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Abstract—A method is proposed to identify and localize the cause 
of network collapse with augmented power flow analysis for a 
grid model with insufficient resources. Owing to heavy network 
loading, insufficient generation, component failures and 
unavoidable disturbances, power grid models can sometimes fail 
to converge to a feasible solution for a steady-state power flow 
study. For applications such as system expansion planning, it is 
desirable to locate the system buses that are contributing to 
network infeasibilities to facilitate corrective actions. This paper 
proposes a novel LASSO-inspired regularization of the power 
flow matrix that enforces sparsity to localize and quantify 
infeasibilities in the network. One of the examples demonstrates 
how the proposed method is capable of localizing a source of 
blackout to a single dominant bus on an 80k+ bus eastern 
interconnection model.  

Index Terms—Equivalent circuit formulation, infeasibility 
localization, LASSO, power system modeling, sparsity 

I. INTRODUCTION 
To ensure grid reliability and security, existing and planned 
power systems are evaluated on whether they can survive 
critical contingencies while serving current or forecasted 
loads. Often, due to severe contingencies, heavy loading, and 
other limitations, the simulation indicates network collapse, 
which corresponds to a grid that has likely blacked out [1]. In 
a traditional power flow study, this collapsed grid state 
corresponds to no solution, and is characterized by divergence 
of the simulation [2]. Recently, methods [3],[4] have been 
developed that instead provide an infeasible power flow 
solution for such collapsed grid states. 

These infeasibility-based power-flow methods can 
converge for a collapsed grid state; however, they do not 
provide specific cause of power outage, nor do they identify 
localized locations that are disrupting system security and 
robustness. In most situations, it would be desirable to know 
the smallest possible set of dominant nodes that are causing 
system collapse with some quantifiable metric.  

Accurate and efficient localization of this dominant set of 
nodes identifies the deficiency of power (real and reactive) and 
highlights some critical locations for special attention in the 
planning process. For instance, consider reactive power 
planning (RPP) problems [5]-[8] that aim to find the optimal 
allocation of reactive power support through capacitor banks 

or FACTS devices such as static VAR compensators (SVC). 
Such problems correspond to finding the sparsest reactive 
power compensation vector that satisfies system power 
balance and operation limits in an optimization-based power 
flow study. However, convergence of such optimization-based 
studies becomes more difficult with increased system size and 
operating limits. Most state-of-the-art placement planning 
strategies [5]-[8] are only shown to handle small cases with 
hundreds of buses or less and are known to suffer from lack of 
robust convergence. Instead, a sparsity enforcement method is 
preferred. The objective of this method will be to provide a 
sparse set of nodes, that along with quantified infeasibility 
power, can be added to each of the corresponding set of nodes 
to make the model feasible. 

This paper proposes a novel method to localize infeasibility 
within power grid models that have no solution. Unlike 
existing formulations [3],[4] that distribute system 
infeasibilities across all buses in the system via minimization 
of the sum of square of their values (L2-norm), the proposed 
approach localizes the infeasibility to a few system buses. The 
approach is inspired by LASSO [9],[10], a method that is used 
to enforce sparsity in feature selection of a model by L1-
regularization. In our approach, the sparsity is enforced on the 
infeasibility solution vector to obtain infeasibilities at only the 
dominant nodes in the system. This paper defines a new 
approach of enforcing sparsity such that the infeasibilities 
corresponding to geographically localized buses are correlated 
through a bus-wise sparsity enforcer. 

Mathematically, this problem is formulated as a non-
convex optimization problem and is implemented based on an 
equivalent circuit formulation (ECF) that has been 
demonstrated to ensure convergence for power flow analysis 
and associated optimization applications (to a local optima), 
such as that for identifying infeasibility.  

Since the power system is highly nonlinear, the major 
objective of our method can be summarized as follows: 

i. To reach a sufficiently sparse solution; i.e., supply 
additional real or reactive power at minimum number 
of possible locations for an infeasible network model. 

ii. To facilitate robust convergence for large-scale 
systems. 

