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Abstract Multilayered membrane filters, which consist of a stack of thin porous membranes with different prop-

erties (such as pore size and void fraction), are widely used in industrial applications to remove contaminants and

undesired impurities (particles) from a solvent. It has been experimentally observed that the performance of well-

designed multilayer structured membranes is markedly better than that of equivalent homogeneous membranes.

Mathematical characterization and modeling of multilayered membranes can help our understanding of how the

properties of each layer affect the performance of the overall membrane stack. In this paper, we present a simplified

mathematical model to describe how the pore-scale properties of a multilayered membrane affect the overall filter

performance. Our results show that, for membrane stacks where the initial layer porosity decreases with depth, larger

(negative) porosity gradients within a filter membrane are favorable for increasing throughput and filter lifetime, but

at the expense of moderately poorer initial particle retention. We also found that the optimal layer thickness distri-

bution that maximizes total throughput corresponds to a membrane stack with larger (negative) porosity gradients

in which layer thickness increases slightly between successive layers in the depth of the membrane.
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1 Introduction

Membrane filters are used in many industrial engineering processes that require separating particles and contami-

nants of any given size from a fluid. Water purification [1], many separation processes in the biotech industry [2–5],

treatment of radioactive sludge [6], and beer clarification [7] are just a few of the widespread applications. The

details of the filtration in these applications may vary dramatically depending on the size of particles to be removed,

the flow speed of the particle-laden solvent, the rigidity of the particles and so on; however, maintaining the desired

separation control at a reasonable flow rate, using the least energy possible, is usually the ultimate goal. Therefore,

for a given application, membrane filters with specific characteristics (such as flat or pleated [8,9], specific internal

structure, specific pore sizes and shape [10–14], pore connectivity and distribution within the membrane [15]) may

be needed.

A multilayered membrane consists of a stack of membranes, with different physical properties such as pore

size and porosity, usually laminated at the layer junctions. Multilayered membranes are used widely in a variety of

industrial applications, such as separation of cells or particles [15–17], or they can be combined to form the filtration

support layers required in ultrafiltration, gas separation, and catalysis [18]. It has been demonstrated experimentally

that a well-designed multilayer membrane performs better (according to a range of selected performance criteria)

than a homogeneous membrane [19–22]. Mathematical characterization and modeling of multilayered membranes

can help our understanding of how the properties of each layer affect the performance of the overall membrane

stack.

Various models that attempt to analyze the performance of multilayered membrane filters have been formulated

and examined to date. For instance, simple network models, in which the porous material is represented by a

rectangular network where bonds and nodes represent pores and inter-pore connections (with each pore represented

by a straight cylindrical capillary of specified length and diameter), respectively, have been studied by several authors.

Such network models can quickly generate performance data, such as flux and particle retention characteristics,

for a broad sweep of filter geometries (membrane microstructures). Early variants of such models [23–25] assume

identical pores, but more recent versions [11,15] attempt to capture the depth variation of pore structure that is

engineered in real membranes, allowing pore size and connectivity to be a function of depth through the membrane

by adopting a layered structure, with changes in pore size/connectivity occurring at layer boundaries.

An important application of such models is in identifying optimal configurations for the pore microstructure, in

terms of (for example) maximizing throughput of filtered fluid and filter lifetime, while removing an acceptable

fraction of particles. Particles removed by the filter inevitably foul it, via three principal distinct fouling modes:

(a) standard blocking or adsorptive fouling, in which particles smaller than the membrane pores are deposited or

adsorbed within pores and shrink the pore radius; (b) blocking (complete or partial) of pores by large particles,

which are “sieved” from the fluid; and (c) cake formation (once pores are blocked by large particles, other particles

can accumulate on top of the membrane, forming a “cake” layer, adding additional resistance via a secondary porous

layer on top) [2,12,26–29].

Many studies, both experimental and theoretical, have shown that a negative porosity gradient in the depth of

the filter can improve filter efficiency [10,30–35] as measured by, for example, the total volume of filtrate fluid

processed by the filter over its lifetime; the energy consumed in obtaining the filtrate; and also the level of contaminant

remaining in the filtrate. This may be understood by noting that filter fouling necessarily is heaviest at the upstream

side of the filter, where the feed suspension enters, thus this side needs to be more porous than the downstream side

in order to deal with the heavier fouling burden. Filtration efficiency considerations are complicated by the frequent

need for a very clean filtrate, which inevitably means that a large (downstream) portion of the filter membrane must

remain nearly unfouled [15].

The goal of the present paper is to extend the scope of the work outlined above, by means of a novel continuum

model of a multilayered filter that accounts for membrane internal geometry and porosity, and that allows fouling

by both particle sieving and particle adsorption to operate simultaneously. The paper is laid out as follows: in

Sect. 2 we introduce our mathematical model for filtration driven by specified pressure drop (the constant flux

scenario is considered in an Appendix A). The model is nondimensionalized (Sect. 3), and sample simulations,
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Fig. 1 Schematic of a

multilayered filter, with 3

layers of thicknesses d1, d2,

and d3. Different shading

patterns indicate different

initial layer permeabilities
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which demonstrate the important effects of membrane internal geometry and porosity, are presented in Sect. 4.

Finally, we conclude in Sect. 5 with a discussion of our model and results in the context of real membrane filters,

and of future modeling directions.

2 Model formulation

We consider filtration through a planar multilayer porous membrane perpendicular to the x-axis (see Fig. 1) with

unidirectional Darcy flow of a “feed” suspension, assumed incompressible and Newtonian in the dilute suspension

limit, through the membrane in the positive x-direction. The membrane properties and flow are assumed homo-

geneous in the plane of the membrane, but the permeability is depth-dependent (even if permeability is initially

uniform, fouling will lead to nonuniformities over time, t), denoted by k(x, t). We will model multilayered mem-

branes by choosing the initial permeability k(x, 0) to be a smoothed piecewise constant function, constant on each

individual layer, but with rapid variations across short transition regions between layers.

The superficial Darcy velocity u = (u(x, t), 0, 0) within the membrane is then given in terms of the pressure p

by

u = −
k(x, t)

μ

∂p

∂x
,

∂u

∂x
= 0, 0 ≤ x ≤ h, (1)

where μ is the viscosity of the fluid and h is the total thickness of the multilayer membrane [36]. The membrane

permeability k(x, t) must be linked to membrane characteristics, which evolve in time due to fouling. Filtration

commonly takes place under one of two scenarios: specified flux or pressure drop. In this paper, we mostly focus

on the latter case, leaving a brief discussion of the constant flux scenario to the Appendix A. For constant applied

pressure drop, the conditions applied at the upstream and downstream membrane surfaces, x = 0 and x = h,

respectively, are

p(0, t) = p0, p(h, t) = 0. (2)

We use the Kozeny–Carman model (see, for example [36]) to describe membrane permeability k as a function of

the local membrane porosity or void fraction φ(x, t):

k =
χφ3

(1 − φ)2
, (3)

where χ is the Kozeny coefficient (with dimensions of length squared, as for permeability). Porosity φ(x, t) ∈ (0, 1)

is the local pore volume fraction in any small membrane element at depth x and time t . The superficial Darcy velocity

u is the fluid velocity averaged (locally, at depth x) over both membrane and pore volume, and differs from the
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actual mean velocity of fluid within the pores (denoted by uf and averaged over the pore cross-section at depth x).

