
Improved Fast Randomized Iteration Approach to Full Configuration
Interaction

Samuel M. Greene, Robert J. Webber, Jonathan Weare,* and Timothy C. Berkelbach*

Cite This: J. Chem. Theory Comput. 2020, 16, 5572−5585 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: We present three modifications to our recently introduced fast
randomized iteration method for full configuration interaction (FCI-FRI) and
investigate their effects on the method’s performance for Ne, H2O, and N2. The
initiator approximation, originally developed for full configuration interaction
quantum Monte Carlo, significantly reduces statistical error in FCI-FRI when
few samples are used in compression operations, enabling its application to
larger chemical systems. The semistochastic extension, which involves exactly
preserving a fixed subset of elements in each compression, improves statistical
efficiency in some cases but reduces it in others. We also developed a new
approach to sampling excitations that yields consistent improvements in
statistical efficiency and reductions in computational cost. We discuss possible
strategies based on our findings for improving the performance of stochastic quantum chemistry methods more generally.

I. INTRODUCTION

Strong correlation among electrons in many materials gives rise
to unique properties that are potentially of high value in
applications, e.g., high magnetic susceptibility, superconduc-
tivity, or catalytic behavior.1−7 These materials are often not
well understood from a theoretical standpoint due to the high
cost of numerically solving the Schrödinger equation for their
constituent electrons.8−11 A number of methods are therefore
being developed to accurately approximate its solution at an
affordable cost.12−17 We recently introduced a class of
stochastic methods, termed FCI-FRI (fast randomized
iteration for full configuration interaction),18 for approximating
the ground-state eigenvector of the electronic Hamiltonian
matrix expressed in a discrete basis of Slater determinants, i.e.,
the full configuration interaction (FCI) matrix.19

Deterministic (i.e., nonstochastic) iterative linear algebra
methods, e.g., the Lanczos20 or Jacobi−Davidson21,22 algo-
rithms, are conventionally used to calculate low-energy
eigenvalues and eigenvectors of the FCI matrix. These
methods involve calculating a series of matrix−vector products.
Because the dimension of the FCI matrix increases
combinatorially with the number of electrons and single-
particle basis size, the cost of these calculations can be
prohibitively expensive even for relatively small chemical
systems. A variety of methods, including FCI-FRI, address this
challenge by zeroing matrix and vector elements.23−34 When
implemented using sparse linear algebra tools, this approach
can enable significant gains in computational efficiency over
those that do not leverage sparsity.
Both FCI-FRI and the more general Fast Randomized

Iteration (FRI) framework on which it is based35 were

motivated in large part by the variety of quantum Monte Carlo
(QMC) methods developed over the past several decades36−44

and in particular by the FCIQMC methods developed over the
past 11 years.23−30 FCIQMC can be understood as an
implementation of the iterative power method in which
matrix−vector multiplication operations are simulated via the
dynamics of “walkers” that transition among randomly selected
Slater determinant basis states, with probabilities that depend
on matrix elements.45 FCI-FRI generalizes this viewpoint of
individual interacting walkers by representing the solution as a
single vector that evolves according to the usual power method
with randomly introduced sparsity to reduce the cost of
matrix−vector multiplication. The resulting methods have
many fundamental similarities to FCIQMC. Nonetheless, this
change in perspective has implications for algorithm design.
Among these is the possibility of introducing correlations to
selections that are performed independently in FCIQMC, as
well as increased control over the degree of sparsity enforced at
various stages of the algorithm. The additional correlations
reduce the statistical error in each iteration, as measured by the
discrepancy between the updated FCI-FRI vector and the
corresponding deterministic matrix−vector product. This leads
to significant reductions in overall statistical error, as
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demonstrated by our previous results for several small chemical
systems.18 The accuracy of any FCI-FRI calculation can be
systematically improved by retaining more nonzero elements
in each iteration, generally at increased computational cost. A
central focus of our ongoing work is reducing the computa-
tional cost and corresponding statistical error of these methods
in order to enable their application to larger systems of interest
in chemistry and physics.
Since the development of the original FCIQMC method, a

number of modifications have been introduced to improve its
performance. For example, the initiator approximation reduces
the large statistical error observed when few walkers are used,
thereby enabling the application of FCIQMC methods to
significantly larger chemical systems.46,47 This approximation
involves zeroing Hamiltonian matrix elements in each iteration
on the basis of their signs relative to those of elements in the
vector being multiplied. A later extension involves calculating a
perturbative correction to the energy from these zeroed
elements.48 The semistochastic adaptation allows for the exact
preservation of a predefined set of matrix and vector elements,
which reduces the degree of randomness introduced in each
iteration.49,50 Using improved “excitation generators,” i.e.,
approaches to selecting the probabilities governing transitions
among Slater determinants, enables reductions in statistical
error.31,51 These extensions are mostly independent of each
other and therefore can be combined for compounded
improvements in accuracy and performance.
This article serves two purposes. First, it demonstrates that

these modifications originally introduced in an FCIQMC
context are applicable to FCI-FRI methods more generally. By
demonstrating their compatibility, we suggest the possibility of
new methods that combine the best features of existing
FCIQMC and FCI-FRI methods for improved computational
performance and reduced statistical error. We focus in
particular on the initiator and semistochastic modifications
from FCIQMC as examples of modifications compatible with
FCI-FRI. Second, we illustrate the value of working within the
FRI framework by introducing an improved Hamiltonian
matrix factorization (analogous to an excitation generator), the
development of which is facilitated by the framework’s
generality. The effects of each of these three modifications
on performance and accuracy are evaluated through numerical
tests on small chemical systems.
Although this analysis is applicable to any of the FCI-FRI

methods described in our previous work,18 we focus in
particular on the best-performing method, namely, “systematic
FCI-FRI.” We thus provide a summary of this method in
Section II. Section III then casts the initiator approximation
into the FRI framework. Like FCIQMC, systematic FCI-FRI
exhibits poor convergence behavior when too few nonzero
elements are retained in the vector in each iteration (analogous
to using few walkers in FCIQMC). We find that the initiator
approximation improves the convergence of FCI-FRI in this
regime. In Section IV, we discuss the potential benefits of a
semistochastic implementation of FCI-FRI but find that it does
not consistently improve performance for all systems tested.
Section V describes our alternative Hamiltonian matrix
factorization suited for use in FCI-FRI. In Section VI, we
compare the performance of systematic FCI-FRI and
FCIQMC when the initiator approximation is applied to
both. Without our new Hamiltonian factorization, initiator
FCI-FRI is 2.4−15 times more statistically efficient than
initiator FCIQMC, and with it, it is up to 29 times more

statistically efficient. Finally, in Section VII, we summarize our
main conclusions and present some preliminary results for
more challenging chemical systems, namely, one in a larger
basis and one with stronger correlation.

