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Abstract—A method is proposed to identify and localize the cause
of network collapse with augmented power flow analysis for a
grid model with insufficient resources. Owing to heavy network
loading, insufficient generation, component failures and
unavoidable disturbances, power grid models can sometimes fail
to converge to a feasible solution for a steady-state power flow
study. For applications such as system expansion planning, it is
desirable to locate the system buses that are contributing to
network infeasibilities to facilitate corrective actions. This paper
proposes a novel LASSO-inspired regularization of the power
flow matrix that enforces sparsity to localize and quantify
infeasibilities in the network. One of the examples demonstrates
how the proposed method is capable of localizing a source of
blackout to a single dominant bus on an 80k+ bus eastern
interconnection model.

Index Terms—Equivalent circuit formulation, infeasibility
localization, LASSO, power system modeling, sparsity

L INTRODUCTION

To ensure grid reliability and security, existing and planned
power systems are evaluated on whether they can survive
critical contingencies while serving current or forecasted
loads. Often, due to severe contingencies, heavy loading, and
other limitations, the simulation indicates network collapse,
which corresponds to a grid that has likely blacked out [1]. In
a traditional power flow study, this collapsed grid state
corresponds to no solution, and is characterized by divergence
of the simulation [2]. Recently, methods [3],[4] have been
developed that instead provide an infeasible power flow
solution for such collapsed grid states.

These infeasibility-based power-flow methods can
converge for a collapsed grid state; however, they do not
provide specific cause of power outage, nor do they identify
localized locations that are disrupting system security and
robustness. In most situations, it would be desirable to know
the smallest possible set of dominant nodes that are causing
system collapse with some quantifiable metric.

Accurate and efficient localization of this dominant set of
nodes identifies the deficiency of power (real and reactive) and
highlights some critical locations for special attention in the
planning process. For instance, consider reactive power
planning (RPP) problems [5]-[8] that aim to find the optimal
allocation of reactive power support through capacitor banks
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or FACTS devices such as static VAR compensators (SVC).
Such problems correspond to finding the sparsest reactive
power compensation vector that satisfies system power
balance and operation limits in an optimization-based power
flow study. However, convergence of such optimization-based
studies becomes more difficult with increased system size and
operating limits. Most state-of-the-art placement planning
strategies [5]-[8] are only shown to handle small cases with
hundreds of buses or less and are known to suffer from lack of
robust convergence. Instead, a sparsity enforcement method is
preferred. The objective of this method will be to provide a
sparse set of nodes, that along with quantified infeasibility
power, can be added to each of the corresponding set of nodes
to make the model feasible.

This paper proposes a novel method to localize infeasibility
within power grid models that have no solution. Unlike
existing formulations [3],[4] that distribute system
infeasibilities across all buses in the system via minimization
of the sum of square of their values (L2-norm), the proposed
approach localizes the infeasibility to a few system buses. The
approach is inspired by LASSO [9],[10], a method that is used
to enforce sparsity in feature selection of a model by L1-
regularization. In our approach, the sparsity is enforced on the
infeasibility solution vector to obtain infeasibilities at only the
dominant nodes in the system. This paper defines a new
approach of enforcing sparsity such that the infeasibilities
corresponding to geographically localized buses are correlated
through a bus-wise sparsity enforcer.

Mathematically, this problem is formulated as a non-
convex optimization problem and is implemented based on an
equivalent circuit formulation (ECF) that has been
demonstrated to ensure convergence for power flow analysis
and associated optimization applications (to a local optima),
such as that for identifying infeasibility.

Since the power system is highly nonlinear, the major
objective of our method can be summarized as follows:

1. To reach a sufficiently sparse solution; i.e., supply
additional real or reactive power at minimum number
of possible locations for an infeasible network model.

ii. To facilitate robust convergence for large-scale
systems.

Section II gives a background overview of the ECF
[3],[11],[12] approach. Section III lists a series of power flow
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related formulations to illustrate the quantification of system
infeasibility. Section IV presents the exploration of a sparsity
enforcing mechanism, insight into problems with L1-
regularization based optimization problems, the proposed
infeasibility localization algorithm, and application to large
scale systems with reliable convergence. Section V presents
some experimental results on several large cases that include
the U.S. Eastern Interconnection sized 80k+ buses network,
followed by our conclusions in section VI.

