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et al. 2018), filtration techniques (Ersahin et al. 2012) and applications to chemical waste
treatment (Daniel et al. 2010).

There are three typical microporous membrane filtration modes – tangential, dead-end
filtration and direct flow – with respective merits and shortcomings. The difference
between the first two modes of filtration is that, in the former case, the fluid flow is
parallel to the membrane surface whereas flow in the latter case is perpendicular to the
membrane surface Chew et al. (2020). Under the same transmembrane pressure, tangential
filtration also requires more energy to obtain the same throughput: not all solute passes
through the membrane; some recycles back to the feed. By contrast, in dead-end filtration,
all energy goes into forcing the solute through the membrane (the interested reader is
referred to Daniel et al. (2010) for a more detailed discussion on the relative merits of
these two processes). Direct flow is similar to cross-flow but with one end of the central
channel closed off by a cap and both sides of the channel operating as membrane filters
(Collum 2017).

In all filtration modes, particles within the fluid interact with the membrane material
physically or chemically, leading to membrane fouling, the process by which foulants
deposit on the membrane surface or within the pores. Membrane fouling occurs by three
principal mechanisms: (1) adsorption, an accretion process in which small particles adhere
to the pore walls and thus shrink the effective radius of the pore; (2) blocking, a discrete
process in which particles larger than pores cover (partially or completely) the entrance
of a pore; and (3) caking, in which an additional layer of porous medium, composed
of the particles carried by the flow, forms on top of the membrane surface (this occurs
particularly in the later stages of a membrane filtration process). These fouling modes
have been studied via experiments and numerical simulations, both in isolation and with
multiple modes operating simultaneously, by many researchers with a goal of developing
predictive modelling; see for example the works of Polyakov (2008) and Bolton, Boesch
& Lazzara (2006a) on adsorption, Hwang, Liao & Tung (2007) on blocking, Daniel et al.

(2011) on caking and Bacchin et al. (2014), Bolton, LaCasse & Kuriyel (2006b), Ho &
Zydney (2000) and Sanaei et al. (2016) for multiple simultaneous modes. In the present
work, we consider dead-end filtration as the primary type of filtration and adsorption as
the dominant fouling mechanism. This approach facilitates a simpler system than would
be obtained by considering all fouling modes, allowing us to focus on gaining insight
into the effects of pore connectivity. We defer the study of multiple fouling modes in a
pore-network model to a future work.

There is considerable industrial interest in designing and manufacturing layered filters
that allow for fine control of particle removal while maintaining a reasonable filter
lifetime. Such filters typically have pore size that decreases from one layer to the next
(in the direction of flow; see figure 1a). In this way, pore closure occurs more uniformly
throughout the filter, since fouling begins at the upstream side of the membrane, and
thus the fouling rate is a decreasing function of depth through the membrane (as is the
concentration of particles in the feed). Such layered structures may incorporate varying
degrees of connectivity between pores in different layers, seen in figure 1(b).

The literature on the influence of membrane morphology (pore structure and
connectivity) on filtration efficiency is too large to provide a comprehensive review (but
see, for example, Ho & Zydney 1999; Kanani et al. 2010; Zydney 2011; Griffiths, Kumar
& Stewart 2014, 2016; Dalwadi, Griffiths & Bruna 2015). Here we briefly outline the
most relevant work that provides the primary motivation for our paper. The starting
point for our modelling is the work of Sanaei & Cummings (2018), who introduced
a simple bifurcating-pore model to capture some of the layering features described
above. In that paper, adsorption is the sole fouling mechanism: small particles are
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Influence of pore connectivity on membrane performance 902 A5-3

(b)(a) (c)

FIGURE 1. Magnified membrane images showing (a) gradation of pores sizes through
membrane depth, and in-plane inhomogeneity of pore sizes (Li 2009), (b) connectivity and
junction layer (Yang et al. 2008) and (c) pore-size distributions (Souza & Quadri 2013).

transported through a network of initially circularly cylindrical pores, and deposited on
the pore walls. The particle concentration in the flow decreases as the pore network
is traversed, with the goal that it reaches a sufficiently low level by the time the flow
exits the filter. While the bifurcations model inter-layer pore connectivity, there is no
additional intra-layer connectivity (see figure 1b) to allow interactions between pores
in the same layer. Griffiths et al. (2016) accounted for such a feature by means of an
ad hoc connectivity parameter, which can be tuned to adjust the degree of communication
(allowed flux) between pores that occupy the same layer. An important new feature of
our present work is the incorporation of inter-layer junctions with concentration- and
pressure-equalizing capabilities that influence membrane performance metrics (detailed
in § 2.3). Furthermore, neither Sanaei & Cummings (2018) nor Griffiths et al. (2016)
consider pore-size variation within individual layers. Such pore-size variation (which we
term intra-layer heterogeneity, or heterogeneity in short) is another novel feature of the
present work: it is inevitable due to imperfect manufacturing and, as we shall see, it may
have non-intuitive implications for membrane performance.

In this paper, we introduce simple models of membrane pore networks that incorporate
both intra-layer connectivity and heterogeneity. Our goal is to study and explain the
effects of membrane connectivity and investigate the influence of pore-size variations
introduced by manufacturing defects. The paper is arranged as follows. In § 2, we describe
a mathematical model for the flow inside a membrane with homogeneous intra-layer
structure and its heterogeneous analogue; in § 3, we give appropriate scalings and
non-dimensionalizations for these models; and in § 4, we present results and discuss their
implications and limitations. Lastly in § 5, we present our conclusions and discuss several
ideas for future extensions of this work.

2. Mathematical modelling

In this paper, we consider a planar membrane filter whose top (upstream) surface resides
in the Y–Z plane, as shown in figure 2(a). The flow is (at least initially) assumed to
be entirely unidirectional, in the positive X direction. Furthermore, the membrane pore
structure is assumed homogeneous in the Y–Z plane, but is allowed to vary internally
along the X axis, thereby imparting depth-dependent permeability. Throughout this
work, uppercase symbols denote dimensional quantities, while lowercase symbols are
dimensionless (see § 3).

We assume that a membrane consists of units that repeat periodically in the Y–Z

plane of the membrane in a square lattice pattern, with period 2W. Globally, we assume
incompressible unidirectional Darcy flow (Probstein 1994) across the porous medium, in
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2W

2W

i = 1

i = 2

i = 3

D1

D2

D3

X

Z

Y

Q1

Q2 Q2 Q2

Q1Q1

(a) (b)

FIGURE 2. Illustration of a connected, branched-pore membrane and volumetric flow rate
balance at pore junctions. (a) A three-layer (m = 3) pore network with unit cell area (2W)2.
(b) Schematic bifurcation of a single pore (left) and two pores merging into one (right),
homogeneous in both cases. In the former case Q1 = 2Q2 and in the latter 2Q1 = Q2, by mass
conservation.

which the superficial Darcy velocity, U = (U(X, T), 0, 0), is directly proportional to the
pressure gradient:

U = −
K(X, T)

µ

∂P

∂X
,

∂U

∂X
= 0, 0 ≤ X ≤ D, (2.1)

where K(X, T) is the permeability at depth X and D is the thickness of the entire
membrane. A pressure difference across the membrane acts as the driving force for fluid
flow, and hence the following boundary conditions are imposed:

P(0, T) = P0, P(D, T) = 0. (2.2a,b)

Locally, the membrane’s pore network is modelled as a composition of cylindrical tubes, of
circular cross-section. The Hagen–Poiseuille model, which provides the local permeability
K(X, T) in terms of the local pore radii, is a suitable framework for this structure.

2.1. Homogeneous model

We now present our connected pore model, first in the simplest homogeneous case in
which all pores within a given layer are identical. To incorporate intra-layer connectivity,
here referred to simply as connectivity, we require that at least two pores in the ith layer
connect in the (i + 1)th layer; see figure 2(a) for an example of a two-inlet connected
membrane. In this example, the basic period-unit has a top layer that consists of two inlet
pores (identical tubes of length D1 and radius A1) on the upstream membrane surface.
Flow from these two pores enters the first inter-layer region, where mixing occurs. The
flow then enters the second layer of the membrane, consisting of three identical tubular
pores of length D2 and radius A2, which exit into the second inter-layer region, where
mixing again occurs. This structure repeats, so that the ith layer contains i + 1 pores, with
mixing in each inter-layer region.

More generally, for a membrane with m layers and νi pores in layer i, we assume that
the inter-layer junction regions are short enough to have negligible resistance so that the
pressure drop between the exit of pores in layer i and the entrance of pores in layer i + 1 is
negligible (also see Sanaei & Cummings 2018; Chang & Roper 2019). Because all pores
in the ith layer have the same initial radius and length, they consequently experience the
same local volumetric flow rate, Qi. Incompressibility (mass conservation) conditions for
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Influence of pore connectivity on membrane performance 902 A5-5

the fluid yield
∂Qi

∂X
= 0, 1 ≤ i ≤ m, (2.3)

where Qi through any pore in the ith layer can be related to the corresponding
cross-sectionally averaged pore velocity Up,i:

Qi = πA2
i Up,i, Xi−1 ≤ X ≤ Xi, Xi =

i
∑

j=0

Dj, D0 = 0, 1 ≤ i ≤ m, (2.4a–d)

with Ai = Ai(X, T) and Di the radius and the length of each pore in the ith layer,
respectively. The chosen cylindrical pore geometry allows us to calculate Qi using the
Hagen–Poiseuille equation:

Qi = −
(Pi − Pi−1)

µRi

, Ri =
8

π

∫ Xi

Xi−1

dX

A4
i (X, T)

, (2.5a,b)

where Pi is the pressure at the exit and Ri the total resistance, for each pore in the ith layer.
By continuity, we have

Q ≡ (2W)2U = νiQi, 1 ≤ i ≤ m, (2.6)

where Q is the global volumetric flow rate across the membrane, U the global superficial
Darcy velocity and νi the number of pores in the ith layer, which will vary depending on
the exact pore architecture chosen (in the example of figure 2a, νi = i + 1). Volumetric
flow rate through the ith layer in the membrane, νiQi, can then be related to the local pore
velocity, Up,i, under the assumption that the pressure gradient is uniform across each layer
(an assumption implicit in (2.5a,b)). For the case that the imposed pressure is the same at
each inlet, this condition becomes equivalent to stating that at each junction the flow rate
‘splits’ evenly – i.e. the fluid mass is divided at each junction according to the number of
pores.

Note that (2.5a,b) and (2.6) together yield m equations for the global superficial Darcy
velocity, U, and the inter-layer pressures, Pi. Solving successively for Pi gives

(2W)2U =
P0

µR
, R =

m
∑

i=1

Ri

νi

. (2.7a,b)

The above equation for R describes the net resistance of the membrane. To compare and
contrast with the single-inlet non-connected bifurcating pore model presented by Sanaei &
Cummings (2018) (where νi = 2i−1), we will consider single-inlet and two-inlet connected
pore models, with linear growth in the number of pores through each layer. In these two
cases, νi = i and i + 1, respectively, in (2.6).