Section II gives a background overview of the ECF 
[3],[11],[12] approach. Section III lists a series of power flow 
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related formulations to illustrate the quantification of system 
infeasibility. Section IV presents the exploration of a sparsity 
enforcing mechanism, insight into problems with L1-
regularization based optimization problems, the proposed 
infeasibility localization algorithm, and application to large 
scale systems with reliable convergence. Section V presents 
some experimental results on several large cases that include 
the U.S. Eastern Interconnection sized 80k+ buses network, 
followed by our conclusions in section VI. 

II. BACKGROUND 
A.  Notation  
Table 1 shows the symbols used in this paper. 

TABLE 1. SYMBOLS AND DEFINITIONS 

Symbol Interpretation 
𝑉𝑅, 𝑉𝐼, 𝐼𝑅 , 𝐼𝐼 
|𝑉|, 𝜃, 𝑃, 𝑄 

Real/imaginary voltage/current;  
Voltage magnitude/angle; active/reactive power 

𝑋 Power flow solution vector,  𝑋 = [𝑉𝑅, 𝑉𝐼] 
𝐼𝑓,𝑖
𝑅/𝐼  Real or imagniary infeasibility current at bus #i 
𝐼𝑓 Infeasibility current vector 

𝐼(𝑥) =0 KCL equations at all buses 
𝑘 Sparse goal: to localize infeasibility to k locations 

B. Equivalent Circuit Formulation (ECF) 
A circuit-theoretic formulation for power grid analysis was 
developed in [3],[11],[12]. Instead of describing components 
with ‘PQV’ parameters, the ECF framework models each 
component within the power grid as an electrical circuit element 
characterized by its I-V relationship. For computational 
analyticity, the complex relationships are split into real and 
imaginary sub-circuits whose nodes corresponds to power 
system buses [3][11][12]. Table 2 shows a simple comparison 
between the traditional PQV formulation and ECF.  

TABLE 2. COMPARISON BETWEEN FORMULATIONS 

Property 
Comparison 

PQV formulation ECF 
(I-V formulation) 

Coordinate Polar Rectangle 
State variables |𝑉|, 𝜃 𝑉𝑅, 𝑉𝐼, 𝑄 

Network balance Zero power mismatch Zero current mismatch 
Governing equations Power balance eqns KCL eqns 
Network constraints Non-linear Linear 
Loads and generators  Linear Non-Linear 

Under this ECF framework, all branches, e.g. transmission 
lines, transformers, and shunts, are linear components, due to 
the intrinsic linearity of their I-V relationships. Other 
components such as generators and loads have nonlinear I-V 
models. The system balance is expressed by a set of nonlinear 
KCL equations: 

𝐼(𝑥) = 0 (1) 
These equations can be iteratively linearized and solved via 

Newton Raphson (NR) using bus voltage variables. 
Importantly, since ECF enables power systems of any size to 
be efficiently simulated as an equivalent circuit, numerous 
convergence techniques that were developed for circuit 
simulation (e.g. SPICE [15]) can be applied. 

III. POWER FLOW RELATED PROBLEMS  
Next, we present a series of power flow formulations that 
introduce our proposed method for quantifying and localizing 
infeasibility. 
A. (Problem Approach 1) Traditional power flow 
Traditional power flow outputs the bus voltage solution by 
iteratively solving the nonlinear network balance equations in 
(1). For a feasible network model, the traditional power flow 
converges to a feasible solution; however, if no feasible 
solution exists for the network, the methodology diverges 
resulting in no useful solution. 
B. (Problem Approach 2) Infeasibility-quantified power flow  
To avoid divergence without providing information, an 
approach to capture the infeasible-quantified power flow was 
developed. To effectively distinguish between hard-to-solve 
network case from infeasible network case, extensions have 
been proposed and developed for both the ECF-based [3][11] 
and traditional [4] methods to quantify the potential 
infeasibility within the grid. The ECF-based approach [11] 
introduces ‘infeasibility current’ 𝐼𝑓,𝑖

