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Abstract

We introduce a new Markov chain Monte Carlo (MCMC) sampler for infinite-dimensional inverse problems. Our new sampler
is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the
target distribution. We extend this ensemble sampler for the first time to infinite-dimensional function spaces, yielding a
highly efficient gradient-free MCMC algorithm. Because our new ensemble sampler does not require gradients or posterior
covariance estimates, it is simple to implement and broadly applicable.
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1 Introduction

In many Bayesian inverse problems, Markov chain Monte
Carlo (MCMC) methods are needed to approximate distri-
butions on infinite-dimensional function spaces, for example
in groundwater flow (Iglesias et al. 2014), medical imag-
ing (Dunlop and Stuart 2016), and traffic flow (Coullon and
Pokern 2020). Yet designing efficient MCMC methods for
function spaces has proved challenging.

The earliest proposed sampler for function spaces was
the preconditioned Crank—Nicolson algorithm (PCN, Beskos
et al. 2008). PCN is easy to code and broadly applicable, but
it is not always efficient. When sampling from a posterior
distribution that is poorly scaled or multimodal, PCN can
require a huge number of samples to accurately calculate
statistics (Cotter et al. 2013).

Recent gradient-based MCMC methods (Cotter et al.
2013; Cui et al. 2014; Beskos et al. 2017), preconditioned
MCMC methods (Zhou et al. 2017; Rudolf and Sprungk
2018), and SMC methods (Kantas et al. 2014) have improved
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on the computational efficiency of PCN. However, these new
samplers require gradients or posterior covariance estimates
that may be challenging to obtain. Calculating gradients is
difficult or impossible in many high-dimensional inverse
problems involving a numerical integrator with a black-box
code base (Chen et al. 2016). Additionally, accurately esti-
mating posterior covariances can require a lengthy pilot run
or adaptation period (Roberts and Rosenthal 2009). These
concerns raise the question: is there a functional sampler
that outperforms PCN without requiring gradients or poste-
rior covariance estimates?

To address this question, we turn to the literature on finite-
dimensional MCMC. In finite-dimensional spaces, there is a
gradient-free sampler that avoids explicit covariance estima-
tion yet adapts naturally to the covariance structure of the
sampled distribution. This sampler, called the affine invari-
ant ensemble sampler (AIES, Goodman and Weare 2010),
is easy to tune, easy to parallelize, and efficient at sampling
spaces of moderate dimensionality (d < 20). AIES is used
extensively due to its implementation in the popular emcee
package for python (Foreman-Mackey et al. 2013).

The main contribution of this work is to propose a new
functional ensemble sampler (FES) that combines PCN and
AIES. To apply this new sampler, we first calculate the
Karhunen-Loeve (KL) expansion for the Bayesian prior dis-
tribution, assumed to be Gaussian and trace-class. Then,
we use AIES to sample the posterior distribution on the
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low-wavenumber KL components and use PCN to sample
the posterior distribution on the high-wavenumber KL com-
ponents. Alternating between AIES and PCN updates, we
obtain our functional ensemble sampler that is efficient and
easy to use, without requiring detailed knowledge of the tar-
get distribution.

In past work, several authors have proposed splitting
the Bayesian posterior into low-wavenumber and high-
wavenumber components and then applying enhanced sam-
pling to the low-wavenumber components (Law 2014; Kan-
tas et al. 2014; Cui et al. 2016; Beskos et al. 2017, 2018).
Yet compared to these other samplers, FES is unique in its
simplicity and broad applicability. FES does not require any
derivatives, and the need for derivative-free samplers has pre-
viously been emphasized in Chen et al. (2016); Hu et al.
(2017); Zhou et al. (2017) and Beskos et al. (2018). FES
also eliminates the requirement for posterior covariance esti-
mates. Lastly, FES is more efficient than other gradient-free
samplers in our tests.

In two numerical examples, we apply FES to challenging
inverse problems that involve estimating a functional param-
eter and one or more scalar parameters. In our first example,
we consider the advection equation

p p _
at—l—cax—O, t >0,

P = o, r=0. M
We simultaneously estimate the advection speed ¢ and the
initial condition py from a set of noisy observations. We
compare the performance of PCN and FES and find that PCN
mixes slowly because ¢ and pg are highly correlated under
the posterior distribution. In comparison, FES mixes more
quickly, reducing integrated autocorrelation times (Sokal
1997) by two orders of magnitude.