II. SYSTEMATIC FCI-FRI METHOD FOR
APPROXIMATING THE GROUND-STATE
EIGENVALUE

The systematic FCI-FRI method is a stochastic implementa-
tion of the power method, applied to approximate the ground-
state eigenvector of the FCI matrix H, expressed in a basis of
Slater determinants with N electrons in M orbitals.18 The
random vector calculated at each iteration, termed an iterate, is
denoted v(τ), with τ indicating the iteration index. Each
iteration involves applying a sequence of operations to
generate the next iterate v(τ+1) by approximating the matrix−
vector product P(τ)v(τ), where

ε= − −τ τSP 1 H 1( )( ) ( )
(1)

and S(τ) is chosen to approximate the ground-state energy. The
deterministic power method is discussed in more detail in
Appendix A. This section describes how stochastic compres-
sion (i.e., randomly zeroing vector elements) can be applied to
reduce the cost of matrix−vector multiplication in each
iteration and how the ground-state energy and its associated
statistical error can be estimated from the resulting random
iterates.

IIA. Stochastic Vector Compression. Introducing zeros
into vectors facilitates the use of sparse linear algebra tools, in
which only nonzero elements are stored and manipulated in
computer memory. Although there are a variety of approaches
to stochastic compression,35 we focus here on the specific
approach used in systematic FCI-FRI. When applied to a
generic vector x, this scheme ensures that the resulting vector,
Φ(x), has at most m elements, where m is a user-specified
parameter. Although each element of Φ(x) is (potentially)
random, its expectation value is equal to the corresponding
element in x:

[Φ ] = xxE ( )i i (2)

The first step in this scheme involves constructing a
subspace , within which elements of x are preserved exactly;
i.e.,

Φ = ∈x ix( ) ,i i (3)

consists of the ρ largest magnitude elements of x. If s is the
vector that sorts the elements of x in order of decreasing
magnitude, i.e., | | ≥ | |

+
x xs sj j 1

, then ρ is the minimum integer

value of h for which

∑− | | ≤ | |
= +

+
m h x x( ) s

j h

s

x

1
h j1

0

(4)

where ∥x∥0 denotes the number of nonzero elements in x. If m
≥ ∥x∥0, this criterion naturally specifies that all nonzero
elements of x are in . The largest magnitude elements of x
can be selected one by one, each in ∥ ∥x(log )0 time, by first

constructing a binary heap in ∥ ∥x( )0 time. This avoids the
need to explicitly sort elements of x by magnitude.
Elements not in are in the subspace denoted as . The

second step in this compression scheme involves randomly
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selecting the (m − ρ) elements in that will be nonzero in the
compressed vector and zeroing the remaining elements. Details
of this procedure, including an explanation of how correlations
among sampled elements are enforced, can be found in ref 18.
This particular combination of exact preservation and
correlated sampling provably minimizes the statistical error

in Φ(x), measured as E[∥ Φ − ∥ ]x x( )
2
2 , subject to the

constraint of m nonzero elements in Φ(x).52

IIB. Hamiltonian Matrix Factorizations. The simplest
application of this compression scheme to the power method
involves compressing each iterate and then multiplying the
resulting vector by the matrix P(τ) to obtain the next iterate;
i.e.,

= Φτ τ τ+
v P v( )( 1) ( ) ( )

(5)

The computational cost of this calculation is dominated by
matrix−vector multiplication. The matrix P(τ) has the same
dimensions and sparsity structure as H, so each of its columns

has N V( )2 2 nonzero elements, where V =M − N. The cost of
performing this matrix−vector multiplication using an efficient

sparse linear algebra scheme is therefore N V m( )2 2 , where m
is the number of nonzero elements in the compressed vector.
Although this is significantly more favorable than a scheme that
does not use stochastic compression, the value of m required
for accurate results precludes application to many systems of
interest in chemistry. Due to this challenge, we do not consider
this method further in this work and focus on methods with
reduced cost, described below. However, results obtained by
applying this method to the Ne atom in the aug-cc-pVDZ
basis, a system with 8 electrons in 22 orbitals, were presented
in ref 18.
In order to reduce this cost, we employ a scheme in which

iterates are not multiplied by P(τ) directly. Instead, P(τ) is
partitioned into a sum of two matrices:

= +τ τ
‐P P P

( )
diag
( )

off diag (6)

where τ
Pdiag
( ) and Poff‑diag contain the diagonal and off-diagonal

elements of P(τ), respectively. This partitioning is motivated by
the fact that diagonal elements of P(τ) generally have greater

magnitudes than those of off-diagonal elements. Only τ
Pdiag
( )

varies in each iteration due to the dependence of its elements
on the energy shift (eq A2); elements of Poff‑diag are constant.
Poff‑diag is exactly factored into a product of six matrices, each of
which has N( ), V( ), or (1) elements per column. The
matrix−vector product Poff‑diagΦ(v(τ)) is approximated by
multiplying Φ(v(τ)) by each of these six matrices in sequence.
Before each multiplication operation, the vector is compressed
to m nonzero elements, which limits the CPU cost and
memory requirements of performing multiplication to Nm( ),

Vm( ), or m( ), depending on the number of nonzero
elements in the columns of the matrix. The product

Φτ τ
P v( )diag
( ) ( ) is calculated directly at m( ) cost and added to

the vector approximating Poff‑diagΦ(v(τ)) to obtain the next
iterate. This procedure is summarized in Table 1.
There are several different approaches to factoring

Poff‑diag,
25,31,51 all of which rely upon the correspondence of

each nonzero element to a single or double excitation. Here,
multi-indices are used to denote these excitations. For example,

(K, 1, i, a) denotes a single excitation from |K⟩ involving
occupied orbital i and virtual orbital a.
In this study, Poff‑diag is factored according to the heat-bath

Power-Pitzer (HB-PP) factorization.31,51 The following pre-
sentation of this scheme yields an algorithm equivalent to that
used in our previous work, even though here P(τ) is partitioned
into a sum of two matrices. Additional comments on these
differences can be found in Appendix B. The matrix Poff‑diag is
represented as the product BQ, where Q is the product of five
matrices, Q(5)Q(4)Q(3)Q(2)Q(1). Elements of Q correspond to
the “excitation generation probabilities” used in FCIQMC, and
its row space is indexed by single and double excitations. The
row spaces of intermediate matrix factors of Q are smaller and
indexed by only a subset of orbitals involved in each excitation,
e.g., (L, 2, i, j, a).
Different excitations in the row space of Q can map to the

same Slater determinant. For example, (K, 1, i, a) and (L, 2, i, j,

a, b) both map to |M⟩ if | ⟩ = | ̂ ̂| ⟩ | = | ̂ ̂ ̂ ̂ | ⟩ |† † †M c c K c c c c L( ) ( )a i a b i j . In

the course of multiplication by B, elements for excitations that
map to the same determinant are summed. This step, together

with the addition of the resulting vector to Φτ τ
P v( )diag
( ) ( ) , is

referred to as “annihilation” in the context of FCIQMC. More
specifically, elements of B corresponding to single excitations
are specified as

=
τ

B
P

Q
M K i a

M K

K i a K

,( ,1, , )
,

( )

( ,1, , ), (7)

and those for double excitations are specified as

= +

+ +

τ

−

B P Q Q

Q Q

(

)

M L i j a b M L L i j a b L L i j b a L

L j i a b L L j i b a L

,( ,2, , , , ) ,
( )

( ,2, , , , ), ( ,2, , , , ),

( ,2, , , , ), ( ,2, , , , ),
1

(8)

where the determinant indices K, L, and M are defined as in
the example above. Four elements of Q are summed in eq 8 in
order to account for the four different double excitations that
map to each determinant. All other elements of B are zero.
Despite the reduced cost and memory requirements

associated with this factorization scheme, performing these
matrix−vector multiplications and compressing the resulting
vectors constitute the cost and memory bottlenecks in our
current implementation (although these steps can be
parallelized). For many chemical systems, the steps involving
vectors of length Vm( ) will limit the overall performance.