𝑅 , 𝐼𝑓,𝑖
𝐼  at each bus #𝑖. These 

values represent compensation terms that capture how much 
additional real/imaginary current flow is needed at each bus to 
make the network balance conditions hold. The infeasibility-
quantified power flow study is formulated as a non-convex 
optimization problem: 

min
𝑋,𝐼𝑓

1

2
||𝐼𝑓||

2

2

 

𝑠. 𝑡.  𝑠𝑦𝑠𝑡𝑒𝑚 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠: 𝐼(𝑋) + 𝐼𝑓 = 0 
(2) 

where 𝐼𝑓 is infeasibility current vector that contains 𝐼𝑓,𝑖
𝑅/𝐼for ∀𝑖. 

This formulation can clearly identify a feasible case from 
an infeasible one: 
• Convergence with zero infeasibility currents everywhere 

denotes system balance.  
• Convergence with nonzero 𝐼𝑓,𝑖

𝑅/𝐼 denotes an infeasible 
system with specific power flow deficiency at each bus 𝑖.  

• Divergence is totally attributed to insufficient 
convergence robustness of the algorithm. 

C. (Problem Approach 3) Proposed: Infeasibility-localized 
power flow by L1-regularization 
Mathematically, solving network balance equations with 

inclusion of 𝐼𝑓 is an under-determined problem that has infinite 
solutions. Problem Approach 2 outputs an optimal solution 
with minimal L2 norm, however, this solution is not designed 
to be sparse. Therefore, the quantities and locations of the 
nonzero infeasibility currents is not necessarily an informative 
identifier of the dominant sources of the modeled outage. 
Especially in large scale systems, we can have numerous 
comparative infeasibility currents across the grid. In reality, 
the most useful solution for expansion planning and corrective 
action is the not the one with the smallest L2 norm and 
infeasible current values at multiple sources, but rather a 
solution that has non-zero infeasible currents in the least 
number of locations. 
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To address this, a classical method for enforcing sparsity 
can be applied using the L1-norm in the objective function: 

min
𝑋,𝐼𝑓

1

2
||𝐼𝑓||

2

2

+ 𝑐 ||𝐼𝑓||
1
 

𝑠. 𝑡. 𝐼(𝑋) + 𝐼𝑓 = 0 
(3) 

However, this formulation neglects the correlation of real 
and imaginary counterparts during sparsity enforcement, while 
in reality, the nonzero 𝐼𝑓,𝑖

𝑅 , 𝐼𝑓,𝑖
𝐼  at the same bus are often coupled 

terms emerging concurrently. Moreover, the desired 
sparseness requires higher values assigned to regularization 
parameter 𝑐, making it difficult for the algorithm to converge. 
More detailed explanations for the convergence difficulty are 
explored in section IV. 

IV. PROPOSED METHOD 
To present our new approach, we first exploit some physical 
intuition of the system and develop a general methodology 
(within sub-section A) that enforces a sparse system solution 
using problem approach 3. Also, in this sub-section, we discuss 
challenges of this approach from the convergence perspective. 
Next (within sub-section B), based on the observed 
mechanism, we propose our basic idea of bus-wise sparsity 
enforcer, a novel regularization term to eliminate the 
aforementioned limitations. 
A. An insight into sparsity inforcement by L1 regularization 
In the L1-regularization-based sparse enforcement method 
(problem approach 3) developed above, the inclusion of L1-
norm leaves an undifferentiable objection function. To tackle 
this, we introduce slack variable 𝑡 and convert the problem into 
the following constrained optimization form [13]: 

min
𝑋,𝐼𝑓

1

2
||𝐼𝑓||

2

2

+ 𝑐 · 𝑡 (4) 

𝑠. 𝑡.     𝐼(𝑋) + 𝐼𝑓 = 0  (5) 
𝐼𝑓 ⪯ 𝑡  (6) 
−𝐼𝑓 ⪯ 𝑡  (7) 

where the slack variable vector 𝑡 represents the upper bound 
on the infeasibility currents vector 𝐼𝑓 . Each 𝐼𝑓,𝑖

𝑅/𝐼 corresponds to 
an upper-bound 𝑡𝑓,𝑖

𝑅/𝐼 such that |𝐼𝑓,𝑖
𝑅/𝐼 

| ≤ 𝑡𝑓,𝑖
𝑅/𝐼 , as in (6)-(7). 