In our second example, we consider the Langevin diffu-
sion

dX = Pdt, t>0,
dP = —aXdt+odW, t >0, )
X=P=0, t=0.

We simultaneously estimate the drift parameter «, the dif-
fusion parameter o, and the posterior path (X:)o<;<io
from noisy observations. We compare the performance of
PCN, FES, and an alternative derivative-free sampler (Zhou
et al. 2017) that explicitly estimates the posterior covariance
matrix. We conclude that FES is the fastest available gradient-
free sampler for this challenging, multimodal test problem.
The rest of the paper is organized as follows. Section 2
reviews the PCN and AIES samplers, Sect. 3 introduces the
new ensemble sampler for function spaces, Sect.4 presents
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numerical examples, and Sect.5 concludes. Code to repro-
duce the examples is available on Github'.

2 Background on MCMC samplers

In this section, we explain why it is difficult to approximate
a Bayesian posterior distribution on an infinite-dimensional
function space. Then, we describe the preconditioned Crank—
Nicolson sampler (PCN, Beskos et al. 2008) which can
be used for this approximation task. Lastly, we describe
the affine invariant ensemble sampler (AIES, Goodman and
Weare 2010), an efficient sampler for finite-dimensional
spaces that has not previously been extended to the infinite-
dimensional setting.

2.1 Infinite-dimensional inverse problems

In a typical infinite-dimensional Bayesian inverse problem,
the goal is estimating a posterior distribution

7 (du) o< exp (¢ (u)) mo(du), 3

where u is a square-integrable function on adomain 2 € R¢,
¢ (u) is a log-likelihood functional, and g = N (0, C) is a
Gaussian prior distribution.

To estimate 77, we must select a finite-dimensional approx-
imation space and then sample m restricted to this space.
However, ensuring high accuracy with this approach is
difficult. To accurately calculate statistics of the posterior dis-
tribution, a high-dimensional approximation space is needed.
Yet, as we increase the dimensionality, the acceptance proba-
bility for a standard MCMC sampler, such as the Metropolis
random walk sampler (Metropolis et al. 1953), sinks to zero.
Hence, the MCMC sampler takes an increasingly long time
to move anywhere, and sampling from 7 becomes tediously
slow (Cotter et al. 2013).

2.2 Preconditioned Crank-Nicolson

PCN solves the problem of vanishing acceptance probabil-

ities by proposing MCMC moves that are always accepted

under the Gaussian prior distribution. Because of this sta-

bility property, even as we increase the dimensionality of

the approximation space, the average acceptance probability

remains bounded away from zero (Hairer et al. 2014).
Starting from a position U, the PCN update is

U=+v1-0U + t, )

1 https://github.com/jeremiecoullon/functional_ensemble_sampler
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where £ ~ N (0, C) is a random draw from the Gaussian
prior and w € (0, 1] is a step size parameter. If w < 1 the
proposal is a small perturbation of the position U, whereas
if @ = 1 the proposal is independent from U. The main
computational cost of PCN then comes from evaluating the
acceptance probability

min {1, exp (qs(U) — ¢(U))] , )

which requires calculating the log-likelihood functional at
the proposed parameter value U.

PCN is a simple, widely applicable approach that requires
little more than making inexpensive proposals and evaluating
the log-likelihood at the proposed parameter values. How-
ever, the main limitation of PCN is the slow convergence of
statistics when the posterior distribution is poorly scaled or
multimodal. This slow convergence has led to myriad efforts
to improve on PCN’s sampling speed (Cotter et al. 2013; Cui
etal. 2014; Kantas et al. 2014; Beskos et al. 2017; Zhou et al.
2017; Rudolf and Sprungk 2018), but the available methods
require gradients or covariance estimates that can be difficult
to obtain.

2.3 Affine invariant ensemble sampler

The affine invariant ensemble sampler (AIES, Goodman and
Weare 2010) is a finite-dimensional MCMC sampler with
the remarkable property of affine invariance. Affine invari-
ance means that the sampler remains completely unchanged
if the state space is stretched, compressed, or translated by an
affine transformation x +— Ax + b. Because of this property,
AIES efficiently samples from distributions that are wide in
some directions and narrow in other directions. These “poorly
scaled” distributions would cause problems for other sam-
plers, but they do not compromise the performance of AIES.

