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Abstract

Alternating-Current Optimal Power Flow (AC-OPF) is
framed as a NP-hard non-convex optimization problem
that solves for the most economical dispatch of grid
generation given the AC-network and device
constraints.  Although there are no standard
methodologies for obtaining the global optimum for the
problem, there is considerable interest from planning
and operational engineers in finding a local optimum.
Nonetheless, solving for the local optima of a large AC-
OPF problem is challenging and time-intensive, as none
of the leading non-linear optimization toolboxes can
provide any timely guarantees of convergence. To
provide robust local convergence for large complex
systems, we introduce a homotopy-based approach that
solves a sequence of primal-dual interior point
problems. We utilize the physics of the grid to develop
the proposed homotopy method and demonstrate the
efficacy of this approach on U.S. Eastern
Interconnection sized test networks.

1. Introduction

Alternating Current Optimal Power Flow (AC-OPF)
attempts to solve for the most economical dispatch of
the grid while satisfying AC network constraints and
enforcing device limits. Posed as a non-convex, non-
linear optimization problem , AC-OPF is NP-hard with
no methodology for guaranteeing a global optimum in
polynomial time for general networks even though some
work [1]-[2] have found the global optimum for a
restricted set of small networks.

Instead, many methodologies have been proposed
and developed to solve for the local optimum or an
approximation of the AC-OPF problem due to
increasing demand from grid planners and operators [3].
These methodologies can be divided into three main
classes: 1) those that solve for the local optimum of the
original AC-OPF problem [4]-[5]; ii) those that solve
the linear approximation of the AC-OPF problem (e.g.
Decoupled-OPF) [6]-[8]; and iii) those that solve the
convex relaxation or restriction of the AC-OPF problem
[91-[12].

Of these three classes of methodologies, in this
paper, we focus on obtaining the local optimum
solutions for the AC-OPF problems primarily because
the local optimum ensures a feasible dispatch with AC
network constraints satisfied and device limits enforced.
In planning and operation, security and reliability are
considered more critical than the cost of the electricity
and obtaining a sub-optimal feasible solution to AC-
OPF is generally preferred to an AC-infeasible solution
(due to relaxations) that is more economical.

Due to these factors, there has been a recent surge in
methods that locate local optimum solutions for the AC-
OPF problem [4]-[5]. In particular, a large-scale effort
was driven by an Advanced Research Project Agency —
Energy (ARPA-E) grid optimization challenge [13].
The goal of the competition was to locate the most
economical dispatch of the AC-OPF while ensuring
feasibility across a set of contingencies (also known as
Security Constrained Optimal Power Flow problem).
Many state-of-the-art methods for obtaining local
optimum solutions for non-convex optimization
problems were presented in the competition [13], with
the most successful ones based on standard nonlinear
optimization toolboxes such as the Matpower Interior
Point Solver (MIPS) [14] and Interior Point Optimizer
(IPOPT) [15]. The approaches utilized power-system
specific knowledge to achieve robust convergence. An
alternative approach made use of a circuit-based
formulation with currents and voltages as state variables
[5] that applied circuit-simulation methods to achieve
robust convergence. Almost all of these approaches
demonstrated the ability to solve real-size AC-OPF
problems within the SC-OPF problem; nonetheless, the
results of the challenge [13] suggest that there is value
in further exploration. Most importantly, since the
optimization framework also serves as a basis for
planning engineers, a robust approach cannot always
rely on starting with good initial conditions.

Various previous works have attempted to develop a
robust AC-OPF approach by utilizing a homotopy
method technique [16] that traces a path in the solution
space by incrementally modifying the non-linear
constraints from a trivial problem to the original AC-
OPF. This method requires a continuous path to the
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solution with a valid solution at each increment.
However, previous works [18]-[24] are unable to ensure
a valid feasible solution at each increment and few
create discontinuities in the homotopy path due to the
use of DC-OPF as an initial solution [19]. As a result,
many homotopy methods used for the power grid today
[18]-[24] are unable to scale to large networks.

One homotopy method that is effective for large-
scale power-flow problems is Tx-stepping [25]. Tx-
stepping is based on an approach that is analogous to
Gmin stepping for circuits [27] and aims to short the
series elements (e.g. lines, transformer, etc.) in the
system by adding large parallel admittances at first to
obtain a trivial solution. Throughout the homotopy path
then, the added admittances are gradually removed to
solve the original network. Here for grid optimization
we employ a more comprehensive incremental
formation of the final system starting from a trivial one
that not only scales the transmission line and
transformer parameters, but also shunts, generators, and
loads and corresponding bounds. This effectively
corresponds to an incremental formulation of the entire
grid from a trivial one that mimics furning on the grid.
Importantly, this incremental stepping must be
performed such that there is a valid grid model at each
step, which we ensure by using a slack injection-based
technique that maintains feasibility throughout the
homotopy method. We refer to this homotopy as IMB,
Incremental Model Building.