Table 1. Sequence of Steps Involved in Each Iteration of the
Systematic FCI-FRI Methoda

1. vector compression: Φ(v(τ))

2. matrix−vector multiplication: q(τ,1) = Q(1)
Φ(v(τ))

3. vector compression: Φ(q(τ,1))

4. matrix−vector multiplication: q(τ,2) = Q(2)
Φ(q(τ,1))

5. vector compression: Φ(q(τ,2))

⋮

10. matrix−vector multiplication: q(τ,5) = Q(5)
Φ(q(τ,4))

11. vector compression: Φ(q(τ,5))

12. matrix−vector multiplication: q(τ,6) = BΦ(q(τ,5))

13. matrix−vector multiplication: = Φτ τ τ
d P v( )( )

diag
( ) ( )

14. vector addition: v(τ+1) = q(τ,6) + d(τ)

aThis formulation is based on the equivalence between the matrices

+τ
P BQ Q Q Q Q( )diag
( ) (5) (4) (3) (2) (1) and P(τ).
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This scaling could be improved by using more matrices in the
factorization, each with fewer nonzero elements per column.
Alternatively, segments of these vectors could be multiplied
and compressed independently, thereby decreasing the degree
of correlation enforced. FCIQMC methods invoke this strategy
with a maximal degree of independence (minimal correlation),
as segments corresponding to different walkers are treated
entirely independently. The FRI framework admits compres-
sion schemes with an intermediate degree of independence,
allowing for the possibility that the key correlations responsible
for increased efficiency could be retained while reducing per-
iteration costs. We leave the further optimization of FCI-FRI
methods by way of this strategy to future studies.
IIC. Estimating the Ground-State Eigenvalue and Its

Standard Error. Having presented a method for generating
stochastic iterates approximating the ground-state eigenvector,
we next discuss how to use them to approximate the ground-
state energy. In principle, one could average the iterates and
calculate the energy of the resulting vector using the standard,
variational Rayleigh quotient estimator. However, this would
eliminate the memory advantages of the sparsity provided by
the vector compression techniques described above, since it
would require accumulating the average in a vector of the same
dimension as H. The ground-state energy is therefore instead
estimated as53

⟨ ⟩ =
∑

∑

τ τ

τ

τ τ

τ

≥

≥

E
n

d

( )

( )

c

c (9)

where

= *τ τn v Hv
( )

ref
( )

(10)

= *τ τd v v
( )

ref
( )

(11)

Here the sum excludes iterations with indices less than a burn-
in time τc, before which the values of n(τ) and d(τ) lie
significantly outside the range of fluctuations observed later in
the calculation. The vector vref is chosen as an approximation
of the ground state, usually calculated using an inexpensive
electronic structure method. In this work, for the sake of
comparison, the Hartree−Fock unit vector is used as vref,
although less statistical error could be achieved by using a
vector closer to the ground state.
This estimator does not formally converge after infinitely

many iterations because the normalized ground-state eigen-
vector is determined only up to an arbitrary phase. For
example, if the iterates are real and the sampling is ergodic,
then an infinite-length calculation will have equal numbers of
iterates with positive and negative signs (as determined by the
sign of their inner product with an arbitrary vector). Averaging
these iterates will yield the zero vector, so any quantity that
depends linearly on the iterates, i.e., n(τ) and d(τ), will also
average to zero.45 This can be rectified by fixing the signs of all
iterates to be either positive or negative. During calculations of
typical length (∼1 million iterations), we found that iterates
changed sign only when relatively few nonzero elements were
retained in compression operations, in which case the
statistical error in the ground-state energy was on the order
of 0.1−10 Eh. Nevertheless, we used this constraint in all
calculations presented here because it can be applied as an
inexpensive postprocessing operation. Even with this con-
straint, the average of the iterates does not converge to the

exact ground-state eigenvector after infinitely many iterations.
Although the compression operations are unbiased (eq 2),
elements in each matrix P(τ) depend on a quotient of correlated
random numbers (eq A3), which causes the iterates to be
biased. This is often called the “population control bias” in
QMC.54 In typical calculations, the magnitude of this bias is
often less than the standard error.
The standard error σe associated with the mean ground-state

energy (eq 9) is estimated as described in ref 18 by applying
standard Monte Carlo error estimation techniques to the
sequence

⟨ ⟩
−

⟨ ⟩

⟨ ⟩

τ τn

d

n d

d

( ) ( )

2
(12)

where ⟨n⟩ and ⟨d⟩ represent the trajectory means of n(τ) and
d(τ), respectively. We use the emcee software package55 to
estimate errors. The standard error decreases asymptotically as

−Ni
1/2,56,57 where Ni is the number of iterations included in the

trajectory averages. The statistical ef f iciency E is therefore used
as an error metric that is asymptotically independent of
trajectory length:

σ= − −E Ne i
2 1

(13)

A greater statistical efficiency indicates a smaller standard error
after a fixed number of iterations.

IID. Implementing FCI-FRI in Parallel. The computa-
tional efficiency of the systematic FCI-FRI method depends
critically on the reduced CPU and memory costs associated
with representing only the nonzero elements in the matrices
and vectors in each iteration. There are many systems for
which the ground-state FCI energy can be reliably estimated
using significantly fewer nonzero elements in each iteration
than the dimension of H. However, as will be discussed below,
there is often a lower limit to the number of nonzero elements
needed to achieve a reliable estimate in a reasonable number of
iterations. Because this number can become large as system
size increases,58 it can be advantageous to distribute the
elements among many parallel processes, e.g., by using the
MPI framework. This section discusses some of the
considerations involved in implementing the systematic FCI-
FRI method in parallel. The source code for our
implementation, written in C++, is freely available on
GitHub.59

A key requirement of any implementation that uses sparse
vectors is the ability to efficiently query the value of an element
at an arbitrary index. In our implementation, this is
accomplished using the hashing techniques described in ref
25. Briefly, a hash function is used to map each Slater
determinant index to an MPI process, and a separate hash table
within that process is used to locate the corresponding
element. Thus, each element added to a vector in the course of
matrix−vector multiplication can be added at (1) cost.
Since vector elements are distributed among multiple

processes, applying the compression scheme described in
Section IIA requires communication among processes. In order
to ensure efficiency, the amount of information communicated
should be minimized. The first step of this scheme involves
locating the largest magnitude vector elements in the subspace

according to the condition in eq 4. One way to do this is by
first calculating the sum of the magnitudes of all elements in
parallel, then subtracting the magnitude of the largest element,
and then the second largest, etc., until the condition is satisfied.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00437
J. Chem. Theory Comput. 2020, 16, 5572−5585

5575



These elements can be found efficiently by heaping the
elements on each process independently, in parallel,
communicating and comparing only the largest magnitude
element from each process and updating the heaps as elements
are removed from consideration. In practice, we have found
that an iterative technique that leverages memory locality can
be made more efficient when compressing the vectors resulting
from multiplication by the matrix factors introduced in Section
IIB. This technique is based on the observation that elements
in can be selected in any order, as long as the criterion in eq
4 is checked for all remaining elements. Further details can be
found in our source code. Performing the second step of
compression, in which the remaining nonzero elements are
selected randomly, requires communicating only a single
random number and the sums of magnitudes of the elements
on each process.
IIE. Chemical Systems for Numerical Tests. The

remainder of this work describes comparisons among
calculations of the ground-state energies for three systems:
the Ne atom and the H2O and N2 molecules. The single-
particle basis sets used for each system are reported in Table 2.