To sample from a density 7 on RM, AIES generates an
ensemble of walkers 7() = (X1,... X) that is invariant
with respect to the product density 7 (x1) ... (xz) onRML,
To update the ensemble, AIES proposes sliding one walker
toward or away from another walker. Then, AIES accepts
or rejects the proposal according to a Metropolis-Hastings
step. The proposals and acceptance probabilities are invariant
under affine transformations, so the scheme is affine invariant
overall.

To perform the AIES proposal step, we randomly choose
awalker X; and a second walker X ; # X;. Then, we propose
moving the walker X; to the new position

Xi=Xi+1-2)(X; - Xi), (6)

where Z is a random number in an interval [1/a, a], chosen
with density g (Z) o 1/4/z. Typically, a = 2 in applications,

but more generally a is a parameter that modulates the step
size. The main computational cost of AIES then comes from
evaluating the acceptance probability

min 11, zM—1 7D %
' (X)) |’

which requires calculating the density 7 at the proposed posi-
tion X i

AIES is a popular and efficient sampler for low- and
moderate-dimensional densities (M < 20). AIES would not
typically be an efficient sampler for higher-dimensional den-
sities. However, in the sections to follow, we explain how
AIES can be applied to a low-dimensional subspace of an
infinite-dimensional function space, thereby improving the
sampling compared to PCN.

Remark 1 A parallel implementation of AIES is available
in the emcee package for python (Foreman-Mackey et al.
2013). In this version of AIES, we split the walkers into two
groups and sample in two stages. Initially, we select walkers
from the first group and slide these walkers toward or away
from walkers in the second group. Then, we select walkers
from the second group and slide these walkers toward or away
from walkers in the first group. By splitting the walkers into
two groups, we can conduct AIES in parallel across multiple
processors, helping to spread out the computational cost.

3 New ensemble sampler

In this section, we describe the Karhunen—Loeve (KL) expan-
sion, which is a helpful tool for constructing functional
MCMC samplers. Then, we introduce our new functional
ensemble sampler (FES) and discuss its main properties.

3.1 KL expansion

The KL expansion (Stuart 2010) is a rapidly converging basis
expansion for a random function & drawn from a trace-class
Gaussian distribution A/ (0, C). The KL expansion decom-
poses £ into a linear combination of “KL modes” 11, 12, . . .,
which are eigenfunctions of the covariance operator C. Thus,
the KL expansion takes the form

=D (. &) m, ®)

i=1

where (-, -) denotes the inner product in L? (£2). Because &
is a Gaussian with mean zero, the KL. components (n;, &) are
independent Gaussians with mean zero and variances A >
A > --- that are determined by the eigenvalues of C.

@ Springer
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The KL expansion converges as rapidly as possible in the
sense of minimizing the mean squared error

2

. (C))

L2(£2)

Een0.0)

L
E=Y i &)m
i=1

for any truncation threshold L > 1. Because the KL
expansion converges so rapidly, the low-wavenumber modes
explain most of the variance in . For example, if £ is a Brow-
nian motion on [0, 1], the eigenfunctions of the covariance
operator are

n,-(t):ﬁsin((i—%)nt), i=1,2,..., (10)

. . 2
and the eigenvalues are 4; = (i — %) 72, Hence, the

five lowest-wavenumber KL modes account for 96% of the
variance in &, while the high-wavenumber modes account for
just 4% of the variance.

We now consider the implications of the KL expansion
for Bayesian inference. In a Bayesian inverse problem with
a Gaussian prior, we can decompose a functional parameter
U in terms of the KL modes

o
U=Y Uni, U =mU). (11)
i=1

Under the prior distribution 79 = A (0, C), the U; compo-
nents are independent Gaussians. Under the posterior dis-
tribution 7 (du) o exp (¢ (u)) wo (du), the U; components
have an unknown distribution that must be approximated
through sampling.