2.1.1. Particle transport and fouling

The model described above constitutes Darcy flow through the membrane with the
specified pore architecture, and we now develop the model for the transport and deposition
of foulants. In this paper, we consider membrane fouling due to adsorption (also known
as standard blocking) only, as we intend to study the effect of different pore architectures
rather than the complexities of multiple fouling mechanisms. Adsorptive fouling is the
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process of small particles adhering to the walls of the pores, thereby shrinking the pore
radius, and is dominant in many applications. To model this, within each pore we follow
Sanaei & Cummings (2017), where an asymptotic analysis of the advection–diffusion
equation governing particle transport down pores is carried out, revealing that (in a certain
distinguished Péclet number limit) diffusion dominates in the radial direction, leading
to particle concentration that is approximately uniform across the pore cross-section,
while variation in concentration along the length of the pore is governed by an advection
equation:

Up,i

∂C

∂X
= −Λ

C

Ai

, Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m. (2.8)

Here, Ai(X, T) is the pore radius, C(X, T) is the local concentration of adsorption foulants
carried by the flow in the membrane, Up,i is the cross-sectionally averaged pore velocity
(see (2.4a–d)) and Λ is a parameter (with dimensions of velocity) that captures the
physical attraction between particles and pore walls. This equation is solved subject to
a specified particle concentration at the upstream surface:

C(0, T) = C0. (2.9)

In real filters, it is desirable to have membrane outlet concentration C(D, T) significantly
smaller than C0 and therefore C must vary spatially in X. In fact, according to (2.8),
C changes continuously through the depth of the filter since the concentration at the
downstream surface of a given layer must match with that at the upstream surface of
the next. At the same time, since the pore radius Ai jumps in value between layers (by
design), we must in general expect ∂C/∂X to be discontinuous at layer junctions. In the
next subsection we will justify and carry out a coarse-grained discretization of (2.8), which
leads us to a simple approximate model for the particle concentration within each layer.

The rate of pore radius shrinkage in each layer is proposed to be proportional to the local
concentration of particles. The assumption underlying our deposition law, similar to that in
Sanaei & Cummings (2018), is that (at a given location X in the pore) in a time increment
δT the change in pore area, 2πAiδAi, is proportional to the void fraction of particles locally
(αC, where α is an effective particle volume), the deposition coefficient Λ and the pore
circumference available for particles to stick to:

∂
(

πA2
i

)

∂T
= 2πAi

∂Ai

∂T
= −ΛαC (2πAi) ⇐⇒

∂Ai

∂T
= −ΛαC, (2.10)

Xi−1 ≤ X ≤ Xi, Ai(0) = Ai0, 1 ≤ i ≤ m. (2.11a,b)

2.1.2. Spatial discretization (coarse-grained model)

The system of partial differential equations (PDEs) described by (2.8)–(2.11a,b) must
be solved numerically. Sanaei & Cummings (2018) did not consider pore-size variation
within layers and were able to solve the full system of PDEs as presented above to
obtain results. In our case, our later simulations for heterogeneous membranes require
simulations where the radii of pores in the same layer are randomly assigned, and
a large number of simulations is needed to obtain reliable statistics representative of
an entire membrane, which is numerically expensive. Therefore, we propose instead a
coarse-grained discretization of the model (2.8)–(2.11a,b) in which we solve for quantities
Ai and Ci that represent approximations to pore radius and particle concentration within
layer i, respectively.
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Influence of pore connectivity on membrane performance 902 A5-7

If one assumes that the layers are sufficiently numerous that the particle concentration
does not change appreciably across a single layer (corresponding to an assumption that
32ΛµD2/(πmP0 W3) ≪ 1; see (2.8)) then such a coarse-grained approximation should be
reasonable. The particle concentration can then be approximated by a piecewise (spatially)
constant function, Ci(T), changing in value from one layer to the next. We note that if Ci(T)

is assumed independent of X across a given layer i, then consistency requires that the pore
radii must also be independent of X in layer i, Ai(T), and therefore shrink uniformly within
a given layer over time. The particle concentration within the first layer is taken to be C0,
the concentration in the feed, making a jump to the value C1 at the boundary between first
and second layers. More generally, the concentrations within each layer are taken to satisfy

Up,i

Ci − Ci−1

Di

= −Λ
Ci

Ai

, 1 ≤ i ≤ m, (2.12)

(replacing (2.8)) with C0 specified as in (2.9). This equation allows the particle
concentration Ci in each pore in layer i to be expressed in terms of the concentration
in the previous layer as

Ci =
Up,iCi−1

Up,i + ΛDi/Ai

, 1 ≤ i ≤ m. (2.13)

For the pore radius we propose

∂Ai

∂T
= −ΛαCi−1, 1 ≤ i ≤ m, (2.14)

as the coarse-grained discretization of (2.11a,b). Note the shift of index on the right-hand
side: since particle deposition occurs first at the upstream side of pores, it is the
concentration at pore inlets that dominates the fouling and pore closure, hence (we have
confirmed) using the upstream value Ci−1 gives more accurate results than using either the
downstream value Ci or an average (Ci + Ci−1)/2. At the same time local resistance Ri,
previously defined in (2.5a,b), reduces to

Ri =
8Di

πA4
i

, (2.15)

since each pore in the ith layer has length Di.
To check the accuracy of our coarse-grained model we carried out simulations, and

compared with solutions to the full PDE model over a range of geometric and material
parameters. In all simulations presented in this paper we use parameter values such that
the coarse-grained model gives less than 5 % error when compared with fully converged
solutions to the PDE model (see appendix A for more details of how this determination of
accuracy was made).

2.2. Heterogeneous model

Until now, we have focused on a homogeneous model in which all pores within a
given layer of the membrane are identical. Now, we turn our attention to heterogeneous
connected pore membranes in which the initial pore sizes within a given layer may vary.
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Consequently, pores in the ith layer do not necessarily experience identical volumetric flow
rates. Similar to (2.4a–d), the net volumetric flow rate through pores is given by

Qij = πA2
ijUp,ij, 1 ≤ i ≤ m, 1 ≤ j ≤ νi, (2.16)

where Aij and Up,ij are the radius of the jth pore in the ith layer and the
cross-sectionally averaged pore velocity, respectively. By balancing the flow rates through
a mass-conservation argument (cf. figure 2b), we allow for non-uniform splitting of the
flow at each junction. A general representation of this model in terms of the global
superficial Darcy velocity (and global volumetric flow rate Q) is given by

Q = (2W)2U =

νi
∑

j=1

Qij, 1 ≤ i ≤ m. (2.17)

Again, the junction regions are assumed to be of sufficiently low resistance that pressure
is spatially uniform within them, with perfect mixing of the flow in these regions so that
the concentration C of suspended particles is spatially uniform. Similarly to (2.5a,b), Qij

through and resistance Rij of the jth pore in layer i become

Qij = −
(Pi − Pi−1)

µRij

, Rij =
8

π

∫ Xi

Xi−1

dX

A4
ij(X, T)

, 1 ≤ i ≤ m, 1 ≤ j ≤ νi. (2.18a,b)

By continuity, Q and
∑νi

j=1 Qij must be equal. In view of this, (2.17) and (2.18a,b) lead to
m equations which, when solved successively for Pi, yield (cf. (2.7a,b))

Q = (2W)2U =
P0

µR
, (2.19)

where R is the total resistance of the membrane, now given by

R =

m
∑

i=1

⎛

⎝

νi
∑

j=1

1

Rij

⎞

⎠

−1

. (2.20)

Comparing this expression with resistors in an electrical circuit, one can see the νi pores
in the ith layer are analogous to resistors in a parallel circuit, while the total resistance of
each layer is summed as for resistors in series. Using (2.17) and (2.19) to isolate Pi − Pi−1

in (2.18a,b), we arrive at an explicit expression for Qij:

Qij = πA2
ijUp,ij =

P0

µR

⎛

⎝Rij

νi
∑

j=1

1

Rij

⎞

⎠

, 1 ≤ i ≤ m, 1 ≤ j ≤ νi. (2.21)

2.2.1. Particle transport and fouling

Fouling and foulant transport for the heterogeneous scenario are governed similarly to
the homogeneous case, but here particle concentrations at the outlets of pores in a given
layer are not the same because the pores have differing initial radii, which leads to different
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2W

P = P0, C = C0

Q11

C11

Q12

C12

P = 0

Q22

C1,mix

C22

P = 0

Q21

C21

P = 0

Q23

C23

D1

D2

X

FIGURE 3. Schematic of a connected branching-pore membrane with m = 2 layers, pressure
drop P0 and upstream particle concentration C0. Flow is assumed to be entirely in the X direction.

fouling behaviour. Continuity of concentration is therefore not automatic in the inter-layer
regions, and we need to invoke our perfect mixing assumption in order to close the model.
The transport equations now read

Up,ij

∂Cij

∂X
= −Λ

Cij

Aij

, Xi−1 ≤ X ≤ Xi, 1 ≤ i ≤ m, 1 ≤ j ≤ νi, (2.22)

where Cij is the cross-sectionally averaged concentration of foulants in the jth pore of layer
i. The initial condition is

C01(T) = C0. (2.23)

With our perfect mixing assumption the uniform particle concentration, Ci,mix , in the
junction region below the ith layer satisfies

Ci,mix :=

νi
∑

j=1

QijCij

νi
∑

j=1

Qij

, 1 ≤ i ≤ m. (2.24)

With Cij calculated from (2.22), Ci,mix then provides the boundary (upstream) condition to
calculate Ci+1,j (see figure 3).

The rate of change in pore radius is again determined as in (2.11a,b). The only
modification is the introduction of double indices, so that the rate of change of radius
of the jth pore in layer i is given by

∂Aij

∂T
= −ΛαCi−1,j, 1 ≤ i ≤ m, 1 ≤ j ≤ νi, (2.25)

with the initial pore radii specified: Aij(0) = Aij0. Note that this general heterogeneous
model reduces to the homogeneous model when all pores in a given layer are identical.
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2.2.2. Spatial discretization (coarse-grained model)

We modify (2.12) according to the concentration rebalance introduced in (2.24),
replacing Ci−1 by the appropriate upstream value Ci−1,mix . The heterogeneous analogue
of (2.13) then becomes

Cij =
Up,ijCi−1,mix

Up,ij + ΛDi/Aij

, C0,mix = C0, 1 ≤ i ≤ m, 1 ≤ j ≤ νi, (2.26)

and the radius of pore j in the ith layer evolves at the following rate:

∂Aij

∂T
= −ΛαCi−1,mix , 1 ≤ i ≤ m, 1 ≤ j ≤ νi. (2.27)

Similar to (2.15), Rij, the total resistance of the jth pore in the ith layer, defined in (2.18a,b),
now reduces to

Rij =
8Di

πA4
ij

. (2.28)

2.3. Measures of performance

There are several primary measures of membrane performance used in applications. First,
volumetric throughput (referred to simply as throughput henceforth), which represents the
total cumulative volume of filtered fluid (filtrate) collected at the outlet of the filter by time
T , is defined as the time integral of the global volumetric flow rate Q, i.e.

