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Spin transport in noncollinear antiferromagnetic metals
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For noncollinear antiferromagnetic metals, magnon spectra display nontrivial multiband structure in which
both direction and magnitude of the angular momenta of magnons are momentum dependent. We study the roles
of these magnons on the spin transport properties by taking into account the momentum and angular momentum
transfer between conduction electrons and magnons. We have calculated spin conductivity tensor by using the
coupled Boltzmann equations for the electron spin and magnon, and we show that the unpolarized electron
current driven by an electric field can efficiently induce a magnon spin current. The temperature dependence of
the magnon spin conductivity is also calculated.
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I. INTRODUCTION

Antiferromagnets (AFMs) are of great interest for the study
of spintronics recently [1–4]. Most studies on spin transport
phenomena so far have focused on collinear AFMs, i.e., two
magnetic sublattices have an opposite direction of magnetic
moments. For example, the spin Seebeck [5–8] and spin
pumping effects [9,10] in AFMs, the magnon transfer torque
in ferromagnet (FM)/AFM/FM sandwich structure [11–13],
and spin Hall effect in AFMs [14,15]. More recently, the non-
collinear AFMs have shown qualitatively and quantitatively
different transport properties compared to those of collinear
AFMs. The noncollinear antiferromagnetic system Mn3Z
(Z = Sn, Ir, and Ge) has been found to have a strong anoma-
lous Hall effect [16–19] compared to ferromagnetic metals.
The interfacial spin transfer between noncollinear AFMs and
normal metals has been theoretically demonstrated [20]. In
insulating noncollinear AFMs, studies have established evi-
dence of the thermal Hall effect [21,22] and the spin Seebeck
and spin Nernst effects [23]. Also, the spin Hall and inverse
spin Hall effects [24,25] have been reported in Mn3Sn, where
previous research has focused mainly on nonmagnetic heavy
metals.

For a collinear AFM, one may define a Néel vector, rep-
resenting the difference between two antiparallel magnetic
moments of two sublattices. The magnons, which are quasi-
particles of the low-energy excitations, are then quantized in
the direction either parallel or antiparallel to the Néel vec-
tor, i.e., the magnon spectra have two doubly degenerated
branches with each magnon’s angular momentum either par-
allel or antiparallel to the Néel vector. In this case, the spin
direction of the magnon is fixed by the Néel vector, inde-
pendent of the momentum of the magnon. For noncollinear
AFMs, however, the Néel vectors cannot be defined by a sin-
gle vector. In fact, we will show that each magnon is no longer
an eigenstate of the spin angular momentum. The average
magnitude and direction of the angular momentum depend on
the momentum of the magnon [26].

The above spin-momentum locking of magnons would
strongly affect the electrical and magnetoelectrical transport
properties of noncollinear antiferromagnetic metals. Magnons
and conduction electrons are two main angular momentum
carriers that determine the total spin current. Although an
applied electric field only drives the charge current of the
conduction electrons, the magnon current can be induced by
electron-magnon scattering such that the electron transfers its
momentum to the magnons [27]. The resulting net momentum
of magnons, along with the intrinsic angular momentum of
each magnon, generates a magnon spin current. In this paper,
we show that the novel types of magnon spin currents can
be efficiently generated by purely electrical means in non-
collinear AFMs. The paper is organized as follows. In Sec. II,
we propose a two-dimensional spin Hamiltonian of a kagome
lattice with nearest antiferromagnetic exchange interaction,
including a Dzyaloshinskii-Moriya interaction (DMI) and an
on-site anisotropic term. We solve the magnon spectra of the
Hamiltonian and determine the spin-momentum locking pat-
tern in momentum space. In Sec. III, we propose an exchange
Hamiltonian between the conduction electrons and local spins
of the noncollinear AFMs, and calculate the magnon spin
current under external electric field. In Sec. IV, we discuss
the key results of this paper.