Although the U; components have an unknown posterior
distribution, the prior distribution restricts the values these
variables can take. The high-wavenumber components are
narrowly peaked Gaussians under the prior, so they are con-
strained to be nearly Gaussian with a low variance under the
posterior. In contrast, the low-wavenumber components are
less constrained, so the posterior distribution on these compo-
nents can become stretched, pinched, or otherwise distorted
by the likelihood function.

The KL coordinates divide an infinite-dimensional inverse
problem into a simple sampling part and a challenging
sampling part. Sampling the high-wavenumber components
is comparatively simple. The prior and posterior distribu-
tions on these components are nearly the same, enabling
PCN to sample efficiently. In contrast, sampling the low-
wavenumber components is more challenging. The posterior
distribution on these components may be poorly scaled or
multimodal, causing difficulties for PCN.

@ Springer

3.2 Functional ensemble sampler (FES)

To efficiently sample from function spaces, we propose
a Metropolis-within-Gibbs sampler that uses AIES on the
low-wavenumber KL components and PCN on the high-
wavenumber KL components. We call this algorithm the
functional ensemble sampler (FES) and provide pseudocode
for the method below.

Algorith 1 (Functional ensemble sampler)
To sample a distribution w(du) o exp (¢ (u)) mo(du)
where my = N (0, C), perform the following steps:

1. Identify a matrix J whose columns are the first M eigen-
vectors of C. Set P = JJ T and Q =1 — JJT.

2. Initialize an ensemble of walkers (X(l), . X%)

3. Fort =0,1,...:

(@) Fori=1,...,L:
i. Randomly choose a walker X?’ + Xl.2t.
ii. Propose the update

XX =X+ (1-2)P (Xff - Xl?f) . (2

where Z € Ll/a, al has density g (z) x 1//z.
iii. Set X?* = X2 with probability

x¥)
1 ZM—le( !

min = (X?r)

(13)

(b) Ser (X3, X3 ) = (X7, XF).
(c) Fori=1,...,L:
i. Propose the update

5([21“ _ PX,.ZT“ + Q( /1 _wzxizrﬂ +wé‘),

(14)
where & ~ N (0, C).
ii. Set Xi2r+1 = X?H'l with probability
min[l,exp (¢> (5(,) —¢(X,~))}. (15)

2142 2142 2t+1 2t+1
(@) Ser (X372, xFH) = (G X3,

3.3 Properties of FES

FES is a novel method for function space sampling, which
enhances the standard PCN approach. FES remains stable
as we refine the functional discretization, similarly to PCN.
However, compared to PCN, we can tune FES to achieve
faster mixing.
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The main tuning parameter in FES is M, which controls
how many KL coordinates are included in the AIES sam-
pling. When M = 0, no AIES sampling is performed, so the
algorithm reduces to PCN. As M increases, FES begins to
outperform PCN. However, if M increases past 20, the perfor-
mance deteriorates, since AIES is only an efficient sampler
for subspaces of dimension 20 and lower.

The precise number of KL coordinates to include in the
AIES sampling is a tuning decision, with the optimal number
depending on the estimation problem. However, based on our
numerical tests, we recommend setting M = 5 as a default
and then adjusting M during the early stages of the sampling
to be as small as possible while ensuring the PCN sampler
can take large steps (w > 0.5) with acceptance rate > 20%.

To explain the limitations of FES, we recall the idea of a
likelihood-informed subspace (LIS), originally introduced in
Cuietal. (2014). An LIS is alow-dimensional linear subspace
in which prior and posterior marginal distributions differ sub-
stantially. Moreover, conditioning on an LIS ensures that
differences between prior and posterior distributions become
small. An LIS is useful for constructing efficient MCMC
algorithms, because enhanced sampling is needed on the LIS
but PCN provides efficient updates in directions orthogonal
to the LIS (Cui et al. 2014, 2016; Beskos et al. 2018).

FES relies on the assumption that the 20 lowest-
wavenumber KL components contain an LIS. This assump-
tion is often but not always satisfied in practice. By consid-
ering a sufficiently large number of KL coordinates, we can
always find an LIS. However, the required number of coordi-
nates may be larger than 20. For example, a large number of
KL coordinates is needed if the posterior distribution empha-
sizes solutions that are not very smooth, which can happen if
the observational noise in the problem is small. If the required
number of KL coordinates is higher than 20, FES may no
longer provide an efficient sampling solution, although it is
still not slower than PCN.