V(T) =

∫ T

0

Q(T ′) dT ′. (2.29)

Flow rate Q is often plotted against throughput V to illustrate the relative efficiency of
the filter. A desirable performance would be represented by a relatively uniform Q during
most of the filtration, during which significant throughput is achieved, followed by a sharp
drop in Q towards the end of the filter’s lifetime when fouling is severe.

Another important performance metric is the concentration of foulants at the outlet of
the membrane, Cm(T) ≡ Cm,mix(T) (see (2.24)). Calculating these performance measures
using our model, our simulations will allow us to study the dynamics of filtration, infer
dependence on material and geometric parameters and ultimately infer the most efficient
filtration scenarios.

3. Scaling and non-dimensionalization

3.1. Homogeneous model

The model presented in § 2.1 is non-dimensionalized using the following scalings:

Pi = P0pi, (X, Di) = D(x, di), Ci = C0ci, Ai = Wai,

(U, Up,i) =
πW2P0

32µDr̂0
(u, ūp,i), T =

W

ΛαC0
t,

⎫

⎪

⎬

⎪

⎭

(3.1)

where the physical scaling quantities are defined in table 1 (with the exception of r̂0, a
representative value of the membrane resistance, which is defined below). After applying
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Influence of pore connectivity on membrane performance 902 A5-11

U = Ui Superficial Darcy velocity in ith layer Up,i Cross-sectionally averaged velocity in ith layer
Pi Pressure in ith layer P0 Pressure drop across the membrane
Q Global volumetric flow rate Qi Local volumetric flow rate through each pore of ith layer
Ci Concentration in ith layer C0 Particle concentration at membrane inlet
Ai Pore radius in ith layer Di Thickness of ith layer
Ri Pore resistance in ith layer D Membrane thickness
R Total membrane resistance m Number of layers
Λ Deposition coefficient ǫij Noise amplitude (see § 4)

TABLE 1. Key nomenclature used throughout this work. Uppercase symbols denote
dimensional quantities; lowercase are dimensionless.

the boundary conditions for pressure,

p0(t) = 1, pm(0) = 0, (3.2a,b)

the resulting dimensionless model for u(t), ūp,i(t), r(t), ai(t) and ci(t) (global Darcy
velocity, cross-sectionally averaged pore velocity, total membrane resistance, radius of
pores in the ith layer and particle concentration in the ith pore, respectively) is

r =
1

r̂0

m
∑

i=1

di

νia
4
i

, (3.3)

u =
1

r
, u =

νi

4
πa2

i ūp,i, (3.4a,b)

ci =
ūp,i ci−1

ūp,i + λdi/ai

, λ =
32µD2r̂0

πP0 W3
Λ,

∂ai

∂t
= −ci−1, 1 ≤ i ≤ m. (3.5a–c)

Here r̂0 is chosen from a typical value (r̂0 = 15 000 in most of the cases we analyse; see
§ 4 for more details) of

r̂ (0) =

m
∑

i=1

di

νia
4
i (0)

, (3.6)

to ensure r and u take order-one values (at least initially), and λ is a dimensionless
deposition parameter that describes the competition between the affinity of the foulant
particles for the membrane material and the downstream flow (which depends on physical
quantities such as viscosity µ, transmembrane pressure P0, etc.). Note that this choice
of scaling (rather than simply scaling on the membrane’s initial resistance in all cases)
enables us to make direct comparisons of membranes with different initial resistances.

We also define dimensionless volumetric flow rate u(t) and throughput v(t):

Q =
πW4P0

8µDr̂0
u, V =

(2W)2 D

αC0
v, v(t) =

1

λ

∫ t

0

u
(

t′
)

dt′; (3.7a–c)

see the definitions of dimensional global volumetric flow rate Q (2.19) and throughput
V (2.29). These quantities are often compared when studying membrane performance.
We make comparisons between real membranes with variations only in Λ while all other
physical parameters (e.g. µ, D, P0, W) are held fixed. The resulting variations in λ are
directly reflected in the time scale in (3.1), but no other scalings are affected. The factor
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of 1/λ in v then emerges naturally after using the scales of Q, V and T in the definition of
throughput (2.29).

Non-dimensionalized boundary and initial conditions are given by

c0(t) = 1, ai(0) = ai0, (3.8a,b)

with ai0 specified for 1 ≤ i ≤ m. This closes the system described by (3.3)–(3.5).

3.2. Heterogeneous model

The heterogeneous model is also non-dimensionalized using the scalings of (3.1). The
relevant non-dimensional equations are then

r =
1

r̂0

m
∑

i=1

di

⎛

⎝

νi
∑

j=1

a4
ij

⎞

⎠

−1

, (3.9)

u =
1

r
, ūp,ij =

4

π

a2
ij

1

r

⎛

⎝

νi
∑

j=1

a4
ij

⎞

⎠

−1
, (3.10a,b)

cij =
ūp,ij ci−1,mix

ūp,ij + λdi/aij

, ci,mix =

νi
∑

j=1

a2
ijūp,ij cij

νi
∑

j=1

a2
ijūp,ij

, λ =
32ΛµD2

πP0 W3
r̂0, (3.11a–c)

∂aij

∂t
= −ci−1,mix , 2 ≤ i ≤ m, c0,mix = c0j, (3.12)

where 1 ≤ j ≤ νi and 1 ≤ i ≤ m. The following non-dimensional boundary and initial
conditions also apply:

c0j(t) = 1, 1 ≤ j ≤ ν1, ∀ t ≥ 0,

cij(0) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ νi,

aij(0) = aij0, 1 ≤ i ≤ m, 1 ≤ j ≤ νi,

⎫

⎪

⎬

⎪

⎭

(3.13)

with aij0 specified for 1 ≤ i ≤ m and 1 ≤ j ≤ νi. This closes the system given by equations
(3.9)–(3.13).

4. Results

We now present results of the models summarized in §§ 3.1 and 3.2. Our focus
is on comparing membranes with different internal pore structures, with particular
emphasis on how the intra-layer pore connectivity affects filtration performance. We
mainly consider the three basic pore architectures sketched in figure 4. Results for
homogeneous membranes (all pores in a given layer identical) are obtained using the
system (3.3)–(3.8a,b), while results for heterogeneous membranes are obtained from
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i = 1

i = 2
i = 3

2W

2W

2W

2W

2W

2W

(b)(a) (c)

FIGURE 4. The three distinct pore architectures compared: (a) single-inlet non-connected
branch membrane; (b) single-inlet connected membrane; (c) two-inlet connected membrane. The
ordered colour coding (black, blue and red) is used throughout § 4.

(3.9)–(3.13). The stopping criterion for a simulation is when the radius of the top pore
a1(t) reaches 0, at a time we label tfinal, defined more precisely as

tfinal =
{

t > 0 : lim
t′→t

a1

(

t′
)

= 0
}

. (4.1)

The reason why the first-layer pore always closes first in practical situations will be
discussed later.

In § 4.1, we highlight differences in flow and fouling behaviour between the three
membrane types and consider how various performance metrics are influenced by
membrane structure. Then, in § 4.2, we address the influence of membrane inhomogeneity
by examining simulations of the heterogeneous model.

In order to make the most representative comparison between the three membrane pore
structures, we simulate fouling of structures that have equivalent initial total membrane
resistance r(0) = r0. Thus, in the absence of fouling, compared membranes should behave
identically under the same imposed pressure drop.

4.1. Results for homogeneous membranes

For all homogeneous models, the total dimensionless membrane resistance is given by

r(t) =
1

r̂0

m
∑

i=1

di

νia
4
i (t)

, (4.2)

where r̂0 is the typical membrane resistance given in (3.1) (see also (3.6)) and in layer
i, νi is the number of pores and ai(t) is the radius of each pore. Per figure 4, for the
non-connected membrane νi = 2i−1, while νi = i and i + 1 for the single-inlet connected
and the two-inlet connected membranes, respectively. We specify the initial value of the
resistance, r(0) = r0. Additionally, in all simulations layers are of equal thickness. Thus
di = 1/m, where m is the total number of layers.

The initial radii of pores within each layer are taken to decrease geometrically with layer
depth. This geometry is selected in order to retain tractability of the models in terms of
the number of parameters, but other scenarios can be easily implemented. Thus,

ai(0) = a1(0)κ i−1, (4.3)

with 0 < κ ≤ 1 the geometric ratio, which characterizes the extent of the membrane
heterogeneity across layers. There are two parameters in (4.3): a1(0) and κ . We impose the
value of one of these parameters; the other is then determined by using (4.2), subject to the
constraint that r(0) = r0. In physical membranes, surface porosity, φtop = ν1πa1(0)2/4,
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.4

0.6

0.8

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t t

a
i 
(t

)
1st layer
2nd layer
3rd layer
4th layer
5th layer

0.2

0.4

0.6

0.8 1st layer
2nd layer
3rd layer
4th layer
5th layer

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6 1st layer
2nd layer
3rd layer
4th layer
5th layer

(b)(a) (c)

FIGURE 5. Homogeneous models: pore radius evolution for each layer. (a) Non-connected
branch membrane, (b) single-inlet connected membrane and (c) two-inlet connected membrane.
For all calculations, φtop = 0.539 (maximum comparable porosity), λ = 30, m = 5 and the initial
resistance r0 = 1.

is a fairly controllable and readily measurable membrane property. For this reason, we
typically specify φtop in our simulations. Nonetheless, in order to quantify more fully the
differences between the three membrane types, we also briefly compare membranes with
equal geometric coefficients, κ . (Note that (4.3) in general leads to porosity gradients
within the filter, with (initial) porosity ratio between adjacent layers readily calculated
from (4.3) if desired, as φi(0)/φi−1(0) = κ2νi/νi−1.)

In most simulations, we compare membranes with m = 5 layers, initial dimensionless
resistance r0 = 1 and with the dimensionless deposition coefficient set to λtypical = 30,
chosen so that the membrane particle removal efficiency is in qualitative agreement
with typical requirements in applications. Figure 5 shows simulations for the pore radius
evolution in each layer for all three membranes with identical top-layer porosity φtop =
0.539. Note that this is the largest possible surface porosity for a two-inlet membrane of
the type in figure 4(a). Both single-inlet models display notably longer membrane lifetimes
than the two-inlet model – the value of tfinal, determined by when the radii of pores in the
top layer go to zero, is larger. This is because for a fixed value of φtop, a1(0) must decrease
as the number of pores in the first layer increases.