II.  BACKGROUND

A. Notation

Table 1 shows the symbols used in this paper.
TABLE 1. SYMBOLS AND DEFINITIONS

Symbol Interpretation
VR VI IR ' | Real/imaginary voltage/current;
|Vl],6,P,Q Voltage magnitude/angle; active/reactive power
X Power flow solution vector, X = [VR, V']
IfR’ L/ ! Real or imagniary infeasibility current at bus #i
I Infeasibility current vector
I1(x) =0 KCL equations at all buses
k Sparse goal: to localize infeasibility to k locations

B. Equivalent Circuit Formulation (ECF)

A circuit-theoretic formulation for power grid analysis was
developed in [3],[11],[12]. Instead of describing components
with ‘PQV’ parameters, the ECF framework models each
component within the power grid as an electrical circuit element
characterized by its I-V relationship. For computational
analyticity, the complex relationships are split into real and
imaginary sub-circuits whose nodes corresponds to power
system buses [3][11][12]. Table 2 shows a simple comparison
between the traditional PQV formulation and ECF.

TABLE 2. COMPARISON BETWEEN FORMULATIONS

Comparison
Proper . ECF
perty PQYV formulation (I-V formulation)
Coordinate Polar Rectangle
State variables V], 0 VRV, Q
Network balance Zero power mismatch | Zero current mismatch

Governing equations Power balance eqns KCL eqns
Network constraints Non-linear Linear
Loads and generators Linear Non-Linear

Under this ECF framework, all branches, e.g. transmission
lines, transformers, and shunts, are linear components, due to
the intrinsic linearity of their I-V relationships. Other
components such as generators and loads have nonlinear [-V
models. The system balance is expressed by a set of nonlinear
KCL equations:

Ix)=0 (1)

These equations can be iteratively linearized and solved via
Newton Raphson (NR) wusing bus voltage variables.
Importantly, since ECF enables power systems of any size to
be efficiently simulated as an equivalent circuit, numerous
convergence techniques that were developed for circuit
simulation (e.g. SPICE [15]) can be applied.

III. POWER FLOW RELATED PROBLEMS

Next, we present a series of power flow formulations that
introduce our proposed method for quantifying and localizing
infeasibility.

A. (Problem Approach 1) Traditional power flow

Traditional power flow outputs the bus voltage solution by
iteratively solving the nonlinear network balance equations in
(1). For a feasible network model, the traditional power flow
converges to a feasible solution; however, if no feasible
solution exists for the network, the methodology diverges
resulting in no useful solution.

B. (Problem Approach 2) Infeasibility-quantified power flow

To avoid divergence without providing information, an
approach to capture the infeasible-quantified power flow was
developed. To effectively distinguish between hard-to-solve
network case from infeasible network case, extensions have
been proposed and developed for both the ECF-based [3][11]
and traditional [4] methods to quantify the potential
infeasibility within the grid. The ECF-based approach [11]
introduces ‘infeasibility current’ I%;, If ; at each bus #i. These
values represent compensation terms that capture how much
additional real/imaginary current flow is needed at each bus to
make the network balance conditions hold. The infeasibility-
quantified power flow study is formulated as a non-convex
optimization problem:
1 2
winlivl,
s.t. system balance equations: I(X) + 1 = 0

2)

where I is infeasibility current vector that contains 1]5' L/ "for Vi.

This formulation can clearly identify a feasible case from
an infeasible one:
e Convergence with zero infeasibility currents everywhere
denotes system balance.

e Convergence with nonzero I;e' L/ " denotes an infeasible
system with specific power flow deficiency at each bus i.

e Divergence is totally attributed to insufficient
convergence robustness of the algorithm.

C. (Problem Approach 3) Proposed: Infeasibility-localized
power flow by L1-regularization

Mathematically, solving network balance equations with
inclusion of I; is an under-determined problem that has infinite
solutions. Problem Approach 2 outputs an optimal solution
with minimal L2 norm, however, this solution is not designed
to be sparse. Therefore, the quantities and locations of the
nonzero infeasibility currents is not necessarily an informative
identifier of the dominant sources of the modeled outage.
Especially in large scale systems, we can have numerous
comparative infeasibility currents across the grid. In reality,
the most useful solution for expansion planning and corrective
action is the not the one with the smallest L2 norm and
infeasible current values at multiple sources, but rather a
solution that has non-zero infeasible currents in the least
number of locations.
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To address this, a classical method for enforcing sparsity

can be applied using the L1-norm in the objective function:
1 2
min (1], + < [l
sit.IX)+1=0

However, this formulation neglects the correlation of real
and imaginary counterparts during sparsity enforcement, while
in reality, the nonzero 115_1-, Ifl_l- at the same bus are often coupled
terms emerging concurrently. Moreover, the desired
sparseness requires higher values assigned to regularization
parameter ¢, making it difficult for the algorithm to converge.
More detailed explanations for the convergence difficulty are
explored in section IV.

