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Abstract

We introduce a new Markov chain Monte Carlo (MCMC) sampler for infinite-dimensional inverse problems. Our new sampler

is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the

target distribution. We extend this ensemble sampler for the first time to infinite-dimensional function spaces, yielding a

highly efficient gradient-free MCMC algorithm. Because our new ensemble sampler does not require gradients or posterior

covariance estimates, it is simple to implement and broadly applicable.
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1 Introduction

In many Bayesian inverse problems, Markov chain Monte

Carlo (MCMC) methods are needed to approximate distri-

butions on infinite-dimensional function spaces, for example

in groundwater flow (Iglesias et al. 2014), medical imag-

ing (Dunlop and Stuart 2016), and traffic flow (Coullon and

Pokern 2020). Yet designing efficient MCMC methods for

function spaces has proved challenging.

The earliest proposed sampler for function spaces was

the preconditioned Crank–Nicolson algorithm (PCN, Beskos

et al. 2008). PCN is easy to code and broadly applicable, but

it is not always efficient. When sampling from a posterior

distribution that is poorly scaled or multimodal, PCN can

require a huge number of samples to accurately calculate

statistics (Cotter et al. 2013).

Recent gradient-based MCMC methods (Cotter et al.

2013; Cui et al. 2014; Beskos et al. 2017), preconditioned

MCMC methods (Zhou et al. 2017; Rudolf and Sprungk

2018), and SMC methods (Kantas et al. 2014) have improved
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on the computational efficiency of PCN. However, these new

samplers require gradients or posterior covariance estimates

that may be challenging to obtain. Calculating gradients is

difficult or impossible in many high-dimensional inverse

problems involving a numerical integrator with a black-box

code base (Chen et al. 2016). Additionally, accurately esti-

mating posterior covariances can require a lengthy pilot run

or adaptation period (Roberts and Rosenthal 2009). These

concerns raise the question: is there a functional sampler

that outperforms PCN without requiring gradients or poste-

rior covariance estimates?

To address this question, we turn to the literature on finite-

dimensional MCMC. In finite-dimensional spaces, there is a

gradient-free sampler that avoids explicit covariance estima-

tion yet adapts naturally to the covariance structure of the

sampled distribution. This sampler, called the affine invari-

ant ensemble sampler (AIES, Goodman and Weare 2010),

is easy to tune, easy to parallelize, and efficient at sampling

spaces of moderate dimensionality (d ≤ 20). AIES is used

extensively due to its implementation in the popular emcee

package for python (Foreman-Mackey et al. 2013).

The main contribution of this work is to propose a new

functional ensemble sampler (FES) that combines PCN and

AIES. To apply this new sampler, we first calculate the

Karhunen–Loève (KL) expansion for the Bayesian prior dis-

tribution, assumed to be Gaussian and trace-class. Then,

we use AIES to sample the posterior distribution on the
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low-wavenumber KL components and use PCN to sample

the posterior distribution on the high-wavenumber KL com-

ponents. Alternating between AIES and PCN updates, we

obtain our functional ensemble sampler that is efficient and

easy to use, without requiring detailed knowledge of the tar-

get distribution.

In past work, several authors have proposed splitting

the Bayesian posterior into low-wavenumber and high-

wavenumber components and then applying enhanced sam-

pling to the low-wavenumber components (Law 2014; Kan-

tas et al. 2014; Cui et al. 2016; Beskos et al. 2017, 2018).

Yet compared to these other samplers, FES is unique in its

simplicity and broad applicability. FES does not require any

derivatives, and the need for derivative-free samplers has pre-

viously been emphasized in Chen et al. (2016); Hu et al.

(2017); Zhou et al. (2017) and Beskos et al. (2018). FES

also eliminates the requirement for posterior covariance esti-

mates. Lastly, FES is more efficient than other gradient-free

samplers in our tests.

In two numerical examples, we apply FES to challenging

inverse problems that involve estimating a functional param-

eter and one or more scalar parameters. In our first example,

we consider the advection equation

{

∂ρ
∂t

+ c
∂ρ
∂x

= 0, t > 0,

ρ = ρ0, t = 0.
(1)

We simultaneously estimate the advection speed c and the

initial condition ρ0 from a set of noisy observations. We

compare the performance of PCN and FES and find that PCN

mixes slowly because c and ρ0 are highly correlated under

the posterior distribution. In comparison, FES mixes more

quickly, reducing integrated autocorrelation times (Sokal

1997) by two orders of magnitude.