We also observe that the radius evolution of the second-layer pores presents interesting
curvature changes towards the end of the simulation. We attribute this change in curvature
to the top-layer pore radius becoming smaller than the radii of downstream pores. When
the top pore is largest among all pores, it provides the dominant contribution to particle
removal. However, when it becomes smaller than the second-layer pores, it incurs a higher
local pore velocity due to conservation of mass (analysed in a later discussion involving
figure 11d) increasing the advective flux of foulants further into the membrane to the
second layer, which now takes on the majority of particle removal. The second-layer radius
will then decrease more rapidly due to this higher inflow of particles. A similar reasoning
can be used for layers further downstream at later times, though the effect is less visible
than for the second layer, until the filtration ends with the top pore closing to zero. This
hypothesis is further supported by figure 6, which shows the evolution of u(t) (volumetric
flow rate) for each model. For each plot, we can associate the onset of rapid decrease in
u with the time at which the top pore becomes appreciably smaller than the second- and
third-layer pores, shown in figure 5.

In order to quantify the relative performance of our membranes, we investigate
their dimensionless volumetric flow rate u(t) versus throughput v(t) characteristics (see
(3.7a–c)). Figure 7 plots u(t) versus v(t) for the (equal initial resistance) single-inlet
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0

0.2

0.1 0.2 0.3 0.4

0.4

0.5

t

u(t)

0.6

0.6

0.7 0.8

0.8

1.0

1.2

0.9

Branch

Single-inlet connected

Two-inlet connected

FIGURE 6. Homogeneous models: volumetric flow rate evolution for non-connected branch
membrane (black), single-inlet connected membrane (blue) and two-inlet connected membrane
(red). The solid black curve lies under the solid blue curve. For all calculations, φtop = 0.539
(maximum comparable porosity), λ = 30, m = 5 and the initial resistance r0 = 1.

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

0.2

0.4

0.6

0.8

1.0

v(t)

u(t)

φtop = 0.539

φtop = 0.2

φtop = 0.0496

φtop = 0.539

φtop = 0.2

φtop = 0.0496

φtop = 0.539

φtop = 0.2

φtop = 0.0496

FIGURE 7. Homogeneous models: volumetric flow rate versus throughput for non-connected
(black), single-inlet connected (blue) and two-inlet connected (red) membrane structures. Curves
with the same line style represent equivalent values of φtop for each model. The solid black curve
lies under the solid blue curve. For all simulations, λ = 30, m = 5 and initial resistance r0 = 1.

non-connected, single-inlet connected and two-inlet connected membranes depicted in
figure 4, for three different values of the top-layer porosity φtop. Figure 8(a) shows total
throughput versus porosity results for the different pore architecture membranes as the
number of layers m varies, while figure 8(b) illustrates u(t) versus v(t) performance as
the number of inlet pores ν1 varies (of these architectures, only ν1 = 1 and ν1 = 2 are
sketched, in figures 4b and 4c, respectively). Together, figures 7 and 8(a) show that for
each system, the best throughput performance is realized when φtop is maximized, or
equivalently, the initial pore radius is the widest possible at the upstream side. As φtop

increases (for fixed initial resistance), membranes process more filtrate and sustain larger
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0.2
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m = 3
m = 3
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0.8
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4-inlet
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9-inlet
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(b)(a)

FIGURE 8. Homogeneous models: (a) total throughput v(tfinal) versus φtop for non-connected
(black), single-inlet connected (blue) and two-inlet connected (red) membrane structures.
(b) Volumetric flow rate versus throughput for connected membranes with ν1-inlet pores and
φtop = 0.539. For all simulations, λ = 30, m = 5 and initial resistance r0 = 1.

volumetric flow rates that decay sharply – an advantageous attribute indicating that the
system performs at a high level before failure. We also find that (for the chosen model
parameters) the single-inlet models outperform their two (or more) inlet counterparts.
When comparing systems with equivalent φtop, we find that the two-inlet model exhibits
notably shorter membrane lifetimes, consistent with the results shown previously for
pore radii evolution in figure 5. Consequently, the total throughput of such systems is
diminished. We remark that the results of figures 7 and 8(a) reveal the two single-inlet
models to exhibit strikingly similar performance. In these simulations the two models
share the same top-layer radius while the geometric ratio κ differs slightly (relative
κ difference is ∼6 %). This indicates that for the chosen parameters, the morphology
in lower layers, including intra-layer connections, does not play a prominent role in
membrane performance as measured by total throughput. Moreover, figure 8(a) shows
that for each selected membrane structure, with fixed top-layer porosity and the same
deposition coefficient λ, membranes with more layers yield larger total throughput. This
is because under the equal initial resistance constraint (in addition to fixed top-layer
porosity), a membrane with more layers has a larger κ value and therefore larger pores
in upper layers, which take longer to close than the smaller pores of a membrane with
fewer layers. Motivated further by the observations of figure 8(a), we probe the effect
of having more than two inlets on the upstream surface (again while fixing the top-layer
porosity φtop) in figure 8(b). We find that, as the number of inlet pores is increased, total
throughput decreases. This is because the more pores a membrane has in its top layer (with
pore size constrained by circle packing in the designated square), the smaller are the initial
pore sizes in the top layer. These pores shrink to zero faster than those in a membrane with
fewer inlets (see (3.5c)) and lead to less total throughput.

We also observe a common feature from figures 7 and 8(b) that volumetric flow rate
u(t) decreases very sharply towards the end of the filtration. This is due to the radii of top
pore(s) becoming smaller than those of the downstream ones. The radius of the top pore
contributes more markedly to total resistance (per (4.2)) when it is very small (smaller
than pore radii in downstream layers), thus increasing the rate at which u(t) decreases
via (3.4).
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FIGURE 9. Homogeneous models: (a) initial particle concentration at outlet of first layer, c1(0),
versus deposition coefficient λ for single-inlet structures. Note that the results are identical
for both connected and non-connected single-inlet models because they have the same initial
top-pore radius a1(0). (b) Initial particle concentration at ith-layer pore outlets, ci(0), versus λ for
single-inlet non-connected (black) and connected (blue) models with φtop = 0.709. The vertical
range is extended below zero for clarity only; ci(0) > 0 always. For all simulations, m = 6 and
r0 = 1.

We next investigate the effect of variations of λ, as induced by changes in the
dimensional coefficient Λ, corresponding to changes in specific material properties of the
filter or the particles in the feed. This coefficient captures the overall attraction strength
or ‘stickiness’ of the pore wall, per (3.5): in general, a larger value means that particles
carried by the feed solution will adhere to the walls of a pore more easily. This in turn
causes faster pore shrinkage and a shorter membrane lifetime. Conversely, smaller values
of λ lead to reduced adsorption and more particles escaping capture by the membrane. As
Λ appears in the chosen time scale (see (3.1)), such variations in λ effectively change the
time scale. This effect is manifested in (3.7a–c), where total throughput v(t) is inversely
proportional to λ.

In figures 9 and 10 we show results as λ varies for m = 6 layer single-inlet membranes
with initial dimensionless resistance r0 = 1 and several values of the top-layer porosity.
Figure 9(a) illustrates the (initial) particle capture within the first layer of the membrane.
The results show that, as λ increases, the percentage of particles captured by the first-layer
pore rapidly increases, exceeding 50 % in all cases by the time λ = 20. In figure 9(b),
we plot the (initial) particle capture within all layers of the membrane. We note that as
λ decreases, differences in performance between the two models become more apparent.
For smaller λ values, membrane internal structure begins to play a more prominent role,
as a greater percentage of particles reach the lower layers. This is shown, for λ ≤ 5, by the
widening gaps in the graphs of ci as i increases, between the connected and non-connected
models in figure 9(b). The non-connected branch model (black curves) achieves lower
particle concentration at the outlet of each layer, because its more numerous downstream
pores are able to contribute more to overall retention capability when upstream pores
capture fewer particles (the small-λ effect).

For both connected and non-connected single-inlet models, over the range of λ
considered, the membrane total throughput increases as λ decreases, as figure 10
demonstrates. Furthermore, when λ becomes large, the total throughputs of the single-inlet
models converge towards one another, suggesting that, for large λ, filtration performance
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FIGURE 10. Homogeneous models: total throughput versus λ for single-inlet non-connected
(black) and connected (blue) membrane structures. Each set of curves represents equivalent
initial top-layer porosity. Each black dot is an equivalence point between the two models such
that the same total throughput is achieved with the same λ. For all simulations, m = 6 and r0 = 1.

is dominated by the top-layer pore (which is identical in these two models). This
conclusion is further supported by figure 9(a). Finally, we draw attention to the existence
of total throughput equivalence points in figure 10. For certain values of λ, the total
throughput of the two models is the same (see black dots). To determine if either
morphology is preferential at equivalence points, we consider the concentration of
particles remaining in the filtrate as it exits the membrane, cm(t), which measures the
retention capability of the membrane. Additional simulations (not shown here) indicate
that the non-connected model does a marginally better job (lower particle concentration
at outlet) at equivalence points, consistent with our remarks concerning figure 9(b)
above.

In figure 11, we further analyse the influence of membrane morphology on particle
removal efficiency for our three models. In figure 11(a–c) particle concentration in
the filtrate is plotted as a function of instantaneous throughput for all three membrane
structures, and for three different κ values. From the y intercepts of those figures, we
see that a smaller κ value (and consequently smaller downstream pores) contributes
to lower initial particle concentration in the filtrate, indicating that a steeper porosity
gradient in the filter medium leads to greater initial foulant retention. Interestingly,
however, for the selected parameters we observe that the outlet particle concentrations
cm(t) do not necessarily decrease monotonically in time for all choices of geometric
coefficients examined. For example, in figure 11(c) for κ = 0.6, the value of cm(t) for
the two-inlet model increases over a considerable portion of the membrane lifetime
before finally decreasing and dropping to zero due to complete fouling of the first layer.
This phenomenon, which we investigate more thoroughly below, is especially important
because in many applications it is necessary for membranes to maintain a guaranteed
particle removal efficacy throughout their operational lifetimes. We hypothesize that this
non-monotonic behaviour is linked to the corresponding increase in cross-sectionally
averaged pore velocity, ūp,i, as shown in figure 11(d). As ūp,i increases due to the reduction
of pore size through adsorptive fouling, particles in the feed solution are advected through
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FIGURE 11. Homogeneous models: (a–c) concentration at pore outlet versus throughput for (a)
non-connected, (b) single-inlet connected and (c) two-inlet connected membrane structures. (d)
Two-inlet connected model: the concentration of particles leaving the first-layer downstream
surface (c1, solid red curve) and cross-sectionally averaged first-layer pore velocity (ūp,1, dashed
red curve) are shown. For all calculations, λ = 30, m = 5, κ = 0.6 and r0 = 1.

pores faster. The upshot is that more particles are advected through the membrane before
they have the opportunity to adhere to the pore walls, in contrast to the low-pore-velocity
situation.

