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Abstract— Traditional state estimation (SE) methods that 

are based on nonlinear minimization of the sum of localized 

measurement error functionals are known to suffer from non-

convergence and large residual errors. In this paper we propose 

an equivalent circuit formulation (ECF)-based SE approach 

that inherently considers the complete network topology and 

associated physical constraints. We analyze the mathematical 

differences between the two approaches and show that our 

approach produces a linear state-estimator that is 

mathematically a quadratic programming (QP) problem with 

closed-form solution. Furthermore, this formulation imposes 

additional topology-based constraints that provably shrink the 

feasible region and promote convergence to a more physically 

meaningful solution. From a probabilistic viewpoint, we show 

that our method applies prior knowledge into the estimate, thus 

converging to a more physics-based estimate than the 

traditional observation-driven maximum likelihood estimator 

(MLE). Importantly, incorporation of the entire system 

topology and underlying physics, while being linear, makes 

ECF-based SE advantageous for large-scale systems. 

Index Terms—Equivalent circuit formulation, power system 

modeling, phasor measurement units, power system 

measurements, state estimation 

I. INTRODUCTION

State estimation (SE) is a central part of power system 
operation and security. To infer the operating point of the grid, 
the state of the system is estimated based on various 
measurements within the supervisory control and data 
acquisition (SCADA) system that is installed within the 
network. The output solution of this state estimator is critical, 
since it is fed into the real-time contingency analysis (RTCA) 
module, as well as the real-time dispatch module. A non-
functioning SE will result in failure of these processes. 

Traditionally, the state variables for the SE have been 
voltage phasor magnitudes and angles at all buses. To estimate 
them correctly, the classical approach proposed by [1] 
formulates SE as a minimization of weighted least-squares 
(WLS) error of measurement noise. However, the intrinsic 
nature of WLS problem, the unavoidable noise corruption, as 
well as the violation of the assumed noise distribution 
property, collectively create problems with this traditional 
method.  

As depicted in Figure 1, the major limitation of the 
traditional SE method lies in the following aspects: 

• Non-convergence and high residual (convergence to
local minima or saddle point) problem. The WLS
objective expresses each measurement by a function of
state variables and minimizes the mismatch. However,
due to the nonlinear relationships between measurements
and states, the WLS-based SE is a highly nonlinear
nonconvex problem solvable by iterative methods.
During the updates, each iteration solves a ‘new’ system
that is a linearization of the target system at the current
solution, and therefore, it lacks real physical meaning.
Once there is a bad initial guess, iterative methods can

deviate largely from reality, leading to non-convergence 
or convergence to local minima or saddle points.  

Figure 1. Limitations of WLS-based SE.

• Insufficient real-world physics in SE. Ideally, SE
would provide grid state estimates with minimal
deviation from the true grid state, which should result in
feasible power flow constraints. However, in a WLS
formulation, such complete network power balance is not
fully considered, and the desired outcome is
approximated by a minimization of residual between
estimated states and measurement. In this case, when
some measurements are corrupted by noise, missing
completely, or grossly inaccurate, the resulting solution is
still forced to match the measurements to the largest
extent, but thereby fails to sufficiently minimize the true
deviation; i.e., the true error between system states and
obtained estimates. We note that, depending on model
complexity and noise statistics, other types of M-
estimators [2] may be used to resolve this issue, which is
a topic of general interest. We will partially address this
issue in this paper. We show that the topological
constraints of our formulation effectively correspond to
adding a regularization penalty in the residual
minimization objective, thus promoting solutions that
adhere to physical network constraints (Section III-C).