In our second example, we consider the Langevin diffu-

sion

⎧

⎪

⎨

⎪

⎩

d X = P dt, t > 0,

d P = −αX dt +σ dW , t > 0,

X = P = 0, t = 0.

(2)

We simultaneously estimate the drift parameter α, the dif-

fusion parameter σ , and the posterior path (X t )0≤t≤10

from noisy observations. We compare the performance of

PCN, FES, and an alternative derivative-free sampler (Zhou

et al. 2017) that explicitly estimates the posterior covariance

matrix. We conclude that FES is the fastest available gradient-

free sampler for this challenging, multimodal test problem.

The rest of the paper is organized as follows. Section 2

reviews the PCN and AIES samplers, Sect. 3 introduces the

new ensemble sampler for function spaces, Sect. 4 presents

numerical examples, and Sect. 5 concludes. Code to repro-

duce the examples is available on Github1.

2 Background onMCMC samplers

In this section, we explain why it is difficult to approximate

a Bayesian posterior distribution on an infinite-dimensional

function space. Then, we describe the preconditioned Crank–

Nicolson sampler (PCN, Beskos et al. 2008) which can

be used for this approximation task. Lastly, we describe

the affine invariant ensemble sampler (AIES, Goodman and

Weare 2010), an efficient sampler for finite-dimensional

spaces that has not previously been extended to the infinite-

dimensional setting.

2.1 Infinite-dimensional inverse problems

In a typical infinite-dimensional Bayesian inverse problem,

the goal is estimating a posterior distribution

π(du) ∝ exp (φ(u)) π0(du), (3)

where u is a square-integrable function on a domain Ω ⊆ R
d ,

φ(u) is a log-likelihood functional, and π0 = N (0, C) is a

Gaussian prior distribution.

To estimate π , we must select a finite-dimensional approx-

imation space and then sample π restricted to this space.

However, ensuring high accuracy with this approach is

difficult. To accurately calculate statistics of the posterior dis-

tribution, a high-dimensional approximation space is needed.

Yet, as we increase the dimensionality, the acceptance proba-

bility for a standard MCMC sampler, such as the Metropolis

random walk sampler (Metropolis et al. 1953), sinks to zero.

Hence, the MCMC sampler takes an increasingly long time

to move anywhere, and sampling from π becomes tediously

slow (Cotter et al. 2013).

2.2 Preconditioned Crank–Nicolson

PCN solves the problem of vanishing acceptance probabil-

ities by proposing MCMC moves that are always accepted

under the Gaussian prior distribution. Because of this sta-

bility property, even as we increase the dimensionality of

the approximation space, the average acceptance probability

remains bounded away from zero (Hairer et al. 2014).

Starting from a position U , the PCN update is

Ũ =
√

1 − ω2U + ωξ, (4)

1 https://github.com/jeremiecoullon/functional_ensemble_sampler
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where ξ ∼ N (0, C) is a random draw from the Gaussian

prior and ω ∈ (0, 1] is a step size parameter. If ω ≪ 1 the

proposal is a small perturbation of the position U , whereas

if ω = 1 the proposal is independent from U . The main

computational cost of PCN then comes from evaluating the

acceptance probability

min
{

1, exp
(

φ(Ũ ) − φ(U )
)}

, (5)

which requires calculating the log-likelihood functional at

the proposed parameter value Ũ .

PCN is a simple, widely applicable approach that requires

little more than making inexpensive proposals and evaluating

the log-likelihood at the proposed parameter values. How-

ever, the main limitation of PCN is the slow convergence of

statistics when the posterior distribution is poorly scaled or

multimodal. This slow convergence has led to myriad efforts

to improve on PCN’s sampling speed (Cotter et al. 2013; Cui

et al. 2014; Kantas et al. 2014; Beskos et al. 2017; Zhou et al.

2017; Rudolf and Sprungk 2018), but the available methods

require gradients or covariance estimates that can be difficult

to obtain.