We can write its Lagrangian function as: 

𝐿(𝑋, 𝐼𝑓 , 𝑡, 𝜆, 𝑢𝑈/𝐿) =
1

2
||𝐼𝑓||

2

2

+ 𝑐𝑡 + 𝜆𝑇(𝐼(𝑋) + 𝐼𝑓)

+ 𝜇𝑈(𝐼𝑓 − 𝑡) + 𝜇𝐿(−𝐼𝑓 − 𝑡)  
(8) 

The perturbed KKT conditions of this problem are: 
𝐼𝑓
∗ = −𝜆∗ − 𝑢𝑈

∗ + 𝑢𝐿
∗  (9) 

𝑢𝑈
∗ + 𝑢𝐿

∗ = 𝑐 · 1 (10) 
𝑢𝑈

∗ (𝐼𝑓
∗ − 𝑡∗) = −𝜖  (𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑) (11) 

𝑢𝐿
∗(−𝐼𝑓

∗ − 𝑡∗) = −𝜖  (𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑) (12) 
By further manipulation based on properties of Lagrangian 
multiplier, the primal-dual pair (𝐼𝑓 , 𝜆) should satisfy: 

|𝐼𝑓
∗| = |𝜆∗| − 𝑐 (13) 

This primal-dual relationship can be clearly illustrated by 
Figure 1, and inspires us to attach intuitive physical meanings: 

• Bus-wise Lagrangian multiplier 𝜆𝑖
𝑅/𝐼 is a source of 

additional current flow into the network 
• Scalar 𝑐 is a threshold such that any infeasibility quantities 

𝜆𝑖
𝑅/𝐼 below threshold are blocked out and only those above 

this threshold become the 𝐼𝑓,𝑖
𝑅/𝐼 ‘flow’ into the system. 

 
Figure 1. Relationship between 𝐼𝑓∗ and c: a blocking effect 

This reveals a simple mechanism through which the 
threshold 𝑐 encourages a sparse solution by confining most 𝐼𝑓 
to near zero value. Whenever threshold 𝑐 is added, the 
blocking effect reduces the number of non-zero infeasibility 
sources in the network. As the threshold 𝑐 is increased, the 
number of non-zero infeasibility sources decrease, and any 
remaining non-zero infeasibility sources adjust their value to 
make the network feasible. Therefore, with a high enough 
threshold value, only a few sources turn out to be above 
threshold and appear as nonzero elements in 𝐼𝑓. 

In summary, our approach utilizes that: raising the value 
of c encourages more near-zero 𝑰𝒇,𝒊

𝑹/𝑰  elements by making 
the threshold hard-to-pass. 

However, there exists serious convergence problem with a 
single scalar 𝑐 as tuning parameter for regularization. This 
challenge can be characterized by an unwanted trade-off & 
inflexibility. Let us illustrate this further. 

With 𝑡 representing the upper bound of 𝐼𝑓, if there exists 
nonzero infeasibility (e.g. 𝐼𝑓,𝑖

𝑅 > 0) at bus 𝑖, due to the 
minimization of 𝑡 in the objective function, the upper bound 
tends to be very tight (i.e., 𝑡𝑖𝑅 − 𝐼𝑓,𝑖

𝑅 → 0). Hence, if we utilize 
a single large scalar 𝑐 value to achieve a sufficiently sparse 
solution, the tightness property of the algorithm results in 
convergence difficulties due to the steep and highly non-linear 
regions of the complementarity slackness conditions given by 
(11)-(12). 

