color by Lemma 9, say color 2.

Lemma 10. Let xi, i /∈ {1, n − 1, n} be any vertical node in the prime region that is 

at stretch distance more than 80 from the endpoints of the prime region. There is an 

index j ∈ {i − 1, i, i + 1}, such that the edges (xj, xj+1), (2, xj), (2, xj+1) all have the 

same color, say 2, and the centers of both triangles (1, xj, xj+1), (2, xj , xj+1) are in the 

interval (xj , xj+1).

Proof. As we observed before the lemma, the nodes xi−1, xi, xi+1, xi+2 are in the prime 

region in this order (or the reverse), all edges from xi−1, xi, xi+1, xi+2 to terminal 1 are 

colored 1, and all their edges to terminal 2 have the same color by Lemma 9, say color 

2.

Suppose that both centers c1i, c2i of the triangles (1, xi, xi+1), (2, xi, xi+1) are in the 

interval (xi, xi+1). Consider the copy of Q1 with outer terminals 1, 2 and inner terminals 

xi, xi+1. Node 1 can reach the interval (xi, xi+1) only with color 1. If (xi, xi+1) is colored 

3, then node 2 can reach the interval only with color 2, contradicting Lemma 1. Therefore, 

(xi, xi+1) must be colored 2. Thus, the claim holds for j = i.

On the other hand, suppose that a center w of one of the triangles (1, xi, xi+1), 

(2, xi, xi+1) is outside the interval (xi, xi+1). Then by (the proof of) Claim 6, w must be 

either in the interval (xi−1, xi) or in the interval (xi+1, xi+2). Suppose wlog that w is in 

(xi+1, xi+2) - see Fig. 11; z = xi+2 in the figure. The edge (xi, w) has color 3 because it 

intersects the edges (1, xi+1) and (2, xi+1). Node xi+1 cannot reach any node, other than 

1,2, outside the interval (xi, xi+2) because of the color-1 path (xi, 1, xi+2), the color-2 
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Fig. 13. Embedding in Lemma 11.

path (xi, 2, xi+2), and the color-3 edge (xi, w). Similarly, node xi+2 cannot reach any 

node in the interval (xi, xi+1) because of the color-1 path (xi, 1, xi+1), the color-2 path 

(xi, 2, xi+1), and the color-3 edge (xi, w). Therefore, the centers c1,i+1, c2,i+1 of both 

triangles (1, xi+1, xi+2), (2, xi+1, xi+2) must be in the interval (xi+1, xi+2). The edge 

(1, c1,i+1) is colored 1 and the edge (xi, w) is colored 3, therefore the edge (xi+1, xi+2)

must be colored 2. Thus, the claim holds for j = i + 1. �

Since the edge (xj , xj+1) has color 2, all edges from node 2 to the open interval 

(xj , xj+1) must have color 3. We finish the proof by showing that it is impossible to 

embed and color the edges of the triangles (1, xj, xj+1), (2, xj , xj+1) so that both centers 

are in (xj , xj+1) as required by Lemma 10. This statement is similar to Lemma 1 for the 

copy of Q1 with outer terminals 1, 2, and inner terminals xi, xi+1, but the important 

difference to Lemma 1, is that here the color available from node 2 to the open interval 

(xj , xj+1) is different than the color of the edges from 2 to the nodes xj, xj+1. On the 

other hand, the graph here is more involved and has quads attached to the edges.

Lemma 11. There is no 3-page embedding in which nodes xj, xj+1 are in the prime region, 

with color-1 edges to terminal 1, color-2 edges to terminal 2, the edge (xj, xj+1) has color 

2, all edges from the open interval (xj , xj+1) to 1 have color 1 and to node 2 have color 3, 

and the centers of both triangles (1, xj, xj+1), (2, xj , xj+1) are in the interval (xj , xj+1).

Proof. Assume without loss of generality that the center c1j of the triangle (1, xj, xj+1)

is left of the center c2j of the triangle (2, xj , xj+1) - see Fig. 13.

If xj has a color-2 edge to a node in the interval (c1j, xj+1) (for example, to c2j) then 

the edge (c1j , xj+1) must have color 1 (because of the color-3 edge (2, c2j)). Then there 

is no position for the center of the triangle (1, xj+1, c1j): The center must be in the prime 

region because it is adjacent to xj+1. Node xj+1 cannot reach left of c1j (because of the 

color-1 edge (1, c1j), the color-2 edge from xj to the interval (c1j , xj+1) and the edge 

(2, xj), and the color-3 edge (2, c2j)); node c1j cannot reach right of xj+1 (because of 

the color-1 edge (1, xj+1), the color-2 edge (2, xj+1) and the color-3 edge (2, c2j)); and 1 

cannot reach the interval (c1j , xj+1) (because of the color-1 edge (c1j , xj+1)). Therefore, 

there is no color-2 edge from xj to the interval (c1j , xj+1). In particular, the edge (xj, c2j)

must be colored 3 (it cannot be colored 1 because of the edge (1, c1j)).

Now consider the triangle (2, xj, c2j) and the quads attached to its edges. Since there 

is no color-2 edge from xj to the interval (c1j , xj+1), there is no edge (of any color) from 

xj to the right of c2j because of the color-1 edge (1, c1j), the color-2 edge (2, xj+1) and 

the color-3 edge (2, c2j). Node 2 cannot reach the interval (xj, c2j) because of the color-3 
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edge (xj , c2j). Therefore, the center of the triangle (2, xj, c2j) (and the inner terminals of 

the quad for the edge (2, xj)) must be left of xj . Note that no edge can connect a node 

left of xj to a node right of xj (within the prime region), other than c2j, because of the 

color-1 edge (1, xj), the color-2 edge (2, xj), and the color-3 path (xj , c2j , 2). Therefore 

all the inner terminals of the quads attached to all the edges of the triangle (2, xj, c2j)

are left of xj (and within the prime region). Their edges to c2j must be colored 3 because 

of the conflicting edges (1, xj), (2, xj). This contradicts Lemma 5.

It follows that there is no 3-page embedding satisfying the conditions of the lemma. �

Lemmas 10 and 11 provide the desired contradiction to the assumption that G can 

be embedded in three pages. We conclude:

Theorem 1. There is no 3-page embedding of the graph G.
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