We introduce a framework that implements the IMB
approach within the Simulation of Unified Grid
Analyses and Renewables (SUGAR) engine [5], [17].
We overcome convergence challenges that general-
purpose optimization toolboxes struggle with by
utilizing the known properties of the physics-based grid
models to ensure convergence, even when confronted
with ill-suited initial conditions. Importantly, the
proposed homotopy approach is generic and can be
applied to achieve robust convergence for other grid
optimization problems as well.

Section 3 covers the AC-OPF formulation along
with primal-dual interior point (PDIP) solution
methodology. Section 4 introduces the novel homotopy
method and Section 5 describes the algorithmic
methodology following the proposed approach. We
conclude the paper with AC-OPF results for large and
complex networks and compares it against state-of-the-
art standard optimization toolboxes in Section 6.

2. Nomenclature

VR v! Real and imaginary voltage at node i.
VR, VL Real and imaginary voltage across nodes i and k.
GY,BY, ~ Components of admittance matrix.
Pf,Q5  Real and reactive power of generation g.
P2, Q% Real and reactive power of constant power demand d.
Ve Square of the voltage magnitude at bus i.
1 Current flow in a series element e.
Sik Apparent power flow in a series element e.
F, ,E Bounds on generator real power.
Qq, Q_g Bounds on generator reactive power.
Vi, A Bounds on voltage magnitude at bus i.
tri,6; Turns ratio and phase shift angle for transformer i.

— Bound on current flow in a series element e between

ik
Ig node i and k.
- Bound on apparent power flow in a series element e
Se between node i and k.
F(x) Original system of non-linear equations.
Homotopy parameterized system of non-linear
H(x,v) topy p zed sy
equations.
G(x) System of non-linear equations with a trivial solution.
v Homotopy factor.
y Scaling factor of admittance during homotopy.
c(v) Homotopy path as a function of homotopy factor v.
— Vector of slack variables corresponding to the upper
= and lower bound of states vector x, respectively.
A Vector of dual variables for equality constraints.
T x System state vector along with the vector of upper and

lower bounds, respectively.

ag,bg,cy  coefficients of quadratic cost function for generator g.
18,1, Real and imaginary currents injections by a generator.
I, I,;  Real and imaginary currents injections by a load.

3. Alternating Current OPF Formulation

3.1. Current Voltage Formulation

Traditionally, the non-linear AC-network constraints of
an AC-OPF problem are represented by power
mismatch at each bus; however, the trigonometric terms
that model network line flows and network constraints
introduces steep non-linearities in the solution space
when scaling to large systems. A growing number of
approaches [3], [5] are adopting a current-voltage
formulation in which network constraints are expressed
as Kirchhoff’s Current Laws (KCL). The current-
voltage (I-V) models have better convergence properties
for the AC-OPF problem than the traditional power
mismatch-based formulations due to the reduced non-
linearities in the network constraints [3]. Unlike the
traditional formulation where the network constraints
are non-linear with trigonometric terms, the [-V
formulation has linear network constraints with non-
linearities stemming from the injection models (loads
and generation). Therefore, to minimize non-linearities
in the formulation, we will utilize the I-V representation
of the AC-OPF problem.
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The optimization formulation for the AC-OPF
problem of a power grid network N consisting of a set
of generators G and load demands D connected to a set
of buses or nodes B in the grid is given by (1). The nodes
B in the system are connected by a set of network
elements, Ty and X. The objective function for AC-
OPF of minimizing generation cost is given by F.(P%),
defined by sum of quadratic functions given by a set of
coefficients {a, b, c}. The equality constraints represent
the network constraints given by (1b)-(1h). Inequality
constraints represent physical bounds on the devices
given by (1i)-(11). Some bounds include system limits
that are based on grid stability; for example flow
constraints can be both thermal or stability based (see
11) and are further discussed in Section 4.4. In the
problem formulation, system topology parameters, cost,
and device and voltage bounds are given parameters
whereas generator real and reactive power output along
with voltage-setpoint are the decision variables (x; S
x = {P%,Q%,V;?}) over whose range the problem is
optimized. More detailed formulations can also include
transformer tap and phase-shifters (., 8) along with
shunt positions as decision variables.