II. MAGNON BANDS AND SPIN-MOMENTUM LOCKING

We start with a two-dimensional (2D) kagome antifer-
romagnetic metal, consisting of the unpolarized conduction
electrons and local magnetic spins. The antiferromagnetic
exchange coupling of the local spins yields a classical spin-
fluctuation ground state in which the spins in the three
sublattices SA, SB, and SC , form 120◦ angles to each other,
as shown in Fig. 1(a). Note that the ground state is highly
degenerate with a number of different spin configurations if
the isotropic antiferromagnetic exchange coupling is the only
spin Hamiltonian. To freeze the ground state spin configura-
tions, we include two additional anisotropic terms to model
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FIG. 1. (a) The kagome antiferromagnetic lattice with three sublattices, labeled A, B, and C. (b) The magnon dispersion relations in the
first Brillouin zone. Here the parameters are as follows: Jex = 10 meV, Dz = 1/10Jex, K = 1/1000Jex, and S = 5/2. At small q, the red band
is quadratic, the green band is linear, and the blue band is finite and flat over the entire first Brillouin zone. Note the red band and blue band
touch each other at q = 0. (c) The q-resolved magnon spins. From the left to right: red, green, and blue bands. The arrow at a given point of
the magnon bands represents the direction of the expectation value of the magnon spin, Sνq = 〈νq|∑iα Siα|νq〉, and the color assignment is
for its magnitude |Sνq|/S.

the Hamiltonian [28–30],

Ĥ =
∑
〈i, j〉

[JexSi · S j + Di j · (Si × S j )] − K
∑
i

(Si · z′
i )

2,

(1)

where 〈i, j〉 is the summation over nearest neighbors, Jex > 0
is the antiferromagnetic Heisenberg exchange, Di j = Dzẑ is
the DMI which is assumed perpendicular to the 2D plane,
and K is the single-ion anisotropy with the anisotropic axis z′

i
defined as the unit vector whose direction is parallel to the spin
orientations of the frozen classical ground state [see Fig. 1(a)].
We should point out that these anisotropy terms are essen-
tial for the antiferromagnetic ground state since the theorem
of Mermin and Wagner [31] would exclude the long-range
antiferromagnetic ordering for an isotropic exchange Hamil-
tonian. We have taken the above anisotropic terms which
have already been used [21,26,28–30], and we assume that
both Di j and K are much smaller than Jex. The other part of
the Hamiltonian involves the interaction between conduction
electrons and the local spins, which will be explicitly included
when we discuss the magnon spin conductivity. In this section,
we shall determine the low-energy excitations from Eq. (1),
i.e., the magnon dispersions or the magnon bands.

Following the conventional linear spin-wave approach, we
introduce the Holstein-Primakoff (HP) transformation

Siα = z′
iα (S − b†

iαbiα ) + x′
iα

√
S

2
(biα + b†

iα )

− y′
iαi

√
S

2
(biα − b†

iα ), (2)

where S is the spin, b†
iα (biα) is the magnon creation (annihi-

lation) operator of the sublattice α (α = A,B,C) at unit cell i,
and x′

iαy
′
iαz

′
iα denotes the local Cartesian coordinate system.

By replacing Eq. (2) with (1), and discarding terms with
more than the second order in the HP bosons, we find, after
Fourier transformation, the spin Hamiltonian can be written
in a compact form [26,32],

Ĥ =
∑
q

(b†
q b−q) · H (q) ·

(
bq
b†

−q

)
, (3)

where b†
q = (b†

Aq b†
Bq b†

Cq) and H (q) is a 6 × 6 bosonic
Bogoliubov–de Gennes matrix whose explicit expression is
rather cumbersome, but it was straightforwardly obtained
by simple but tedious algebra. To obtain the eigenenergies
and eigenstates, we need to diagonalize the matrix H (q).
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A standard procedure is to carry the Bogoliubov transforma-
tion, i.e.,

bαq =
∑

ν

(
Mα

νqbνq + Nα
νqb

†
ν−q

)
, (4)

where ν = 1, 2, 3 represents three band indices. By placing
Eq. (4) into (3), and by utilizing the commutator properties
of the boson operators, we numerically determine the trans-
formation matrices Mα

νq and Nα
νq and obtain the diagonalized

Hamiltonian,

Ĥ =
∑
νq

ενqb
†
νqbνq, (5)

where ενq is the magnon dispersion relation. The three
magnon dispersions in the first Brillouin zone are shown in
Fig. 1(b) where three branches of the magnons are color-coded
with red, green, and blue. Interestingly, for small wave number
q, the red band is quadratic, the green band is linear, and the
blue is a flatband with finite energy. Note that the Goldstone
mode, which is the zero-energy mode of bosons, does not
show up in any of the three magnon bands since we introduce
an anisotropy in Eq. (1), i.e., the magnons are gapped at q = 0.