Earlier research has tried to address the aforementioned
limitations. Firstly, SEs with just PMUs have been developed 
that are in linear in complexity [3]. However, the penetration 
of PMUs compared to RTUs remains low. To deal with the 
phasor angle measurements and consider SE with both 
conventional RTU meters and PMUs, some novel methods 
rely on a transformed use of angle meters [4], a hybrid method 
consisting of two separate estimators [5], and some linearly 
remodeled PMUs [6]. However, in estimators for combined 
measurements, the nonlinear nature of conventional 
measurements and the resulting convergence problems still 
exist. Similarly, to improve upon the true residual problem, 
more grid physics has been incorporated into the problem 
through modeling of zero injection nodes through pseudo 
measurements [7]. However, adding these additional terms 
with extremely high weights has resulted in matrix ill-
conditioning and corresponding non-convergence. The 
constrained Hachtel optimization approach [8] is also 
proposed to solve the SE problem with zero-injection (ZI) 
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nodes, but it has been found hard to solve due to the non-
convexity of the optimization problem.  

To tackle all the limitations of the WLS-based method, we 
proposed an equivalent circuit formulation (ECF) based 
approach to state-estimation [9][11][15]. This paper builds on 
that and presents a comprehensive comparison between the 
traditional WLS method and the ECF-based SE approach. For 
the latter approach, we introduce circuit-based models for the 
phasor measurement units (PMUs) as well as novel line flow 
meters from any RTU or PMU devices. The main contribution 
of this paper is to mathematically demonstrate how our 
approach addresses the root causes of the aforementioned 
limitations: 

• Resolve all convergence-related issues by
formulating SE as a Quadratic Programming (QP)
problem with closed-form solution, thereby reaching
a global minimum.

• Enforce a more physically meaningful solution by
considering the complete network topology.

Section 2 begins with a background overview of ECF 
formulation. Section 3 shows the mathematical comparison in 
terms of measurement models, problem formulation and 
probabilistic illustration. Section 4 presents some 
experimental results. Finally, section 5 documents the 
conclusions. 

II. BACKGROUND

A. Notation

Table 1 shows the symbols used in this paper. 

TABLE 1: SYMBOLS AND DEFINITIONS 

Symbol Interpretation 

𝑉𝑅, 𝑉𝐼, 𝐼𝑅, 𝐼𝐼 
|𝑉|, 𝜃, 𝑃, 𝑄 

Real/imaginary voltage/current;  

Voltage magnitude/angle; active/reactive power 

𝑥 State variable vector,  𝑥 = [𝑉𝑅, 𝑉𝐼] 

𝑧 Measurements 

𝑛, 𝑛𝑅 , 𝑛𝐼 Noise term; real and imaginary noise term 

𝑧𝑉
𝑅 , 𝑧𝑉

𝐼 , 𝑧𝐼
𝑅 , 𝑧𝐼

𝐼 Measurement of Real/imaginary voltage/current 

𝑧|𝑉|, 𝑧𝑃, 𝑧𝑄 Measurement of |𝑉|, 𝑃, 𝑄 

𝐼(𝑥) = 0 Network balance ( KCL) equations 

𝑌 

𝑌𝑖
𝑅, 𝑌𝑖

𝐼
Admittance Matrix s.t. I=YV 

Admittance vector at bus i: 𝐼𝑖
𝑅 = 𝑌𝑖

𝑅𝑥, 𝐼𝑖
𝐼 = 𝑌𝑖

𝐼𝑥

𝐺, 𝐵 Conductance, susceptance 

B. Equivalent Circuit Formulation (ECF)

A circuit-theoretic formulation for power flow and grid 
optimizations was developed in [12]-[13]. Instead of 
describing components with ‘PQV’ parameters, this 
framework models each component within the power grid as 
an electrical circuit element characterized by its I-V 
relationship. For computational analyticity, the complex 
relationships are split into real and imaginary sub-circuits 
whose nodes corresponds to power system buses [12]-
[13]. Table 2 shows a simple comparison between the 
traditional PQV formulation and ECF.  