3)

IV. PROPOSED METHOD

To present our new approach, we first exploit some physical
intuition of the system and develop a general methodology
(within sub-section A) that enforces a sparse system solution
using problem approach 3. Also, in this sub-section, we discuss
challenges of this approach from the convergence perspective.
Next (within sub-section B), based on the observed
mechanism, we propose our basic idea of bus-wise sparsity
enforcer, a novel regularization term to eliminate the
aforementioned limitations.

A. An insight into sparsity inforcement by L1 regularization

In the Ll1-regularization-based sparse enforcement method
(problem approach 3) developed above, the inclusion of L1-
norm leaves an undifferentiable objection function. To tackle
this, we introduce slack variable t and convert the problem into
the following constrained optimization form [13]:

. 1 2 4
I)I(l};li“lf”z-l'C't 4
s.t. I(X)+If=0 %)

=<t (6)
- =t (7

where the slack variable vector t represents the upper bound

on the infeasibility currents vector /. Each I;a‘ l/ ! corresponds to
an upper-bound tf‘ l/ "such that |1]5‘ l/ ! | < t;a’ l/ " asin 6)-(7).
We can write its Lagrangian function as:

1 2
L(X, Ipt, A uyy,) = E||1f||2 +ct+ AT(ICX) + 1)

@®)
+ uu(lf —t)+ ML(—If —t)
The perturbed KKT conditions of this problem are:
I; =" —u;+u; 9)
up+u;=c-1 (10)
u{,(lj’f - t*) = —¢ (upper bound) (11)
uj(—I; —t*) = —e (lower bound) (12)

By further manipulation based on properties of Lagrangian
multiplier, the primal-dual pair (If, A) should satisfy:

Iz =121 —c (13)
This primal-dual relationship can be clearly illustrated by
Figure 1, and inspires us to attach intuitive physical meanings:

e Bus-wise Lagrangian multiplier /'lf/ "is a source of
additional current flow into the network
e  Scalar c is a threshold such that any infeasibility quantities

/1};/ "below threshold are blocked out and only those above

this threshold become the I;f l/ " “flow” into the system.
R,'r|
fi

NS

‘ ¢

|1

2

Figure 1. Relationship between /; and c: a blocking effect

This reveals a simple mechanism through which the
threshold ¢ encourages a sparse solution by confining most I
to near zero value. Whenever threshold ¢ is added, the
blocking effect reduces the number of non-zero infeasibility
sources in the network. As the threshold c is increased, the
number of non-zero infeasibility sources decrease, and any
remaining non-zero infeasibility sources adjust their value to
make the network feasible. Therefore, with a high enough
threshold value, only a few sources turn out to be above
threshold and appear as nonzero elements in /.

In summary, our approach utilizes that: raising the value
of ¢ encourages more near-zero I%’ elements by making
the threshold hard-to-pass.

However, there exists serious convergence problem with a
single scalar ¢ as tuning parameter for regularization. This
challenge can be characterized by an unwanted trade-off &
inflexibility. Let us illustrate this further.

With t representing the upper bound of I, if there exists
nonzero infeasibility (e.g. If_i > 0) at bus i, due to the
minimization of t in the objective function, the upper bound
tends to be very tight (i.e., t} — If; = 0). Hence, if we utilize
a single large scalar ¢ value to achieve a sufficiently sparse
solution, the tightness property of the algorithm results in
convergence difficulties due to the steep and highly non-linear
regions of the complementarity slackness conditions given by

(11)(12).

R R
{Uy,i Ui
steep ¢--c
upper lower
curve ] curve
R | R R|_ R
(@) (b)
Figure 2. High ¢ value causes steep convergence region on the

complementary slackness curve: (a)upper bound curve uf, (If; — tf) = —¢,
(b)lower bound curve ufi(—lﬁi — tF) = —e. When If; > 0, we have ufj ; —

c,ufy = 0. (uf ;, 1, tF) converge on a difficult region of the upper curve

This problem can be illustrated in Figure 2. As the number
of infeasible buses increases, numerous buses encounter
difficult steep regions of this kind, making it difficult for the
algorithm to converge.