The membrane porosity links uf and the superficial Darcy velocity u, within each layer of the filter stack, via

u = φuf . (4)

The mass transport of the particles in the feed through the membrane stack may be described by an advection–

diffusion–reaction equation

∂(φc)

∂t
+

∂(ufφc)

∂x
= D

∂2(φc)

∂x2
− f (c, u, φ), (5)

where c(x, t) is the concentration of particles per unit volume of fluid in the membrane, D is the diffusion coeffi-

cient of particles in the feed suspension (here assumed constant), and f (c, u, φ) is the deposition function, which

models how particles carried by the feed are deposited locally within the membrane and depends on the local

particle concentration, Darcy velocity, and membrane porosity. Initially the membrane is clean, therefore the initial

concentration of particles throughout the membrane is zero,

c(x, 0) = 0 for 0 < x < h. (6)

At the membrane inlet, we assume the particle concentration is constant,

c(0, t) = c0, (7)

and conservation of mass implies that the mass flux of particles, J = ufφc − D∂(φc)/∂x , must be continuous

across x = h [14,37], that is,

ufφc

∣
∣
∣
∣
x=h+

=
[

ufφc − D
∂(φc)

∂x

]∣
∣
∣
∣
x=h−

�⇒
∂(φc)

∂x

∣
∣
∣
∣
x=h

= 0. (8)

In Sect. 3, we will discuss that the diffusion term is in fact always negligible compared to the advection and

deposition terms, hence this second boundary condition (8) on the particle concentration will not be needed, since

as D → 0, it becomes trivial.

The membrane porosity decreases as particles are deposited within the membrane on the pore walls. We assume

this occurs at a rate proportional to the deposition function f (c, u, φ), hence

∂φ

∂t
= −α f (c, u, φ), (9)

where α is a constant specific to the particular membrane/feed system, with dimensions of volume (inverse con-

centration). We solve Eq. (9) subject to a specified initial porosity profile,

φ(x, 0) = φ0(x), (10)

modeling the manufacturer-imposed variability of the membrane stack.

The model is closed by specifying the deposition function f (c, u, φ). We consider two distinct mechanisms

for particle deposition: (i) adsorption (particles much smaller than the membrane pores are deposited onto the

pore walls, shrinking pores and thus reducing the local porosity); and (ii) blocking (particles larger than the local

membrane pore size get stuck and block the pore inlet). These two components will be modeled independently.
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Our model assumes that there is no blockage at the layer interfaces (which might occur in practice due to imperfect

layer contacts).

To propose a reasonable choice for f (c, u, φ), consider a membrane with spherical pores of radius r contained

within cubes of fixed size D. For the adsorption, we note that the rate at which the particles arrive at the pore

wall (and thus adhere) should be proportional to the local particle concentration and pore surface area, therefore

we propose an adsorption rate proportional to φ2/3c (note that for the proposed membrane structure, pore surface

area scales with φ2/3, since φ ∼ (r/D)3). In this model, we assume that adsorption simply requires that small

particles in the vicinity of the wall deposit onto it. The rate at which this happens is assumed to depend primarily

on the local concentration, independently of the local flow velocity. For blocking we require a large particle, bigger

than the local pore size, to arrive and block the pore from above, hence we anticipate blocking to proceed at a rate

proportional to the local advective flux of particles uc (large particles can either pass through a pore or they cannot:

the more that pass a location the greater the blocking rate). Noting that pore radius scales with φ1/3, with the above

assumptions blocking will also be proportional to (1 − φ1/3) (smaller pores are more readily blocked). Hence, the

blocking term is proportional to u(1 − φ1/3)c, and the deposition function f (c, u, φ) is taken as

f (c, u, φ) = λ̄φ2/3c
︸ ︷︷ ︸

adsorption

+ δ̄u(1 − φ1/3)c
︸ ︷︷ ︸

blocking

, (11)

where λ̄ ≥ 0 is the average adsorption rate of particles, relating to the physics of the attraction between particles

and pore wall; and δ̄ ≥ 0 is the average blocking coefficient, with dimensions of inverse length (in the absence

of adsorption, δ̄−1 gives a measure of the penetration depth of blocking particles into the membrane). The model

assumes implicitly that particle sizes are uniformly distributed, and that all particles can enter the membrane, thus

can be deposited within it by either adsorption or blocking fouling modes. According to the proposed model,

blocking will dominate at high fluxes, while adsorption is more important in a low-flux scenario. The effect of

changing porosity on the blocking behavior is inherent in the model. As pore constriction occurs and membrane

resistance increases, the mean velocity of fluid within pores decreases. The changes in fluid velocity and porosity

are both reflected in the blocking model, as explained by Eqs. (5)–(11).

3 Nondimensional model

We nondimensionalize the model (1)–(11) to reduce the number of parameters and to enable us to estimate the

relative importance of the terms. We set

x = hx∗, p = p0 p∗, (u, uf) =
p0χ

hμ
(u∗, u∗

f ), c = c0c∗, k = χk∗, t =
hμ

c0 p0αδ̄χ
t∗, (12)

where starred variables are dimensionless. The spatial variable is scaled by the membrane thickness, h. We scale

pressure by the specified pressure drop across the membrane, p0, and the velocity scale then emerges from Darcy’s

law (1). Cross-sectionally averaged particle concentration is scaled by its value at the upstream membrane surface, c0

(assumed constant); and permeability is scaled using a representative permeability value for the unused membrane,

χ (see (3)). Note that there are two timescales in the problem: a short timescale, h2μ/(p0χ), based on the flow

transit time across the membrane, and a longer timescale, hμ/(c0 p0αδ̄χ), on which particle deposition occurs

(see (9) and (11)). Since our investigation primarily concerns the long-time fouling process resulting from particle

deposition, we opt to scale the time variable by this timescale, hμ/(c0 p0αδ̄χ); the flow adapts quasi-statically to the

changing porosity. Dropping the stars, the dimensionless model in the multilayered membrane 0 ≤ x ≤ 1 becomes

u = −k
∂p

∂x
,

∂u

∂x
= 0, (13)

123



23 Page 6 of 25 D. Fong et al.

k =
φ3

(1 − φ)2
, (14)

uf =
u

φ
, (15)

TB
∂(φc)

∂t
+ u

∂c

∂x
= Pe−1φ

∂2c

∂x2
− λφ2/3c − δu(1 − φ1/3)c, (16)

∂φ

∂t
= −

λ

δ
φ2/3c − u(1 − φ1/3)c, (17)

where TB = c0αhδ̄ expresses the ratio of the advective particle transport timescale to that of the particle blocking,

Pe = p0χ/(Dμ) is the Peclet number associated with the particle diffusion, λ = (h2λ̄μ)/(p0χ) measures the

relative rates of particle adsorption to advective particle transport, λ/δ = (hλ̄μ)/(p0δ̄χ) is a measure of the relative

rates of particle adsorption and particle blocking, and δ = hδ̄ is the dimensionless blocking coefficient.

