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Abstract— Traditional state estimation (SE) methods that
are based on nonlinear minimization of the sum of localized
measurement error functionals are known to suffer from non-
convergence and large residual errors. In this paper we propose
an equivalent circuit formulation (ECF)-based SE approach
that inherently considers the complete network topology and
associated physical constraints. We analyze the mathematical
differences between the two approaches and show that our
approach produces a [linear state-estimator that is
mathematically a quadratic programming (QP) problem with
closed-form solution. Furthermore, this formulation imposes
additional topology-based constraints that provably shrink the
feasible region and promote convergence to a more physically
meaningful solution. From a probabilistic viewpoint, we show
that our method applies prior knowledge into the estimate, thus
converging to a more physics-based estimate than the
traditional observation-driven maximum likelihood estimator
(MLE). Importantly, incorporation of the entire system
topology and underlying physics, while being linear, makes
ECF-based SE advantageous for large-scale systems.

Index Terms—Equivalent circuit formulation, power system
modeling, phasor measurement units, power system
measurements, state estimation

L INTRODUCTION

State estimation (SE) is a central part of power system
operation and security. To infer the operating point of the grid,
the state of the system is estimated based on various
measurements within the supervisory control and data
acquisition (SCADA) system that is installed within the
network. The output solution of this state estimator is critical,
since it is fed into the real-time contingency analysis (RTCA)
module, as well as the real-time dispatch module. A non-
functioning SE will result in failure of these processes.

Traditionally, the state variables for the SE have been
voltage phasor magnitudes and angles at all buses. To estimate
them correctly, the classical approach proposed by [1]
formulates SE as a minimization of weighted least-squares
(WLS) error of measurement noise. However, the intrinsic
nature of WLS problem, the unavoidable noise corruption, as
well as the violation of the assumed noise distribution
property, collectively create problems with this traditional
method.

As depicted in Figure 1, the major limitation of the
traditional SE method lies in the following aspects:

e Non-convergence and high residual (convergence to
local minima or saddle point) problem. The WLS
objective expresses each measurement by a function of
state variables and minimizes the mismatch. However,
due to the nonlinear relationships between measurements
and states, the WLS-based SE is a highly nonlinear
nonconvex problem solvable by iterative methods.
During the updates, each iteration solves a ‘new’ system
that is a linearization of the target system at the current
solution, and therefore, it lacks real physical meaning.
Once there is a bad initial guess, iterative methods can
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deviate largely from reality, leading to non-convergence
or convergence to local minima or saddle points.
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Figure 1. Limitations of WLS-based SE.

o Insufficient real-world physics in SE. Ideally, SE
would provide grid state estimates with minimal
deviation from the true grid state, which should result in
feasible power flow constraints. However, in a WLS
formulation, such complete network power balance is not
fully considered, and the desired outcome is
approximated by a minimization of residual between
estimated states and measurement. In this case, when
some measurements are corrupted by noise, missing
completely, or grossly inaccurate, the resulting solution is
still forced to match the measurements to the largest
extent, but thereby fails to sufficiently minimize the true
deviation; i.e., the true error between system states and
obtained estimates. We note that, depending on model
complexity and noise statistics, other types of M-
estimators [2] may be used to resolve this issue, which is
a topic of general interest. We will partially address this
issue in this paper. We show that the topological
constraints of our formulation effectively correspond to
adding a regularization penalty in the residual
minimization objective, thus promoting solutions that
adhere to physical network constraints (Section III-C).
Earlier research has tried to address the aforementioned

limitations. Firstly, SEs with just PMUs have been developed
that are in linear in complexity [3]. However, the penetration
of PMUs compared to RTUs remains low. To deal with the
phasor angle measurements and consider SE with both
conventional RTU meters and PMUs, some novel methods
rely on a transformed use of angle meters [4], a hybrid method
consisting of two separate estimators [5], and some linearly
remodeled PMUs [6]. However, in estimators for combined
measurements, the nonlinear nature of conventional
measurements and the resulting convergence problems still
exist. Similarly, to improve upon the true residual problem,
more grid physics has been incorporated into the problem
through modeling of zero injection nodes through pseudo
measurements [7]. However, adding these additional terms
with extremely high weights has resulted in matrix ill-
conditioning and corresponding non-convergence. The
constrained Hachtel optimization approach [8] is also
proposed to solve the SE problem with zero-injection (ZI)
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nodes, but it has been found hard to solve due to the non-
convexity of the optimization problem.