Ideally, we would extend FES by applying AIES directly
to a likelihood-informed subspace and applying PCN to the
complementary subspace. However, to our knowledge, all the
available methods for identifying an LIS require calculating
gradients (Cui et al. 2016) or posterior covariance matrices
(Beskos et al. 2018). Developing broadly applicable tools for
identifying an LIS remains an issue for future research.

Other extensions to FES are also possible. Whereas Algo-
rithm 1 presents a sequential implementation of FES, there
is also a parallel implementation using the modified AIES
sampling discussed in Remark 1. Another extension to FES
involves jointly sampling functional and scalar parameters in
a Bayesian inverse problem. Indeed, it is straightforward to
include additional scalar parameters in the AIES subspace,
as we demonstrate through numerical examples in Sect. 4.
We regard this extension of FES as especially useful, since

there is often simultaneous uncertainty around functional and
scalar parameters in a model.

Lastly, we compare FES to the “hybrid sampler” of Zhou
and coauthors (Zhou et al. 2017). The hybrid sampler is
a gradient-free method that uses PCN to sample the high-
wavenumber KL components and uses Gaussian random
walk proposals to sample the low-wavenumber KL compo-
nents. In the hybrid sampler, the covariance of the Gaussian
perturbations is adaptively tuned based on the estimated pos-
terior covariance matrix.

We find in our experiments that the hybrid sampler can
be very efficient when the posterior distribution is nearly
Gaussian and the posterior covariance matrix is accurately
estimated (even slightly more efficient than FES). However,
limitations of the hybrid sampler include sensitivity to non-
Gaussian posterior distributions and long adaptation periods
needed to achieve peak performance. As we show in Sect.4,
FES addresses both of these limitations. FES is a fast sampler
for many non-Gaussian distributions, and FES is efficient
over short sampling runs.

4 Numerical examples

In this section, we apply FES to two challenging inverse
problems involving functional and scalar parameters. For
both problems, we fix the AIES step size to a = 2, as rec-
ommended in Foreman-Mackey et al. (2013), and we tune
the PCN step size w to give an acceptance rate of 20%. We
remove the first 10% of each trajectory as burn-in, and we
run the trajectories at least 100 times as long as the integrated
autocorrelation time to ensure robust statistics (Sokal 1997).

4.1 Advection equation

We first consider the advection equation 3—‘; + cg—’; =0,a
simple first-order PDE that is a prototype for more general
hyperbolic PDEs. Given an initial condition pg(x) and a wave
speed ¢ € R, the solution to the advection equation can be
written explicitly as

p(x, 1) = po(x —ct). (16)

We aim to recover the initial condition and wave speed
from noisy observations of flow. Flow is the product of den-
sity and velocity, given by the equation ¢ = pc. When flow
is the only quantity observed, the initial condition and wave
speed become highly correlated in the posterior, making the
MCMC sampling difficult.

In our Bayesian model, we set a Unif (0, 1.4) prior on ¢
and a Gaussian prior on pg with mean 100 and covariance
function

@ Springer
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k(x, x') = 130 exp (-% (x — x/)z) . (17)

We generate a true solution to the PDE by setting cyye =
0.5 and drawing pp according to the Gaussian prior. Then,
we generate observations of the flow at locations x = 2, 6,
and 10 and times r = 1, 1.5, and 2, subject to independent
N (0, 0.04) observational noise.

To approximate the posterior distribution on pg and c, we
apply FES using L = 100 walkers. During the initialization,
we independently sample the walkers from a ball around
the posterior mode, as recommended in Foreman-Mackey
et al. (2013). We discretize po using 200 grid points, equally
spaced between x = 0 and x = 10.

In FES applications, we recommend choosing the AIES
subspace to be as low-dimensional as possible, while ensur-
ing that PCN can take large steps (w > .5) with a high
acceptance rate (> 20%). Here, we empirically support this
recommendation by evaluating the performance of FES when
the AIES subspace includes the wave speed parameter ¢ as
wellas M = 0, 1, 5, 10, or 20 of the lowest-wavenumber KL
components.

As our first conclusion from this comparison, we find that
we can take larger PCN steps with a 20% acceptance rate if
we choose M to be large. We report the precise PCN step
sizes in Table 1, which reveals that a PCN step size w > .5
is possible whenever M > 10.