The dimension of the corresponding FCI matrices, which
depend combinatorially on the size of the single-particle basis
(M) and the number of electrons (N), are also given in Table
2. Calculations were performed at the equilibrium geometries
of the H2O and N2 molecules, as reported in refs 60 and 61,
respectively. In contrast to our previous work,18 the single-
particle basis sets used here were not truncated according to
natural orbital occupancies. These systems, which have been
used previously to benchmark FCIQMC calculations,23 are
small enough that deterministic FCI results are available but
large enough that poor convergence is observed when too few
samples are used in compression operations. A detailed
account of the input parameters for our code needed to
reproduce all results presented in this work is available in our
GitHub repository.59

III. INITIATOR APPROXIMATION

The systematic FCI-FRI method can in principle approximate
the ground-state eigenvalue of any FCI Hamiltonian matrix. Its
performance for several small chemical systems was evaluated
previously, in ref 18. It is well-known that the convergence
properties of FCIQMC can depend very strongly on the
number of walkers when that number is small.27,45,62−64 Larger
systems generally require more walkers, which can make it
expensive to reliably estimate their energies. The initiator
approximation46,62 was introduced in the FCIQMC context to
address this issue of poor convergence. Our numerical tests

indicate that the systematic FCI-FRI method exhibits similar
behavior when few nonzero elements are used in compression.
This section demonstrates that the initiator approximation can
be applied straightforwardly to FCI-FRI methods in order to
address the convergence issue.
Applying the initiator approximation involves replacing the

matrix B in the factorization described in Section IIB with a
modified matrix B′(τ), in which some elements are zeroed in
each iteration. Elements of B′(τ) are given as

′ =
= | | <

τ

τ τlmooonoooB
v v n

B

0, 0 and

, otherwise
L K i a

L K a

L K i a
,( ,1, , )
( )

( ) ( )

,( ,1, , ) (14)

′ =
= | | <

τ

τ τlmooonoooB
v v n

B

0, 0 and

, otherwise
L K i j a b

L K a

L K i j a b
,( ,2, , , , )
( )

( ) ( )

,( ,2, , , , )

(15)

where na is the initiator threshold.58 This approximation was
designed to minimize contributions to the next iterate from
elements in the current iterate with signs that are not well
established.46 Elements with magnitudes less than na, which are
more likely to change sign in subsequent iterations, are
prevented (via the zeroes introduced) from contributing
weight to elements that are zero in the current iteration.
Early implementations of initiator FCIQMC included an
additional modification to B based on “sign-coherent”
spawning events.46 It was later found that this additional rule
makes little difference in practice,28 so we do not consider it
here.
Although stochastic compression as used in FRI also

involves zeroing elements, there is an important difference in
how elements are zeroed in the initiator approximation. In
stochastic compression, each nonzero element is zeroed with a
probability less than 1, in order to ensure that its expected
value equals its original value before compression (eq 2). In
the initiator approximation, some elements are zeroed with
probability 1, meaning that their original value is not preserved
in expectation. As in initiator FCIQMC, this introduces an
additional source of bias in the eigenvector obtained using
power iteration that is not present when the initiator
approximation is not used. This bias is expected to decrease
with increasing iterate norms, since fewer elements will have
magnitudes less than na, and thus B′(τ) will converge to B. Due
to this implicit dependence of elements of B′(τ) on the norm of
each iterate, all comparisons in this work are performed using
the same target one-norm (defined in Appendix A), unless
otherwise noted. When na = 0, this method yields the same
results as when the initiator approximation is not applied.
We applied the FCI-FRI method with the initiator

approximation to the three systems described in Section IIE;
results are presented in Figure 1. For Ne, the vector obtained
after each matrix multiplication in the Hamiltonian matrix
factorization was compressed to m = 100,000 nonzero
elements. For H2O and N2, vectors were compressed to m =
1 million elements. For all three systems, the target one-norm
was specified as m. The statistical efficiencies of these
calculations, and correspondingly their standard errors after 1
million iterations, depend strongly on the initiator threshold,
na, for na ≤ 1. Standard errors at na = 0 are on the order of
0.01−10 Eh, i.e., significantly outside the range acceptable for
chemical accuracy. This demonstrates that it is difficult to
obtain a good estimate of the ground-state energy after a

Table 2. Parameters Defining the FCI Hamiltonian Matrix
for Each of the Systems Considered in This Studya

system single-particle basis (N, M) NFCI/10
6 EFCI/Eh

Ne aug-cc-pVDZ (8, 22) 6.69 −128.709476b

H2O cc-pVDZ (10, 24) 451 −76.241860c

N2 cc-pVDZ (10, 26) 541 −109.276527b

aThe parameter N denotes the number of active electrons considered
in each system (core electrons were frozen for Ne and N2), M is the
number of active orbitals in the single-particle basis for each system,
and NFCI is the total dimension of the ground-state symmetry block of
H. The ground-state energy, EFCI, includes the nuclear repulsion
energy. bFrom ref 61. cFrom ref 60.
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reasonable number of iterations when too few elements are
used in vector compression. For calculations with na ≥ 1, the
standard error is sufficiently small to ascertain that the mean
energy differs significantly from the exact energy. This
statistical bias originates from two sources: (1) the bias
inherent in all stochastic implementations of the power
method, and (2) the additional bias introduced by the initiator
approximation. As na is increased beyond 1, the bias increases
for Ne and N2, while the statistical efficiency for all systems
does not change appreciably. Similar behavior has been
observed previously in the context of FCIQMC,65 where it
was suggested that increasing na limits increases in statistical
efficiency that would otherwise be expected by slowing the
transfer of weight among elements in the solution vector. Our
results suggest that na = 1 is a suitable choice of the initiator
threshold for the FCI-FRI method, at least for these systems. A
statistically significant bias of 0.17 ± 0.04 Eh was also observed
in the H2O calculation with na = 0, and a bias of 0.28 ± 0.08 Eh

was observed for N2 at na = 0.5.
Figure 2 shows the behavior of the initiator FCI-FRI method

as the number of nonzero elements used in each compression
(m) is increased. An initiator threshold of na = 1 was used in all
calculations, and the target one-norm was specified as m. For
all systems, the statistical efficiency increases approximately
linearly with m. This indicates a m−1/2 dependence of the
standard error, as is expected for m sufficiently large. The
results suggest that the bias depends weakly on m, although it

is difficult to draw conclusions with confidence due to the
magnitude of the errors. It may be possible to reduce the bias
as m is increased by decreasing the initiator threshold na or,
equivalently, increasing the target one-norm, since na can be set
to 0 for sufficiently large m. We leave the investigation of this
possibility for future studies.