To tackle all the limitations of the WLS-based method, we
proposed an equivalent circuit formulation (ECF) based
approach to state-estimation [9][11][15]. This paper builds on
that and presents a comprehensive comparison between the
traditional WLS method and the ECF-based SE approach. For
the latter approach, we introduce circuit-based models for the
phasor measurement units (PMUs) as well as novel line flow
meters from any RTU or PMU devices. The main contribution
of this paper is to mathematically demonstrate how our
approach addresses the root causes of the aforementioned
limitations:

e Resolve all convergence-related issues by
formulating SE as a Quadratic Programming (QP)
problem with closed-form solution, thereby reaching
a global minimum.

e Enforce a more physically meaningful solution by
considering the complete network topology.

Section 2 begins with a background overview of ECF
formulation. Section 3 shows the mathematical comparison in
terms of measurement models, problem formulation and
probabilistic illustration. Section 4 presents some
experimental results. Finally, section 5 documents the
conclusions.

II. BACKGROUND
A. Notation

Table 1 shows the symbols used in this paper.
TABLE 1: SYMBOLS AND DEFINITIONS

Symbol Interpretation
VR VLIR I' | Real/imaginary voltage/current;
Vl],6,P,Q Voltage magnitude/angle; active/reactive power
x State variable vector, x = [V, V1]
z Measurements
n,nf,n! Noise term; real and imaginary noise term
78,2}, zF,z | Measurement of Real/imaginary voltage/current
Zyy), Zp, Zg Measurement of |V |, P, Q
I(x)=0 Network balance ( KCL) equations
Y Admittance Matrix s.t. =YV
YR Y} Admittance vector at bus i: IR = YRx,I! = V/x
G,B Conductance, susceptance

B. Equivalent Circuit Formulation (ECF)

A circuit-theoretic formulation for power flow and grid
optimizations was developed in [12]-[13]. Instead of
describing components with ‘PQV’ parameters, this
framework models each component within the power grid as
an electrical circuit element characterized by its I-V
relationship. For computational analyticity, the complex
relationships are split into real and imaginary sub-circuits
whose nodes corresponds to power system buses [12]-
[13]. Table 2 shows a simple comparison between the
traditional PQV formulation and ECF.
TABLE 2: COMPARISON BETWEEN FORMULATIONS

Comparison
Property . ECF
PQV formulation (I-V formulation)
Coordinate Polar Rectangle
State variable V|, 6 VR V!

Network balance Zero power mismatch | Zero current mismatch

Governing Power balance at KCL equations at
equations Vbus Vbus

Under this ECF framework, the network equations are
intrinsically linear due to I-V relationships through Ohm’s law
and the non-linearities exist due to load and generation
models. In case of SE these generation and load models are
replaced via measurement models and therefore with linear
models for injections and line-flow measurement devices, this
framework results in a QP problem with closed form solution.
The approach and models are further discussed below.

III. METHODS AND COMPARISONS

A. Models: Linear Models to improve convergence

Compared to the traditional SE, which nonlinearly represents
the relationship between each measurement and state
variables, the ECF-based develops linear models for
measurements and replaces them in the aggregated circuit via
Substitution Theorem. These models are flexible and can be
added, removed or replaced to represent any changes within
the grid.

In the following subsection we derive a new linear PMU
model to overcome some of the challenges of the existing
PMU model in ECF formulation [9]. We also briefly discuss
the linear RTU model from [11] and demonstrate their
advantages in improving convergence.

1) Phasor Measurement Units (PMU):

As a synchronized measurement device, a PMU can
provide real-time meter readings of voltage and injection
current phasors in rectangular coordinates: z%, zi,, zR, z}.