TABLE 2: COMPARISON BETWEEN FORMULATIONS 

Property 

Comparison 

PQV formulation 
ECF 

(I-V formulation) 

Coordinate Polar Rectangle 

State variable |𝑉|, 𝜃 𝑉𝑅, 𝑉𝐼 

Network balance Zero power mismatch Zero current mismatch 

Governing 

equations 

Power balance at 

∀bus 

KCL equations  at 

∀bus 

Under this ECF framework, the network equations are 
intrinsically linear due to I-V relationships through Ohm’s law 
and the non-linearities exist due to load and generation 
models. In case of SE these generation and load models are 
replaced via measurement models and therefore with linear 
models for injections and line-flow measurement devices, this 
framework results in a QP problem with closed form solution. 
The approach and models are further discussed below. 

III. METHODS AND COMPARISONS

A. Models: Linear Models to improve convergence

Compared to the traditional SE, which nonlinearly represents 
the relationship between each measurement and state 
variables, the ECF-based develops linear models for 
measurements and replaces them in the aggregated circuit via 
Substitution Theorem. These models are flexible and can be 
added, removed or replaced to represent any changes within 
the grid.  

In the following subsection we derive a new linear PMU 
model to overcome some of the challenges of the existing 
PMU model in ECF formulation [9]. We also briefly discuss 
the linear RTU model from [11] and demonstrate their 
advantages in improving convergence.  

1) Phasor Measurement Units (PMU):

As a synchronized measurement device, a PMU can 
provide real-time meter readings of voltage and injection 
current phasors in rectangular coordinates: 𝑧𝑉

𝑅 , 𝑧𝑉
𝐼 , 𝑧𝐼

𝑅 , 𝑧𝐼
𝐼 .

By substitution theorem, we can safely develop a new 
PMU model (shown in Figure 2). The model is represented by 
independent current sources taking value of the measured real 
and imaginary current. To further consider measurement 
errors such that KCL is always satisfied, we attach additional 
slack current sources 𝑛𝑅 , 𝑛𝐼 to represent the noise term such
that: 

𝐼𝑅 = 𝑧𝐼
𝑅 + 𝑛𝑅 (1) 

𝐼𝐼 = 𝑧𝐼
𝑅 + 𝑛𝐼 (2) 

Meanwhile, the observation of voltage phasor indicates the 
state variables  𝑉𝑅, 𝑉𝐼  should be close to 𝑧𝑉

𝑅, 𝑧𝑉
𝐼 , with the

mismatch representing measurement errors. Consequently, we 
estimate state variables by minimizing the noise term and the 
voltage mismatch: 

min
𝑉𝑅,𝑉𝐼,𝑛𝑅,𝑛𝐼

𝑤(||𝑛𝑅||
2

2
+ ||𝑛𝐼||

2

2
) + 𝑤(||𝑉𝑅 − 𝑧𝑉

𝑅||
2

2

+ ||𝑉𝐼 − 𝑧𝑉
𝐼 ||

2

2
) 

s.t.   Current balance (KCL equations) at buses

(3) 

The problem description above results in a provably 
convergent QP formulation for PMU models. 

Figure 2. PMU model. 

To effectively represent the difference in accuracy of 
individual PMU devices in the grid through weights (𝑤 ), 
voltages and currents are captured separately in this model 
(see (3)), to address challenges of the PMU model [9]. 
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2) Remote terminal unit (RTU):

RTU provides measurements of voltage magnitude 𝑧|𝑉|,
power injection 𝑧𝑃 and 𝑧𝑄 at a measured bus. In ECF, despite

no direct phasor measurements, these observations can be 
mapped into linear circuit formulation [11][15] using the 
following relationship between bus voltages and injection 
currents: 

𝐼𝑅 =
𝑃

|𝑉|2
𝑉𝑅 +

𝑄

|𝑉|2
𝑉𝐼 (4) 

𝐼𝐼 =
𝑃

|𝑉|2
𝑉𝐼 −

𝑄

|𝑉|2
𝑉𝑅 (5) 

and a linear RTU model can be developed accordingly, with 
resister and controlled current source parameters G and B. 
Similar to the PMU model, we add an additional current 
source  𝑛𝑅 , 𝑛𝐼  to capture the mismatch and represent the bus
errors: 

𝐼𝑅 = 𝐺𝑉𝑅 + 𝐵𝑉𝐼 + 𝑛𝑅 (6)
𝐼𝐼 = 𝐺𝑉𝐼 − 𝐵𝑉𝑅 + 𝑛𝐼 (7) 

where 𝐺 =
𝑧𝑃

𝑧|𝑉|
2 , 𝐵 =

𝑧𝑄

𝑧|𝑉|
2

Figure 3. RTU model. 