2.3 Affine invariant ensemble sampler

The affine invariant ensemble sampler (AIES, Goodman and

Weare 2010) is a finite-dimensional MCMC sampler with

the remarkable property of affine invariance. Affine invari-

ance means that the sampler remains completely unchanged

if the state space is stretched, compressed, or translated by an

affine transformation x �→ Ax +b. Because of this property,

AIES efficiently samples from distributions that are wide in

some directions and narrow in other directions. These “poorly

scaled” distributions would cause problems for other sam-

plers, but they do not compromise the performance of AIES.

To sample from a density π on R
M , AIES generates an

ensemble of walkers
−→
X = (X1, . . . X L) that is invariant

with respect to the product density π (x1) . . . π (xL) on R
M L .

To update the ensemble, AIES proposes sliding one walker

toward or away from another walker. Then, AIES accepts

or rejects the proposal according to a Metropolis-Hastings

step. The proposals and acceptance probabilities are invariant

under affine transformations, so the scheme is affine invariant

overall.

To perform the AIES proposal step, we randomly choose

a walker X i and a second walker X j 
= X i . Then, we propose

moving the walker X i to the new position

X̃ i = X i + (1 − Z)
(

X j − X i

)

, (6)

where Z is a random number in an interval [1/a, a], chosen

with density g (Z) ∝ 1/
√

z. Typically, a = 2 in applications,

but more generally a is a parameter that modulates the step

size. The main computational cost of AIES then comes from

evaluating the acceptance probability

min

{

1, Z M−1 π(X̃ i )

π(X i )

}

, (7)

which requires calculating the density π at the proposed posi-

tion X̃ i .

AIES is a popular and efficient sampler for low- and

moderate-dimensional densities (M ≤ 20). AIES would not

typically be an efficient sampler for higher-dimensional den-

sities. However, in the sections to follow, we explain how

AIES can be applied to a low-dimensional subspace of an

infinite-dimensional function space, thereby improving the

sampling compared to PCN.

Remark 1 A parallel implementation of AIES is available

in the emcee package for python (Foreman-Mackey et al.

2013). In this version of AIES, we split the walkers into two

groups and sample in two stages. Initially, we select walkers

from the first group and slide these walkers toward or away

from walkers in the second group. Then, we select walkers

from the second group and slide these walkers toward or away

from walkers in the first group. By splitting the walkers into

two groups, we can conduct AIES in parallel across multiple

processors, helping to spread out the computational cost.

3 New ensemble sampler

In this section, we describe the Karhunen–Loève (KL) expan-

sion, which is a helpful tool for constructing functional

MCMC samplers. Then, we introduce our new functional

ensemble sampler (FES) and discuss its main properties.

3.1 KL expansion

The KL expansion (Stuart 2010) is a rapidly converging basis

expansion for a random function ξ drawn from a trace-class

Gaussian distribution N (0, C). The KL expansion decom-

poses ξ into a linear combination of “KL modes” η1, η2, . . .,

which are eigenfunctions of the covariance operator C . Thus,

the KL expansion takes the form

ξ =
∞
∑

i=1

〈ηi , ξ 〉 ηi , (8)

where 〈·, ·〉 denotes the inner product in L2 (Ω). Because ξ

is a Gaussian with mean zero, the KL components 〈ηi , ξ 〉 are

independent Gaussians with mean zero and variances λ1 ≥
λ2 ≥ · · · that are determined by the eigenvalues of C .
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The KL expansion converges as rapidly as possible in the

sense of minimizing the mean squared error

Eξ∼N (0,C)

∥

∥

∥

∥

∥

ξ −
L

∑

i=1

〈ηi , ξ 〉 ηi

∥

∥

∥

∥

∥

2

L2(Ω)

, (9)

for any truncation threshold L ≥ 1. Because the KL

expansion converges so rapidly, the low-wavenumber modes

explain most of the variance in ξ . For example, if ξ is a Brow-

nian motion on [0, 1], the eigenfunctions of the covariance

operator are

ηi (t) =
√

2 sin

((

i −
1

2

)

π t

)

, i = 1, 2, . . . , (10)

and the eigenvalues are λi =
(

i − 1
2

)−2
π−2. Hence, the

five lowest-wavenumber KL modes account for 96% of the

variance in ξ , while the high-wavenumber modes account for

just 4% of the variance.

We now consider the implications of the KL expansion

for Bayesian inference. In a Bayesian inverse problem with

a Gaussian prior, we can decompose a functional parameter

U in terms of the KL modes

U =
∞
∑

i=1

Uiηi , Ui = 〈ηi , U 〉 . (11)

Under the prior distribution π0 = N (0, C), the Ui compo-

nents are independent Gaussians. Under the posterior dis-

tribution π (du) ∝ exp (φ (u)) π0 (du), the Ui components

have an unknown distribution that must be approximated

through sampling.