In collinear AFMs, two band indices represent the magnon
spin state, i.e., the magnon in one band has the angular mo-
mentum parallel to the Néel vector and in the other band,
antiparallel to the Néel vector. In the present case, the trans-
formation to diagonalize the matrix H (q), Eq. (4), mixes spin
states in three sublattices. Consequently, the magnons in three
bands are no longer an eigenstate of the angular momentum.
To determine the angular momentum transfer between con-
duction electrons and magnons in the next section, we define
the spin of a magnon by its average value of all spins,

Sνq = 〈νq|
∑
iα

Siα|νq〉, (6)

where |νq〉 is the wave function of the magnon. In Fig. 1(c)
we show the q-dependent magnon spin for the three bands.
For a given magnon b†

νq, its spin direction is uniquely de-
fined. We shall emphasize that the spin-momentum locking
for magnons differs from that for conventional Rashba-like
conduction electrons in two aspects: (1) The electron spins
are locked in the direction perpendicular to the momentum
for Rashba spin-orbit coupling (for more complicated spin-
orbit coupling, the momentum-spin locking may take different
patterns) while the magnon spins have a wide range of angle
distribution relative to the magnon momentum, and (2) both
spin and momentum are good quantum numbers (eigenstate)
for conduction electrons in the Rasha spin-orbit coupled sys-
tem, while for noncollinear antiferromagnetic magnons, only
momentum, but not spin, is the good quantum number. Con-
sequently, the magnitude of the spin for different magnons is
different and is no longer quantized, as illustrated in Fig. 1(c).

III. ELECTRON-MAGNON SCATTERING
AND MAGNON SPIN CONDUCTIVITY

To study the roles of the above magnons in charge and spin
transport, we consider the conduction electrons interacting

with magnons via s-d exchange coupling given below:

Ĥsd = −Jsd

∑
iα

σ iα · Siα, (7)

where Jsd is the s-d exchange coupling, σ is the electron spin,
and indices i and α are similarly defined as previously. The
second quantized form of electron-magnon coupling can be
further derived as [20]

Ĥsd =
∑

σσ ′νqk

3∑
n=1

[
V (n)

νq b†
νqc

†
k−qσ ′L

(n)
σ ′σ ckσ + H.c.

]
, (8)

where c†
k (ck) is the electron creation (annihilation) operator,

Lσ ′σ = {σ+ + σ−, σ+ − σ−, 2σ z}, and the coupling strength
is

V (n)
νq = −

√
2SJsd

∑
α

eiq·δα × (
f ∗
nαM

α
νq + fnαN

α
ν−q

)
(9)

where δα is the position of the αth site within the unit cell,
f1α = sin θα , f2α = i cos θα , f3α = 2i, and θα is the angle of
the classical orientation of the αth site spin in global frame of
reference.

Magnons are quasiparticles without electric charges and
thus an applied electric field cannot directly drive magnon
current. We have shown previously that the magnon can obtain
its spin current in two essential ways: spin transfer and mo-
mentum transfer from conduction electrons to magnons [27].
As in the case of ferromagnetic metals, the electrons are spin
polarized and thus there is always a magnon spin current in
addition to the electron spin current [27]. If the conduction
electron is not spin polarized, e.g., a collinear antiferromag-
netic metal, the electron-magnon scattering would not lead
to magnon spin current since the magnon momentum is in-
dependent of the spin and thus the sum over two degenerate
magnon modes remains zero. In the present case, however, the
spin and the momentum of magnons in the noncollinear AFMs
are locked and therefore, the transferred momentum from
the conduction electrons could generate magnon spin current.
More quantitatively, we use Boltzmann transport formalism
of the electrons and magnons to estimate the induced magnon
spin current under an external electric field. We assume that
the charge current is spin unpolarized for simplicity so that
we discard the spin angular momentum transfer.

The magnon Boltzmann equation with the relaxation-time
approximation is [6,27,33,34]

0 = −Nν (q) − N0
ν (q)

τν

+
(∂Nν (q)

∂t

)
sd

, (10)

where Nν (q) is the magnon distribution function, τν is the
magnon relaxation time due to sources other than electrons,
and ( ∂Nν (q)

∂t )sd is the electron-magnon scattering term which
provides the nonequilibrium magnon distribution [27,33].