IV. SEMISTOCHASTIC FCI-FRI

The FCI-FRI methods described above use the criterion
specified in eq 4 to dynamically select a subspace that
contains elements to be preserved exactly in each compression
operation. This section discusses the potential benefits of
constraining to contain both a fixed set fixed of elements
that are preserved exactly, regardless of their magnitudes, and a
dynamic set dynam chosen as described above. For clarity in

t h e f o l l ow i n g p r e s e n t a t i o n , w e s p e c i f y t h a t
∪ =fixed dynam and ∩ = Øfixed dynam . This modifi-

cation to the FCI-FRI method was motivated by the
semistochastic extension to FCIQMC (s-FCIQMC).49,50

Before describing possible choices of fixed, we will first
describe how to perform compression given a particular choice
of fixed. In our implementation, the two-step compression
algorithm described in Section IIA is applied only to the
elements not in fixed, and fewer than m nonzero elements are
selected from among these elements. In the first step, the
number of elements in dynam is determined according to a

modified version of the criterion in eq 4. If x is the vector being
compressed, dynam contains the ρ largest magnitude elements

not in fixed, where ρ is the minimum value of h for which

∑− − | | ≤ | |
= +

−

+
m d h x x( ) s

j h

N

s

x

1
h j1

0 determ

(16)

where d is defined in the following paragraph, and the vector s
sorts only the elements of the input vector x not in fixed. The
number of elements in x in fixed is denoted as Ndeterm. After

Figure 1. (top) Ground-state energies for Ne, H2O, and N2, estimated
using the FCI-FRI method with different values of the initiator
threshold, na. For Ne, vectors were compressed to 100,000 nonzero
elements, and those for H2O and N2 were compressed to 1 million.
The exact ground-state energy for each system is subtracted from the
estimate. Error bars indicate 95% confidence intervals (±2σe) after 1
million iterations. Estimates for the first two values of na (0 and 0.5)
are not shown, since their standard errors greatly exceed the range of
the vertical axis. (bottom) Statistical efficiency associated with each
estimate, calculated according to eq 13. Note the dramatic increase in
statistical efficiency for all systems as na is increased from 0 to 1.

Figure 2. (top) Ground-state energies as calculated using the FCI-
FRI method with an initiator threshold of na = 1. The horizontal axis
indicates the target number of nonzero elements (m) used for all
compression operations in each iteration. Error bars indicate 95%
confidence intervals (±2σe). (bottom) Statistical efficiency for each
calculation.
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determining dynam, (m − d − ρ) nonzero elements are

sampled from the set of elements not in . As mentioned in
Section IIA, choosing to include a different set of elements
than indicated by the original criterion in eq 4 is suboptimal in
terms of the statistical error incurred in a single compression
operation. However, other choices of , such as the one
described in this section, can potentially yield less statistical
error in the broader context of the stochastic power method.
For example, it can be advantageous to exactly preserve
elements that have large magnitudes in the exact eigenvector,
even if their magnitudes in the current iterate are small.
In semistochastic FCI-FRI, this compression scheme is

applied to each of the vectors obtained after multiplication by
the Hamiltonian matrix factors discussed in Section IIB. Since
these vectors have different dimensions, a brief discussion of
how we specify fixed for each vector is warranted. Iterates
exist in a space of Slater determinants, with dimension NFCI,
whereas vectors obtained after multiplication by the matrices
comprising Q exist in spaces of excitations from determinants,
with dimensions greater than NFCI. Bases for excitations are
indexed by multi-indices, which in all cases contain a Slater
determinant as the first component. Here, the sets fixed for all
vectors within a single iteration are specified by Slater
determinants. In the case of elements indexed by excitations,
these correspond to the first component in their respective
multi-indices. In other words, if the Slater determinant index K
is in this fixed set, then the multi-indices (K, 1, i, a) and (K, 2,
i, j, a, b) for all i, j, a, and b are in the sets fixed for their
respective vectors. The value of d in eq 16 used in each
compression is chosen to facilitate comparison to calculations
in which the semistochastic extension is not used. The same
value of d is used for compressing the vectors resulting from
multiplication by each of the matrix factors of Q: it is the
number of nonzero Hamiltonian matrix elements correspond-
ing to excitations from determinants in fixed. This choice of d
ensures that the number of Hamiltonian elements evaluated is
the same as in calculations without the semistochastic
extension, and it obviates the need to explicitly enumerate or
count the elements in fixed for these vectors. For the
compression operation preceding multiplication by the first
matrix factor of Q, d is simply the number of determinants in

fixed.
This specification of the deterministic subspace differs from

the one typically used in s-FCIQMC. In effect, entire columns
of the Hamiltonian matrix corresponding to Slater determi-

nants in the fixed deterministic subspace are left unchanged
after these compression operations, whereas in s-FCIQMC
Hamiltonian elements are only preserved exactly if they
connect two determinants in the deterministic subspace. The
approach described here offers several advantages in the
context of FCI-FRI. To our knowledge, a compression scheme
for FCIQMC that excludes elements in the deterministic part
of the Hamiltonian does not exist. Thus, in implementations of
s-FCIQMC, excitations from the deterministic subspace are
included in compression operations.50 The matrix B is
modified such that elements within the deterministic block
of the Hamiltonian are zero, and this block is multiplied
separately to compensate. In our implementation, excitations
from the deterministic subspace are not included in
compression operations, which reduces their cost. Additionally,
this approach avoids the statistical error incurred in
compression operations in s-FCIQMC by including Hamil-
tonian elements that couple determinants within the
deterministic subspace to those outside.
We will next discuss the considerations involved in choosing

the determinants to include in the fixed subspace. In early
implementations of s-FCIQMC,49 they were chosen as the
greatest magnitude elements in the ground-state eigenvector
obtained by diagonalizing H in a larger subspace. This larger
subspace was constructed by repeatedly applying H to a trial
vector and truncating deterministically, as is done similarly in
selected configuration interaction methods.33,66 In current
implementations of s-FCIQMC, the fixed subspace is specified
as that containing the largest magnitude elements from the last
iterate of a preliminary s-FCIQMC calculation executed with a
simple fixed subspace, e.g., the space of single and double
excitations from Hartree−Fock (CISD).50 Since this section is
intended to serve only as a preliminary exploration of the
potential benefits (or downsides) of applying the semi-
stochastic extension to FCI-FRI, we compare two simple
choices of the fixed subspace, which are designed to represent a
“good” choice and a “bad” choice. The good choice contains
the largest magnitude elements from the CISD ground state,
and the bad choice contains the smallest magnitude elements.
We leave the development and implementation of subspace
selection methods for FCI-FRI to future studies.
The results of this comparison are presented in Figure 3. All

calculations were performed with the target one-norm fixed at
the number of elements used in each compression operation
(m) and an initiator threshold of na = 1. Calculations with
three different values of m were performed for each system. At