Although the Ui components have an unknown posterior

distribution, the prior distribution restricts the values these

variables can take. The high-wavenumber components are

narrowly peaked Gaussians under the prior, so they are con-

strained to be nearly Gaussian with a low variance under the

posterior. In contrast, the low-wavenumber components are

less constrained, so the posterior distribution on these compo-

nents can become stretched, pinched, or otherwise distorted

by the likelihood function.

The KL coordinates divide an infinite-dimensional inverse

problem into a simple sampling part and a challenging

sampling part. Sampling the high-wavenumber components

is comparatively simple. The prior and posterior distribu-

tions on these components are nearly the same, enabling

PCN to sample efficiently. In contrast, sampling the low-

wavenumber components is more challenging. The posterior

distribution on these components may be poorly scaled or

multimodal, causing difficulties for PCN.

3.2 Functional ensemble sampler (FES)

To efficiently sample from function spaces, we propose

a Metropolis-within-Gibbs sampler that uses AIES on the

low-wavenumber KL components and PCN on the high-

wavenumber KL components. We call this algorithm the

functional ensemble sampler (FES) and provide pseudocode

for the method below.

Algorith 1 (Functional ensemble sampler)

To sample a distribution π(du) ∝ exp (φ(u)) π0(du)

where π0 = N (0, C), perform the following steps:

1. Identify a matrix J whose columns are the first M eigen-

vectors of C. Set P = J J T and Q = I − J J T .

2. Initialize an ensemble of walkers
(

X0
1, . . . X0

L

)

.

3. For τ = 0, 1, . . .:

(a) For i = 1, . . . , L:

i. Randomly choose a walker X2τ
j 
= X2τ

i .

ii. Propose the update

X̃2τ
i = X2τ

i + (1 − Z) P
(

X2τ
j − X2τ

i

)

, (12)

where Z ∈ [1/a, a] has density g (z) ∝ 1/
√

z.

iii. Set X2τ
i = X̃2τ

i with probability

min

⎧

⎨

⎩

1, Z M−1
π

(

X̃2τ
i

)

π
(

X2τ
i

)

⎫

⎬

⎭

. (13)

(b) Set
(

X2τ+1
0 , . . . , X2τ+1

L

)

=
(

X2τ
0 , . . . , X2τ

L

)

.

(c) For i = 1, . . . , L:

i. Propose the update

X̃2τ+1
i = P X2τ+1

i + Q
(
√

1 − ω2 X2τ+1
i + ωξ

)

,

(14)

where ξ ∼ N (0, C).

ii. Set X2τ+1
i = X̃2τ+1

i with probability

min
{

1, exp
(

φ
(

X̃ i

)

− φ (X i )

)}

. (15)

(d) Set
(

X2τ+2
0 , . . . , X2τ+2

L

)

=
(

X2τ+1
0 , . . . , X2τ+1

L

)

.

3.3 Properties of FES

FES is a novel method for function space sampling, which

enhances the standard PCN approach. FES remains stable

as we refine the functional discretization, similarly to PCN.

However, compared to PCN, we can tune FES to achieve

faster mixing.
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The main tuning parameter in FES is M , which controls

how many KL coordinates are included in the AIES sam-

pling. When M = 0, no AIES sampling is performed, so the

algorithm reduces to PCN. As M increases, FES begins to

outperform PCN. However, if M increases past 20, the perfor-

mance deteriorates, since AIES is only an efficient sampler

for subspaces of dimension 20 and lower.

The precise number of KL coordinates to include in the

AIES sampling is a tuning decision, with the optimal number

depending on the estimation problem. However, based on our

numerical tests, we recommend setting M = 5 as a default

and then adjusting M during the early stages of the sampling

to be as small as possible while ensuring the PCN sampler

can take large steps (ω ≥ 0.5) with acceptance rate ≥ 20%.