g1
. 2
minF.(P%) = ) [ag + byBS + cg(BF)’] (1a)
g=1
subject to:
|B|
I8~ 15, = Red > (Vi + V)Gl +jBY) | Vi€B (Ib)
k=1
|B|
=1 =m{ Y (VE+ jVOGL+jBL) ¢ VieB (Io)
k=1
161
—PGV-R+ GV-I
Nt vieB (1d)
' Vei + Vi
90l
—PGV'I— GV-R
=y SO vieB (lo)
' Ve + Vi
ID@)I PDVR Dvl
g = FaliAQali VieB (If)
' Vi + VP
O S
=y PalizQali vieB (lg)
e VetV
V2 =v2 + V2 vieB (lh)
h<K <k vgeg (li)
Qy<Q5<0Q vgeg (1j)

(n) <ve <@

(12)* < (1%)
With the non-linear optimization formulation devised,

we can construct a framework for solving for a local
minimum using Primal-Dual Interior Point method.

vie N (1k)

Ve € (Ty, Xz} (11)

3.2. Solution Framework for AC-OPF Problem

To solve the non-convex optimization problem given in
(1), we implement the primal-dual interior point (PDIP)
approach (see [26] for details). The PDIP approach is
the basis for further heuristics developed within this
paper that enables robust and scalable convergence.

PDIP algorithms apply the search direction from
Newton’s method to iteratively solve a set perturbed
(Karush Kuhn Tucker) KKT conditions. The perturbed
KKT conditions represent a relaxation of first-order
optimality conditions that are necessary to obtain a local
optimum for the AC-OPF problem. We begin by
formulating the Lagrangian:

LA w) =F(0)+1"g(0) + u"h(x) 2

where, g(x) represents the vector of equality constraints
given by (1b)-(1h) (in case of AC-OPF) and h(x)
represents the vector of inequality constraints (11)-(11).
x represents the vector of primary variables whereas 1
and pu represent the vector of dual and slack variables
corresponding to equality and inequality constraints,
respectively. In the case of AC-OPF, x is a vector of grid
states that include real and reactive power output of the
generators (P%, Q°), vector of real and imaginary
components of grid voltages (Vy, V), vector of line and
transformer current and power flows (I**,5%) and a
vector of generator set-points (I/;;SQ). The set of
perturbed KKT conditions (perturbed due to the
relaxation in complementarity slackness constraint)
corresponding to (2) can now be written as:

ViL=gx)=0 (3a)
V. L=VIig(x)A=0 (3b)
Ho(x—x)4+€e=0 (3¢)
po(x—x)—e=0 (3d)

u=0 (3e)
x<x<X (39)

where o represents element-wise multiplication of the
vector elements anderepresents a vector of
complementarity slackness tolerance.

To obtain a stationary point (x*, A*, u*) that satisfies
(3), PDIP linearizes and iteratively solves the equations
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corresponding to (3a)-(3d) using Newton’s method.
Between two NR iterates, primal and dual feasibility
given by (3e)-(3f) is satisfied through heuristics. The
linearized matrix at iteration k can be written as follows:

Hy Vig(x®) 171Ax
V.g(x"k) 0 0 M]
Uy, 0 X | 1An @)
Vfe(x™) + Vg (x)A + u”
=- Vg (")
€
where U = diag(u), X :=diag(x) and H =

V2, L(x* 2% u¥). In general, the linearized matrix is
reduced and p’s eliminated to solve lower dimension
matrix within the inner loop of the Newton’s method. A
descent direction is guaranteed by ensuring that the top
left block (given by Hj) of the iteration matrix is
positive definite [15] and step-length of the iterate is
often controlled via backtracking line search [26].

While this straightforward PDIP  solution
methodology could be used to solve small networks, it
is unlikely to be effective for complex large networks
with steep nonlinearities. Therefore, to ensure
convergence for such realistic networks, heuristics are
needed. Most commercial tools have such heuristics
embedded within them. For instance, MATLAB
optimization toolbox makes use of interior trust region
methods [32], whereas IPOPT makes use of filter line
search-based methods along with second order
correction terms [15]. Nonetheless, these methods also
diverge for some of the hardest networks as these do not
intrinsically utilize grid physics within their solvers.
Therefore, to ensure robust convergence of hardest AC-
OPF networks, we augment the naive PDIP algorithm
with a novel IMB homotopy method that utilizes the
physics of the electric grid to robustly obtain a local
optimum.