Typical dimensional parameter values (where known) are given in Table 1, and dimensionless parameters are

summarized in Table 2. Most of the parameters in Table 1 (such as χ , α, λ̄, and δ̄) depend on physical characteristics

of the filter membrane and feed solution, which vary from one application to another. Note that, in the absence of

detailed experimental data, several model parameters are unknown, and we assign a range of values to be investigated

to determine the optimal filtration regime.

In this work, we consider plausible filtration regimes where particle blocking and particle diffusion occur at

much slower rates than the advective particle transport. In particular, we consider the limit TB ≪ 1 and Pe ≫ 1

[38,39]. Hence the unsteady and diffusive terms may be neglected in Eq. (16), which then reduces to

u
∂c

∂x
= −λφ2/3c − δu(1 − φ1/3)c. (18)

We note that other limits may be physically relevant, depending on the application, but involve solving a more

complex system with one or two additional parameters to be determined.

Equations (13)–(15) and (17)–(18) are solved subject to boundary and initial conditions:

p(0, t) = 1, p(1, t) = 0, c(0, t) = 1, φ(x, 0) = φ0(x), (19)

which are derived from the dimensional equivalents (2), (7), and (10) earlier. Integrating Eq. (13) and imposing

boundary conditions (19) gives the pressure p and superficial Darcy velocity u as

p = u

∫ 1

x

(1 − φ)2

φ3
dx ′, u =

(∫ 1

0

(1 − φ)2

φ3
dx ′

)−1

, (20)

hence, from (15), the cross-sectionally averaged (across the pore) fluid velocity

uf =
(

φ

∫ 1

0

(1 − φ)2

φ3
dx ′

)−1

. (21)

Substituting (20) into (18) then integrating and applying (19) yields

c = exp

[

−
∫ x

0

(

λφ2/3

∫ 1

0

(1 − φ)2

φ3
dx ′ + δ(1 − φ1/3)

)

dx ′′
]

. (22)
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Table 1 Dimensional parameter values (Venkateshwaran, Private Communication, 2017; see also [40])

Parameter Description Typical value and units

h Membrane thickness 10−4 m

μ Viscosity of feed 10−3 kg m−1 s−1

p0 Pressure drop across membrane Depends on application; here 105

kg m−1 s−2 used

χ Kozeny coefficient (characteristic

membrane permeability)

Depends on application; here

10−16 m2 used

c0 Total concentration of particles in

feed suspension

Depends on application; 10−3 mol

m−3

D Diffusion coefficient of particles in

feed suspension

10−11 m2 s−1

α Pore shrinkage coefficient, see (9) Unknown (depends on

characteristics of membrane and

feed suspension); m3 mol−1

λ̄ Average adsorption rate of

particles, see (11)

Unknown (depends on

characteristics of membrane and

feed suspension); s−1

δ̄ Blocking coefficient, see (11) Unknown (depends on

characteristics of membrane and

feed suspension); m−1

The system thus reduces to Eq. (22), plus a single differential equation for the porosity, which is obtained by

substituting (20) into (17),

∂φ

∂t
= −

[
λ

δ
φ2/3 +

(∫ 1

0

(1 − φ)2

φ3
dx ′

)−1

(1 − φ1/3)

]

c, (23)

with c given by (22), to be solved subject to the initial condition

φ(x, 0) = φ0(x). (24)

For future reference, we note that the flux in our model is directly proportional to the averaged Darcy velocity,

therefore we define our dimensionless filtrate flux q(t) and throughput v(t) as

q(t) = u(0, t), v(t) =
∫ t

0

q(t ′)dt ′. (25)

These quantities will be used later in evaluating the performance of model multilayer filter membranes.

4 Results

We present sample results from our model (20)–(24) described in Sect. 3, in which we consider a number of

relevant cases. In Sect. 4.1, we show preliminary results that illustrate how different choices of initial porosity

profiles, φ(x, 0) = φ0(x), modeling a multilayered membrane stack, can prolong or shorten the life span of the

filter. In Sect. 4.2, we focus on the commonly considered case of filters whose initial porosity φ0(x) decreases with

depth (negative porosity gradient) and study the effect of membrane properties (such as particle adsorption, particle
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Table 2 Dimensionless parameter definitions and range of values used

Parameter Formula and description Typical value

φ0 Initial average porosity (void

fraction)

0.5–0.7

Pe (p0χ)/(Dμ) Ratio of advective

and diffusive particle transport

timescales (Peclet number)

Assumed asymptotically large

λ (h2λ̄μ)/(p0χ) Ratio of rates of

particle adsorption and advective

particle transport (deposition

coefficient)

Unknown; values in range 0.01–4

used

δ hδ̄ Blocking coefficient (δ−1

measures penetrative potential of

blocking particles in depth of

membrane)

Unknown; values in range 2–16

used

λ/δ (hλ̄μ)/(p0δ̄χ) Unknown; values in range 10−2–1

used

TB c0hαδ̄ = c0αδ Ratio of rates of

pore-blocking and advective

particle transport

Assumed asymptotically small

blocking, and membrane thickness) on filtration performance. Finally, in Sect. 4.3, we consider simple optimization

of negative porosity gradient filters by varying selected design parameters such as the number of layers in the filter

stack, the initial porosity of each layer in the stack, and the thicknesses of the individual layers.

From Darcy’s law, the local membrane resistance is inversely proportional to permeability k (see (13)). We may

define a dimensionless averaged membrane resistance, r(t), as

r(t) =
∫ 1

0

dx

k(x, t)
=

∫ 1

0

(1 − φ(x, t))2

φ(x, t)3
dx . (26)

In order to make a meaningful comparison between different membrane structures, we compare results for initial

porosity profiles φ(x, 0) that give the same initial net membrane resistance r0 = r(0). Many alternative comparisons

could be made: one could, for example, choose to fix the initial average membrane porosity. Ultimately our choice

of fixing initial net resistance was made on the basis that all such membranes initially have the same energetic

requirements, and therefore an important question is how these initially equivalent membranes compare over long

filtration durations. As we will see, different initial porosity profiles with the same initial resistance evolve differently

over time, so that resistances (and thus energetic requirements) at later times differ.

Briefly, our numerical solution scheme is as follows: Given an initial porosity profile φ0(x) = φ(x, 0), we use

trapezoidal quadrature to calculate the Darcy velocity u in (20). We then substitute for u in Eq. (22) to solve for

the particle concentration c, again using trapezoidal quadrature. To account for the nonlinearity in the porosity

Eq. (23), the porosity φ is calculated at the subsequent time step using an implicit Backward Euler method. This

process is then repeated until the membrane becomes impermeable and the flux through it falls to zero at final time

t = tf (when the Darcy velocity u → 0). A convergence test was carried out to ensure that the first-order scheme

converges as expected as the step size �t → 0.
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4.1 Three-layer membranes

To gain insight into our model and the effect of layering, we first consider a membrane composed of three equal-

thickness layers of different initial porosities, stacked on top of each other. While it is known empirically that

filters whose initial porosity profile decreases with depth give superior filtration performance, for a more complete

illustration of model behavior we also consider cases where initial porosity is monotonically increasing with depth;

any combination of increasing or decreasing porosity between two successive layers; and initially uniform porosity.