Figure 3. Comparison of the statistical efficiencies of FCI-FRI calculations performed with and without the semistochastic extension. Two sets of
semistochastic calculations were performed for each system: one using a subspace consisting of the largest magnitude elements from the CISD
ground-state eigenvector and the other using the smallest elements. The calculations performed without the semistochastic extension correspond to
those shown in Figure 2. All calculations at common values of the number of nonzero elements (m) yielded mean energies that agreed to within
statistical uncertainty (2σe).
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each value of m, we compare the statistical efficiency of three
calculations: two that use each of the choices of the fixed
deterministic subspace described above and one without the
semistochastic extension. The fixed deterministic subspaces
contained 50 Slater determinants for Ne, and 150 for H2O and
N2. The number of nonzero Hamiltonian matrix elements
corresponding to excitations from these determinants is
approximately 49,000 for Ne, 509,000 for H2O, and 311,000
for N2, which determine the values of d used in compression
operations after multiplication by the Hamiltonian matrix
factors. Because the total number of matrix elements evaluated
in each iteration is fixed, the cost of calculations with and
without the semistochastic extension were approximately the
same.
For all three systems, using a deterministic subspace defined

by the smallest magnitude determinants from the CISD
eigenvector reduced the statistical efficiency relative to the
calculation without the semistochastic extension, by as much as
6 orders of magnitude for the N2 calculation with m = 1
million. Instead using the largest magnitude CISD determi-
nants increased the statistical efficiencies for Ne and N2

calculations, by at most a factor of 2. Trends in statistical
efficiency for H2O calculations are less clear. Using the good
deterministic subspace reduced the statistical efficiency for
calculations with m = 1 million and only marginally increased it
for m = 5 million. Together, these results suggest that the
criteria for choosing a good deterministic subspace may
depend on the system under consideration and that the
semistochastic extension does not always improve the
performance of the systematic FCI-FRI method when the
number of matrix element evaluations is fixed.

V. ALTERNATIVE HAMILTONIAN MATRIX
FACTORIZATION

The calculations described thus far use the heat-bath Power-
Pitzer factorization to perform the matrix−vector multi-
plication in each iteration at an affordable computational
cost. In this section, we show that FCI-FRI methods can
achieve better performance by using a modified form of this
factorization. We begin by explaining the motivation behind
these modifications.
The matrix factors comprising the matrix Q, defined in

Section IIB, share two features that follow from the
development of the HB-PP factorization for FCIQMC: (1)
there is only one nonzero element in each row, and (2) the
elements in each column are positive and sum to 1. Due to the
first feature, the row spaces of these matrices can be divided

into disjoint subspaces, each corresponding to a single element
in the vector being multiplied. This facilitates the straightfor-
ward parallelization of stratif ied compression techniques used
in FCIQMC, in which these subspaces are treated
independently and in parallel. This sequence of stratified
compression operations can be formulated as the random
selection of each of the orbitals comprising excitations from
Slater determinants. The elements in each column correspond
to probabilities for each orbital, which dictates the constraint
specified in the second feature. Due to the prohibitive memory
requirements of storing probabilities for each Slater determi-
nant in the basis, probabilities are calculated on-the-fly from
the one- and two-electron integrals defining the Hamiltonian.
In our implementation, the calculation of these normalizing
factors for each column constitutes a significant fraction of the
overall computational effort for FCI-FRI simulations.
A key feature of the FCI-FRI compression scheme described

in Section IIA that enables reductions in statistical error is that
elements are not treated independently. Parallelization is
achieved by other means, as discussed in Section IID.
Stratification is therefore not used in systematic FCI-FRI, so
the constraint of normalized columns provides no advantages.
Removing this constraint in FCI-FRI methods affords a
potential advantage beyond the reduced computational cost
associated with not calculating normalizing factors. Less
statistical error is achieved when elements of the matrix B,
which depend on elements in P and Q (eqs 7 and 8), are more
uniform in magnitude.51 In an effort to reduce the variability in
these magnitudes, we developed an alternative HB-PP
factorization, in which the column norms of Q vary
approximately in proportion to those of P. An additional
feature of this new factorization is that an ordering is enforced
among the orbitals specifying double excitations. This reduces
the row dimension of Q, enabling vector compression to be
performed with less statistical error. Thus, double excitation
elements of the matrix B in this new factorization are given as
(cf. eq 8)

=
τ

B
P

Q
M L i j a b

M L

L i j a b L

,( ,2, , , , )
,

( )

( ,2, , , , ), (17)

for | ⟩ = | ̂ ̂ ̂ ̂ | ⟩ |† †M c c c c L( )a b i j . The definitions of double excitation

elements in this modified Q matrix are provided in Appendix
B. A variety of other techniques for reducing the variability in
elements of B have been investigated previously.51 Although
we do not consider them here, many can be straightforwardly

Figure 4. Statistical efficiencies for calculations that use the original HB-PP Hamiltonian matrix factorization, in comparison to those that use the
alternative factorization proposed here. The initiator approximation with threshold na = 1 was used for all calculations, and the semistochastic
extension was not used.
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adapted for use in FCI-FRI and incorporated into this
alternative factorization scheme.
A direct comparison of the statistical efficiencies of

calculations performed using the original factorization versus
the alternative version is presented in Figure 4. At each value of
the number of nonzero elements used in compression
operations (m), the calculation that uses the alternative
factorization has a greater statistical efficiency. The relative
advantage of using the alternative factorization, as measured by
the ratio of statistical efficiencies, increases with m for all three
systems considered here. The greatest advantage was observed
for Ne at m = 150,000, with a ratio of 1.8. The overall
computational cost of calculations that use the alternative
factorization was also 17% less than those that used the original
factorization, on average. The biases for the N2 calculations
with m = 1 million and m = 3 million (0.070 ± 0.018 mEh and
0.026 ± 0.008 mEh, respectively) are slightly greater than in
calculations that used the original factorization. These
observations exemplify the utility of the generic FRI framework
for developing improvements whose benefits might be less
apparent in a walker-based framework such as FCIQMC. We
elaborate further on comparisons between FCI-FRI and
FCIQMC in the next section.

VI. COMPARISON TO INITIATOR FCIQMC

Although the similarities between FCI-FRI and FCIQMC
facilitate the application of the modifications discussed in the
previous sections, the differences between the methods have
implications for their relative performance. The primary
difference is the degree of independence enforced in
compression operations. In the first step of the vector
compression scheme used in systematic FCI-FRI, a subset of
elements are preserved exactly based on their relative
magnitudes. Some FCIQMC implementations also allow for
exact preservation of elements with magnitudes greater than a
specified threshold,50 but the key difference is that whether any
one element is preserved exactly in FCIQMC is independent
of whether any other element is preserved exactly. Addition-
ally, the random selection of nonzero elements during the
second step of the systematic FCI-FRI compression scheme is
correlated; i.e., whether any particular element is selected
determines which other elements are selected. In contrast, the
random selection of excitations from any one Slater
determinant in FCIQMC is independent of the excitations
sampled for other determinants. Another difference is that

compression operations in the original implementation of
FCIQMC23 include an additional constraint requiring vector
elements to be integers. This constraint was relaxed in later
FCIQMC implementations,50 which allow for non-integer
(floating-point) walker weights.
In Figure 5, we compare results from FCI-FRI and two