 
Figure 2. High c value causes steep convergence region on the 

complementary slackness curve: (a)upper bound curve 𝑢𝑈,𝑖
𝑅 (𝐼𝑓,𝑖

𝑅 − 𝑡𝑖
𝑅) = −𝜖 , 

(b)lower bound curve 𝑢𝐿,𝑖
𝑅 (−𝐼𝑓,𝑖

𝑅 − 𝑡𝑖
𝑅) = −𝜖. When 𝐼𝑓,𝑖

𝑅 > 0, we have 𝑢𝑈,𝑖
𝑅 →

𝑐, 𝑢𝐿,𝑖
𝑅 → 0. (𝑢𝑈,𝑖

𝑅 , 𝐼𝑓,𝑖
𝑅 , 𝑡𝑖

𝑅) converge on a difficult region of the upper curve 

This problem can be illustrated in Figure 2. As the number 
of infeasible buses increases, numerous buses encounter 
difficult steep regions of this kind, making it difficult for the 
algorithm to converge. 

Thus, the selection of the value of the 𝑐 parameter is a 

 

     

𝑢𝑝𝑝𝑒𝑟 
𝑐𝑢𝑟 𝑒

𝑙𝑜𝑤𝑒𝑟 
𝑐𝑢𝑟 𝑒
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trade-off between sufficient sparsity and robust convergence, 
both of which are essential for meeting our eventual goal. With 
𝑐 being a single scalar value, there is little freedom for us to 
manipulate its value and achieve the desired performance. 
B. Proposed method: Bus-wise sparsity enforcer 

To address the aforementioned challenges, we propose a 
new method that defines threshold 𝑐𝑖 for each bus 𝑖. This 𝑐𝑖 
parameter is a bus-wise sparsity enforcer such that, according 
to the thresholding effect, raising 𝑐𝑖 encourages a zero 𝐼𝑓,𝑖

𝑅/𝐼 
value at bus 𝑖 in the solution. The infeasibility localization 
problem can now be reformulated as problem 4. 
(Problem Approach 4) Infeasibility-localized power flow by 
bus-wise sparsity enforcer 

min
𝑋,𝐼𝑓

1

2
||𝐼𝑓||

2

2

+ ∑𝑐𝑖(|𝐼𝑓,𝑖
𝑅 | + |𝐼𝑓,𝑖

𝐼 |)

𝑖

  

𝑠. 𝑡.     𝐼(𝑋) + 𝐼𝑓 = 0 
(14) 

In this approach, we convert a single scalar 𝑐 to a vector of 
bus-wise sparsity enforcers. Then, to determine the values of 
𝑐𝑖, we use the following assumptions that are based on the grid 
physics: 
• Uneven distribution of infeasibility sources: system 

infeasibility is caused by and can be characterized by 
failures on isolated locations, rather than outages of equal 
seriousness at each bus.  

• There is a high probability that the dominant sources 
(locations) of failure in the system are reflected by the 
nodes with highest magnitude of 𝐼𝑓,𝑖

𝐼/𝑅 in the simulation. 
Based on these assumptions, we can simply make flexible 

adjustments to 𝑐𝑖 at each bus, according to the qualitative 
classification of bus-wise infeasibilities, as shown in 
Algorithm 1. For simplification and efficiency, we simply 
classify all buses into ‘major’ and ‘minor’ categories, 
according to their infeasibility current magnitude and the 
sparsity goal. For buses in the ‘major’ group, i.e. with high 
infeasibility quantities (|𝐼𝑓,𝑖

𝐼/𝑅
| ≫ 0), we assume that they are 

very likely the dominant sources of failure and assign a low 
value 𝑐𝐿. This encourages nonzero infeasibility current on 
those locations. For buses in the minor group, we assign a 
higher threshold 𝑐𝐻 such that we can force their infeasibility 
values to zero or near zero values. 