We present preliminary results for five different membrane stacks, modeled by the following choices of initial

porosity profiles:

φ(x, 0) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

φ1(x, 0) = 0.5289,

φ2(x, 0) = 0.6350 − 0.1 tanh(400(x − 0.33)) − 0.1 tanh(400(x − 0.66)),

φ3(x, 0) = 0.6326 + 0.1 tanh(400(x − 0.33)) + 0.1 tanh(400(x − 0.66)),

φ4(x, 0) = 0.6424 − 0.1 tanh(400(x − 0.33)) + 0.1 tanh(400(x − 0.66)),

φ5(x, 0) = 0.4947 + 0.1 tanh(400(x − 0.33)) − 0.1 tanh(400(x − 0.66)),

(27)

illustrated in Fig. 2. Each of these initial porosity profiles represent membrane stacks with the same initial net

(dimensionless) resistance r0 = 1.50 (the first, φ1, may be considered to model a stack of three identical uni-

form membranes). However, the modeled membrane stacks have different initial average porosities1, φi,avg(0):

φ2,avg(0) = 0.6350, φ3,avg(0) = 0.6326, φ4,avg(0) = 0.5757, and φ5,avg(0) = 0.5614.

We simulate our model (20)–(24) for the initial porosity profiles of (27) with λ = 1 and δ = 8. Figure 2a–e

shows the evolving porosity profile φ(x, t) and the concentration of particles c(x, t) within the feed as it passes

through the membrane, for each of the five different membrane stacks, at various times throughout the evolution.

Figure 2f shows the cross-sectionally averaged fluid velocity uf for the initial porosity profile φ2 (initial porosity

decreasing in membrane depth). For all cases porosity decreases in time throughout the membrane filter due to

fouling, with the most rapid reduction in φ(x, t) near the membrane inlet, reflecting the fact that the filter fouls

primarily at the upstream side where the particle concentration in the feed is highest, while the downstream portions

of the membrane remain minimally used for particle removal. This is especially true of membranes whose initial

porosity is monotonically increasing with depth, exemplified here by φ3. For cases where initial porosity decreases

between two successive layers, specifically Fig. 2b (porosity decreases between layers 1 and 2, and again between

layers 2 and 3), 2d (porosity decreases between layers 1 and 2), and Fig. 2e (porosity decreases between layers

2 and 3), the temporal decrease in porosity at the top of the downstream layer is much more rapid than for cases

where porosity increases between successive layers. This difference in behavior is due primarily to the effect of the

blocking term in our model (see Eq. (11) and its dimensionless equivalent equation (17)), and may be interpreted as

modeling the physical phenomenon by which some particles are small enough to pass through the larger pores in

the upstream layer, but too large to penetrate deep into the less porous layer downstream. The corresponding pore

fluid velocity for one such decreasing porosity case (Fig. 2b) is shown in Fig. 2f, and is entirely consistent with the

spatial and temporal behavior of φ: initially porosity is (approximately) piecewise constant and decreasing, while

pore velocity is likewise approximately piecewise constant, but increasing. As time increases the porosity develops

to a (smooth) function that is monotone increasing within each layer, with sharp (negative) jumps between layers;

while pore velocity is continuous and monotone decreasing in each layer, again with sharp (positive) jumps, in

value, between layers.

The graphs of the particle concentration, c(x, t), in Fig. 2a–e reveal that, for the chosen parameter values and

porosity profiles, the multilayered membranes initially capture approximately 90% of particles in all cases, with

1 We define the average porosity as φi,avg(t) =
∫ 1

0 φi (x, t) dx .
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Porosity profile and particle concentration as a function of dimensionless membrane depth at selected times up to final time (tf ,

indicated in the legends) for different initial porosity profiles given in Eq. (27): a φ1(x, 0), b φ2(x, 0), c φ3(x, 0), d φ4(x, 0), e φ5(x, 0);

f the cross-sectionally averaged fluid velocity uf for initial porosity profile φ2(x, 0), with λ = 1, δ = 8, and r0 = 1.5

123



On the performance of multilayered... Page 11 of 25 23

(a) (b)

Fig. 3 a Total flux q(t) and average porosity φavg(t); and b particle concentration at the downstream membrane, c(1, t); versus

throughput v(t) =
∫ t

0 q(t ′)dt ′, with λ = 1, δ = 8, and r0 = 1.5, for initial porosity profiles φ1–φ5 given in Eq. (27)

this proportion increasing to nearly 100% as time progresses.2 Figure 2 also reveals that the filter with initial

monotonically decreasing porosity profile, φ2, has the desirable features that it captures particles more uniformly

within the filter, and the clogging time (tf , indicated in the figure legends) is about 28% longer than that for the filter

with initially uniform porosity, φ1.

A common experimental characterization of filter membrane performance is to plot the total instantaneous flux

of filtrate through the membrane against the cumulative filtrate throughput at that time (see the definitions in Eq.

(25)), which illustrates the membrane fouling behavior. Figure 3a shows the flux q(t) and average porosity φavg(t)

as a function of instantaneous throughput v(t), for the five initial porosity profiles given in (27). The case in which

the initial porosity profile decreases monotonically with depth (φ2) gives significantly better performance (more

total throughput or filtered fluid), while the membrane with initial porosity monotonically increasing along the filter

depth (φ3) gives the least total throughput, even though both filters have the same initial resistance (r0 = 1.5) and the

graphs of the average porosity φavg(t) for these two initial porosity profiles (φ2 and φ3) are indistinguishable (until

the latter blocks completely). Another feature is that the flux-throughput curves in Fig. 3a are initially concave (at

least for some scenarios), and become convex as total system blockage is approached. This change of curvature has

been observed in other model simulations [10,12,14,41] as well as in experimental systems [40], and is typically

attributed to a change in the dominant fouling mode, from adsorption to blocking.

In addition to total throughput, another important measure of filter membrane performance is particle removal

(capture) efficiency, which addresses the proportion of particles the filter removes (captures) from the feed. Figure 3b

shows the particle concentration at the downstream membrane surface, c(1, t), as a function of instantaneous

throughput, for each of the initial porosity profiles given in Eq. (27). In addition to confirming the results of Fig. 2,

that all five membrane stacks simulated initially capture approximately 90% of particles in all cases, these graphs

provide further information to distinguish between the particle capture performance of each membrane over its

lifetime. The initially uniform porosity profile, φ1 at first marginally outperforms (in terms of particle removal

efficiency) all other cases considered here, but this does not persist at later times. The porosity profile that decreases

monotonically with depth (φ2), which performed best in terms of total throughput, exhibits the worst particle

retention, over the entire time period simulated. These results are perhaps unsurprising when one considers that the

membrane with the best (worst) initial particle removal efficiency is that with the lowest (highest) initial average

porosity. However, an important performance indicator is the initial particle capture efficiency at t = 0, and the

2 In many practical applications the desired particle retention by the membrane is much higher than this. These simulations are purely

illustrative. The effect of model parameters on particle retention is investigated later.
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fact that the differences in this criterion between all compared filters are relatively small is encouraging: so long as

a membrane meets the target for initial particle removal, it should maintain or improve on this capture efficiency

over its useful lifetime.