4. Incremental Model Building (IMB)
Homotopy for AC-OPF

4.1. Homotopy Methods

Homotopy methods [16] are commonly used to solve
complex large-scale non-convex optimization problems
pertaining to many applications. However, so far, the
use of such methods for solving the power grid
optimization problems is limited [17]-[24]. These
methods embed a scalar homotopy factor, v, into the
problem in an effort to relax the non-linearities. Varying
the homotopy factor, v:1 — 0, replaces the original
problem with a set of sub-problems represented by each
increment of the homotopy factor and are sequentially
solved with the following properties: i) the first sub-

problem has a trivial solution and ii) each subsequent
problem has a solution very close to the solution of the
prior sub-problem wherein the final subproblem
represents the original problem. This second property
exploits the Newton-Raphson quadratic convergence
properties thereby allowing faster convergence.
Mathematically this can be described via the following
expression:

Hx,v) =0 - v)F)+ vgk) (&)

where v € [0,1].

The method begins by embedding the homotopy
factor into the original problem, effectively replacing
the original problem F(x) = 0 with %' (x, v) = 0. The
equation set G(x) is a representation of the system that
has a trivial solution. The homotopy factor v has the
value of 1 for the first sub-problem that corresponds to
a trivial problem G (x). Iteratively the homotopy factor,
v, is reduced to 0 which then represents the original
problem F (). In the homotopy path between the trivial
problem G(x) and the original problem F(x) lies a
sequence of sub-problems that traces a path in the
solution space. Importantly, the homotopy method
requires a valid solution at each step of the homotopy
path to ensure convergence.

Previously, the homotopy method has been proven
to be an effective tool to achieve robust convergence for
complex power flow analysis problems in the form of a
Tx-stepping in [25]. However, power flow analysis
assumes a fixed generation and solely applying Tx-
stepping in an AC-OPF setting proves ineffective as
generation is variable in the problem definition. In this
paper, we extend the Tx-stepping homotopy method to
develop a broader more comprehensive homotopy
method to solve optimization problems. Specifically, we
target robust solution of AC-OPF problems using our
Incremental Model Building (IMB) approach.

4.2. Tx-Stepping Homotopy Method

In previous work [25] we developed a homotopy
method, Tx stepping, that solved for any positive
sequence or three-phase power flow (PF) problem
independent of the given initial conditions. Tx-stepping
is based on embedding a homotopy factor in the linear
transmission network to virtually short the grid. This
homotopy approach begins by solving an almost shorted
system and then it gradually decreases the homotopy
factor to obtain the solution to the original problem. We
briefly describe how grid models are modified based on
Tx-stepping method.

4.2.1. Transmission line models. In Tx-stepping,
the series elements in the system (transmission lines,
transformers etc.) are “virtually” shorted by adding a
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large conductance (vyG;) and a large susceptance
(vyB;) in parallel to each transmission line and
transformer model i in the system parameterized by the
homotopy factor:

Vie {(Ty, Xp}: G = G; +vyG; (6)
Vie {Ty,Xp}: B; = B; + vyB,; (7)

where, X is the set of all transformers and J is the set
of all the transmission lines in the system. G and B are
the original line and transformer impedances and the
G and B are the parameterized admittances during Tx-
Stepping that are used while iterating from trivial
problem to the original problem. The parameter y is
used as a scaling factor for the conductances (G) and
susceptances (B). Evidently, the first homotopy factor
will increase the conductance and susceptance of all the
branches and transformers ((Gi and B)),Vi € {Ty, X F})
thereby almost shorting the system and incrementally
the homotopy factor will decrease these values to the
original network state at v = 0.

4.2.2. Transformer phase shifters and taps. A
“virtually short” power system (at a homotopy factor of
1) will drive all the voltage magnitude and angle of all
the buses to the same value driven by the reference bus.
To ensure transformer taps and phase shifter angles are
compliant, their turns ratios, £, and phase shift angles, 8
correspond to a magnitude of 1 pu and 0°, respectively.
Subsequently, the homotopy factor v is reduced to
constrain the transformer tap and phase shifters to their
original settings. This can be mathematically expressed
as follows:

VieXpit =t +v(l—t,) ®
VieXp:0;, =0, —v0; ©)

Note that with following changes to the transmission
line and transformer models, we have shown to solve
any power flow problem robustly, independent of the
choice of the initial conditions [17]. However, this
approach is insufficient and unlikely to work for AC-
OPF as the generation is variable and the physical limits
of devices must be enforced. Therefore, to overcome
these challenges, we devise a new homotopy method as
an augmentation of Tx-stepping method.