To explain the limitations of FES, we recall the idea of a

likelihood-informed subspace (LIS), originally introduced in

Cui et al. (2014). An LIS is a low-dimensional linear subspace

in which prior and posterior marginal distributions differ sub-

stantially. Moreover, conditioning on an LIS ensures that

differences between prior and posterior distributions become

small. An LIS is useful for constructing efficient MCMC

algorithms, because enhanced sampling is needed on the LIS

but PCN provides efficient updates in directions orthogonal

to the LIS (Cui et al. 2014, 2016; Beskos et al. 2018).

FES relies on the assumption that the 20 lowest-

wavenumber KL components contain an LIS. This assump-

tion is often but not always satisfied in practice. By consid-

ering a sufficiently large number of KL coordinates, we can

always find an LIS. However, the required number of coordi-

nates may be larger than 20. For example, a large number of

KL coordinates is needed if the posterior distribution empha-

sizes solutions that are not very smooth, which can happen if

the observational noise in the problem is small. If the required

number of KL coordinates is higher than 20, FES may no

longer provide an efficient sampling solution, although it is

still not slower than PCN.

Ideally, we would extend FES by applying AIES directly

to a likelihood-informed subspace and applying PCN to the

complementary subspace. However, to our knowledge, all the

available methods for identifying an LIS require calculating

gradients (Cui et al. 2016) or posterior covariance matrices

(Beskos et al. 2018). Developing broadly applicable tools for

identifying an LIS remains an issue for future research.

Other extensions to FES are also possible. Whereas Algo-

rithm 1 presents a sequential implementation of FES, there

is also a parallel implementation using the modified AIES

sampling discussed in Remark 1. Another extension to FES

involves jointly sampling functional and scalar parameters in

a Bayesian inverse problem. Indeed, it is straightforward to

include additional scalar parameters in the AIES subspace,

as we demonstrate through numerical examples in Sect. 4.

We regard this extension of FES as especially useful, since

there is often simultaneous uncertainty around functional and

scalar parameters in a model.

Lastly, we compare FES to the “hybrid sampler” of Zhou

and coauthors (Zhou et al. 2017). The hybrid sampler is

a gradient-free method that uses PCN to sample the high-

wavenumber KL components and uses Gaussian random

walk proposals to sample the low-wavenumber KL compo-

nents. In the hybrid sampler, the covariance of the Gaussian

perturbations is adaptively tuned based on the estimated pos-

terior covariance matrix.

We find in our experiments that the hybrid sampler can

be very efficient when the posterior distribution is nearly

Gaussian and the posterior covariance matrix is accurately

estimated (even slightly more efficient than FES). However,

limitations of the hybrid sampler include sensitivity to non-

Gaussian posterior distributions and long adaptation periods

needed to achieve peak performance. As we show in Sect. 4,

FES addresses both of these limitations. FES is a fast sampler

for many non-Gaussian distributions, and FES is efficient

over short sampling runs.

4 Numerical examples

In this section, we apply FES to two challenging inverse

problems involving functional and scalar parameters. For

both problems, we fix the AIES step size to a = 2, as rec-

ommended in Foreman-Mackey et al. (2013), and we tune

the PCN step size ω to give an acceptance rate of 20%. We

remove the first 10% of each trajectory as burn-in, and we

run the trajectories at least 100 times as long as the integrated

autocorrelation time to ensure robust statistics (Sokal 1997).

4.1 Advection equation

We first consider the advection equation
∂ρ
∂t

+ c
∂ρ
∂x

= 0, a

simple first-order PDE that is a prototype for more general

hyperbolic PDEs. Given an initial condition ρ0(x) and a wave

speed c ∈ R, the solution to the advection equation can be

written explicitly as

ρ(x, t) = ρ0(x − ct). (16)

We aim to recover the initial condition and wave speed

from noisy observations of flow. Flow is the product of den-

sity and velocity, given by the equation q = ρc. When flow

is the only quantity observed, the initial condition and wave

speed become highly correlated in the posterior, making the

MCMC sampling difficult.

In our Bayesian model, we set a Unif (0, 1.4) prior on c

and a Gaussian prior on ρ0 with mean 100 and covariance

function
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k(x, x ′) = 130 exp

(

−
1

2

(

x − x ′)2
)

. (17)

We generate a true solution to the PDE by setting ctrue =
0.5 and drawing ρ0 according to the Gaussian prior. Then,

we generate observations of the flow at locations x = 2, 6,

and 10 and times t = 1, 1.5, and 2, subject to independent

N (0, 0.04) observational noise.