Figures 2 and 3 collectively confirm the conclusions of many previous studies (see e.g., [10,31–35] among

others), that membranes with porosity decreasing in the direction of flow have longer life span and higher total

throughput over the filter lifetime within industrially relevant parameter regimes. Additionally, among the equal-

resistance filters considered here, as the initial average porosity of the membrane stack increases, the total filtrate

throughput increases (Fig. 3a), but at the same time, the initial particle removal capability decreases (Fig. 3b). In

other words, there is always a tradeoff between the particle removal capability and the total filtrate throughput. In

the rest of this paper, we will focus on making these conclusions more precise by studying the effects of key model

parameters on filter performance.

4.2 Effect of membrane properties

Different types of membrane (e.g.,, different membrane materials, different pore structure, etc.) exhibit different

particle deposition properties. In the illustrative simulations thus far we fixed the values for the particle adsorption

propensity coefficient λ, and the particle blocking coefficient δ. Since these parameters were chosen in the absence

of firm experimental data, and will depend on the specific system under consideration, we now briefly investigate

the effect of varying them to simulate different filtration regimes.

4.2.1 Effects of particle adsorption propensity

To examine the effect of adsorption propensity on the filtration efficiency, we first vary the dimensionless particle

adsorption coefficient λ, which we suppose to change due to variation of the dimensional average adsorption rate

of particles λ̄ (see Table 2). We do this for the monotone decreasing initial porosity profile φ2 given in Eq. (27),

with δ = 8 and initial resistance r0 = 1.5 as previously.

In Fig. 4a, the porosity profile at final time tf is plotted as a function of membrane depth, for four values of the

particle deposition coefficient λ (but the same membrane structure in all cases). The corresponding flux-throughput

curves and particle concentration in the filtrate versus throughput graphs are also shown in Fig. 4b and c, respectively.

As the value of λ varies from small to large the model switches from blocking-dominated to adsorption-dominated,

and there is a clear qualitative change in the shape of the flux-throughput performance curves from concave to

convex (Fig. 4b).

Small values of λ may be interpreted as modeling the scenario where a substantial fraction of particles in the

feed suspension are smaller than the pores in the more porous layer upstream, hence they are able to penetrate the

upstream layer, but they may become trapped and adhere to the pore walls in the less porous layer downstream.

Although this prolongs the lifetime of the filters (see values of tf in Fig. 4a), the inferior particle retention makes

small values of λ likely undesirable (see Fig. 4c). We note that membrane fouling can occur deep within the filter

for sufficiently weak adsorption, as shown in Fig. 4a, λ = 0.01. In this case the adsorption is so weak that the

complete blocking of the membrane occurs first in the membrane interior, an atypical situation and one that is

undesirable from a practical viewpoint since the particle concentration at the membrane outlet is high in this case

(see Fig. 4c). At the other extreme, large values of λ may be interpreted as modeling the scenario where particles

tend to adhere to the membrane surface at a faster rate, which causes the membrane to foul quickly at the upstream

side, while downstream portions remain minimally used. The price paid for this superior separation is, of course, a

shorter lifetime due to the rapid fouling. In applications, a compromise must be made between achieving the desired

separation with an acceptable filter lifetime.
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(a) (b)

(c)

Fig. 4 Results for four different values of λ (corresponding to varying the dimensional average adsorption rate of particles λ̄, see Table

2). a Black curves: Porosity profile φ2(x, tf ) as a function of dimensionless membrane depth at final time tf (indicated in the legend).

Red curve is initial porosity φ2(x, 0), see Eq. (27). b Total flux q(t) and c particle concentration in filtrate c(1, t), as functions of

throughput v(t) =
∫ t

0 q(t ′)dt ′ for the same initial porosity profile (red curve in (a)), with δ = 8 and r0 = 1.5. (Color figure online)

4.2.2 Effects of pore blocking

We next briefly consider the effect of varying the blocking coefficient δ, here assumed to vary due to changes in the

dimensional average blocking coefficient δ̄. We do this again for the monotone decreasing initial porosity profile φ2

given in Eq. (27), with λ = 1 and dimensionless initial filter resistance r0 = 1.5. Figure 5 shows the results: Fig. 5a

plots the porosity profile within the filter at the final time tf as a function of membrane depth; while Fig. 5b and c

shows flux and particle concentration in the filtrate as functions of throughput, each for several values of δ (but the

same membrane structure in all cases). Recall that δ̄ was used in the timescale in (12): here, rather than consider a

different timescale for each δ-value illustrated, we use the same value δ = hδ̄ = 8 in (12) to nondimensionalize the

time in all cases illustrated, so that results may be directly compared. As δ increases, the dominant mode of fouling

changes from adsorption-dominated to blocking-dominated (compare Figs. 5b and 4b).

We may interpret small values of δ as modeling the physical case in which the ratio of typical particle size to

typical pore size is small, hence adsorption is the dominant fouling mechanism (at least in the more porous upstream

layer, the fouling of which dominates overall system behavior). For large δ particles are likely to be larger than pores
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(a) (b)

(c)

Fig. 5 Results for four different values of the blocking coefficient δ. a Black curves: Porosity profile φ2(x, tf ) as a function of

dimensionless depth at final time tf (indicated in the legend). Red curve: Initial porosity profile φ2(x, 0), see Eq. (27). b Flux q(t) and c

particle concentration in the filtrate, c(1, t), as functions of throughput v(t) =
∫ t

0 q(t ′)dt ′, for the same initial porosity profile φ2(x, 0),

with λ = 1 and r0 = 1.5

in the upstream layer, so blocking dominates over adsorption. Since the adsorptive fouling coefficient λ remains

fixed for all simulations in Fig. 5, the rate of overall fouling increases with δ. Total system resistance then increases

more rapidly, which leads to decreased filter lifetime as δ increases (see values of tf in Fig. 5a). Fig. 5b and c

exemplifies the tradeoffs inherent in filtration: larger values of δ give less total throughput over the filter lifetime,

but better separation.