4.3. Homotopy Models for Optimal Power Flow

Incremental Model Building (IMB) builds upon Tx-
stepping to provide a homotopy method that is designed
for optimizing power grids. The goal of the IMB
homotopy method is to mimic gradually turning on the
grid from a shorted no-load network. Specifically, we
first scale down all the loads in the network to virtually

zero in the first homotopy step by embedding a
homotopy factor in load and other AC-OPF based grid
models, thereby creating a viable solution model that
satisfies the physics constraints. From there the
embedded homotopy factor iteratively traces a path
from the initial sub-problem, depicted in Figure 1 (left)
to the final one as shown later in Figure 1 (right). Along
with virtually shorting the transmission network as is
done in Tx-stepping, the IMB approach embeds the
homotopy factor into the load, generator, and shunt
models to trace the solution path.

Original problem (u = 0)

Modified problem (v =1)

Figure 1:Schematic of original and modified network during
extended Tx-stepping.

4.3.1. Load Models. To mimic turning off the grid at
first, we embed a homotopy factor (v) that reduces a
load’s active and reactive powers to virtually zero at first
and then gradually scales it back up as it traverses
through the homotopy path, as shown by (10)-(11). The
initial trivial problem with ¥ = min(0.0001,v),
modifies the network to have virtually no load.

D@

_ S\ (pDyRLDYI
®, = Z (1 U)(del ':QdVl) VieB (10)
.t Vei + Vi
DD 1 — 5) PPV —QPVF)
iDi=Z( U)Zd iZQd i Vi € B (11)
oM Ve Vi

4.3.2. Generator Limits. During the initial step with
the “turned-off grid” homotopy step, the output of
generator’s real power is very close to zero (P, =
0,Vg € G). To ensure that this output is feasible and
within the generator real power bounds, we adjust the
upper and lower limits of the generator real and reactive
power based on the homotopy parameter. This ensures
feasible generator operation in the homotopy path even
when the original lower bound of the generator real
power is much greater than 0 (F; > 0) or the original

higher bound is much lower than 0 (0 > F)).

E=(1—U)FQ+UK Vgeg (12)
By == )k —vk vgEeG (13)
Q_gz(l—v)Q_g+vK Vgeg (14
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Qg =1~ v)Qg — Vg €G (15)

where k is a fixed constant (in our experience a value of
0.5 works well).

4.3.3. Shunt models. Following the IMB technique,
shunt devices are initially turned-off and then gradually
turned on while traversing through the homotopy path
to have its full capacity when solving the original
problem:

Vi e sh: G + jB"
sh ipsh (16)
o = (1= vy)(G" +JB™)
(Gs", Bf™) are homotopy parameterized shunt
impedances that replace the original impedances
(G, Bf™) at busi. Iteratively with the homotopy
factor, the shunt admittances are restored to their
original value.

4.4. Circuit-based Flow Constraints

Power and current-based limits are two common ways
in which flow constraints for transmission line and
transformers are represented within AC-OPF problem.
They either represent thermal or stability limits for the
series element. Commonly, current bounds are used for
lines and power bounds are used for transformers. We
first describe how we implement current bounds. Power
bounds can be implemented similarly.

BL! - vi"

Figure 2: Circuit representation for measuring transmission
line currents.

Modeling the line and transformer current bounds
require computing the real and imaginary currents
through any given transmission line or transformer. To
calculate the currents as in the case of circuit simulation,
we append a voltage source with a voltage of 0 pu
(representing an ammeter) in series with the series
element, as shown by Figure 2. This results in addition
of two unknown states to the set of equations, which
corresponds to measured real and imaginary currents
(IX and I},). Importantly, the voltage measurement
source is a hnear element that is able to measure the real
and imaginary currents, of I} and I} without
introducing any non-linearities. Now that these currents

are state variables, we can add an additional equation
(17) to calculate the square of magnitude of the current
through the series element, (1%)?, where Ve € {7y, Xf}.

(Iék)z - ((Ilke) + (Ilke) ) =0 (17)
Inserting (17) into the Lagrange function (2) with an

associated dual variable, 4; ., we can bound the current

magnitude to a value I
constraint:

e (U892 = (1)) +e=0 (18)

Similar methodology can be followed if transformer
bounds are given in apparent power units, with an added
equation for power calculated from receiving node and
sending node:

(Sék)z - ((VR Ilke + VLIeILk e)
+ (Ve 1o —VEIL) ) =0

by adding following

(19)

and a corresponding set of dual variables (A ¢, is ) and
dual equation as (18).

4.5. Feasibility of the Homotopy Path

A strict condition for convergence of optimization
problem with homotopy methods requires that there
exists a feasible solution (satisfying both the primal and
dual feasibility) to the problem at each incremental step
in the homotopy path c(v) for all homotopy factors
(we[0,1]).