In order to understand better which parameter regimes lead to the observed increase in
filtrate particle concentration, we plot the normalized difference between the initial and
maximum filtrate particle concentrations,

cdiff (λ; m) =

max
0≤t≤tfinal

cm(t) − cm(0)

cm(0)
, (4.4)

as a function of λ. If, for a given value of λ, the outlet concentration monotonically
decreases for the entire membrane lifetime, then max0≤t≤tfinal

cm(t) = cm(0) and cdiff

vanishes. Conversely, a positive value of cdiff is indicative of a deteriorating particle
retention capability over at least some of the filter lifetime. Figures 12(a), 12(b) and 12(c)
show cdiff plotted against the dimensionless deposition parameter λ for the single-inlet
non-connected model and the single- and two-inlet connected models, respectively, for
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FIGURE 12. Normalized difference cdiff (λ; m) defined in (4.4) versus λ for (a) single-inlet
non-connected, (b) single-inlet connected and (c) two-inlet connected membrane structures.
(d) Zero level set of the function g defined in Theorem 4.1 for single-inlet model (blue), two-inlet
model (red) and the branch model (black). The coloured data points are the pairs of x intercepts
with their respective m values from (a–c), respectively. For all simulations, φtop = 0.4 and
r0 = 2.

a range of layer numbers m. Here we choose initial (dimensionless) resistance r0 = 2 in
order to include a large range of m values (for a given κ value, large m leads to very
small pores in lower layers, particularly for the non-connected model, hence a larger net
resistance).

It is, in fact, possible to find a sufficient condition that characterizes parameter
choices guaranteeing the existence of a maximum in the function cm(t). Our sufficient
condition takes the form of an inequality, depending entirely on initial conditions of the
problem and model parameters, and is summarized by the following theorem (proved in
appendix B).

THEOREM 4.1. Let

fj(λ, m) =
1

1 +
γ λ

m
νjκ j−1

, 1 ≤ j ≤ m, f0 = 1, γ =
πa1(0)r0

4
, (4.5)
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and define

g
(

λ, m; γ, {νj}
j=m

j=1

)

:=

⎛

⎝

m
∑

j=1

νj

j
∏

i=0

fi(λ, m)

⎞

⎠

⎛

⎝

m
∑

j=1

1

νjκ4(j−1)

⎞

⎠

− 4

⎛

⎝

m
∑

j=1

νjκ
j−1fj(λ, m)

⎞

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

m
∑

j=1

j−1
∏

i=0

fi (λ, m)

νjκ5(j−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (4.6)

If g > 0, then there exists sλ,m > 0 such that (dcm/dt)(sλ,m) = 0 and cm(sλ,m) is maximal.

We first provide some intuition for the terms in the theorem. The fj are closely related
to (3.5a). In fact, each fj is the ratio of the initial particle concentrations in the jth and
(j − 1)th layers (see appendix B for the derivation of this relation). The function g arises
from the expression of c′

m(0), the initial slope of the particle concentration function cm(t),
in terms of the fj and the model parameters. Note that the sufficient condition depends
only on λ, m and the membrane geometry, which is parametrized by γ (defined in the
theorem) and the number of pores per layer, νi. Even though κ appears in the inequality, it
is uniquely determined via (4.2) once a1(0) (or φtop) and r0 are specified.

We can illustrate the region of parameters that satisfy the inequality given in theorem
4.1, with specified initial resistance r0 and top-layer porosity φtop. In figure 12(d), we
present the level curves {(λ, m) : g = 0} for each model membrane with γ and νj specified.
Two observations may be made about these contour curves. First, for large λ, the two
single-inlet models nearly coincide. This is because membrane fouling occurs primarily
in the first layer when the material has a high affinity for the passing particles. However,
in relatively small-λ regimes (λ ≈ 5 and lower), the single-inlet and two-inlet connected
models exhibit very similar behaviour. This is because for small λ, more particles are able
to penetrate to the lower layers, where the single- and two-inlet models share more or
less the same structure (differing by just one pore per layer). For applications, in order to
ensure particle retention performance that does not deteriorate in time, the region to the
right of the level curves in figure 12(d) should be avoided. This region represents the set
of parameters that satisfy the inequality, namely the region of sufficiency for deteriorating
particle retention given by {(λ, m) : g > 0}. To check the tightness of the bound provided
by the theorem, we extract the x intercepts (roots of cdiff = 0) in figure 12(a–c), and pair
them with their respective m values as the second component. Together, these ordered pairs
(λ, m) make up the data points (the crosses) presented in figure 12(d). Indeed, as expected,
the data points, representing the onset of local maxima in cm(t) with various parameter
choices, all lie in the region of sufficiency of the theorem. The bound is particularly
tight for the single-inlet connected model (in blue), and reasonably so for the two-inlet
connected model (red). However, it is rather poor for the single-inlet non-connected model
(black), and becomes worse as m increases. This is because in this case, the number of
pores per layer νj = 2j−1 (1 ≤ j ≤ m) grows much faster with layer number than in the
other cases (νj = j, j + 1), making the difference between the two terms in g(λ, m) larger
as m increases.
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4.2. Results for heterogeneous membranes

In general, the complex membranes found in real-world systems do not possess
homogeneous geometries of the kind modelled in § 2.1 and studied so far. For this
reason, we also consider membranes with varying degrees of heterogeneity in the
pore structure. Further motivation is provided by considering industrial fabrication
processes. Due to manufacturing precision limitations, even if it were desirable to make
a membrane with perfect in-plane pore homogeneity, it would not be possible. It is
therefore worthwhile to consider how in-plane variation in pore sizes, and manufacturing
tolerance limitations, may influence membrane performance. Based on the assumption
that membrane manufacturers attempt to specify the pore size to control permeability, we
address this issue by introducing variations to the radius of each pore within our layered
structure. The same basic pore structure is considered, but pores are no longer described
by a single layer-dependent radius ai. For each model, individual pore radii are specified
by introducing a random perturbation on top of the analogous homogeneous pore radius.
More precisely, we suppose that the initial radius of the jth pore in the ith layer is now
given by

aij(0) = ai(0)(1 + ǫij), (4.7)

where ai(0) = a1(0)κ i−1 as in the homogeneous case and ǫij is a continuous random
variable drawn independently for each (i, j) pair from a uniform distribution centred about
zero and with half-width – or noise amplitude – b, i.e.

ǫij ∼ unif(−b, b), 0 ≤ b ≤ 1. (4.8)

For each realization, ǫij may result in a larger or smaller initial pore size than if unperturbed
(corresponding to b = 0). In this way, by carrying out a suitably large number N of
such simulations and studying quantities such as volumetric flow rate, throughput and
membrane resistance averaged over all simulations, we are able to gain qualitative insight
into the influence of heterogeneity, and the specific effects of varying the noise amplitude.

The admissible range of b is chosen so as to ensure that the perturbed pore radii satisfy a
physical constraint: loosely speaking, that the maximally perturbed pores will fit within the
box of containment (a square of side length 2 in our dimensionless units). The perturbation
applied to the initial pore sizes will lead to changes in the initial membrane resistance,
the volumetric flow rate through the membrane and ultimately the total throughput of
filtrate. We address the influence of the perturbations by first fixing κ , m (geometric ratio
of pore sizes between layers, total number of layers) and r0 (initial membrane resistance)
for the underlying homogeneous model, calculating the corresponding layer-dependent
initial pore radii ai(0), then perturbing these radii using (4.7), before observing the
performance of the resulting heterogeneous membrane. Before so doing, we first provide
several definitions that we will need for this heterogeneous model.

In view of (3.9)–(3.12) where non-dimensional formulas for global resistance r and
Darcy velocity u are given, we can analogously define the dimensionless heterogeneous
initial resistance and Darcy velocity as

rb(t = 0) =
1

r̂0

m
∑

i=1

di

⎛

⎝

νi
∑

j=1

a4
ij(0)

⎞

⎠

−1

, ub (t = 0) =
1

rb(t = 0)
. (4.9a,b)

Note that this formula is only valid for the connected models, for which the pore-inlet
pressure is the same for each pore in a given layer, whereas in the non-connected
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heterogeneous model, the pressures at different junctions in the same layer are not
necessarily the same. For the non-connected branch model we utilize the self-similar
structure – the left and right branch at each connecting junction – and calculate the
total resistance iteratively through each layer as follows. For an m-layer membrane with
non-connected branch structure:

rb,ij(t) =
di

a4
ij(t)

+

(

1

rb,i+1,2j−1(t)
+

1

rb,i+1,2j(t)

)−1

, 1 ≤ i ≤ m − 1, 1 ≤ j ≤ 2i−1,

(4.10)

rb,m,j =
dm

a4
m,j(t)

, 1 ≤ j ≤ 2m−1, (4.11)

where rb,ij(t) represents, for a fixed perturbation strength b, the aggregate resistance in the
branch originating from the jth pore in the ith layer. We initialize the iteration on i with
i = m − 1 using (4.10) and the resistance from each pore in the mth layer via (4.11). More
generally, for each i, we find rb,ij for each j and then proceed to i − 1 and so on, until we
reach rb,11(t) =: rb(t), the total resistance of the membrane with a non-connected branch
structure.

As indicated above, for a given value of the noise amplitude b, we average over a large
number of simulations N to obtain sample averages for membrane performance measures.
Thus, average volumetric flow rate through the membrane is defined more precisely by

ūb(t) =
1

N

N
∑

i=1

ub,i(t), (4.12)

where ub,i(t) is the volumetric flow rate obtained for the ith simulation of the ensemble.
Lastly, the average throughput is defined (analogously to (3.7a–c)) by

v̄b(t) =
1

λ

∫ t

0

ūb(t
′) dt′. (4.13)

After some numerical experimentation the value N = 104 was chosen as a sufficiently
large number of simulations to obtain reliable averaged results. We did generate selected
results using N = 106 simulations, but found only minor qualitative changes when
compared to N = 104. In light of the significantly larger computational cost of 106

simulations, we use N = 104 to obtain all results in the following section.
Before presenting the detailed results of the evolution of heterogeneous membranes, we

briefly remind the reader of the principal structural difference between the connected and
non-connected models under this heterogeneous regime. In figure 4(c), the non-connected
branch model, each pore leads to two downstream pores, with different initial radii,
and pores in the same layer are connected only to their direct sibling from the same
upstream pore, and not to any other pores in that layer. Hence, pores within the same
layer can experience different upstream (and downstream) pressures, and different particle
concentrations at their inlets. However, in the connected geometries of figure 4(b,c),
pores within the same layer are connected via a junction layer, where our mixing
assumption (3.11a–c) and the assumption of equalized pressure (see the beginning of § 2.1)
play important roles in distinguishing the qualitative differences between connected and
non-connected models.
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FIGURE 13. Heterogeneous models: average volumetric flow rate (4.12) versus throughput
(4.13) of single-inlet (blue) and two-inlet (red) connected models for varying noise amplitude, b,

for (a,c) κ = 0.95 and (b,d) κ = 0.6. All results are averaged over 104 simulations, with common
parameters λ = 30 and m = 5.