We separate the magnon distribution function into equilib-
rium and nonequilibrium parts

Nν (q) = N0
ν (q) + ∂N0

ν

∂ενq
gν (q), (11)

where gν (q) is the nonequilibrium part that is going to be
solved.
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The electron-magnon scattering term is calculated via the
Fermi golden rule

(∂Nν (q)

∂t

)
sd

= Wνq

∑
k

δ(εk+q − εk − ενq)

×{[Nν (q) + 1][1 − f (k)] f (k + q)

−Nν (q)[1 − f (k + q)] f (k)}, (12)

where f (k) is the electron distribution function, and the scat-
tering magnitude is

Wνq = π

h̄

3∑
n=1

∣∣V (n)
νq

∣∣2
. (13)

The electron distribution satisfies the Boltzmann equation
in which the scattering terms include the electron-magnon
scattering and other scattering contributions such as impuri-
ties and phonons. In principle, one needs to self-consistently
determine f (k) along with the magnon distribution. However,
we will take a simplified approach by assuming one single
relaxation time τe as a parameter to represent all scatterings,

f (k) = f 0(k) − ∂ f 0

∂εk

eh̄τe
m

(E · k), (14)

where e is the electron charge, m is the electron mass, εk is the
electron energy, and E is the electric field. There are a number
of justifications for our approximations. First, the effect of the
electron-magnon scattering may not be more important for the
conduction electrons compared to other sources of scattering.
Second, the simple electron distribution allows us to reduce
the mathematical complication in obtaining the magnon spin
current.

By placing the electron distribution, Eq. (14), into the
magnon’s Boltzmann function, Eq. (10), we find the nonequi-
librium part of magnons is

gν (q) = − 1(
1 + τ em

ν (q)
τν

) eh̄τe
m

(E · q), (15)

where the momentum-resolved electron-magnon relaxation
time for magnons is

τ em
ν (q) = N0

ν (q)
[
N0

ν (q) + 1
]

Wνq�νq
(16)

with

�νq =
∑
k

N0
ν (q)[1 − f 0(k + q)] f 0(k)

× δ(εk+q − εk − ενq). (17)

The magnon spin current is then

(Jm)ij =
∑
νq

∂N0
ν

∂ενq
gν (q)v j

νqS
i
νq ≡ (σm)ijkEk, (18)

where i ( j) stands for the polarization (flow) direction of
magnon spin current, k is the electric field direction, v is
the magnon velocity, and σm is the magnon spin conductivity
(similarly defined as electron spin conductivity). The magnon
spin conductivity increases with the exchange coupling con-
stant Jsd (it will be saturated for a large Jsd since the magnon

FIG. 2. (a) First Brillouin zone of the kagome AFM. Two high-
symmetry axes are indicated with �K and �M. (b) The symmetry
determined magnon spin conductivity tensor for �K and �M direc-
tions. The tensor (σm )ijx is off-diagonal while (σm )ijy is diagonal.

spin current comes from the electron spins via the exchange
coupling). Specifically, the magnon conductivity scales with
τνJ2

sd/(1 + τνJ2
sd).

Since the spin-momentum locking is complex, an electric
field applied in an arbitrary direction relative to the crystal
structure would generate magnon spin current whose direction
of magnon flow and direction of spin polarization would not
be obvious without carrying the detailed numerical calcula-
tion. When the electric field is applied in the high-symmetry
points, �K (x) and �M (y), as shown in Fig. 2(a), we can read-
ily determine the directions of the magnon flow and magnon
spin from symmetry analysis. For the �K axis, the magnon
spin is always perpendicular to the momentum, while for the
�M axis, they are parallel. Therefore with the electric field
applied in the �K direction, the magnon spin conductivity
tensor has off-diagonal terms, which means that the magnon
spin current flowing in the x direction is polarized in the y
direction (σ y

xx), while for the flowing direction in the y direc-
tion the magnon spin current is polarized in the x direction
(σ x

yx). As for the situation where the field is applied in the
�M direction, the polarization of the magnon spin current is
always in the same direction as the flow direction. In other
words, the magnon spin conductivity tensor is diagonal with
the σ x

xy and σ
y
yy components. This symmetry dictated behavior

of the magnon spin conductivity tensor also has been found
in spin-polarized charge currents in such systems [35]. This
unique anisotropic magnon spin current makes noncollinear
AFMs a more interesting system in the study of charge-spin
conversion in zero magnetic field as compared to the usual
Rashba spin-orbit coupling induced phenomena.