With this model, we estimate the state variables by 
minimizing the noise term: 

min
𝑉𝑅,𝑉𝐼,𝑛𝑅,𝑛𝐼

||𝑛𝑅||
2

2
+ ||𝑛𝐼||

2

2

s.t.   Current balance (KCL equations) at buses
(8) 

This creates a linear model for the measured RTU 
information. 

3) Line flow measurements of RTU and PMU

RTU devices can also measure flow on one or more lines 
adjacent to the bus. This paper establishes their linear models 
in a way consistent with injection models. To model line flow 
measurements, we use an additional control circuit having 
injections at the measured value. The control circuits are 
coupled with the main circuit by voltage control. The models 

are shown in Figure 4, where 𝐺 =
𝑧𝑃𝑙𝑖𝑛𝑒

𝑧|𝑉|
2 , 𝐵 =

𝑧𝑄𝑙𝑖𝑛𝑒

𝑧|𝑉|
2 and 𝐼𝑙𝑖𝑛𝑒

𝑅/𝐼

can be linearly expressed by ECF branch models. PMU flow 
model is previously discussed in [15]. 

Figure 4. Linear model for line flow meters 

B. Problem formulation: a convex problem with topology-

based constraints to shrink feasible set

Next, we present mathematical formulations of the ECF-

based and traditional SE problems in order to compare them. 

Figure 5. 5-bus case example. 

Consider the simple IEEE 5-bus case shown in Figure 5. Bus 
#2 is a ZI bus. Suppose we obtain PMU measurements on bus 
1, 4 and RTU measurements on bus 5. 

1) Traditional WLS-based method

For a traditional SE approach, measurements are modeled by: 

𝑧𝑖 = 𝑓𝑖(𝑥) + 𝑛𝑖                                   (9) 
 To estimate state variables x, the traditional approach is to 

minimize a weighted least square of the measurement errors: 

min
𝑋

∑ 𝑤𝑖(𝑧𝑖 − 𝑓𝑖(𝑥))
2

𝑖

(10) 

where 𝑓𝑖 (x) is determined by Kirchoff’s law and line
admittances in terms of power mismatch equations, and 𝑓𝑖 is
nonlinear for some i. This minimization has no closed form 
solution and is solved iteratively. With the use of polar 
coordinates for this traditional SE formulation, the measured 
phasor angle is generally expressed with the tan−1() function,
thus adding to any convergence difficulty.   

2) ECF-based method

In ECF, with the linear component models proposed in 
Section III.A and in [15] we optimize to find the 𝑥 that results 
in minimized error while satisfying the power system balance: 

min
𝑋,𝑛,𝐼𝑁𝐴

∑ 𝑤𝑖[(𝑛𝑖
𝑅)2 + (𝑛𝑖

𝐼)2]

𝑖∈{1,4,5}

+ ∑ 𝑤𝑖[(𝑉𝑖
𝑅 − 𝑧𝑉𝑖

𝑅 )2 + (𝑉𝑖
𝐼 − 𝑧𝑉𝑖

𝐼 )2]

𝑖∈{1,4}

Subject to: 
PMU buses #𝑖 ∈ {1,4} 

𝑌𝑖
𝑅𝑥 + 𝑧𝐼,𝑖

𝑅 + 𝑛𝑖
𝑅 = 0 (11) 

𝑌𝑖
𝐼𝑥 + 𝑧𝐼,𝑖

𝐼 + 𝑛𝑖
𝐼 = 0 (12) 