4.2.1. Expected volumetric flow rate versus throughput

We first investigate the effects of noise on membrane performance by observing the
average (expected) volumetric flow rate ūb(t) versus throughput v̄b(t) for the heterogeneous
models, with reference to the results for homogeneous membranes obtained earlier. We are
also interested in how connected and non-connected pore structures compare. In figure 13,
we present the ūb(t) versus v̄b(t) results, for five-layer single-inlet connected and two-inlet
connected membranes, with two choices of κ (0.95 and 0.6). We note the following two
phenomena: firstly, we immediately observe from the horizontal intercepts of each graph
that the greater the noise amplitude, the larger the average total throughput in both of
these connected models (see blue and red curves in figure 13a–d); and secondly, the
average initial volumetric flow rate ūb(0) generally increases with b, shown by the vertical
intercepts in the same figures (with the exception of figure 13a, an anomaly that we defer
to a later discussion).

The corresponding ūb(t) versus v̄b(t) results for the non-connected pore model, in
figure 14(a,b), reveal that the greater the noise amplitude b, the smaller the average total
throughput – exactly the opposite trend noted for the connected cases in figure 13. There
are two possible factors that might explain or at least contribute to these contrasting
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FIGURE 14. Heterogeneous models: average volumetric flow rate versus throughput of
non-connected branch model (black); and connected branch model with νi = 2i−1 (magenta), for
(a,c) κ = 0.95 and (b,d) κ = 0.6. All results are averaged over 104 simulations, with common
parameters λ = 30 and m = 5.

findings: (1) the much larger number of downstream pores in the non-connected branch
model and (2) the absence of the pressure-/concentration-equalizing junction layer for the
non-connected model. To investigate the first hypothesis, we consider a connected model
with exactly the same number of pores per layer (i.e. νi = 2i−1) as the non-connected
branch model. Results are shown in figure 14(c,d), again for the two κ values used in
figure 13 and the same b values: it is clear from the horizontal intercepts in these plots that
average total throughput again increases as b increases, much as for the original connected
model results of figure 13. This rules out the first possibility.

Continuing to the second hypothesis, we first note that by having a concentration-
and pressure-equalizing junction layer, in particular in the heterogeneous regime, the
connected branch model is able to split upstream volumetric flow rates into downstream
pores depending on their sizes. This feature would lead to different average volumetric flow
rate evolution for the two considered models (non-connected versus connected) in figure 14
under different signs of the pore-size perturbation. We claim that the equalizing junctions
in the connected model contribute to the larger throughput observed when compared to
the non-connected case. Since the two models only begin to differ at the outlets of the
second layer and onward, we focus on the effects of initial pore-size perturbation on the
pores in the second layer as an example. If both pores are under perturbations that yield
larger initial radii, they will both experience larger initial volumetric flow rates ūb(0) than
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FIGURE 15. Heterogeneous models: results for the single-inlet connected model. (a) Initial
average volumetric flow rate ūb(0) (blue) and reciprocal of initial average resistance 1/rb(0)

(black) versus noise amplitude, b. (b) A large sample approximation of the Jensen gap J (given

in (4.16)) versus noise amplitude, b. All results are averaged over 104 simulations, with common
parameters λ = 30 and m = 5.

if unperturbed; such an effect on both connected and non-connected models is roughly
the same. However, if either pore is under a perturbation that reduces initial pore radius
and thus ūb(0), the equalizing junction in the connected model will help alleviate the
volumetric flow rate-reducing effect via the mixing assumption, whereas the junctions in
the same layer in the non-connected model behave independently from each other and are
thus incapable of compensating in this way.

Now we return to the anomaly of figure 13(a), which showed that a small random
perturbation to the pore sizes may cause ūb(0) to decrease in the single-inlet connected
case, in contrast to the results from two-inlet models provided in figure 13(c,d), where
ūb(0) was seen to increase monotonically with respect to b. This is shown more clearly in
figure 15(a), where we plot ūb(0) with respect to noise amplitude b, for various choices
of κ for the single-inlet connected model. We find that ūb(0) may exhibit a minimum
with respect to b, for certain κ values (e.g. when κ = 0.92 in figure 15a), illustrating the
potential for non-monotonicity of ūb(0) as a function of b. Figure 15(b) is discussed in
§ 4.2.2.

It is not immediately clear why average initial flow rate ūb(0) through the membrane
should depend on perturbation amplitude (with our chosen parameters). The intriguing
behaviour indicated by these sample numerical simulations motivates an analytical
approach to calculate explicitly the expected values of key quantities such as this.

4.2.2. Expected initial volumetric flow rate and membrane resistance

Motivated by the observations in the previous subsection, we now present further
analysis to explain why, in certain parameter regimes, average initial resistance and
volumetric flow rate behave non-monotonically with respect to variations in noise
amplitude b. For each choice of b, we carry out simulations of the model described in
(3.9)–(3.13) and calculate average initial volumetric flow rate ūb(0) via the sample mean
definitions in (4.12).

First, we proceed with basic sampling theorems to derive key quantities of interest. By
the strong law of large numbers (Jacod & Protter 2004), the sample average converges to
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the true mean. More specifically, for a fixed choice of b,

ūb(0)
N→∞
→ E [ub(0)] , almost surely, (4.14)

where N is the number of simulations and E[·] is the expectation under the joint probability
density of ǫij, 1 ≤ j ≤ νi, 1 ≤ i ≤ m.

As ūb(0) is inversely proportional to initial membrane resistance for each realization of
the random perturbation to the pore sizes, ǫij, it is also of interest to study the effect of
perturbations on the expected initial resistance. The relationship between expected initial
volumetric flow rate and resistance is characterized by Jensen’s inequality (Jacod & Protter
2004):

E [ub(0)] = E

[

1

rb(0)

]

>
1

E [rb(0)]
, (4.15)

by which the reciprocal of expected initial resistance provides a lower bound for expected
initial volumetric flow rate. The inequality is strict because the convex function, here 1/x ,
is non-affine, while rb(0) is a non-constant random variable, almost surely.

As a result, we cannot claim a similar governing law u = 1/r as in the homogeneous
case. To visualize Jensen’s inequality, we refer to figure 15(a,b), which illustrates the terms
on both sides of Jensen’s inequality, and the Jensen gap, defined as

J (1/x,P) = E

[

1

rb(0)

]

−
1

E[rb(0)]
, (4.16)

where 1/x and P are the convex function and the probability distribution of rb(0),
respectively.

Now, upon rearrangement of (4.15), we have

E[rb(0)]E[ub(0)] > 1. (4.17)

From this inequality we can immediately conclude that if E[ub(0)] < 1 for some b, then
the corresponding expected initial resistance for the same b must necessarily satisfy
E[rb(0)] > 1. This provides a necessary condition for the phenomenon observed in
figure 13(a), where ūb(0) does not monotonically increase with respect to b.

To elicit further information regarding the emergence of the non-monotonic dependence
of average initial resistance rb(0) on noise amplitude b, we study the quantity E[rb(0)],
the large-number limit of rb(0). More precisely, we seek mathematical reasons that could
yield physical insight into the non-monotonic behaviour. In figure 16(a,b), several plots
of average initial resistance rb(0) (averaged over 104 simulations) with different geometric
coefficients are shown for the single- and two-inlet models. In the single-inlet case, the
behaviour of rb(0) with b undergoes a qualitative change as κ varies. For κ close to 1,
rb(0) increases monotonically with increasing b. For κ smaller than some threshold value
between 0.8 and 0.95, rb(0) always decreases with increasing b. This complex behaviour
does not, however, persist in the two-inlet case, as shown in figure 16(b), where rb(0) is
monotonically decreasing for all selected values of κ .

To attempt to explain these observations, we study the sensitivity of rb(0) to b as the
geometric coefficient κ is varied. With the aid of an explicit formula for E[rb(0)] ((B 22),
derived in appendix B), we plot in figure 17 the initial slope of E[rb(t)] as b varies,
the partial derivative (∂/∂b)E[rb(0)]. Evidently, for the considered values of κ , with the
exception of κ = 0.95 in the single-inlet connected model, (∂/∂b)E[rb(0)] is negative,
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FIGURE 16. Heterogeneous models: average initial resistance for (a) single-inlet connected
model and (b) two-inlet connected model. All results are averaged over 104 simulations, with
common parameters m = 5 and λ = 30.
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FIGURE 17. Heterogeneous models: partial derivative of expected initial resistance with respect
to noise amplitude b for (a) single-inlet connected model and (b) two-inlet connected model. For
all simulations, m = 5 and λ = 30.

and only turns positive for very large noise amplitude b. Another interesting observation
is that in the single-inlet connected model, there is a range of κ values that guarantees
monotonic growth of E[rb(0)] with b, yet for the two-inlet case, even for large geometric
coefficients (κ = 0.95) the expected initial resistance is initially decreasing as b increases.
Moreover, we observe the difference in the order of magnitude of the partial derivatives for
the two models, manifested by the range of the vertical axis in both graphs. This indicates
that the level of sensitivity to manufacturing error varies with the internal pore structure
of the membrane. Qualitatively, this observation has real implications for the design of
filters. For single-inlet membrane filters, a suitable level of manufacturing imprecision in
the initial pore-size distribution could, in fact, lead to improved initial performance due
to the decreased average initial resistance, provided there is no serious negative impact on
particle retention by the membrane.

Figure 18 shows the effect of varying both the geometric coefficient and noise amplitude
on the average particle concentration at the membrane outlet for the single-inlet connected
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FIGURE 18. Initial average membrane outlet concentration versus geometric coefficient, κ , for
the single-inlet connected model. For all simulations, m = 5 and λ = 30.

model. In all cases a local maximum is observed (worst particle retention scenario):
our work makes explicit the dependence of this maximum on the noise amplitude. In
particular, we observe that as the noise amplitude increases, the local maximum shifts
towards smaller values of κ . This implies that when fabricating filters with known
dimensional pore-size tolerances, the appropriate geometric coefficient should be chosen
in order to optimize particulate removal. For the results shown in figure 18, regardless of
the fabrication precision (large or small b), filters with smaller κ should be selected.