4.2.3 Effects of membrane thickness

It is also of interest to understand the influence of membrane thickness h, which appears in both dimensionless

parameters discussed above: λ = (h2λ̄μ)/(p0χ) and δ = hδ̄ (see Table 2). To examine the effect of h on filtration

we must therefore vary both λ and δ, with δ ∝
√

λ. Note that changing membrane thickness necessarily changes

the resistance (unless drastic changes are made to other quantities): a thinner membrane has a lower resistance, and

a thicker membrane provides a higher resistance. Therefore, in this subsection, we are no longer considering equal

initial resistance membranes, but only membranes with equal initial average porosity. Figure 6 shows the results,

plotting flux and particle concentration in the filtrate as functions of throughput, for several different membrane
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(a) (b)

Fig. 6 a Flux q(t) and b particle concentration in filtrate, c(1, t), as functions of throughput v(t) =
∫ t

0 q(t ′)dt ′, for the initial porosity

profile φ2(x, 0) given in Eq. (27), with initial average porosity φ2,avg = 0.6350, for four different values of λ ∝ δ2 (corresponding to

varying membrane thickness h). See text for more details

thicknesses h. Observe that h appears in both the time scale and the velocity scale as given in Eq. (12); in order to

compare results directly, the fixed value of h corresponding to λ = 1, δ = 8 is used for these scales in all cases

illustrated here.

For small values of λ, δ (corresponding to thin membranes), the feed suspension transits the membrane too

quickly, resulting in poor particle retention, with a significant fraction of particles remaining suspended in the

filtrate. This results in slow fouling, which prolongs the life span of the filter; but the poor separation makes this

filter design undesirable. For large values of λ, δ (corresponding to thick membranes), the feed suspension remains

within the membrane long enough to deposit nearly all of the carried particles, but the superior particle removal

performance is offset by rapid fouling. Interestingly, changing the membrane thickness appears to have a much

smaller impact on the overall performance (more total throughput and longer life span) than does changing the

membrane particle adsorption and blocking coefficients, suggesting that membrane material properties play a more

important role in the overall performance.

4.3 n-Layer membranes

The results of Sect. 4.2 above provide some insight into how simple membrane stacks with different porosity layers

behave as filters, and the effects of key model parameters. We now generalize our investigation to consider the

filtration performance of a membrane composed of a stack of n layers of thicknesses di , i = 1, 2, . . . , n, where

each layer has constant initial porosity. As in the preceding 3-layer sample simulations, to avoid numerical issues we

simulate only continuous porosity profiles, which vary rapidly across a layer interface, by using an initial porosity

profile of the form

φ(x, 0) = φavg +
1

2

n−1
∑

i=1

b tanh(400(x − xi )), (28)

where φavg is the initial average porosity of the membrane, b is the (fixed) difference between the initial porosity

of two successive layers, xi =
∑i

j=1 d j , i = 1, 2, . . . , n − 1, are the locations of the interfaces between two

successive layers, and the factor of 400 was chosen to give sufficiently rapid variations in porosity across layer

123



23 Page 16 of 25 D. Fong et al.

(a) (b)

(c)

Fig. 7 a Initial porosity profile given in (28) as a function of dimensionless membrane depth, for thirteen values of n. b Initial average

porosity as a function of number of layers. c Evolution of porosity profile of Eq. (28) as a function of dimensionless membrane depth,

with n = 13. Other parameter values are b = −0.05, λ = 1, δ = 8, and r0 = 1.5

junctions. For a given initial membrane resistance r0 and a fixed value of b, the initial average porosity of the

membrane φavg is then determined by using (26).

We first consider the case where all layers have equal thickness, di = 1/n, i = 1, . . . , n. Figures 7 and 8 illustrate

the effect of changing the number of layers n in the filter stack. In Fig. 7a, we plot the initial porosity profiles of

(28), for n = 1, . . . , 13, with b = −0.05, while Fig. 7b shows the initial average porosity φavg as a function of

n. Note that in all cases, the initial average membrane resistance is the same: r0 = 1.5, while the initial average

porosity, φavg increases with increasing n, taking values in the range (0.5289,0.6679). Figure 7c shows the evolving

porosity profile φ(x, t) within the feed as it passes through the membrane, for n = 13 and b = −0.05. As time

increases, the porosity decreases most rapidly near the membrane inlet and develops to a (smooth) function that is

monotone increasing within each layer, with sharp (negative) jumps between layers, as seen earlier in Fig. 2b. For

brevity of presentation, the results for the other twelve initial porosity profiles considered (which show qualitatively

similar features) are not shown here.

Figure 8 summarizes the key results and predictions for different numbers of layers. In Fig. 8a, we plot flux as

a function of throughput for the same family of initial porosity profiles, again with n = 1, . . . , 13, and particle
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(a) (b)

(c) (d)

(e)

Fig. 8 a Flux and b particle concentration in filtrate c(1, t) as functions of throughput for initial porosity profile given in Eq. (28),

with porosity difference between two consecutive layers b = −0.05 and λ = 1, for thirteen values of n = 1, 2, . . . , 13. c and d Total

throughput v(tf ) and initial particle concentration in filtrate c(1, 0) as a function of porosity gradient nb for initial porosity profile given

in Eq. (28), for four different values of n = 2, 3, 4, 5, with different values of λ: c λ = 1 and d λ = 0.01. e Total throughput v(tf ) and

initial particle concentration in filtrate c(1, 0) as a function of number of layers for initial porosity profile given in Eq. (28), with λ = 1,

for three different scenarios. Other parameter values are δ = 8 and r0 = 1.5
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deposition coefficient λ = 1. Increasing the number of layers n while fixing the porosity difference between two

consecutive layers b to be a negative (positive) constant leads to an increase (decrease) in the final total throughput

(the results for positive b, known to be undesirable in practical applications, are not shown). Figure 8b shows

the corresponding particle concentrations in the filtrate, c(1, t), as a function of throughput, for fixed negative b.

Although (as just observed) the total throughput increases with the number of layers n, there is a simultaneous

decrease in particle retention capability of the membrane, evidenced by an increase in the particle concentration in

the filtrate. We hypothesize that this loss of retention capability is because, as the number of (thinner) individual

layers is increased at fixed resistance, there is a corresponding increase in the initial average porosity of the entire

membrane (seen in Fig. 7b), which in turn leads to a slight decrease in removal efficiency. As long as the retention

capability of the membrane is acceptable, however, this decrease in retention capability may be compensated by the

increase in final total throughput, which can be significant. This trend of increasing layer number being associated

with diminished particle retention but increased throughput was found numerically to hold for any combinations of

λ ∈ (0.25, 4) and δ ∈ (2, 16).

Figure 8c shows total throughput v(tf) and initial particle concentration in the filtrate as a function of nb (nb can

be interpreted as a global porosity gradient, since the porosity changes by an amount b over a lengthscale 1/n), for

four values of n and λ = 1. In all cases v(tf) is monotone decreasing with nb, with the rate of decrease faster for

larger n. As already observed (Fig. 8b), c(1, 0) increases moderately as n increases, but we now also see a strong

dependence on nb. In particular, the filters with either decreasing or increasing porosity in the membrane depth are

less desirable than those of uniform porosity as regard initial particle removal (though not as regard total throughput).