Algorithm 1:  Bus-wise Sparse Enforcer Assignment 
Input: sparse goal k, threshold (𝑐𝐻 , 𝑐𝐿), infeasibility current 𝐼𝑓 
Output: updated bus-wise sparsity enforcer 𝑐𝑖 , 𝑖 = 1,2,… , 𝑛𝑏𝑢𝑠 
1. Calculate infeasibility current magnitude at all buses 𝐼𝑚𝑎𝑔 
2. Classify bus category:  
        ‘major’ buses index:  𝑖𝑑𝑚𝑎𝑗𝑜𝑟 = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(𝐼𝑚𝑎𝑔, 𝑘) 
        ‘minor’ buses index:  𝑖𝑑𝑚𝑖𝑛𝑜𝑟 contains the remaining buses 
3. Assign 𝑐𝑖 
         𝑐(𝑖𝑑𝑚𝑎𝑗𝑜𝑟) = 𝑐𝐿 , 𝑐(𝑖𝑑𝑚𝑖𝑛𝑜𝑟) = 𝑐𝐻   

Our infeasibility localization method is summarized in 
Algorithm 2, where k defines the number of locations where 
non-zero value of infeasibility sources might be allowed. From 
another intuitive viewpoint, this method unevenly penalizes 
infeasibility values at different buses. By assigning high 𝑐𝑖 
values to certain buses, we deliberately attach high penalty to 

infeasibility currents in those buses, thereby forcing the 
infeasibility currents to make the network feasible from other 
sets of buses with low 𝑐𝑖 attached to them. More importantly, 
this (𝑐𝐻 , 𝑐𝐿) configuration removes the need for high values of 
parameter 𝑐𝐻, as sparsity is dependent on the ratio of 𝑐𝐻  and 
𝑐𝐿, not the absolute value of the threshold. Simple principles 
for selecting (𝑐𝐻 , 𝑐𝐿) are: 
• 𝑐𝐻 is chosen to be sufficiently larger than 𝜆𝑖

𝑅/𝐼 such that 
‘minor’ infeasibility sources result in zero or near zero 
values. This enables sufficiently sparse solution with 
small enough (𝑐𝐻 , 𝑐𝐿) values, thereby avoiding 
convergence difficulties. 

• 𝑐𝐿 is chosen to be sufficiently lower than 𝑐𝐻 such that the 
threshold is ‘easy-to-pass’ for both 𝜆𝑖

𝑅 and 𝜆𝑖
𝐼 , making 

nonzero 𝐼𝑓,𝑖
𝑅 , 𝐼𝑓,𝑖

𝐼  coexist at infeasible buses. This is a 
necessary condition for practical applications. Due to the 
nature of the power flow equations, grid devices provide 
both real and imaginary currents. Therefore, for any 
corrective actions, it is preferable to achieve sparse 
solutions that have infeasibilities localized to the fewest 
number of buses, rather than fewest number of nonzero 
𝐼𝑓,𝑖
𝑅/𝐼 . 

Additionally, if the k-sparse goal is not practical, 𝐼𝑓,𝑖
𝑅/𝐼in the 

‘minor’ group leaves room for infeasible sources on more than 
k locations, and the final solution can be (𝑘 + 𝑚)-sparse. 

Algorithm 2: Infeasibility Localization with k-sparse goal 
Input: testcase, initial guess (𝑋0, 𝐼𝑓0, 𝜆0), sparse goal k, threshold (𝑐𝐻 , 𝑐𝐿) 
Output: a sparse 𝐼𝑓 vector 
1. Initialize 𝑡, 𝑢𝑈, 𝑢𝐿 
2. Bus-wise sparse enforcer assignment 
3. Infeasibility-localized power flow by bus-wise sparsity enforcer 
(Problem4) 

C. Extension to large-scale systems 
For a practical large-scale power system, we do not have 
accurate knowledge in advance about the severity of the 
system collapse, and therefore, it is hard to define a reasonable 
guess of the k-sparse goal. Importantly, since infinite possible 
combinations of {𝐼𝑓,𝑖

𝑅/𝐼} can make the system network balance 
equations correspond to a feasible network, the ‘major’ 
locations in a dense solution are likely to be the dominant 
sources with a high probability; however, we must note that 
this is not always true.  