5. Conclusion

In this paper, we have modelled connected-pore membrane filters by studying fluid
flow and particle transport and fouling in layered pore networks, focusing on selected
specific membrane pore structures characterized by a geometric relationship (with ratio
κ) between pore radii in adjacent layers. We first considered in-plane-homogeneous
membrane filters (the homogeneous models) composed of cylindrical pores with flow
governed by the Hagen–Poiseuille law. The local fluid volumetric flow rate in each pore is
then related to the superficial Darcy velocity in order to measure the global flow behaviour
via conservation of mass. To incorporate fouling, we modelled the adsorption of feed
solution particles onto the pore wall. We obtained flow and fouling results for connected
membranes and compared these results to those for non-connected membranes with equal
initial resistance. In addition to the study of connectivity in homogeneous membranes,
we also probe the influence of manufacturing imprecision, manifested as random in-plane
perturbations to the initial pore sizes, on overall performance of the filter in terms of total
throughput and particle retention capability.

For homogeneous models, our results reveal that the relative performance of
non-connected and connected membranes does not strongly depend on either intra-layer
connections or surface porosity. Rather, for our assumed periodically repeating pore
structure in which the membrane is assumed to consist of a square lattice of identical
pore networks (see figure 4), the differentiating factor is the number of inlet pores
in each unit of the lattice. Because adsorption occurs predominantly in the first layer,
the performance of membranes with equivalent top-layer porosity is governed by the
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dimensions of the first-layer pore(s). Judging from radii evolution (figure 5) and volumetric
flow rate–throughput (figure 7) results, we observe that within the scope of our study,
single-inlet membranes yield the best overall performance. We have also shown that
connected and non-connected single-inlet models can exhibit nearly identical performance
depending on the choice of λ, the dimensionless deposition coefficient. Finally, we
have demonstrated that for certain morphology parameter choices, the concentration of
particles leaving the membrane can increase over time. We attribute this phenomenon
to the particle advection rate, which increases as pores shrink and may (in some cases)
outweigh the increased particle adsorption that occurs in shrinking pores. To characterize
and quantify this behaviour, we have derived a sufficient condition with a general set of
initial conditions and parameters for the appearance of a maximum in concentration at the
membrane outlet. To avoid decreasing particle retention capability during filtration, one
should not design membrane filters with geometric parameters that satisfy our sufficient
condition.

In addition to our findings for homogeneous model membranes, we have found that
the effects of membrane pore connectivity are more prominent in the heterogeneous
case (modelled by a random perturbation of the initial pore sizes), where the mixing in
inter-layer junction regions (2.24) distinguishes connected models from the non-connected
case. Regarding the average influence of noise perturbation to pore sizes on membrane
performance as characterized by total throughput, we have shown that the filtrate collection
efficiency of non-connected membranes is highly susceptible to noise, whereas the
connected models are more robust, remaining relatively unchanged (see figures 13 and 14).
This contrast shows that from this perspective, connected membrane filters are superior
filtrate processors because of their enhanced capability of alleviating negative effects of
(inevitable) heterogeneity, facilitated by the inter-layer junction regions where mixing
occurs and pressure is equilibrated.

We also observe that average initial resistance does not always depend monotonically
on the strength of noise perturbation, exemplified by Jensen’s inequality. This further
implies that statistically averaged Darcy’s law does not hold with equality, but rather, a
strict inequality, as specified in (4.17). In order to characterize the effect of noise more
generally, we provide a full formula for the expression of average initial resistance of the
connected models in (B 22), which we use to show that the two-inlet model responds to
increasing noise strength with a favourable decreasing trend.

The study of the internal pore structures of the membranes presented in this paper is
by no means a universal characterization of real membranes. Nonetheless, arising from
physical observations and industrial motivation, the assumptions and results of our work
are novel extensions to earlier efforts (e.g. Griffiths et al. 2016; Sanaei & Cummings 2018),
producing complex behaviour in both flow and foulant control under deterministic and
random regimes. Furthermore, additional fouling mechanisms and their interaction with
membrane connectivity will certainly lead to more complex problems, which may require
more advanced mathematical and physical tools to tackle. We defer a more comprehensive
study of multiple fouling modes acting on complex membrane structures to future work.
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Appendix A. Norms for accuracy and sufficient penetration

Consider the homogeneous model. Let ai(x, t) and âi(x, t) be the radii in the ith
layer, found from the solutions of the continuum model and the coarse-grained model,
respectively (see (2.8)–(2.11a,b) and (2.12)–(2.14)). We solve both models numerically
using the same time step. We wish to ensure a sufficiently accurate coarse-grained
approximation âi to ai, as well as identify parameter regimes that lead to particle
penetration to some specified depth of the membrane. More precisely, we look for
parameter pairs (m, λ) that satisfy the following conditions.

(i) Accuracy:

‖ai(x, t) − âi(x, t)‖L∞(R+;L2(Ωi)) < δ1, i = 1, 2, . . . , N < m, (A 1)

where

Ωi =

{

x :
i − 1

m
< x <

i

m

}

, N = ⌊βm⌋ , 0 < β < 1; (A 2a,b)

and

‖ f ‖L∞(R+;L2(Ωi)) = sup
t≥0

(∫

Ωi

| f (x, t)|2 dx

)1/2

. (A 3)

(ii) Sufficient penetration:

∥

∥aN (x, 0) − aN

(

x, tfinal

)
∥

∥

L2(ΩN )

‖aN (x, 0)‖L2(ΩN )

> δ2. (A 4)

For (i), we consider the L2 error in space, which essentially records the volume of each
pore. Once we find errori(t) := ‖ai(x, t) − âi(x, t)‖L2(Ωi), we compute its maximum (or
L∞ norm) over all time and compare it to our tolerance δ1. We only check accuracy up to
a certain layer depth, controlled by the parameter N.

For (ii), we measure the relative L2 difference of the radius of a pore in the Nth layer,
between times t = 0 and t = tfinal. We desire that a sufficient amount of its volume is
occupied by particles at the final time, with δ2 as a minimum threshold. Parameter N

is technically arbitrary but should be chosen with care. For example, if we desire roughly
30 % of the membrane to be penetrated, we put β = 0.3. The floor function simply ensures
that N is an integer.

We refer to figure 19 for a region of parameter pairs (m, λ) for the single-inlet model,
with δ1 = 5 × 10−2, δ2 = 0.3 and β = 1

3
while other membrane geometric parameters are

held fixed.
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4 6 8 10 12

m

14 16 18
0

5

10

15

20

25

30

35

λ

FIGURE 19. Single-inlet model: region of parameters that are δ1-accurate and allow sufficient
δ2 penetration. Parameter choice: δ1 = 0.05, δ2 = 0.3, β = 1

3 , r0 = 1, φtop = 0.4.

Appendix B. Calculations and proofs

B.1. Proof of theorem 4.1

The two main non-dimensional equations associated with theorem 4.1 are (3.4) and (3.5),
where di = 1/m. Note that (3.5) can be viewed as a recurrence relation as follows:

ci(t) =

⎛

⎜

⎜

⎝

1

1 +
λ

mai(t)ūp,i(t)

⎞

⎟

⎟

⎠

ci−1(t), (B 1)

a′
i(t) = −ci−1(t) (B 2)

(where prime denotes d/dt) with initial and boundary conditions

c0(t) = 1, a1(0) = a0, ai(0) = a0κ
i−1, i = 1, . . . , m. (B 3a–c)

Proof. Iterating (B 1) m times on i, we obtain

cm(t) =

m
∏

j=1

⎛

⎜

⎜

⎝

1

1 +
λ

maj(t)ūp,j(t)

⎞

⎟

⎟

⎠

, (B 4)

where we used c0(t) = 1 for all t > 0. Using (3.4), we rewrite cm(t) as

cm(t) =

m
∏

j=1

(

1

1 + ηνjaj(t)r(t)

)

=:
m
∏

j=1

fj(t), (B 5)
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where η = πλ/(4m). To derive a condition for the existence of a maximum, we first
characterize the end time behaviour of cm(t). Using (4.2), we see that

aj(t)r(t) =
aj(t)

r̂0

m
∑

i=1

di

νia
4
i (t)

→ ∞, as t → tfinal, (B 6)

which implies cm(t) → 0 as t → tfinal. Note that since aj(t) ∈ C1(0, tfinal) for all j and all fj

are positive quantities without singularities, cm(t) ∈ C1(0, tfinal). Hence by the mean value
theorem, cm(t) will achieve a maximum whenever c′

m(0) > 0.
Taking a time derivative of cm(t) using the product rule of multiple functions, we have

c′
m(t) =

m
∏

j=1

fj(t)

m
∑

j=1

f ′
j (t)

fj(t)
(B 7)

where we can find the derivative of fj:

f ′
j (t) =

−ηνj

(

a′
j(t)r(t) + aj(t)r

′(t)
)

(

1 + ηνjaj(t)r(t)
)2

= −ηνj

(

r(t)a′
j(t) + aj(t)r

′(t)
)

f 2
j (t). (B 8)

We combine (B 2) with (B 5) to obtain

a′
j(t) = −cj−1(t) = −

j−1
∏

i=1

fi(t), 2 ≤ j ≤ m, (B 9)

a′
1(t) = −c0(t) = −1 =: −f0(t). (B 10)

Inserting (B 8), (B 9) and (B 10) into (B 7) and evaluating at t = 0, we have

c′
m(0) = −η

⎛

⎝

m
∏

j=1

fj(0)

⎞

⎠

⎡

⎣

m
∑

j=1

νj fj(0)

(

−r(0)

(

j−1
∏

i=0

fi(0)

)

+ aj(0)r′(0)

)

⎤

⎦ , (B 11)

whence we see that c′
m(0) > 0 is equivalent to

m
∑

j=1

νjfj(0)

(

−r(0)

(

j−1
∏

i=0

fi(0)

)

+ aj(0)r′(0)

)

< 0, (B 12)

as η and fj are positive quantities.
Using (4.2) to express r(t), its time derivative and the initial conditions for ai(0) in

(B 12),

r(t) =
1

mr̂0

m
∑

i=1

1

νia
4
i (t)

, r′(t) = −
4

mr̂0

m
∑

i=1

a′
i(t)

νia
5
i (t)

, (B 13a,b)

we arrive at the following equivalent condition to c′
m(0) > 0:

⎛

⎝

m
∑

j=1

νj

j
∏

i=0

fi(0)

⎞

⎠

⎛

⎝

m
∑

j=1

1

νjκ4(j−1)

⎞

⎠ > 4

⎛

⎜

⎜

⎜

⎜

⎜

⎝

m
∑

j=1

j−1
∏

i=0

fi(0)

νjκ5(j−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎝

m
∑

j=1

νjκ
j−1fj(0)

⎞

⎠ . (B 14)

�
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B.2. Analytical formula for E[rb(0)]

Given the form of the initial resistance with random perturbations in (4.9a,b), we can
explicitly compute

E [rb(0)] = E

⎡

⎣

a−4
0

r̂0

m
∑

i=1

di

⎛

⎝

νi
∑

j=1

(1 + ǫij)
4

⎞

⎠

−1⎤

⎦ =
a−4

0

r̂0

m
∑

i=1

diE

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
νi
∑

j=1

(1 + ǫij)
4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(B 15)
where the last step follows by linearity of expectations. We now compute the expectation
in the summand with a fixed index i. First, since ǫij ∼ U(−b, b), it has cumulative
distribution function Fǫij