[] FeasibleSpace  [] Infeasible Space

With Slack Injections

-
Xo(Ag = 0)

Without Slack Injections

v
Xo(A = 0)

Figure 3:Trace of homotopy curve with and without
homotopy-factor dependent slack injections.

Existing homotopy methods for power grids fail to
ensure this criterion [19],[21]-[22]. To satisfy this
criterion in our proposed homotopy method, we draw
inspiration from the physics of the grid. In the AC-OPF
problem formulation (see Section 3), the equality
constraints represent the conservation of charge at each
node in the grid (modeled through KCL) and the
inequality constraints enforce the device limits.
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Generally, itis possible that there may exist a PDIP sub-
problem corresponding to a homotopy factor v, in
homotopy path (c(vy)), whose solution may be
“infeasible” when the required current cannot be
supplied by the system to satisfy KCL while ensuring
that the devices are within their physical limits. If such
a scenario occurs during the homotopy path c(vy), the
homotopy method would fail as no feasible solution
exists for a given sub-problem £ (see Figure 3 bottom).

To overcome this challenge, we design the IMB
homotopy method to guarantee a feasible solution
throughout the homotopy path by adding slack
injections (IF,I}) (also see [28]) to each node in the
network that are multiplied by the homotopy factor v
(If; and vI};). These represent variable current
sources at each node in the network to satisfy any
violation of KCL. The magnitudes are minimized in the
objective function with a large weight to sufficiently
penalize any slack currents. The KCL equations at each
node in the network given by (1b)-(1c) in the AC-OPF
formulation are modified during homotopy to include
the slack currents as follows:

|B|

I8~ 15, =Red > Wk + jVi)(GL
=t Vi€B (20)
+jBY) ¢ + vIE;
|BI

= Tho=1md > A+ jVio(Gh
=t VieB (21)
+jBY) ¢ + ik,

By adding this homotopy factor based slack
injections, we can vary the magnitudes of slack
injections to always have a feasible solution for each
step in the homotopy path. Equivalently, a feasible
network implies that the Jacobian ( H'(v)) is full rank
at each point on homotopy curve c(v)as KCL is
satisfied at each node due to the existence of slack
injection sources. We further ensure that these injections
are removed in the final sub-problem (v = 0) to solve
the original network, as they are parameterized by the
homotopy factor v. Note that this assumes there exists
at least one feasible solution to the original problem
(x*, A", u*) that satisfies (3a) through (3d). In case there
is a problem that does not have a feasible solution (one
that satisfies (1b)-(11) at v = 0), then one can obtain its
physically infeasible solution by satisfying only relaxed
form of (1b)-(1c) by replacing vI§ in (20)-(21) with
(v+e)l ;’f where e is a very small number.

4.6. Limiting for Primal-Dual Feasibility

For each homotopy step increment, we solve a PDIP
sub-problem that must satisfy (3a) through (3f). In the
IMB approach, we satisfy (3a)-(3d) through solving the
set of non-linear equations following the damped
Newton’s method. We then satisfy (3¢)-(3f) during each
NR step through the technique described below.

Primal feasibility (3e) is ensured when the primal
variables, x, do not violate their appropriate device
limits, h(x) < 0. Similarly, the dual feasibility (3f) is
maintained when the dual variables are non-negative,
u = 0. To achieve the following, we employ a limiting
heuristic similar to that of diodes in circuit simulation
[27]. The limiting method ensures that any limited
primal variable x; does not violate its limits (satisfies
(3e)) during each NR iteration. To do so, every variable
x; in the vector x, has an associated damping factor,
T,; € (0,1] that modifies the updated variable, xf** at
the k' iteration.

xFE = xF + 1, Axk (22)

where xf*1 is the value at the next iteration that is

determined by the step, AxF. To properly limit the
variables during each iteration to satisfy the inequality
constraint (x < X), the damping factor is calculated as
. X, — xik

Ty; = min(1, a, —Axik ) (23)
where a, is a constant (typically of 0.95-0.99) to ensure
that x¥** does not hit its limit exactly. Importantly, each
variable being limited calculates its own separate
damping factor. Similarly, corresponding dual variables
are limited to remain non-negative within each NR step:

pEtt = pff 4 1, Auf (24)

and vector of damping factor (7,) is calculated
following this logic:
k
. Hi
Tyi = min(1, —ay F) (25)

4

4.7. Convergence Notes on Homotopy Methods

Global convergence of homotopy methods require
following conditions to be met [16]:

i Defined path for the homotopy method i.e.
c(v) € HL(0) with (x, v) € range(c) must be
smooth and should exist.

il. If a curve c exists, then it should intersect the
final solution atv = 0.