By substitution theorem, we can safely develop a new
PMU model (shown in Figure 2). The model is represented by
independent current sources taking value of the measured real
and imaginary current. To further consider measurement
errors such that KCL is always satisfied, we attach additional
slack current sources n%, n! to represent the noise term such
that:

IR =zR + nf @)

I'=zR+n! 2

Meanwhile, the observation of voltage phasor indicates the
state variables VE, V! should be close to zf, z),, with the
mismatch representing measurement errors. Consequently, we

estimate state variables by minimizing the noise term and the
voltage mismatch:

: R||? 112 R _ R||?
Semin w(infIf, + {11 + w( Ve =z,
r_ 1% 3
+ IV =21]) @)
s.t. Current balance (KCL equations) at buses
The problem description above results in a provably
convergent QP formulation for PMU models.

VRO Ve

Figure 2. PMU model.

To effectively represent the difference in accuracy of
individual PMU devices in the grid through weights (w),
voltages and currents are captured separately in this model
(see (3)), to address challenges of the PMU model [9].
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2) Remote terminal unit (RTU):

RTU provides measurements of voltage magnitude zy,
power injection zp and z, at a measured bus. In ECF, despite
no direct phasor measurements, these observations can be
mapped into linear circuit formulation [11][15] using the
following relationship between bus voltages and injection
currents:

P 0

IR=— VR4 y! 4
vE' tve “®
P 0

I'=——v! - —~_yR 5
vEY TR )

and a linear RTU model can be developed accordingly, with
resister and controlled current source parameters G and B.
Similar to the PMU model, we add an additional current
source nk,n! to capture the mismatch and represent the bus
errors:

IR = GVR + BV! + nR (6)
I'=GV' —BVR + 7! (7
where G = 22, B = ZTQ
2| 2|
S By nf < —BVY n'

Figure 3. RTU model.

With this model, we estimate the state variables by

minimizing the noise term:
. 2 2
min |InR|| + |In/[|
VRyInRnl 2 2 (8)

s.t. Current balance (KCL equations) at buses
This creates a linear model for the measured RTU
information.

3) Line flow measurements of RTU and PMU

RTU devices can also measure flow on one or more lines
adjacent to the bus. This paper establishes their linear models
in a way consistent with injection models. To model line flow
measurements, we use an additional control circuit having
injections at the measured value. The control circuits are

coupled with the main circuit by voltage control. The models
R/I

. . Zpyi Zo1i
are shown in Figure 4, where G = Z24ne p = =Ume and [,/

vl Zv|
can be linearly expressed by ECF branch models. PMU flow
model is previously discussed in [15].

,le Line V,R

R.. .

Zjung
~R
Z1,line

(a) PMU line flow control circuit (real)

(a) PMU line meters and coupling with main circuit

A P['\ll -
o«

I

BV v v
(b) RTU line flow control circuit (real)
and coupling with main circuit

(b) RTU line meters

Figure 4. Linear model for line flow meters

B. Problem formulation: a convex problem with topology-
based constraints to shrink feasible set
Next, we present mathematical formulations of the ECF-
based and traditional SE problems in order to compare them.
zero injection
ly

RTU
Figure 5. 5-bus case example.

Consider the simple IEEE 5-bus case shown in Figure 5. Bus
#2 is a ZI bus. Suppose we obtain PMU measurements on bus
1, 4 and RTU measurements on bus 5.

1) Traditional WLS-based method
For a traditional SE approach, measurements are modeled by:

z;=fi(x) + ©)
To estimate state variables x, the traditional approach is to
minimize a weighted least square of the measurement errors:

mXinZ wi(z - fi(0)° (10)

where f; (x) is determined by Kirchoff’s law and line
admittances in terms of power mismatch equations, and f; is
nonlinear for some 7. This minimization has no closed form
solution and is solved iteratively. With the use of polar
coordinates for this traditional SE formulation, the measured
phasor angle is generally expressed with the tan™!() function,
thus adding to any convergence difficulty.

2) ECF-based method

In ECF, with the linear component models proposed in
Section II1.A and in [15] we optimize to find the x that results
in minimized error while satisfying the power system balance:

min Z w;[(nF)? + (nD)?]