(x) = (x + b)/2b. Therefore, if we define Yij = (1 + ǫij)
4, then

FYij
( y) = P

(

(1 + ǫij)
4 ≤ y

)

= P
(

ǫij ≤ y
1/4 − 1

)

=
y

1/4 − 1 + b

2b
, (1 − b)4 ≤ y ≤ (1 + b)4, (B 16)

and thus the probability density of Yij is

fYij
( y) = F′

Yij
( y) =

1

8b
y

−3/4, (1 − b)4 ≤ y ≤ (1 + b)4. (B 17)

Employing the following integral statement:

E

[

1

X1 + · · · + Xn

]

= E

[∫ ∞

0

exp(−t(X1 + · · · + Xn)) dt

]

, (B 18)

where the expectation is taken with the density fYij
, we have (via Fubini’s theorem to justify

the swapping of expectation and integration)

E

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
νi
∑

j=1

Yij

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= E

∫ ∞

0

exp

⎛

⎝−t

νi
∑

j=1

Yij

⎞

⎠ dt =

∫ ∞

0

E

⎡

⎣exp

⎛

⎝−t

νi
∑

j=1

Yij

⎞

⎠

⎤

⎦ dt. (B 19)

By the independent identically distributed assumption (of ǫij and thus Yij), we rewrite the
integrand as

E

⎡

⎣exp

⎛

⎝−t

νi
∑

j=1

Yij

⎞

⎠

⎤

⎦ = (E exp(−tYi1)) . . . (E exp(−tYi,νi
)) = [E exp(−tY)]νi, (B 20)

where we defined Y
d
= Yij, which exists by the identical distribution assumption. We carry

out the computation of the right-hand side for Y and find
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FIGURE 20. Heterogeneous models: initial resistance for single-inlet model. (a) Average ūb(0)

over 105 simulations; (b) exact large-number limit E[rb(0)].

E
[

e−tY
]

=
1

8b

∫ (1+b)4

(1−b)4

e−ty
y

−3/4 dy

z=ty
=

1

8b

∫ t(1+b)4

t(1−b)4

e−z
(z

t

)−3/4
(

1

t

)

dz

=
1

8bt1/4

[

γ

(

1

4
, t(1 + b)4

)

− γ

(

1

4
, t(1 − b)4

)]

, (B 21)

where γ (s, x) =
∫

x

0 ts−1 e−t dt is the lower incomplete gamma function. Altogether, we
have

E [rb(0)] =
a−4

0

r̂0

m
∑

i=1

diκ
−4(i−1)

∫ ∞

0

[

1

8bt1/4

[

γ

(

1

4
, t(1 + b)4

)

− γ

(

1

4
, t(1 − b)4

)]]νi

dt.

(B 22)
Figure 20 shows the excellent agreement between the numerical and analytical results.

REFERENCES

AMBASHTA, R. D. & SILLANPÄÄ, M. E. T. 2012 Membrane purification in radioactive waste
management: a short review. J. Membr. Sci. 396, 22–31.

BACCHIN, P., DEREKX, Q., VEYRET, D., GLUCINA, K. & MOULIN, P. 2014 Clogging of microporous
channels networks: role of connectivity and tortuosity. Microfluid Nanofluid 17, 85–96.

BOLTON, G. R., BOESCH, A. W. & LAZZARA, M. J. 2006a The effect of flow rate on membrane capacity:
development and application of adsorptive membrane fouling models. J. Membr. Sci. 279, 625–634.

BOLTON, G. R., LACASSE, D. & KURIYEL, R. 2006b Combined models of membrane fouling:
development and application to microfiltration and ultrafiltration of biological fluids. J. Membr.

Sci. 277, 75–84.
BOWEN, W. R. & JENNER, F. 1995 Theoretical descriptions of membrane filtration of colloids and fine

particles: an assessment and review. Adv. Colloid Interface Sci. 56, 141–200.
CHANG, S.-S. & ROPER, M. 2019 Microvascular networks with uniform flow. J. Theor. Biol. 462, 48–64.
CHEW, J. W., KILDUFF, J. & BELFORT, G. 2020 The behavior of suspensions and macromolecular

solutions in crossflow microfiltration: an update. J. Membr. Sci. 601, 117865.
COLLUM, B. 2017 Process engineering. In Nuclear Facilities, chap. 6, pp. 139–183. Woodhead Publishing.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

YU
 S

ch
oo

l o
f M

ed
ic

in
e,

 o
n 

03
 M

ay
 2

02
1 

at
 2

3:
55

:2
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
52

0



902 A5-36 B. Gu, D. L. Renaud, P. Sanaei, L. Kondic and L. J. Cummings

DALWADI, M. P., GRIFFITHS, I. M. & BRUNA, M. 2015 Understanding how porosity gradients can make
a better filter using homogenization theory. Proc. R. Soc. Lond. A 471, 0464.

DANIEL, R. C., BILLING, J. M., RUSSELL, R. L., SHIMSKEY, R. W., SMITH, H. D. & PETERSON,
R. A. 2011 Integrated pore blockage-cake filtration model for crossflow filtration. Chem. Engng

Res. Des. 89, 1094–1103.
DANIEL, R. C., SCHONEWILL, P. P., SHIMSKEY, R. W. & PETERSON, R. A. 2010 A brief review of

filtration studies for waste treatment at the hanford site. Tech. Rep. PNNL-20023. Pacific Northwest
National Laboratory, Richland, WA.

ERSAHIN, M. E., OZGUN, H., DERELI, R. K., OZTURK, I., ROEST, K. & VAN LIER, J. B. 2012
A review on dynamic membrane filtration: materials, applications and future perspectives.
Bioresour. Technol. 112, 196–206.

GRIFFITHS, I. M., KUMAR, A. & STEWART, P. S. 2014 A combined network model for membrane fouling.
J. Colloid Interface Sci. 432, 10–18.

GRIFFITHS, I. M., KUMAR, A. & STEWART, P. S. 2016 Designing asymmetric multilayered membrane
filters with improved performance. J. Membr. Sci. 511, 108–118.

HO, C.-C. & ZYDNEY, A. L. 1999 Effect of membrane morphology on the initial rate of protein fouling
during microfiltration. J. Membr. Sci. 155, 261–275.

HO, C.-C. & ZYDNEY, A. L. 2000 A combined pore blockage and cake filtration model for protein fouling
during microfiltration. J. Membr. Sci. 232, 389–399.

HWANG, K. J., LIAO, CH. Y. & TUNG, K. L. 2007 Analysis of particle fouling during microfiltration by
use of blocking models. J. Membr. Sci. 287, 287–293.

IRITANI, E. 2013 A review on modeling of pore-blocking behaviors of membranes during pressurized
membrane filtration. Dry. Technol. 31, 146–162.

JACOD, J. & PROTTER, P. 2004 Probability Essentials. Springer.
KANANI, D. M., FISSELL, W. H., ROY, S., DUBNISHEVA, A., FLEISCHMAN, A. & ZYDNEY, A. L.

2010 Permeability–selectivity analysis for ultrafiltration: effect of pore geometry. J. Membr. Sci.

349, 405–410.
KONDIC, L. 2018 Capstone Laboratory. Available at: http://cfsm.njit.edu/capstone.
LI, W. 2009 Fouling models for optimizing asymmetry of microfiltration membranes. PhD thesis,

University of Cincinnati.
MENG, F., CHAE, S.-R., DREWS, A., KRAUME, M., SHIN, H. S. & YANG, F. 2009 Recent advances in

membrane bioreactors: membrane fouling and membrane material. Water Res. 43, 1489–1512.
POLYAKOV, Y. S. 2008 Depth filtration approach to the theory of standard blocking: prediction of

membrane permeation rate and selectivity. J. Membr. Sci. 322, 81–90.
PROBSTEIN, R. F. 1994 Physicochemical Hydrodynamics. Wiley-Interscience.
SANAEI, P. & CUMMINGS, L. J. 2017 Flow and fouling in membrane filters: effects of membrane

morphology. J. Fluid Mech. 818, 744–771.
SANAEI, P. & CUMMINGS, L. J. 2018 Membrane filtration with complex branching pore morphology.

Phys. Rev. Fluids 3, 094305.
SANAEI, P., RICHARDSON, G. W., WITELSKI, T. & CUMMINGS, L. J. 2016 Flow and fouling in a pleated

membrane filter. J. Fluid Mech. 795, 36–59.
DER SMAN, VAN, VOLLEBREGT, R. G. M., MEPSCHEN, H. M., NOORDMAN, A. & R., T. 2012 Review

of hypotheses for fouling during beer clarification using membranes. J. Membr. Sci. 396, 22–31.
SOUZA, V. C. & QUADRI, M. G. N. 2013 Organic-inorganic hybrid membranes in separation processes:

a 10-year review. Braz. J. Chem. Engng 30, 683–700.
YANG, S. Y., PARK, J., YOON, J., REE, M., JANG, S. K. & KIM, J. K. 2008 Virus filtration membranes

prepared from nanoporous block copolymers with good dimensional stability under high pressures
and excellent solvent resistance. Adv. Funct. Mater. 18 (9), 1371–1377.

ZAHID, M., RASHID, A., AKRAM, S., REHAN, Z. A. & RAZZAQ, W. 2018 A comprehensive review on
polymeric nano-composite membranes for water treatment. J. Membr. Sci. Technol. 8, 179.

ZYDNEY, A. L. 2011 High performance ultrafiltration membranes: pore geometry and charge effects.
In Inorganic Polymeric and Composite Membranes (ed. S. T. Oyama & S. M. Stagg-Williams),
pp. 333–352. Elsevier.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

YU
 S

ch
oo

l o
f M

ed
ic

in
e,

 o
n 

03
 M

ay
 2

02
1 

at
 2

3:
55

:2
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
52

0


	1 Introduction
	2 Mathematical modelling
	2.1. Homogeneous model
	2.1.1. Particle transport and fouling
	2.1.2. Spatial discretization (coarse-grained model)

	2.2. Heterogeneous model
	2.2.1. Particle transport and fouling
	2.2.2. Spatial discretization (coarse-grained model)

	2.3. Measures of performance

	3 Scaling and non-dimensionalization
	3.1. Homogeneous model
	3.2. Heterogeneous model

	4 Results
	4.1. Results for homogeneous membranes
	4.2. Results for heterogeneous membranes
	4.2.1. Expected volumetric flow rate versus throughput
	4.2.2. Expected initial volumetric flow rate and membrane resistance


	5 Conclusion
	Appendix A. Norms for accuracy and sufficient penetration
	Appendix B. Calculations and proofs
	Proof of theorem [st1]4.1
	Analytical formula for E[rb(0)]

	References