To approximate the posterior distribution on ρ0 and c, we

apply FES using L = 100 walkers. During the initialization,

we independently sample the walkers from a ball around

the posterior mode, as recommended in Foreman-Mackey

et al. (2013). We discretize ρ0 using 200 grid points, equally

spaced between x = 0 and x = 10.

In FES applications, we recommend choosing the AIES

subspace to be as low-dimensional as possible, while ensur-

ing that PCN can take large steps (ω ≥ .5) with a high

acceptance rate (≥ 20%). Here, we empirically support this

recommendation by evaluating the performance of FES when

the AIES subspace includes the wave speed parameter c as

well as M = 0, 1, 5, 10, or 20 of the lowest-wavenumber KL

components.

As our first conclusion from this comparison, we find that

we can take larger PCN steps with a 20% acceptance rate if

we choose M to be large. We report the precise PCN step

sizes in Table 1, which reveals that a PCN step size ω ≥ .5

is possible whenever M ≥ 10.

As our second conclusion, we verify that choosing M =
10 leads to the most efficient sampling. We report the auto-

correlation functions (ACFs) and integrated autocorrelation

times (IATs) for various observables in Fig. 1 and Table 2. For

comparison purposes, we also report the ACFs and IATs from

a standard PCN-based sampler. With the optimal parameter

M = 10, we find that FES reduces the IATs by two orders

of magnitude compared to PCN.

To check that FES remains stable with increasing dimen-

sion, we also run our experiments with a discretization into

twice as many grid points. The IATs remain statistically indis-

tinguishable from those reported in Table 2 with relative

differences of ≤ 10%.

Lastly, to help explain why FES performs so much better

than PCN, we present Fig. 2, which shows posterior sam-

ples of ρ0 conditioned on several values of c. This figure

reveals the strong correlation between the wave speed c and

the low-wavenumber components of ρ0. Since the PCN sam-

pler does not account for this correlation structure, large PCN

Table 1 PCN step size for various FES trials

PCN step size

M=0 M=1 M=5 M=10 M=20

ω 0.04 0.05 0.15 0.60 1.00

Fig. 1 ACF curves for wave speed c and the first KL coefficient

Table 2 IATs for wave speed c and several KL coefficients with the

fastest IATs in bold; all IATs have been divided by 1000 to improve

readability

Integrated autocorrelation time ÷ 1000

PCN M=0 M=1 M=5 M=10 M=20

c 360 130 50 7.7 1.5 4.3

η1 390 110 30 6.8 1.4 3.1

η5 290 46 55 11 1.1 1.9

η15 280 30 16 12 1.0 1.2

η100 310 43 20 11 1.1 1.4

Fig. 2 Samples of ρ0 conditioned on three values of the wave speed c
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updates are highly unlikely to be accepted. In contrast, FES

naturally adapts to this correlation structure, eliminating the

major bottleneck in the sampling.

4.2 Path reconstruction for Langevin dynamics

We consider a dynamical system in which position X t and

momentum Pt evolve according to the following Langevin

SDE.

⎧

⎪

⎨

⎪

⎩

d X = P dt, t > 0,

d P = −αX dt +σ dW , t > 0,

X = P = 0, t = 0.

(18)

We aim to recover the parameters α > 0 and σ > 0, as well

as the complete path (X t )0≤t≤10, based on noisy observations

of position at a few specific times.

We use the following Bayesian priors.

α ∼ Exp(12), σ ∼ Exp(4), W ∼ BM([0, 10]). (19)

As an example of mild model misfit, we set X t = sin(4t)

and then add N (0, 0.09) observational noise at times t =
1, 3, 5, 7, and 9.

To approximate the posterior path distribution, we first

infer the driving Brownian motion (Wt )0≤t≤10 and the scalar

parameters α and σ . Then, we recover the posterior path

by integrating forward the SDE (18) using a standard Euler

solver. To discretize X t and Wt , we use 200 equally spaced

times between t = 0 and t = 10.

We compare the performance of five different MCMC

samplers:

1. A PCN-based sampler that simultaneously proposes PCN

updates for W and Gaussian random walk updates for

(log α, log σ).

2. The “hybrid sampler” of Zhou et al. (2017), which explic-

itly estimates the posterior covariance matrix.

3. A modified FES sampler with L = 8 walkers and joint

proposals that combine AIES and PCN moves to update

all the parameters at once.