XniIna
i€{1,4,5}
£ Wil = 20+ (V] = 2]
i€{1,4}
Subject to:
PMU buses #i € {1,4}
YRx+ 2z +nf =0 (11)
Yix+z;+nl=0 (12)
RTU bus #5:
YRx + GsVE + BV +nE =0 (13)
Yix + GsVd = BsVE +nl =0 (14)
Zero-injection (ZI) bus #2:
YRx =0 (15)
Yix =0 (16)
Not measured bus #3:
YRx +18, =0 (17
Yix+1,,=0 (18)
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At each measurement bus, the error terms n¥, n! can be
expressed linearly with x. Looking at the non-measured bus
(bus #3), its slack variable IZ,, 1%, is purely determined by
the value of state variables to make equations (17)(18) hold,
thereby making no contribution to constraining and estimating
x. Thus, we can safely remove constraints of non-measured
buses and replace n%, n with its linear function of x. Then the
problem is translated to the following equivalent form:

2 2

Z wi(||Yin+zfi||2+||YL-’x+z,’_i||2>
iE(14) 2
+ 3 wi(fivE - 2

i€{1,4}
1 1 2
| =z

2

+wg|IY&x + GsVE + BsVe| |,

+ ws|[¥dx + GsVi — BsVE|[:
Subject to zero-injection bus #2:
YRx =0

min
XnlIna

19)
Yix=0 (20)

This formulation provides a clear layout for comparison
between the traditional and ECF formulation. While the
traditional SE minimizes a weighted least square error over
the entire vector space,the ECF-based method is
mathematically equivalent to a traditional WLS method plus
some additional constraints. These constraints are
independent of measurement data and are accurate system
topology information that reflects the network balance on the
ZI buses and any unmeasured buses with forecasted pseudo-
measurements. Mathematically, the additional constraints
imposed on the WLS problem shrinks the feasible space to a
smaller physical region that contains an optimal solution
satisfying network balance (at ZI buses). As the system grows
larger with more ZI buses and other pseudo-measurements,
the ECF-based method imposes an increased number of
constraints to effectively localize the feasible space to a
physical region. Consequently, the solution ends up being
more physically meaningful.

Most importantly, owing to the linear models for each
measurement device, the objective function above can be
safely converted to a quadratic form xTQx + Bx + C with Q
positive semi-definite. Along with linear constraints, the ECF-
based SE is provably a convex problem, or more specifically,
a quadratic programming (QP) that always converges to a
global optimum of the loss function. In contrast, the traditional
SE formulation results in a nonlinear nonconvex problem to
solve, and it fails to guarantee a solution with minimized error.

C. A probabilistic view: better than MLE

Next, we compare the traditional SE method and the ECP-
based approach from a probabilistic view, assuming the
measurement errors satisfy independent Gaussian distribution
n; ~ N (0,0?%). If we converge to the global optima of the
defined non-convex optimization in first place, solution of the
traditional WLS method is a maximum likelihood estimate
(MLE), with its Lagrangian function equal to a log-likelihood:

2
Liragitionat = Z w; (Zi - fl.(x)) 2D
meter,i
Mathematically, MLE finds the model that is most likely
to generate the data. This intrinsic property of MLE makes the
traditional WLS method (a classical MLE) purely

measurement-dependent: it will always make estimations
purely based on measurements.

In contrast, from the Lagrangian function of the ECF-
based method (still using example in Figure 5):

Lgcr = Z Wi||Zi’ - Yﬂ”; + Z A3Y5x)
bus i SE{R,I}

This ECF-based formulation maximizes a log likelihood
plus a topology-based term. This additional term serves to
include some accurate prior knowledge into the estimate,
which is conceptually similar to a Bayesian treatment.

In general, in the non-Gaussian case, the topology-based
terms in the objective in (22) may be viewed as a regularized
M-estimator [2] that promotes physically relevant solutions
(estimates). Thus, compared with the traditional one, the ECF-
based method turns out to consider more physics and avoid
extreme conclusions like those in (non-regularized) MLE.

Importantly, this viewpoint suggests a potential advantage
for large-scale systems and distribution networks. As system
grows larger, the increased incorporation of accurate real-
world system physics will make more contributions to
resulting in physically meaningful solutions.