As expected, all layer numbers give the same result when nb = 0 and the layers all have the same porosity. These

results bear out our previous conclusions, that within industrially relevant parameter regimes, larger (negative)

porosity gradients within a filter membrane are favorable for increasing throughput and filter lifetime but at the

expense of moderately poorer initial particle retention: generally speaking, the largest (negative) porosity gradient

commensurate with acceptable particle removal should be used for maximal useful filter lifetime. If, however, we

set aside concerns about acceptable particle removal and choose a very small value for the deposition coefficient λ,

then it is possible to obtain an optimal (negative) membrane porosity gradient leading to membrane pore closure at

an internal point, as seen in [10,15], for example. Figure 8d shows results analogous to Fig. 8c but for λ = 0.01, with

total throughput plotted as a function of porosity gradient, nb, for four different values of n. The results demonstrate

that for sufficiently small λ, the optimal arrangement for maximizing throughput is to have the porosity gradually

decreasing with depth and increase the number of filter layers, as also reported in [15]. The obvious downside is

that particle concentration at the membrane outlet is unacceptably high. We emphasize again that all results plotted

in Fig. 8 are for membranes of equal initial resistance.

Figure 8e gives an alternative representation of the results for λ = 1, with total throughput v(tf) and initial

particle concentration in the filtrate c(1, 0) plotted as a function of number of layers n, for three negative values of

b: in all cases v(tf) and c(1, 0) increase with n. Increasing |b| results in a steeper increase in total throughput with

n, indicating a longer time to complete fouling of the membrane, but as usual, the tradeoff is decreased particle

removal efficiency (higher particle concentration in the filtrate). Overall, we can see that, provided the desired

particle removal efficiency can be satisfied, increasing the size of porosity jumps between layers (larger |b|), and

increasing the number of layers n, both lead to the desirable outcome of increased total throughput and filter lifetime.

We conclude with a brief discussion of whether it may be advantageous to allow layers of different thicknesses

(all simulations so far have been for layers of equal thickness). To avoid introducing a large number of additional

parameters, we restrict attention to the case where the thickness of adjacent layers follows a geometric progression,

with di = γ i−1d1 for i = 2, 3, . . . , n, and therefore the locations of the interfaces between successive layers are

xi = d1

∑i
j=1 γ j−1, with d1 = (1 − γ )/(1 − γ n). Note that γ = 1 corresponds to equal-thickness layers as

studied previously (with d1 → 1/n), while if γ > 1 (γ < 1) layer thickness increases (decreases) in the depth of

the membrane. We again assume a fixed change in initial porosity, b, between adjacent layers, and as before, only

equal-resistance (at t = 0) membranes are compared.

Figure 9 shows total throughput v(tf) and initial particle concentration in filtrate c(1, 0) as functions of γ , for

several different scenarios (two values of n and three values of b). For b > 0 (initial porosity increases with depth,
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(a) (b)

Fig. 9 a Total throughput v(tf ) and b initial particle concentration in filtrate c(1, 0) as a function of γ for initial porosity profiles as in

Eq. (28), for five different scenarios as noted in the legend, with λ = 1, δ = 8. In all cases the initial membrane resistance is r0 = 1.5

a scenario not normally considered in applications) we see that the total throughput decreases monotonically with

γ in the two cases considered. Presumably this is because as γ increases, the low-porosity upstream layers are

becoming thinner relative to the high-porosity downstream layers. In order to maintain the fixed initial resistance,

however, the initial porosity of the thinnest upstream layers must decrease (compared to smaller-γ scenarios) which,

since these layers foul first, means rapid fouling and closure of these layers, and filter failure. We note that the total

throughputs for all b > 0 cases considered here are less than the total throughput for the initially uniform porosity

case b = 0 (red line in Fig. 9), again confirming that membranes with initially increasing porosity profiles have

reduced life span and decreased efficiency as measured by this total throughput metric.

For b < 0 (initial porosity decreases with depth), the curves of total throughput versus γ exhibit a well-defined

maximum: we find that the maximal total throughput is achieved when γ is slightly larger than 1, corresponding to a

scenario in which each succeeding layer is slightly thicker than the preceding layer. Similar results have been noted

previously [11]. Nonetheless, this result is rather surprising given our previous simulation results showing the rapid

membrane fouling that occurs at the upstream surface. One might expect that the maximal total throughput would

be achieved when γ < 1, corresponding to a thicker high-porosity layer at the upstream, which would help delay

membrane fouling and total pore closure in this region for a longer period of time. We hypothesize that the presence

of the maximum could be explained as follows: with b < 0 and a fixed initial resistance, increasing γ through small

values (i.e., changing from a system where upstream layers are considerably thicker than downstream layers to one

where the thickness differences between adjacent layers are less severe) while maintaining fixed resistance results

in increased initial porosity of upstream layers, which at first delays fouling and increases total throughput, as also

seen earlier in Fig. 3a. However, as we continue to increase γ the upstream layers necessarily become thinner;

thinner than the downstream layers when γ > 1, and at some point, when the top layers become very thin and very

porous, particles are able to penetrate into more of the downstream layers, which are less porous and clog faster.

Therefore, total throughput will eventually decrease once γ increases beyond a certain value.

5 Discussion and conclusions

We have presented a simple mathematical model to describe the key elements of separation and fouling in a

multilayered membrane filter, which includes Darcy flow through the multilayered membrane, advection-dominated

transport and deposition of particles within the porous membrane stack, and variations in porosity due to fouling

(particle deposition). Our model accounts for two distinct mechanisms of fouling: adsorption of small particles
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within pores, and pore blockage associated with deposition of large particles. Assuming that the timescale for flow

to transit the membrane is much shorter than that associated with fouling-induced changes to porosity, the resulting

system is quasi-static, with time dependence appearing only in the porosity evolution equation.

Given the complexity of the membrane structure and the chemical interactions between the filtrate particles

and the membrane material, which vary from one application to another, our simplified model necessarily contains

several parameters that may be difficult to measure for a given membrane-filtrate system, and that will vary from one

system to another. In the absence of detailed experimental data, values for many of these parameters are unavailable,

hence in order to carry out simulations of our model, we have chosen parameter values (summarized in Table 2)

based on what is known to occur (qualitatively) in real membrane-filtrate systems.

Key challenges facing membrane scientists and engineers are how to maximize the total throughput while

simultaneously ensuring adequate particle removal efficiency (requirements that are necessarily in conflict); and

how to achieve more uniform adsorption in the membrane, which would presumably prolong the life of the filter.

Since porosity gradients are known to influence filter performance significantly, our study focused on how porosity

gradients affect the fouling and performance of multilayer membrane filters. Our results confirm the conclusions

of previous studies [10,30–35] that using membranes whose initial porosity decreases with depth can prolong the

life span and increase the total throughput of filtrate over the filter lifetime.

To illustrate the differences in the two fouling mechanisms considered, we briefly investigated the effects of

changing the model parameters λ (dimensionless particle/membrane adsorption coefficient) and δ (dimensionless

pore-blocking coefficient) in Sect. 4.2, focusing on the most relevant case in which the initial porosity of the

multilayered membrane decreases with depth. Only equal-resistance membranes were compared in the study of

these two parameters.