Thus, the selection of the value of the ¢ parameter is a
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trade-off between sufficient sparsity and robust convergence,
both of which are essential for meeting our eventual goal. With
¢ being a single scalar value, there is little freedom for us to
manipulate its value and achieve the desired performance.

B. Proposed method: Bus-wise sparsity enforcer

To address the aforementioned challenges, we propose a
new method that defines threshold c; for each bus i. This c;
parameter is a bus-wise sparsity enforcer such that, according

to the thresholding effect, raising c; encourages a zero 1]5 L/ !

value at bus i in the solution. The infeasibility localization
problem can now be reformulated as problem 4.
(Problem Approach 4) Infeasibility-localized power flow by
bus-wise sparsity enforcer

1 2
min|17][, + Z (IR + 11D

Xlf (14)

i

In this approach, we convert a single scalar c to a vector of
bus-wise sparsity enforcers. Then, to determine the values of
c;, we use the following assumptions that are based on the grid
physics:

e Uneven distribution of infeasibility sources: system
infeasibility is caused by and can be characterized by
failures on isolated locations, rather than outages of equal
seriousness at each bus.

e There is a high probability that the dominant sources
(locations) of failure in the system are reflected by the

nodes with highest magnitude of I;‘/iR in the simulation.

Based on these assumptions, we can simply make flexible
adjustments to ¢; at each bus, according to the qualitative
classification of bus-wise infeasibilities, as shown in
Algorithm 1. For simplification and efficiency, we simply
classify all buses into ‘major’ and ‘minor’ categories,
according to their infeasibility current magnitude and the
sparsity goal. For buses in the ‘major’ group, i.e. with high
infeasibility quantities (|I;’/iR| > 0), we assume that they are
very likely the dominant sources of failure and assign a low
value c¢;. This encourages nonzero infeasibility current on
those locations. For buses in the minor group, we assign a
higher threshold cy such that we can force their infeasibility
values to zero or near zero values.

Algorithm 1: Bus-wise Sparse Enforcer Assignment
Input: sparse goal k, threshold (cy, ¢, ), infeasibility current I
Output: updated bus-wise sparsity enforcer ¢;, i = 1,2, ..., Ny
1. Calculate infeasibility current magnitude at all buses I,q4
2. Classify bus category:

‘major’ buses index: idpqjor = argsort(lmag, k)
‘minor’ buses index: id,,;,,, contains the remaining buses
3. Assign ¢;

C(idmujor) =Cy ’C(idminor) = Cy

Our infeasibility localization method is summarized in
Algorithm 2, where k defines the number of locations where
non-zero value of infeasibility sources might be allowed. From
another intuitive viewpoint, this method unevenly penalizes
infeasibility values at different buses. By assigning high c;
values to certain buses, we deliberately attach high penalty to

infeasibility currents in those buses, thereby forcing the
infeasibility currents to make the network feasible from other
sets of buses with low c; attached to them. More importantly,
this (cy, ¢;) configuration removes the need for high values of
parameter cy, as sparsity is dependent on the ratio of ¢y and
¢, not the absolute value of the threshold. Simple principles
for selecting (cy, c;) are:

e ¢y is chosen to be sufficiently larger than /1?/ "such that
‘minor’ infeasibility sources result in zero or near zero
values. This enables sufficiently sparse solution with
small enough (cy,c;) values, thereby avoiding
convergence difficulties.

e (; is chosen to be sufficiently lower than ¢y such that the
threshold is ‘ecasy-to-pass’ for both AFand A}, making
nonzero If;, If; coexist at infeasible buses. This is a
necessary condition for practical applications. Due to the
nature of the power flow equations, grid devices provide
both real and imaginary currents. Therefore, for any
corrective actions, it is preferable to achieve sparse
solutions that have infeasibilities localized to the fewest
number of buses, rather than fewest number of nonzero

[

Additionally, if the k-sparse goal is not practical, I}f’ l/ 'in the

‘minor’ group leaves room for infeasible sources on more than

k locations, and the final solution can be (k + m)-sparse.