RTU bus #5: 

𝑌5
𝑅𝑥 + 𝐺5𝑉5

𝑅 + 𝐵5𝑉5
𝐼 + 𝑛5

𝑅 = 0 (13) 

𝑌5
𝐼𝑥 + 𝐺5𝑉5

𝐼 − 𝐵5𝑉5
𝑅 + 𝑛5

𝐼 = 0 (14) 

Zero-injection (ZI) bus #2: 

𝑌2
𝑅𝑥 = 0 (15) 

𝑌2
𝐼𝑥 = 0 (16) 

Not measured bus #3: 

𝑌5
𝑅𝑥 + 𝐼𝑁𝐴

𝑅 = 0 (17) 

𝑌5
𝐼𝑥 + 𝐼𝑁𝐴

𝐼 = 0 (18)
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At each measurement bus, the error terms 𝑛𝑅 , 𝑛𝐼  can be
expressed linearly with 𝑥. Looking at the non-measured bus 

(bus #3), its slack variable 𝐼𝑁𝐴
𝑅 , 𝐼𝑁𝐴

𝐼   is purely determined by
the value of state variables to make equations (17)(18) hold, 
thereby making no contribution to constraining and estimating 
𝑥. Thus, we can safely remove constraints of non-measured 
buses and replace 𝑛𝑅 , 𝑛𝐼 with its linear function of 𝑥. Then the
problem is translated to the following equivalent form: 

min
𝑋,𝑛,𝐼𝑁𝐴

∑ 𝑤𝑖 (||𝑌𝑖
𝑅𝑥 + 𝑧𝐼,𝑖

𝑅 ||
2

2

+ ||𝑌𝑖
𝐼𝑥 + 𝑧𝐼,𝑖

𝐼 ||
2

2

)

𝑖∈{1,4}

+ ∑ 𝑤𝑖 (||𝑉𝑖
𝑅 − 𝑧𝑉𝑖

𝑅 ||
2

2

𝑖∈{1,4}

+ ||𝑉𝑖
𝐼 − 𝑧𝑉𝑖

𝐼 ||
2

2

)

+ 𝑤5||𝑌5
𝑅𝑥 + 𝐺5𝑉5

𝑅 + 𝐵5𝑉5
𝐼||

2

2

+ 𝑤5||𝑌5
𝐼𝑥 + 𝐺5𝑉5

𝐼 − 𝐵5𝑉5
𝑅||

2

2

Subject to zero-injection bus #2: 

𝑌2
𝑅𝑥 = 0 (19) 

𝑌2
𝐼𝑥 = 0 (20) 

This formulation provides a clear layout for comparison 
between the traditional and ECF formulation. While the 
traditional SE minimizes a weighted least square error over 
the entire vector space, the ECF-based method is 
mathematically equivalent to a traditional WLS method plus 
some additional constraints. These constraints are 
independent of measurement data and are accurate system 
topology information that reflects the network balance on the 
ZI buses and any unmeasured buses with forecasted pseudo-
measurements. Mathematically, the additional constraints 
imposed on the WLS problem shrinks the feasible space to a 
smaller physical region that contains an optimal solution 
satisfying network balance (at ZI buses). As the system grows 
larger with more ZI buses and other pseudo-measurements, 
the ECF-based method imposes an increased number of 
constraints to effectively localize the feasible space to a 
physical region. Consequently, the solution ends up being 
more physically meaningful.  

Most importantly, owing to the linear models for each 
measurement device, the objective function above can be 
safely converted to a quadratic form 𝑥𝑇𝑄𝑥 + 𝐵𝑥 + 𝐶 with 𝑄
positive semi-definite. Along with linear constraints, the ECF-
based SE is provably a convex problem, or more specifically, 
a quadratic programming (QP) that always converges to a 
global optimum of the loss function. In contrast, the traditional 
SE formulation results in a nonlinear nonconvex problem to 
solve, and it fails to guarantee a solution with minimized error. 