flavors of FCIQMC in order to quantify the effects of these
differences on statistical efficiency. All calculations were
performed with the initiator approximation, using a threshold
of na = 3, but without any semistochastic extensions.
Calculations were performed using our own implementations
of these two FCIQMC algorithms.59 In the “i-FCIQMC
(integer)” method, elements are constrained to be integers
according to the procedure described in ref 58. The “i-
FCIQMC (non-integer)” method corresponds to the method
described in ref 50, although it does not include the
semistochastic extensions discussed therein. Only the elements
with the smallest magnitudes are integerized in compression
operations in order to reduce computational cost. The FCI-
FRI (original HB-PP) method corresponds to the one
presented in Section III, while the FCI-FRI (alternate HB-
PP) calculations used the alternative Hamiltonian matrix
factorization described in Section V.
Comparisons in Figure 5 are performed at a fixed walker

number, corresponding to the target one-norm specified in
FCIQMC calculations (Appendix A). Since the FCI-FRI
method is not formulated in terms of walkers, the target
number of nonzero elements to use in each stochastic
compression operation must be determined empirically from
each FCIQMC calculation in order to enable these
comparisons. In FCIQMC methods, the number of elements
stochastically sampled from the Hamiltonian matrix in each
iteration is the number of walkers. In the FCI-FRI context, this
corresponds to the number of nonzero elements used in
compression operations following multiplication by each of the
matrix factors of Q. Thus, the number of nonzero elements
used in these compression operations in FCI-FRI was fixed at
the average number of walkers in FCIQMC. The number of
nonzero elements in FCIQMC iterates is determined by the
distribution of walkers among Slater determinants. Therefore,
in FCI-FRI, the target number of nonzero elements used in the
compression operation preceding multiplication by the first
matrix factor of Q was fixed at the average number of nonzero
elements in FCIQMC iterates. We emphasize that these
constraints, which are enforced in order to enable a

Figure 5. Statistical efficiencies for systematic FCI-FRI and i-FCIQMC calculations executed with an initiator threshold of na = 3 for the Ne, H2O,
and N2 systems. In “i-FCIQMC (integer)” calculations, all Hamiltonian matrix elements are stochastically integerized before the “annihilation” step.
In “i-FCIQMC (non-integer)” calculations, only a small subset of elements are integerized according to the method described in ref 50. The
horizontal axis denotes the number of walkers in i-FCIQMC calculations. The average distribution of walkers among Slater determinants
determined the number of nonzero elements used to perform compressions in systematic FCI-FRI calculations, as described in the text. Systematic
FCI-FRI results are presented for both versions of the HB-PP Hamiltonian matrix factorization discussed in this work.
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comparison between FCIQMC and FCI-FRI, represent
suboptimal choices in FCI-FRI and that improved performance
can be achieved by adjusting these parameters. For example,
specifying the number of elements in the compression
preceding multiplication by Q as the number of walkers
instead of the number of nonzero iterate elements was found
to increase the statistical efficiency more than the computa-
tional cost.
For all three chemical systems tested, mean energies from

these three methods agree to within twice the standard error at
each walker number. Statistical efficiencies from the systematic
FCI-FRI method are 2.4−15 times greater than those from the
i-FCIQMC (non-integer) method, which are in turn 1.2−21
times greater than those from the i-FCIQMC (integer)
method. These results suggest that, although the use of non-
integer elements in systematic FCI-FRI accounts for some of
the gain in statistical efficiency relative to the i-FCIQMC
(integer) method, the use of correlation also provides a
consistent and significant improvement. We expect the parallel
communication costs to be greater in the i-FCIQMC (non-
integer) and FCI-FRI methods than in i-FCIQMC (integer).
Using the non-integer implementation increases overall
execution time by at most 50% relative to the integer
implementation, and FCI-FRI calculations were at most 41%
slower than i-FCIQMC (non-integer) calculations. Using the
alternative HB-PP factorization in FCI-FRI calculations
resulted in up to a 29-fold increase in statistical efficiency
relative to the i-FCIQMC (non-integer) method.
All FCIQMC and FCI-FRI methods can be understood as a

series of sequential matrix−vector multiplications and
compression operations. The methods discussed here differ
mainly in their approaches to compression. Our results
indicate that enforcing correlations among elements, as is
done in systematic FCI-FRI, improves statistical efficiency,
albeit with somewhat increased cost and storage requirements
relative to FCIQMC. In practice, one need not be confined to
a choice solely between more expensive methods with
correlations versus less expensive methods that treat elements
independently. Within the basic FCI-FRI approach there are
many possible methods with varying degrees of correlation and
cost. Future research could involve investigating the trade-offs
between cost and statistical error for different methods and
whether some methods are better suited to particular problems
than others.

VII. CONCLUSIONS

We demonstrated the applicability of three independent
modifications to the FCI-FRI methods introduced in ref 18.
The initiator approximation was found to significantly improve
performance when few nonzero elements are used in
compression operations. Increasing the initiator threshold
yielded consistent improvements in statistical efficiency up to a
value of na = 1, but further increases yielded greater biases
without significant improvements to the statistical efficiency.
At a fixed initiator threshold, the statistical efficiency increases
approximately in proportion to the number of nonzero
elements used in calculations, while the bias remains constant
(to within statistical uncertainty). The semistochastic exten-
sion with a good choice of deterministic subspace was found to
improve the statistical efficiency for the Ne and N2 systems,
but trends for H2O were less clear. Our alternative heat-bath
Power-Pitzer matrix factorization was found to yield consistent

improvements in statistical efficiency and reductions in
computational cost for all systems tested.
These findings provide some insight into how the

parameters in the systematic FCI-FRI method, in its present
form, should be chosen to minimize cost and error. For
example, it is advantageous to use the same number of nonzero
elements in all compression operations in each iteration rather
than the varying number used in our comparisons to
FCIQMC. Additionally, our results above indicate clear
benefits to using the initiator approximation and the modified
HB-PP factorization. The inconsistent performance of the
semistochastic extension observed in our tests suggests that
further investigation is needed before we can recommend using
it in FCI-FRI calculations.
The primary factor that determines the computational cost

of FCI-FRI calculations is the number of nonzero elements
used in compression operations. Previous studies suggest that
the number of walkers required in FCIQMC scales weakly
exponentially with system size.58 Due to the similarities
between the two methods, we suspect that the required
number of nonzero elements scales similarly in FCI-FRI. More
research is needed to definitively determine whether this is the
case.
In the results presented so far we have focused on

benchmark applications for which FCI results are available
for comparison. It is natural to ask whether and to what degree
the improvements and prescriptions we describe here apply to
more challenging systems, particularly those involving larger
basis sets and stronger correlation. To provide some
preliminary indication we performed several additional
simulations which we describe now. We applied systematic
FCI-FRI to the Ne atom in a cc-pVQZ basis. Using m =
500,000 nonzero elements in compression operations yielded a
correlation energy estimate of −333.41 ± 0.017 mEh. This
estimate was obtained using the alternative HB-PP factoriza-
tion, which yielded a 2.5-fold increase in statistical efficiency
relative to the original HB-PP factorization. It differs by
approximately 1.3 mEh from the (non-initiator) FCIQMC
estimate reported in ref 23, obtained using 681 million walkers.
We also applied systematic FCI-FRI to a more strongly
correlated system, namely, the N2 molecule at a stretched
geometry in the cc-pVDZ basis. The resulting energy estimate
obtained with m = 5 nonzero elements was within 0.10 ± 0.10
mEh of the exact FCI energy. Further computational details for
these calculations are included in Appendix C. As we pursue
further improvements to FCI-FRI methods, we will continue
to evaluate their applicability to these and other more
challenging problems.
The scope of possible design features of randomized