We observe (Sect. 4.2.1) that small values of the adsorption coefficient λ yield greater total throughput and a

longer filter life span. However, if λ is too small then the particle retention capability of the membrane may be too

low. As λ varies from small to large there is a qualitative change in the shape of the flux-throughput performance

curves, as the model switches from blocking-dominated to adsorption-dominated. We also find (Sect. 4.2.2) that if the

dimensionless blocking coefficient δ is small (pore blocking less important), the total throughput and clogging time

increase. Again, however, this increased throughput and membrane lifetime are achieved at the expense of decreased

particle removal capability. As δ increases, the dominant mode of fouling changes from adsorption-dominated to

blocking-dominated.

While the parameters λ and δ are strongly dependent on the feed solution (specifically, the particles it contains),

which are not under the manufacturer’s direct control, certain design parameters such as the membrane thickness h,

the total number of layers n, the relative thickness of those layers, and how porosity varies between adjacent layers

in the stack are easily modified in the manufacture process. We therefore investigated these features also, to see

what can be deduced about how to structure a layered membrane for optimal filtration performance (maximizing

throughput of filtered fluid and filter lifetime, while removing an acceptable fraction of particles).

The role of total membrane thickness h is studied in Sect. 4.2.3. Here, membranes with three equal-thickness

layers are compared. In all cases the initial porosities of corresponding layers in the stack are the same; only

the thickness of the layers varies. Hence, varying the total membrane thickness h necessarily leads to systems

with different net resistances (elsewhere only equal-resistance membranes were compared). We observe that thin

membranes foul slowly, while thick membranes foul rapidly. If the membrane is too thin, filtration may be too fast

to give good particle retention. On the other hand, thick membranes give better separation because the feed remains

within the membrane for longer. The desired level of particle separation from the feed solution varies from one

application to another, hence the best choice for overall membrane thickness will depend on the application.

In Sect. 4.3, we extended our study to membranes with a larger number of layers, of equal and unequal thicknesses,

to investigate the sensitivity of membrane fouling to these factors. We found that increasing the number of layers

can significantly increase total throughput and delay membrane failure time for membranes whose initial porosity

decreases with depth, but the tradeoff is with a moderately poorer initial particle retention (see Fig. 8e). We also

found that increasing the (initial) porosity gradient results in a significantly increased throughput for membranes

with porosity decreasing in depth, but again the tradeoff is a corresponding decrease in initial particle retention (see
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Fig. 8c), which may or may not be acceptable to the end user. If we ignore such concerns then for very low values of

the deposition coefficient λ one can obtain an optimal (negative) membrane porosity gradient that leads to membrane

pore closure at an internal point. Figure 8d demonstrates that for a very low value of deposition coefficient, λ = 0.01,

the optimal arrangement for maximizing throughput is to have porosity gradually decreasing with depth, and a large

number of filter layers. Additionally, we found that the optimal layer thickness distribution that maximizes total

throughput corresponds to a membrane stack in which layer thickness increases slightly between successive layers

in the depth of the membrane (see Fig. 9). Although creating multilayered membrane filters with a large number of

layers of nonequal thickness could be manufacturally challenging, it appears to offer advantages both in terms of

maximizing total throughput and filter life span.

Finally, we remind the reader that our results were obtained using parameters that we believe to be plausible,

but that were not measured directly from a detailed experimental dataset. Given reliable estimates of our model

parameters for any given filtration system, our model offers excellent potential for predicting the optimal layered

filter configuration.
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Appendix A: Constant flux case

Membrane fouling is often characterized in laboratory experiments by challenging the membrane with a constant

pressure drop. However, many industrial micro-filtration applications operate at constant flux, and there are few

papers that compare these modes of operation for multilayered membranes [42]. In this appendix, we briefly outline

how the results change if boundary conditions of constant flux are imposed. We first outline the modifications to

the model in Sect. 3, then present sample numerical simulations.

A.1 The model for specified flux

The original model (1)–(11) remains unchanged except that the boundary condition for the pressure at the upstream

membrane surface is now time-dependent, p0(t) (the membrane resistance increases in course of time, therefore

the imposed pressure at the membrane upstream should increase to sustain the flux). We nondimensionalize the

model using the same scalings as in (12), except for

p =
hμ

u0χ
p∗, (u, uf) = u0(1, u∗

f ). (29)

The dimensionless model is reduced to

c = exp

[

−
∫ x

0

λ̃φ2/3 + δ̃(1 − φ1/3) dx ′
]

, (30)

∂φ

∂t
= −

λ̃

δ̃
φ2/3c − (1 − φ1/3)c, (31)
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where λ̃ = (hλ̄)/u0, δ̃ = hδ̄, λ̃/δ̃ = λ̄/u0δ̄, the initial condition is as in (24), and the modified Darcy pressure p

within the membrane is given by

p =
∫ 1

x

(1 − φ)2

φ3
dx ′. (32)

Note that the pressure at the upstream membrane surface p(0, t) can be calculated by setting x = 0 in (32).

A.2 Results

Figure 10a–e shows results for the same initial porosity profiles given in (27). Figure 10f shows the inverse pressure

drop as a function of throughput for each of those porosity profiles. We observe that there is a significant difference

in fouling behavior between the two operating modes. In contrast to the constant pressure simulations, the rate

of fouling near the membrane inlet is observed to be less severe, which enables fouling to occur much more

uniformly within the multilayered membrane. This is particularly true of membranes whose initial porosity profile

is monotonically decreasing with depth, illustrated here by φ2. As the resistance increases with time due to fouling,

the pressure drop must be increased to maintain constant flux. Thus we plot the inverse pressure drop instead of flux

as a function of throughput in Fig. 10f to illustrate the fouling behavior, for the five initial porosity profiles given

in Eq. (27). If the fluid is maintained at constant flux until total blockage is reached, the pressure must increase to

infinity, which is of course not practical. In most industrial filtration systems, the fluid is pumped at constant flux

(flow rate) till the maximum pressure (based on practical constraints of the system under consideration) is reached

and then the fluid handling system is automatically switched to the constant pressure operating mode, with the

pressure fixed at this maximal value (this can then be described by the model as discussed in Sect. 3). As with the

constant pressure simulations, the case in which the initial porosity profile decreases monotonically with depth (φ2)

gives significantly better performance (more total throughput and the longest time until total blockage is reached),

while the membrane with initial porosity profile monotonically increasing along the filter depth (φ3) gives the least

total throughput and the shortest life span.

123



On the performance of multilayered... Page 23 of 25 23

(a) (b)

(c) (d)

(e) (f)

Fig. 10 Simulations at constant flux: porosity profile and particle concentration as functions of dimensionless space at selected times

up to final time (tf , indicated in the legends) for different initial porosity profiles given in Eq. (27): a φ1(x, 0), b φ2(x, 0), c φ3(x, 0),

d φ4(x, 0), e φ5(x, 0), and f inverse pressure drop as a function of throughput for these initial porosity profile, with λ̃ = 1, δ̃ = 8, and

r0 = 1.5
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