C. A probabilistic view: better than MLE

Next, we compare the traditional SE method and the ECP-
based approach from a probabilistic view, assuming the 
measurement errors satisfy independent Gaussian distribution 

𝑛𝑖  ~ 𝓝(𝟎, 𝝈𝒊
𝟐). If we converge to the global optima of the

defined non-convex optimization in first place, solution of the 
traditional WLS method is a maximum likelihood estimate 
(MLE), with its Lagrangian function equal to a log-likelihood: 

𝐿𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 = ∑ 𝑤𝑖(𝑧𝑖 − 𝑓𝑖(𝑥))
2

𝑚𝑒𝑡𝑒𝑟,𝑖

(21) 

Mathematically, MLE finds the model that is most likely 
to generate the data. This intrinsic property of MLE makes the 
traditional WLS method (a classical MLE) purely 

measurement-dependent: it will always make estimations 
purely based on measurements.  

In contrast, from the Lagrangian function of the ECF-
based method (still using example in Figure 5): 

𝐿𝐸𝐶𝐹 = ∑ 𝑤𝑖||𝑧𝑖
′ − 𝑌𝑖𝑥||

2

2

𝑏𝑢𝑠 𝑖

+ ∑ (𝜆2
𝑠 𝑌2

𝑠𝑥)

𝑠∈{𝑅,𝐼}

(22) 

This ECF-based formulation maximizes a log likelihood 
plus a topology-based term. This additional term serves to 
include some accurate prior knowledge into the estimate, 
which is conceptually similar to a Bayesian treatment.  

In general, in the non-Gaussian case, the topology-based 
terms in the objective in (22) may be viewed as a regularized 
M-estimator [2] that promotes physically relevant solutions
(estimates). Thus, compared with the traditional one, the ECF-
based method turns out to consider more physics and avoid
extreme conclusions like those in (non-regularized) MLE.

Importantly, this viewpoint suggests a potential advantage 
for large-scale systems and distribution networks. As system 
grows larger, the increased incorporation of accurate real-
world system physics will make more contributions to 
resulting in physically meaningful solutions. 

IV. EXPERIMENTS

In this section we conduct experiments to compare the 
WLS-based SE method on MATPOWER[14] with the ECF-
based method coded in python3. We create RTU 
measurements on each injection bus by adding Gaussian noise 
with standard deviation 0.001 to true |V| injections and line 
flows obtained by power flow simulation. To guarantee 
observability in the traditional approach, we modify the 
MATPOWER code to accommodate pseudo-measurements 
of zero P and Q injections for all zero injection (ZI) buses and 
weigh these measurements heavily. To make it run faster, we 
execute the MATPOWER code on Red Hat Enterprise 
operating system with 32-core Intel(R) Xeon(R) CPU @5-
2620 v4 @2.10GHz. 

We consider 3 standard metrics in (23)-(25) to evaluate the 
methods. Optimization residual 𝑟𝑒𝑠  measures the distance 
between observed meters and the estimation. This metric is 
exactly the objective function value which tells how well the 
algorithm converges. The second metric 𝑀𝑆𝐸𝑧  is mean
weighted square error of z which measures the distance 
between estimated meters and their true values. The third one 
𝑀𝑆𝐸𝑥  is mean square error of state variable x, telling how
close the solution is to the true state of grid. For evaluation of 
the state estimation methods, the error metrics in (24)-(25) are 
even more important than residual metric in (23), since a 
smaller deviation from truth is what we really care about. 