4. A modified FES sampler with L = 100 walkers and joint

proposals.

5. A standard FES sampler with L = 100 walkers.

We initialize our samplers by drawing randomly from the

Bayesian prior distribution. After a short pilot run, we find

that M = 5 is a near-optimal truncation parameter, and we

fix this parameter for all the samplers (besides PCN). We

report the IATs for the samplers in Table 3, and we show

ACF curves in Fig. 3.

As a first comparison, we find that FES mixes more

quickly with L = 100 walkers than with L = 8 walkers.

Table 3 IATs for log α, log σ , and several KL coefficients with the

fastest IATs in bold; all IATs have been divided by 1000 to improve

readability

Integrated autocorrelation times ÷ 1000

PCN Hybrid Joint, L=8 Joint, L=100 L=100

log α 51 38 23 11 12

log σ 26 22 18 6.6 8.1

η1 5.7 1.5 6.3 1.0 1.6

η10 5.9 1.6 2.8 2.0 0.39

η100 5.8 1.2 2.5 1.8 0.30

Fig. 3 ACF curves for the log α parameter

L = 8 is the minimal possible number of walkers to ensure

the AIES sampler does not get stuck in a low-dimensional

subspace. However, it is recommended to use more walkers

whenever possible. Foreman-Mackey and coauthors recom-

mend using hundreds of walkers (Foreman-Mackey et al.

2013), and in some applications up to 2000 walkers have

been used (Akeret et al. 2013).

As a second comparison, we find that joint updates lead to

slightly faster sampling within the AIES subspace but slower

sampling in the complementary subspace, compared to stan-

dard FES updates. Thus, the advantages of joint updates

versus standard Metropolis-within-Gibbs updates depend on

the particular statistics being estimated.

As a last comparison, we find that the hybrid sampler of

Zhou et al. (2017) has two shortcomings that can be addressed

by using FES. First, the hybrid sampler is very slow to esti-

mate the posterior covariance matrix. Figure 4 reveals that

more than a million iterations are needed for the estimated

variances for log α and log σ parameters to stabilize. Since

the hybrid sampler tunes its proposals based on the estimated

posterior covariance matrix, the method requires over a mil-

lion iterations to achieve its peak efficiency. In contrast, FES
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Fig. 4 Variance estimates for log α and log σ using the adaptive hybrid

sampler

does not require such an adaptation period: the dynamics

remain stable from the very first iteration onwards.

Second, even after the hybrid sampler has adapted to the

posterior covariance structure, mixing times for all observ-

able are still comparatively slow. A major obstacle limiting

the efficiency of the hybrid sampler is the multimodality of

the posterior distribution, which is highlighted in Figs. 5 and

6 . It is very challenging for a Gaussian random walk to effi-

ciently traverse a multimodal distribution. In contrast, we

find in this example that FES significantly outperforms the

hybrid sampler, suggesting a robustness to multimodality that

is highly desirable in applications.

5 Conclusion

In this work, we introduced the functional ensemble sampler

(FES). FES requires no gradients, it is easy to code, and it is

parallelizable. These factors make FES a widely applicable

sampler for infinite-dimensional inverse problems.

In two numerical examples, we demonstrated the bene-

fits of using FES. First, when parameters in the posterior

Fig. 5 Posterior pdf for α exhibiting multimodality

Fig. 6 Posterior paths exhibiting multimodality

distribution are highly correlated, we showed how FES can

reduce integrated autocorrelation times by two orders of

magnitude compared to PCN. Second, when the posterior

distribution is mildly multimodal, we showed how FES out-

performs PCN and the alternative gradient-free sampler of

Zhou et al. (2017).

We acknowledge two opportunities to improve the per-

formance of FES even further. First, FES sampling could be

streamlined by identifying a likelihood-informed subspace

where enhanced sampling is most essential. Second, after

isolating a low-dimensional subspace for enhanced sampling,

we find that FES is typically an efficient sampler, except in

cases of extreme multimodality in which FES deteriorates

in its performance (Goodman and Weare 2010) and further

sampling modifications may be needed.

In conclusion, FES pushes the limits of the MCMC

approach to solving infinite-dimensional inverse problems.

Despite having a few limitations, the method offers a prac-

tical and powerful solution for many sampling problems

where PCN falls short, and we recommend FES as a general-

purpose gradient-free sampler.
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