In the proposed IMB homotopy method, the first
condition can be met through implicit function theorem
and requires that the Jacobian (H'(v)) of the homotopy
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function is of full rank for all values of v along the curve.
For AC-OPF, we ensure the full-rank of the iteration
matrix by following the methodology in Section 4.5.

The second condition is more easily met and is
linked to existence theorems in non-linear analyses [16].
If some boundary condition exists that prevents the
curve from extending to infinity prior to intersecting the
solution at v = 0, then this condition is met. In our
formulation, different limiting methods ensure that the
solution at any point on the curve ¢ does not diverge and
extend to infinity given a feasible solution exist for the
defined problem.

5. SUGAR Optimization Algorithm with
IMB Homotopy

Using the IMB homotopy algorithm with
convergence guarantees under the hold of certain
conditions, we integrated the method within the circuit-
based solver power flow solver, SUGAR [17] to solve
the AC-OPF problem. The framework begins by
accepting an input file(s) to parse the network data,
generator costs and device operating limits. Following
this step, all system states are initialized based on the
values in the input file or based on other heuristics and
any out-of-bound states are reset to feasible values
within the bounds. Next, the device models are
generated for elements in the network file and a
homotopy parameter is embedded within the models
(see, [17] and [5] for details). For non-linear models, the
non-linear Hessian terms are initialized based on the
initial  states. The perturbed KKT conditions
corresponding to the grid optimization problem at initial
homotopy factor (v=1) are iteratively solved with
Newton method, thereby providing the search direction
to convergence. The homotopy factor is updated and the

process is repeated with the final solution from the
previous homotopy factor step used as the initial
condition for the new sub-problem with updated
homotopy factor. Within each NR iteration, the residual
and error corresponding to the primal and dual
constraints given in (3a)-(3d) are used as input heuristics
to determine the homotopy factor step and the Newton
step size. Also limiting heuristic based on Section 4.6 is
used to ensure primal and dual feasibility given by (3e)-
(3f). The algorithm is terminated once convergence is
achieved for the primal and dual constraints at
homotopy factor of 0 and primal and dual variables are
in feasible space.

ALGORITHM

1:  procedure:

2:  parse network data, generator cost, and device limits

3. initialize system states to be in the feasible region; assign
" tolerance

modify the device models and bounds to initialize homotopy
(=1

5:  create the matrix structure

loop through all the linear devices and create linear admittance

6: matrix
7. loop through all the non-linear devices and initialize Hessian

" matrix of non-linear terms based on initial state

while homotopy factor (v£0)
8: while not converged do:
Solve linearized KKT with homotopy factor, v, using NR

7: enforce primal and dual feasibility
8: check error and residual profile
9: if error or residual profile diverging:
10: adjust homotopy factor (v) (decrease homotopy step)
11: end if
12: if change in v: update homotopy elements
13: update non-linear devices
14: end while; update homotopy factor (increase the step)

15: end while

TABLE 1: AC-OPF SOLUTION COMPARISON.

4 SUGAR fmincon [30] MIPS [14 IPOPT [15

Case Node Obj. Time # Obj. Time # Obj. Time # Obj. Time #
Val. ($) | (sec) | Iter. | Val.($) | (sec) | Iter. | Val.($) | (sec) Iter | Val. ($) (sec) Iter.

2869pegase’ 2869 | 4.58e5 29.6 243 4.58e5 13.3 29 4.58e5 11.2 41 4.58e5 13.84 47

2869pegase’ 2869 | 2.32¢7 53.7 451 2.32¢7 28.3 59 2.32¢7 10.9 38 2.32¢7 14.5 41

924 1pegase’ 9241 | 1.20e6 135.9 | 350 1.20e6 117 46 1.20e6 43.8 51 1.20e6 40.73 | 46
9241pegase’ 9241 | 3.15¢5 134.3 | 332 3.15e5 295.1 | 75 3.15e5 394 40 3.15e5 104.8 144
13659pegase’ 13659 | 1.46e6 299.3 | 489 1.46¢6 315.1 | 65 NC NC NC NC NC NC
13659pegase’ 13659 | 3.85e5 302.4 | 472 3.85e5 1962 | 85 3.85e5 88.8 79 NC NC NC
ACTIVSgl10k' 10000 | 7.86e5 124.6 | 299 7.86e5 210 157 | NC NC NC 7.86e5 127 182
ACTIVSglOk* | 10000 | 1.53e5 122.5 | 283 1.53e5 1919 | 108 | NC NC NC 1.53e5 129.6 132
ACTIVSg25k' | 25000 | 1.21e6 205.4 | 219 1.21e6 525.1 | 190 NC NC NC 1.21e6 198.9 100

ACTIVSg25k? 25000 | 2.39e5 226.2 | 241 2.39¢5 307.6 | 270 NC NC NC 2.39e5 160.1 84

Preprint Version. Accepted for Hawaii International Conference on System Sciences-54, Hawaii, 2021.