(22)

IV. EXPERIMENTS

In this section we conduct experiments to compare the
WLS-based SE method on MATPOWER[14] with the ECF-
based method coded in python3. We create RTU
measurements on each injection bus by adding Gaussian noise
with standard deviation 0.001 to true |V| injections and line
flows obtained by power flow simulation. To guarantee
observability in the traditional approach, we modify the
MATPOWER code to accommodate pseudo-measurements
of zero P and Q injections for all zero injection (ZI) buses and
weigh these measurements heavily. To make it run faster, we
execute the MATPOWER code on Red Hat Enterprise
operating system with 32-core Intel(R) Xeon(R) CPU @5-
2620 v4 @2.10GHz.

We consider 3 standard metrics in (23)-(25) to evaluate the
methods. Optimization residual res measures the distance
between observed meters and the estimation. This metric is
exactly the objective function value which tells how well the
algorithm converges. The second metric MSE, is mean
weighted square error of z which measures the distance
between estimated meters and their true values. The third one
MSE, is mean square error of state variable x, telling how
close the solution is to the true state of grid. For evaluation of
the state estimation methods, the error metrics in (24)-(25) are
even more important than residual metric in (23), since a
smaller deviation from truth is what we really care about.

2w (Zi - Zest,i)z

res = (23)
Nmeter
MSEZ — Zi wi (Zest,i - Ztrue,i)z (24)
Nmeter
2
||xest - xtruel |2
MSE, = ————2 (25)

Npus

Results are shown in Table 3. The divergences in WLS-
based method reflect that traditional iterative method relies
highly on good initial guess. Clearly, the different starting
points leads to different solution trajectories that vary in
number of iterations and convergence. Generally, from Table
3, starting from initial conditions in the input file is better than
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TABLE 3: METHOD COMPARISON RESULT

MATPOWER WLS-based SE

Case Name Initial guess from case data Flat initial guess ECE-base SE
res MSE, MSE, #of iter res MSE, MSE, #of iter res MSE, MSE,
casel4 199.8 198.6 0.00578 4 199.8 198.6 0.00578 5 0.82287 1.3489 0.00062
casel18 177.7 176.5 0.00350 4 177.7 176.5 0.00350 6 2.9901 3.4442 0.00348
case2383wp Diverge! Unobservability encountered. 210.6 209.8 0.01317 6 1.3872 1.9623 0.00139
case3375wp 438.35 438.36 0.04929 5 Diverge! Unobservability encountered. 2.0155 2.5947 0.00152
case6468rte 3042.8 3041.7 0.04304 7 Diverge! Unobservability encountered. 162.88 163.47 0.00793
case9241pegase | 5886.45 | 5886.13 | 0.06532 11 Diverge! Unobservability encountered. 312.78 313.35 0.01248
ACTIVSg25k No convergence within 6 hours. Unobservability encountered. 17.687 18.281 0.00371

flat start with 1 p.u. for all buses, but neither initialization
assures convergence for all of our examples. Especially when
the cases become larger, the traditional algorithm, without
proper initialization, is very susceptible to divergence.

Our ECF-based method, in contrast, doesn’t need any
initial guess or iterative updates and obtains a guaranteed
global optimal solution in 1 step, resolving the convergence
issues successfully. Particularly for larger cases, the
guaranteed convergence and reduced runtime is extremely
beneficial. Also, by comparison of residual metric res, we can
see that our ECF-based method better minimizes the objective
function.

Furthermore, comparison of error metrics MSE, and
MSE, shows that our method reaches more accurate
estimates. Specifically, the lower MSE, validates that our
physics-based estimator produces a solution closer to the true
operating point, enabling more reliable control actions to be
made.

V. CONCLUSION

This paper presents a comprehensive comparison between
traditional State Estimation and an ECF-based SE approach.
The results show the ECF-based method addresses the root
causes of SE limitations, and provides the following
properties:

e Linear to solve. The SE problem reduces to a
Quadratic Programming (QP) with closed-form
solution, without any concern about initial guess and
convergence issue.

e More physically meaningful estimation by
equivalently imposing additional topology-based
constraints on the WLS problem. These constraints
provide a structure- based regularization effect by
shrinking the feasible space to promote convergence
to an optimal solution that not only tends to minimize
the weighted squared error but also to satisfy network
balance.

e Incorporation of prior knowledge into the
estimate, better than the MLE that is dependent solely
on measurements and likely to give extreme
nonphysical solutions.

These advantages make the ECF-based approach

particularly useful for large-scale systems and other SE-
related topics such as bad-data detection.
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