One of the major differences between electron spin current
and magnon spin current is that the latter is highly temper-
ature dependent. Two major reasons make the temperature
essential: the number of magnons increases with the temper-
ature, and the electron-magnon scattering involves inelastic
processes that require the thermal energy to be effective.
Mathematically, the temperature appears in the equilibrium
magnon number, Eq. (11), and the scattering term, Eq. (12).
In addition to the magnon spin conductivity, we further de-
fine magnon spin Hall angle (SHA) as (e/h̄)[(σm)ijk/(σe)kk]
where σe is the electron electric conductivity, to compare
the electric field driven magnon spin current in noncollinear
antiferromagnetic metals to the conventional spin Hall ef-
fect in nonmagnetic metals. We show the magnon spin
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FIG. 3. Temperature dependence of magnon spin conductivity
and magnon SHA for charge current flowing in the �K (a) or the
�M (b) direction at two DMI conditions. Material parameters are
as follows: electric resistivity for electron ρe = 320 μ� cm [18],
Jsd = 1 meV, and τν = 10−6 s. Note that for the parameters used in
the figure, e.g., Jex = 10 meV, Dz = 1/10Jex, and K = 1/1000Jex,
the number of magnons in three bands at the highest temperature,
kBT/Jex = 0.5, remain small—0.9% for the red band, 3.7% for the
green band, and 6.7% for the blue band per site—indicating the
validity of the linear spin-wave approximation we used in the paper.

conductivity and magnon SHA as a function of temperature in
Fig. 3 with field applied either in the �K [Fig. 3(a)] or the �M
[Fig. 3(b)] direction. Both longitudinal and transverse magnon
spin conductivities vanish at low temperatures.

IV. DISCUSSIONS AND CONCLUSIONS

In a nonmagnetic or collinear antiferromagnetic metal,
one would think that the spin current only exists through

the spin Hall effect in which the spin-orbit coupling is re-
quired. We show in this paper that the magnon spin current
in a noncollinear antiferromagnetic metal is naturally present
even though there is no net magnetization and there is no
external spin current injection into the AFM. Two essential
mechanisms are responsible for the magnon spin current: the
magnon spectra have spin-momentum locking characteris-
tics, and the electron-magnon scattering transfers momentum
from conduction electrons to the magnons. Due to complex
spin-momentum locking patterns, the resulting magnon spin
current tensor is rather difficult to predict for an applied
electric field in an arbitrary direction relative to the lattice
orientation. In the case of the electric field applied in the di-
rection with the high-symmetry points, K and M, the direction
of the magnon spin current could be immediately determined
by symmetry analysis.

We wish to briefly compare the magnon spin current gen-
erated by a thermal gradient. In a collinear AFM, the thermal
gradient would not generate any net magnon spin current be-
cause the thermal gradient leads to a net magnon momentum,
and since there is no spin-momentum dependence, the result-
ing sum over the spin of the degenerated magnons remains
zero. In noncollinear AFMs, the magnon bands can have a
nonzero Berry curvature. The connection between the magnon
conductance and Berry curvature of the magnon bands has
been theoretically studied [36–38] and the magnon Hall cur-
rent is an intrinsic mechanism, i.e., the magnon conductance
is independent of the relaxation, in contrast to the extrinsic
mechanism we discussed here. Similar to the electron trans-
port, it remains unclear for a given material which mechanism
dominates. As for the symmetry properties of the magnon
current tensor, these two mechanisms give identical results
since the underlying crystal and magnetic symmetries are the
same. One important difference is that our formalism applies
to antiferromagnetic metals where the electric current is the
source of magnon current, while in the previous studies on
magnon Seebeck effect, the focus was on magnetic insula-
tors [23].

Magnon spin current may not be directly measurable in
the bulk films. As in the measurement for the electron spin
current, one needs an additional contact layer that may support
magnon accumulation or give rise to a magnetic torque. The
detailed discussion on the possible experimental realization
of the magnon spin torques is beyond the scope of the present
paper.
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