ACTIVSg70k' | 70000 | 3.08¢6 1707. | 569 3.08e6 2648 | 191 NC NC NC 3.08e6 1377 264
ACTIVSg70k* | 70000 | 6.06e5 1910. | 668 6.06e5 1903 | 204 NC NC NC 6.06e5 850.3 289
SyntheticUSA' | 82000 | 4.17e6 1846. | 429 NC NC NC NC NC NC 4.17¢6 1702. 236
SyntheticUSA® | 82000 | 4.18e6 4610. | 865 NC NC NC NC NC NC NC NC NC
ACTIVSg10kS | 10000 | 1.53e5 167.2 | 337 NC NC NC NC NC NC NC NC NC

1.NC refers to Non-convergent cases

2. Cases shaded in grey represent congested networks also superscripted using C
3. Superscripts 1, 2, and 3 represent three different objective functions. All the input .m files are uploaded to public git repo.

6. Results

To demonstrate the efficacy of our approach, we
optimize the AC dispatch (with AC-OPF) for multiple
test networks ranging from 9k+ nodes pegase network
[30] to 80k+ node synthetic test networks for the U.S.
interconnection [31]. We run two sets of analyses on
each network with one corresponding to a set of non-
congested scenarios (unshaded in the table) where none
of the transmission line limits are binding and another
corresponding to a set of congested scenarios (shaded in
grey in the table) where some of the transmission line
limits are binding. We run these two sets of scenarios
(in total 15 cases) and compare the obtained results
against those obtained from three other solvers with the
Hessian supplied through a user-defined function:

e fmincon [30] solver within Matpower 7.0 [29]
framework

MIPS (Matpower Interior Point Solver) [14] solver
within Matpower 7.0 [29] framework

IPOPT (Interior Point Optimizer) [15] solver within
Matpower 7.0 [29] framework

The following changes to the default settings are made
for the commercial solvers: i) Increase the maximum
iteration count for the IPOPT solver from 250 to 750; ii)
Represent maximum flow limits in terms of currents (I)
instead of default setting of real power (P) for congested
cases; and iii) For non-congested scenarios, use default
settings for flow limits of real power (this is because
convergence was much worse when flow limits in terms
of currents were used).

All of the .m testcase files with generation cost data,
line flow limits and other case information are made
publicly available in a Gitlab repository [29]. Also, all
the output .raw files with updated states from SUGAR-
IMB based solver are added to the same repository.

The condensed results with comparison against
standard non-linear optimization tools are shown in
Table 1. The SUGAR-based approach with the IMB
homotopy method demonstrates better convergence
across all (15) scenarios compared to fmincon that
converged for 12 out of 15 scenarios, IPOPT that
converged for 11 out of 15 scenarios and MIPS that
converged for 5 out of 15 scenarios. While the SUGAR-

IMB homotopy solver does take more iterations
compared to other tools to reach an optimal solution, the
net runtime for the SUGAR-IMB solver is lower in
many of those large scenarios when compared against
other methods. This is primarily because the homotopy
methods used in SUGAR-IMB ensure smooth
convergence for each sub-problem. The standard
commercial tools, however, perform more internal
function evaluations between each iteration to converge
to the final solution. Also, it’s worth noting that
SUGAR-IMB outperforms other methods for congested
large networks (as these tend to have more complex
solution space) as shown in the bottom two rows of the
results table.

7. Conclusions

In this paper, we develop a methodology for robustly
solving hard-to-solve AC-OPF problems especially
when good initial conditions are not available. The
proposed framework introduces a homotopy method
called Incremental Model Building approach that
initially modifies the problem to solve a trivial problem
and then gradually constrains the problem to solve the
AC-OPF exactly in the final homotopy factor. The
homotopy method has its roots in circuit-theory and
with inclusion of grid physics can satisfy critical criteria
for convergence of homotopy methods. To demonstrate
the robustness of the proposed framework, we show
results for hard-to-solve networks and compare those
against other standard non-convex optimization
engines. The Incremental Model Building framework
acts as a basis for future planning optimizations of the
grid, such as optimal power flow and transmission
expansion, that require a robust engine capable of
scaling to large systems regardless of initial conditions.
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