Algorithm 2: Infeasibility Localization with k-sparse goal
Input: testcase, initial guess (XO, Ifo,lo), sparse goal k, threshold (cy, ¢)
Output: a sparse Ir vector
1. Initialize t, uy, u;
2. Bus-wise sparse enforcer assignment
3. Infeasibility-localized power flow by bus-wise sparsity enforcer
(Problem4)

C. Extension to large-scale systems

For a practical large-scale power system, we do not have
accurate knowledge in advance about the severity of the
system collapse, and therefore, it is hard to define a reasonable
guess of the k-sparse goal. Importantly, since infinite possible
combinations of {If, l/ I} can make the system network balance
equations correspond to a feasible network, the ‘major’
locations in a dense solution are likely to be the dominant
sources with a high probability; however, we must note that
this is not always true.

Algorithm 3: Infeasibility Localization for large-scale systems

Input: testcase, shrinkage rate »
Output: a sparse Ir vector
1. Initialize (Xo, I;o, A9 ) by infeasibility-quantified power flow (Problem2)
2. Initialize (cy, c;)
3. Initialize sparsity goal: k = ny,¢ *r
3. while not sparse enough, do
Bus-wise sparse enforcer assignment
Infeasibility Localization with k-sparse goal
Check current solution sparisty k
Update sparsity goal: k =k *r
(Optional) adjust (cy, ¢;) if needed
(Optional) adjust shrinkage rate r if needed

With these considerations we extend our method to large-
scale networks by iteratively adjusting sparse enforcers and
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gradually reaching sparser solution from denser ones. For
robust convergence, we start from a dense solution from
(problem approach2) robust regular power flow [3][14] with
quantified infeasibility in all locations and gradually update the
k-sparse goal by some shrinkage rate. This is equivalent to
splitting the original problem into a series of subproblems,
where each subproblem uses a solution from the previous one
as its initial guess, and easily reaches its optimal solution
within a few iterations. Our method is shown in Algorithm 3.

V.  EXPERIMENTS

This paper conducts experiments to prove the efficacy and
scalability of our proposed method. To create an infeasible
scenario (past the nose curve) on these cases, we increase their
loading factor a. And parameters of our proposed method are
set to default values ¢y = 10,¢, = 0.1,r = 0.75.

We first test standard CASE14 which is infeasible at ¢ =
4.5. Table 3 presents infeasibility, quantified first by infeasible
power flow [3] (Problem2) and sparsity enforcement using L1-
regularization (Problem3) and our proposed method
(Problem4). Comparison shows that our method reaches 1-
sparse solution and localizes infeasibility to bus#14, whereas
the standard infeasibility approach [3] localizes infeasibility to
almost all buses making the approach impractical for expansion
planning or applying corrective action.

TABLE 3. METHOD COMPARISON RESULTS ON CASE14

Bus Infeasibility current magnitude solution |I|
ID Non-sparse [3] | L1-regularization Proposed method

1 0 0 0

2 0.00858402 0 0

3 0.0561223 0 0

4 0.05097014 0 0

5 0.04278203 0 0

6 0.08877886 0.16111856 0

7 0.07740694 0 0

8 0.09593462 0.33915759 0

9 0.08860328 0 0

10 0.09134275 0 0

11 0.08889756 0 0

12 0.09065051 0.1244972 0

13 0.09368859 0.27381069 0

14 0.10908567 0.1824952 0.80006182

Next, we test 5 large system cases. Table 4 shows our
method efficiently localizes system infeasibility to sparse
distributions.

TABLE 4. RESULTS

Case Name « k-sparse Dominant infeasible
buses name
MMWGS80K 1.07 1 ‘155753°
ACTIVSg25K 1.8 42 Not listed here
CASE9241pegase 1.15 1 2159’
CASE6515rte 1.15 2 ‘3576°,” 4356’
CASE6468rte 1.29 1 3718°

VI. CONCLUSION

This paper presents a novel approach to localize the source of
infeasibility in a grid network model. This is mathematically

equivalent to finding a sparser solution to an underdetermined
nonlinear system. With Ll-regularization suffering from
limited solution sparsity due to the unwanted trade-off and lack
of flexibility in the parameter adjustment, we propose a new
method based on the physics-based models and mechanisms
corresponding to bus-sparsity enforcement of the L1-norm.
The primary contributions of our approach are:
e Definition of bus-wise sparse enforcer c; to replace
the scalar parameter in L1-norm.
e  Creation of a new regularization term with uneven
blocking effect (penalization) on each bus.
e  Manipulation of sparsity by adjusting enforcers,
based on the observed sparse mechanism.
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