𝑟𝑒𝑠 =
∑ 𝑤𝑖(𝑧𝑖 − 𝑧𝑒𝑠𝑡,𝑖)

2
𝑖

𝑛𝑚𝑒𝑡𝑒𝑟

(23) 

𝑀𝑆𝐸𝑧 =
∑ 𝑤𝑖(𝑧𝑒𝑠𝑡,𝑖 − 𝑧𝑡𝑟𝑢𝑒,𝑖)

2
𝑖

𝑛𝑚𝑒𝑡𝑒𝑟
(24) 

𝑀𝑆𝐸𝑥 =
||𝑥𝑒𝑠𝑡 − 𝑥𝑡𝑟𝑢𝑒||

2

2

𝑛𝑏𝑢𝑠
(25) 

Results are shown in Table 3. The divergences in WLS-
based method reflect that traditional iterative method relies 
highly on good initial guess. Clearly, the different starting 
points leads to different solution trajectories that vary in 
number of iterations and convergence. Generally, from Table 
3, starting from initial conditions in the input file is better than 
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flat start with 1 p.u. for all buses, but neither initialization 
assures convergence for all of our examples. Especially when 
the cases become larger, the traditional algorithm, without 
proper initialization, is very susceptible to divergence.  

Our ECF-based method, in contrast, doesn’t need any 
initial guess or iterative updates and obtains a guaranteed 
global optimal solution in 1 step, resolving the convergence 
issues successfully. Particularly for larger cases, the 
guaranteed convergence and reduced runtime is extremely 
beneficial. Also, by comparison of residual metric 𝑟𝑒𝑠, we can 
see that our ECF-based method better minimizes the objective 
function. 

Furthermore, comparison of error metrics 𝑀𝑆𝐸𝑧  and
𝑀𝑆𝐸𝑥  shows that our method reaches more accurate
estimates. Specifically, the lower 𝑀𝑆𝐸𝑥  validates that our
physics-based estimator produces a solution closer to the true 
operating point, enabling more reliable control actions to be 
made.  

V. CONCLUSION

This paper presents a comprehensive comparison between 
traditional State Estimation and an ECF-based SE approach. 
The results show the ECF-based method addresses the root 
causes of SE limitations, and provides the following 
properties:  

• Linear to solve. The SE problem reduces to a
Quadratic Programming (QP) with closed-form
solution, without any concern about initial guess and
convergence issue.

• More physically meaningful estimation by
equivalently imposing additional topology-based
constraints on the WLS problem. These constraints
provide a structure- based regularization effect by
shrinking the feasible space to promote convergence
to an optimal solution that not only tends to minimize
the weighted squared error but also to satisfy network
balance.

• Incorporation of prior knowledge into the
estimate, better than the MLE that is dependent solely
on measurements and likely to give extreme
nonphysical solutions.

These advantages make the ECF-based approach 
particularly useful for large-scale systems and other SE-
related topics such as bad-data detection.  
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TABLE 3: METHOD COMPARISON RESULT 

Case Name 

MATPOWER WLS-based SE 
ECF-base SE 

Initial guess from case data Flat initial guess 

𝒓𝒆𝒔 𝑴𝑺𝑬𝒛 𝑴𝑺𝑬𝒙 #of iter 𝒓𝒆𝒔 𝑴𝑺𝑬𝒛 𝑴𝑺𝑬𝒙 #of iter 𝒓𝒆𝒔 𝑴𝑺𝑬𝒛 𝑴𝑺𝑬𝒙

case14 199.8 198.6 0.00578 4 199.8 198.6 0.00578 5 0.82287 1.3489 0.00062 

case118 177.7 176.5 0.00350 4 177.7 176.5 0.00350 6 2.9901 3.4442 0.00348 

case2383wp Diverge! Unobservability encountered. 210.6 209.8 0.01317 6 1.3872 1.9623 0.00139 

case3375wp 438.35 438.36 0.04929 5 Diverge! Unobservability encountered. 2.0155 2.5947 0.00152 

case6468rte 3042.8 3041.7 0.04304 7 Diverge! Unobservability encountered. 162.88 163.47 0.00793 

case9241pegase 5886.45 5886.13 0.06532 11 Diverge! Unobservability encountered. 312.78 313.35 0.01248 

ACTIVSg25k No convergence within 6 hours.  Unobservability encountered. 17.687 18.281 0.00371 
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