As our second conclusion, we verify that choosing M =
10 leads to the most efficient sampling. We report the auto-
correlation functions (ACFs) and integrated autocorrelation
times (IATs) for various observables in Fig. 1 and Table 2. For
comparison purposes, we also report the ACFs and IATs from
a standard PCN-based sampler. With the optimal parameter
M = 10, we find that FES reduces the IATs by two orders
of magnitude compared to PCN.

To check that FES remains stable with increasing dimen-
sion, we also run our experiments with a discretization into
twice as many grid points. The IATs remain statistically indis-
tinguishable from those reported in Table 2 with relative
differences of < 10%.

Lastly, to help explain why FES performs so much better
than PCN, we present Fig. 2, which shows posterior sam-
ples of pg conditioned on several values of c¢. This figure
reveals the strong correlation between the wave speed ¢ and
the low-wavenumber components of pg. Since the PCN sam-
pler does not account for this correlation structure, large PCN

Table 1 PCN step size for various FES trials

PCN step size

M=0 M=1 M=5 M=10 M=20
) 0.04 0.05 0.15 0.60 1.00
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ACF for the wavespeed ¢
1.0 ——— —»— pCN

0.8

M=10

s M=20

ACF

0.4
0.2
0.0

000 025 050 075 100 125 150 175 2.00
Lags %10

ACF for KL coef 1

1.0

0.8

0.6

ACF

0.4

0.2

0.0

000 025 050 075 100 125 150 175 200
Lags x10*

Fig.1 ACEF curves for wave speed ¢ and the first KL coefficient

Table 2 IATs for wave speed ¢ and several KL coefficients with the
fastest IATs in bold; all IATs have been divided by 1000 to improve
readability

Integrated autocorrelation time < 1000

PCN M=0 M=1 M=5 M=10 M=20
c 360 130 50 7.7 1.5 4.3
N1 390 110 30 6.8 1.4 3.1
s 290 46 55 11 1.1 1.9
n15 280 30 16 12 1.0 1.2
17100 310 43 20 11 1.1 1.4
140
—_— c=0.4
— c=0.5

120 - /' N

100

— — c=0.6
- = true IC

Po

Fig.2 Samples of py conditioned on three values of the wave speed ¢
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updates are highly unlikely to be accepted. In contrast, FES
naturally adapts to this correlation structure, eliminating the
major bottleneck in the sampling.

4.2 Path reconstruction for Langevin dynamics
We consider a dynamical system in which position X; and

momentum P; evolve according to the following Langevin
SDE.

dX = Pdt, t >0,
dP = —aXdt+odW, t>0, (18)
X=P=0, t=0.

We aim to recover the parameters ¢ > 0 and o > 0, as well
as the complete path (X;)o<; <9, based onnoisy observations
of position at a few specific times.

We use the following Bayesian priors.

a ~ Exp(12), o ~Exp4), W ~ BM([O0, 10]). (19)
As an example of mild model misfit, we set X, = sin(4t)
and then add A\ (0, 0.09) observational noise at times t =
1,3,5,7,and 9.

To approximate the posterior path distribution, we first
infer the driving Brownian motion (W;)(<; <10 and the scalar
parameters « and o. Then, we recover the posterior path
by integrating forward the SDE (18) using a standard Euler
solver. To discretize X, and W;, we use 200 equally spaced
times between r = 0 and t = 10.

We compare the performance of five different MCMC
samplers:

1. APCN-based sampler that simultaneously proposes PCN
updates for W and Gaussian random walk updates for
(loga, logo).

2. The “hybrid sampler” of Zhou et al. (2017), which explic-
itly estimates the posterior covariance matrix.

3. A modified FES sampler with L = 8 walkers and joint
proposals that combine AIES and PCN moves to update
all the parameters at once.

4. A modified FES sampler with L = 100 walkers and joint
proposals.

5. A standard FES sampler with L = 100 walkers.

We initialize our samplers by drawing randomly from the
Bayesian prior distribution. After a short pilot run, we find
that M = 5 is a near-optimal truncation parameter, and we
fix this parameter for all the samplers (besides PCN). We
report the IATs for the samplers in Table 3, and we show
ACF curves in Fig. 3.