With these considerations we extend our method to large-
scale networks by iteratively adjusting sparse enforcers and 

Algorithm 3: Infeasibility Localization for large-scale systems 
Input: testcase, shrinkage rate r 
Output: a sparse 𝐼𝑓 vector 
1. Initialize (𝑋0, 𝐼𝑓0, 𝜆0) by infeasibility-quantified power flow (Problem2) 
2. Initialize (𝑐𝐻 , 𝑐𝐿) 
3. Initialize sparsity goal: 𝑘 = 𝑛𝑏𝑢𝑠 ∗ 𝑟 
3. while not sparse enough, do 
          Bus-wise sparse enforcer assignment 
          Infeasibility Localization with k-sparse goal 
          Check current solution sparisty 𝑘 
          Update sparsity goal:  𝑘 = 𝑘 ∗ 𝑟 
          (Optional) adjust (𝑐𝐻 , 𝑐𝐿) if needed  
          (Optional) adjust shrinkage rate 𝑟 if needed 
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gradually reaching sparser solution from denser ones. For 
robust convergence, we start from a dense solution from 
(problem approach2) robust regular power flow [3][14] with 
quantified infeasibility in all locations and gradually update the 
k-sparse goal by some shrinkage rate. This is equivalent to 
splitting the original problem into a series of subproblems, 
where each subproblem uses a solution from the previous one 
as its initial guess, and easily reaches its optimal solution 
within a few iterations. Our method is shown in Algorithm 3. 

V. EXPERIMENTS 
This paper conducts experiments to prove the efficacy and 
scalability of our proposed method. To create an infeasible 
scenario (past the nose curve) on these cases, we increase their 
loading factor 𝛼. And parameters of our proposed method are 
set to default values 𝑐𝐻 = 10, 𝑐𝐿 = 0.1, 𝑟 = 0.75. 

We first test standard CASE14 which is infeasible at 𝛼 =
4.5. Table 3 presents infeasibility, quantified first by infeasible 
power flow [3] (Problem2) and sparsity enforcement using L1-
regularization (Problem3) and our proposed method 
(Problem4). Comparison shows that our method reaches 1-
sparse solution and localizes infeasibility to bus#14, whereas 
the standard infeasibility approach [3] localizes infeasibility to 
almost all buses making the approach impractical for expansion 
planning or applying corrective action.  

TABLE 3. METHOD COMPARISON RESULTS ON CASE14 

Next, we test 5 large system cases. Table 4 shows our 
method efficiently localizes system infeasibility to sparse 
distributions.  

TABLE 4. RESULTS 

VI. CONCLUSION 
This paper presents a novel approach to localize the source of 
infeasibility in a grid network model. This is mathematically 

equivalent to finding a sparser solution to an underdetermined 
nonlinear system. With L1-regularization suffering from 
limited solution sparsity due to the unwanted trade-off and lack 
of flexibility in the parameter adjustment, we propose a new 
method based on the physics-based models and mechanisms 
corresponding to bus-sparsity enforcement of the L1-norm. 
The primary contributions of our approach are: 

• Definition of bus-wise sparse enforcer 𝑐𝑖 to replace 
the scalar parameter in L1-norm.  

• Creation of a new regularization term with uneven 
blocking effect (penalization) on each bus. 

• Manipulation of sparsity by adjusting enforcers, 
based on the observed sparse mechanism. 
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Bus 
ID 

Infeasibility current magnitude solution  |𝑰| 

Non-sparse [3] L1-regularization Proposed method 

1 0 0 0 

2 0.00858402 0 0 
3 0.0561223 0 0 
4 0.05097014 0 0 

5 0.04278203 0 0 
6 0.08877886 0.16111856 0 
7 0.07740694 0 0 
8 0.09593462 0.33915759 0 
9 0.08860328 0 0 

10 0.09134275 0 0 
11 0.08889756 0 0 
12 0.09065051 0.1244972 0 
13 0.09368859 0.27381069 0 
14 0.10908567 0.1824952 0.80006182 

Case Name 𝛂 k-sparse Dominant infeasible 
buses name 

MMWG80K 1.07 1 ‘155753’ 
ACTIVSg25K 1.8 42 Not listed here 

CASE9241pegase 1.15 1 ‘2159’ 
CASE6515rte 1.15 2 ‘3576’,’ 4356’ 
CASE6468rte 1.29 1 ‘3718’ 
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