methods is broader than what has been tested previously in
the context of either FCIQMC or FCI-FRI alone. In particular,
many additional recent advances in FCIQMC methodology
could be applied to FCI-FRI methods. We are currently
exploring the possibility of including the unbiasing procedure
from FCIQMC67 and extending our methods for the
calculation of properties other than the ground-state
energy.26,28,29,53,68,69 More generally, one could combine a
variety of approaches to introducing independence and
correlations in compression schemes, drawing upon ideas
from FCIQMC and from the FRI framework, as a means of
optimizing both computational cost and statistical error. A
rigorous understanding of the advantages and disadvantages of
each of these features can facilitate the development of generic
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FCI-FRI methods for treating strongly correlated systems
beyond the capabilities of conventional quantum chemistry
methods.

■ APPENDIX A: DETERMINISTIC POWER METHOD

The sequence of power method iterates is defined by the
relation

=τ τ τ+
v P v
( 1) ( ) ( ) (A1)

where

ε= − −τ τSP 1 H 1( )( ) ( )
(A2)

This sequence converges to the ground-state eigenvector of H
as τ → ∞, provided that ε is sufficiently small and v(0) is not
orthogonal to the ground state. In this work, v(0) is chosen as
the ground-state eigenvector of the Hamiltonian projected into
the space of all single and double excitations from the
Hartree−Fock determinant (i.e. CISD). The scalar-valued
energy shift S(τ) is included to stabilize the norms of the
iterates. It is updated dynamically, at intervals of A iterations,
as follows:
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where ξ is a damping parameter used to reduce fluctuations in
the shift, and ∥...∥1 denotes the vector one-norm (i.e., the sum
of the magnitudes of all elements). In this study, we use A = 10
and ξ = 0.05, following previous studies.23 In order to facilitate
comparisons with FCIQMC calculations, the shift is fixed at 0
until the one-norm becomes greater than a target value. In the
numerical tests presented here, the one-norm stabilizes at a
value that is at most 10% greater than the target.

■ APPENDIX B: MODIFIED HEAT-BATH
POWER-PITZER FACTORIZATION

This section describes in more detail the alternative
Hamiltonian matrix factorization scheme used to perform
calculations in Section V. We provide formulas for elements of
the five matrices whose product is the matrix Q, defined in
Section IIB.
As in the original HB-PP factorization, a matrix D and vector

S are calculated and stored at the beginning of each calculation.
Each element of D and S approximates the sum of all
Hamiltonian matrix elements corresponding to double
excitations from a pair of occupied orbitals or a single orbital,
respectively. Elements of D are calculated from the two-
electron integrals from Hartree−Fock:
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Unlike in the original factorization, the vector S is
normalized, as follows:
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We found that this normalization was necessary to eliminate
large fluctuations in elements of the matrix B. Additionally, a

vector X of normalization factors for exchange integrals is
calculated, with elements defined as
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The calculation of these normalization factors does not
contribute appreciably to the overall computational cost,
since they need only be calculated once and stored at the
beginning of each simulation.
In our description of the HB-PP scheme in ref 18, the row

spaces of the matrix factors of Q are composed of elements
corresponding to single and double excitations from Slater
determinants as well as “no-excitation” elements corresponding
to diagonal elements in P(τ). These “no-excitation” elements
are not included in the matrices here, since we altered our
description of the factorization scheme to apply only to the off-
diagonal part of P(τ).
The row space of the matrix Q(1) consists of generic single

and double excitations from each Slater determinant. Elements
for single excitations are calculated as

δ=
+

Q
n

n nK J KJ( ,1),
(1) s

s d (B4)

where ns and nd denote the number of symmetry-allowed single
and double excitations, respectively, from the Hartree−Fock
determinant. Elements for double excitations are calculated
similarly, as

δ=
+

Q
n

n nK J KJ( ,2),
(1) d

s d (B5)

Single excitation elements in the remaining matrices in the
factorization are defined as in ref 18, so they will not be
discussed further here. Elements in Q(2) for double excitations
are specified differently, as

=Q S
K i K i( ,2, ),( ,2)
(2)

(B6)

where i is constrained to be any of the occupied orbitals in |K⟩
except the f irst. This constraint will be important for enforcing
an order among the orbitals involved in double excitations.
Notably, the elements for the occupied orbitals in each
determinant are not normalized.
Elements in Q(3) correspond to the second occupied orbital

in each double excitation:

=Q
D

SK i j K i

ij

i
( ,2, , ),( ,2, )
(3)

(B7)

The index of the second occupied orbital in the excitation (j) is
restricted to be less than that of the first (i) in order to enforce
an ordering between these two orbitals.
Elements in Q(4), corresponding to the first virtual orbital in

an excitation, are specified as

=
|⟨ | ⟩|

Q
ia ai

XK i j a K i j
i

( ,2, , , ),( ,2, , )
(4)

1/2

(B8)

where the index a denotes any virtual orbital in |K⟩ except the
first. Recall that Hartree−Fock exchange integrals ⟨ | ⟩ia ai are
zero if the spins of orbitals i and a differ. Elements in Q(5),
corresponding to the second virtual orbital b, are defined
similarly:
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δ
=

|⟨ | ⟩| Γ ⊗Γ Γ⊗Γ
Q

jb bj

XK i j a b K i j a
b

( ,2, , , , ),( ,2, , , )
(5)

1/2
,b a i j

(B9)

The orbital b is constrained to be less than a and obeys the
following symmetry relation:

Γ ⊗ Γ = Γ ⊗ Γi j a b (B10)

where Γx denotes the irreducible representation of orbital x.
This symmetry condition is described in more detail in refs 25
and 18.

■ APPENDIX C: PARAMETERS FOR PRELIMINARY
CALCULATIONS ON MORE DIFFICULT SYSTEMS

This section describes the parameters used to perform the
calculations described in Section VII. A cc-pVQZ single
particle basis was used for the Ne atom. Core electrons were
not frozen, so the dimension of the relevant FCI space (10
electrons in 55 spatial orbitals) is 1.51 × 1012. The initiator
approximation was applied with a threshold of na = 1.
Calculations were executed for 1 million iterations with m =
500,000 nonzero elements retained in each compression
operation. Trajectories were initialized from the Hartree−
Fock unit vector.
Calculations on the stretched N2 molecule were performed

at an internuclear distance of 4.2 a0, following ref 23, in a cc-
pVDZ basis. The 4 core electrons were frozen, yielding an FCI
dimension of 541 million (10 electrons in 26 orbitals).
Calculations were executed with m = 5 million nonzero
elements for 400,000 iterations. Trajectories were initialized
from the CISD unit vector. Unlike for the other systems
discussed above, the statistical efficiency for this system
increased as the initiator threshold was increased beyond na
= 1, up to na = 3, so a threshold of na = 3 was used in these
calculations. Only the alternative HB-PP factorization was
used.
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