As a first comparison, we find that FES mixes more
quickly with L = 100 walkers than with L = 8 walkers.

Table 3 IATs for loga, logo, and several KL coefficients with the
fastest IATs in bold; all IATs have been divided by 1000 to improve
readability

Integrated autocorrelation times -+ 1000

PCN  Hybrid Joint, L=8 Joint, L=100 L=100
loga 51 38 23 11 12
logo 26 22 18 6.6 8.1
N1 5.7 1.5 6.3 1.0 1.6
110 5.9 1.6 2.8 2.0 0.39
17100 5.8 1.2 2.5 1.8 0.30
1.0 +— pCN
L\ *— hybrid
x —v— joint, L=8
g8 . joint, L=100
. —— MwG
0.6
@
<<
04
0.2
0.0
0.0 0.5 1.0 1.5 2.0 25 3.0

lags x10°

Fig.3 ACEF curves for the log o parameter

L = 8 is the minimal possible number of walkers to ensure
the AIES sampler does not get stuck in a low-dimensional
subspace. However, it is recommended to use more walkers
whenever possible. Foreman-Mackey and coauthors recom-
mend using hundreds of walkers (Foreman-Mackey et al.
2013), and in some applications up to 2000 walkers have
been used (Akeret et al. 2013).

As a second comparison, we find that joint updates lead to
slightly faster sampling within the AIES subspace but slower
sampling in the complementary subspace, compared to stan-
dard FES updates. Thus, the advantages of joint updates
versus standard Metropolis-within-Gibbs updates depend on
the particular statistics being estimated.

As a last comparison, we find that the hybrid sampler of
Zhouetal. (2017) has two shortcomings that can be addressed
by using FES. First, the hybrid sampler is very slow to esti-
mate the posterior covariance matrix. Figure 4 reveals that
more than a million iterations are needed for the estimated
variances for log ¢ and log o parameters to stabilize. Since
the hybrid sampler tunes its proposals based on the estimated
posterior covariance matrix, the method requires over a mil-
lion iterations to achieve its peak efficiency. In contrast, FES
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Fig.4 Variance estimates for log @ and log o using the adaptive hybrid
sampler

does not require such an adaptation period: the dynamics
remain stable from the very first iteration onwards.

Second, even after the hybrid sampler has adapted to the
posterior covariance structure, mixing times for all observ-
able are still comparatively slow. A major obstacle limiting
the efficiency of the hybrid sampler is the multimodality of
the posterior distribution, which is highlighted in Figs. 5 and
6 . It is very challenging for a Gaussian random walk to effi-
ciently traverse a multimodal distribution. In contrast, we
find in this example that FES significantly outperforms the
hybrid sampler, suggesting a robustness to multimodality that
is highly desirable in applications.

5 Conclusion

In this work, we introduced the functional ensemble sampler
(FES). FES requires no gradients, it is easy to code, and it is
parallelizable. These factors make FES a widely applicable
sampler for infinite-dimensional inverse problems.

In two numerical examples, we demonstrated the bene-
fits of using FES. First, when parameters in the posterior
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Fig.5 Posterior pdf for & exhibiting multimodality
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Fig.6 Posterior paths exhibiting multimodality

distribution are highly correlated, we showed how FES can
reduce integrated autocorrelation times by two orders of
magnitude compared to PCN. Second, when the posterior
distribution is mildly multimodal, we showed how FES out-
performs PCN and the alternative gradient-free sampler of
Zhou et al. (2017).

We acknowledge two opportunities to improve the per-
formance of FES even further. First, FES sampling could be
streamlined by identifying a likelihood-informed subspace
where enhanced sampling is most essential. Second, after
isolating alow-dimensional subspace for enhanced sampling,
we find that FES is typically an efficient sampler, except in
cases of extreme multimodality in which FES deteriorates
in its performance (Goodman and Weare 2010) and further
sampling modifications may be needed.

In conclusion, FES pushes the limits of the MCMC
approach to solving infinite-dimensional inverse problems.
Despite having a few limitations, the method offers a prac-
tical and powerful solution for many sampling problems
where PCN falls short, and we recommend FES as a general-
purpose gradient-free sampler.
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