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Driven dynamics in dense suspensions of
microrollers†

Brennan Sprinkle, a Ernest B. van der Wee, b Yixiang Luo,ac

Michelle M. Driscoll *b and Aleksandar Donev*d

We perform detailed computational and experimental measurements of the driven dynamics of a dense,

uniform suspension of sedimented microrollers driven by a magnetic field rotating around an axis

parallel to the floor. We develop a lubrication-corrected Brownian dynamics method for dense

suspensions of driven colloids sedimented above a bottom wall. The numerical method adds lubrication

friction between nearby pairs of particles, as well as particles and the bottom wall, to a minimally-

resolved model of the far-field hydrodynamic interactions. Our experiments combine fluorescent

labeling with particle tracking to trace the trajectories of individual particles in a dense suspension, and

to measure their propulsion velocities. Previous computational studies [B. Sprinkle et al., J. Chem. Phys.,

2017, 147, 244103] predicted that at sufficiently high densities a uniform suspension of microrollers

separates into two layers, a slow monolayer right above the wall, and a fast layer on top of the bottom

layer. Here we verify this prediction, showing good quantitative agreement between the bimodal

distribution of particle velocities predicted by the lubrication-corrected Brownian dynamics and those

measured in the experiments. The computational method accurately predicts the rate at which particles

are observed to switch between the slow and fast layers in the experiments. We also use our numerical

method to demonstrate the important role that pairwise lubrication plays in motility-induced phase

separation in dense monolayers of colloidal microrollers, as recently suggested for suspensions of

Quincke rollers [D. Geyer et al., Phys. Rev. X, 2019, 9(3), 031043].

I. Introduction

Driven suspensions of colloidal microrollers1–3 provide a simple

but rich test-bed to explore emergent, collective hydrodynamic

phenomena in active systems. The magnetic microrollers

studied in this work are spherical colloids with an embedded

canted antiferromagnet cube of hematite, which gives the

particles a permanent magnetic moment that is sufficiently

strong to drive them with an external magnetic field, but weak

enough not to induce significant inter-particle magnetic

interactions.1 A rotating magnetic field can be used to spin

the particles in phase with the applied field. When the colloids

are sedimented above a bottom wall and the magnetic field

rotates around an axis parallel to the floor, the broken sym-

metry converts their angular velocity into linear velocity,4

creating an active suspension.1 The collective flows generated

in dense suspensions increase the active velocity and lead to

unusual dynamics, such as the formation of stable self-

propelled clusters of microrollers termed ‘‘critters’’ in ref. 1.

Some of us showed in ref. 2 that thermal fluctuations are

crucial to the dynamics of microrollers as they set a character-

istic height of the particles above the wall, which in turn

controls the size of the critters. In subsequent work,3 some of

us used numerical simulations to predict that sufficiently

dense, uniform suspensions of microrollers will self separate

into two groups: one group of particles which moves slowly and

stays close to the wall, and another which lies above the first

and travels much faster. In this work, we provide the first

experimental validation of this type of active particle separa-

tion, and introduce a lubrication-corrected Brownian dynamics

numerical method to model the experiments. Our method

is simple and efficient by virtue of minimally resolving the

far-field hydrodynamics, yet, as we show, provides sufficient

quantitative accuracy to reproduce our experimental results.

Previous studies of the driven microroller suspensions

obtained good qualitative agreement between simulations and
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experiments,1,2,5 however, quantitative agreement was lacking

for two reasons. First, the minimally-resolved hydrodynamics

based on the Rotne–Prager–Yamakawa (RPY) approximation

did not correctly account for near-field hydrodynamics. Second,

the experiments used Particle Image Velocimetry (PIV) to

measure the mean suspension velocity, and PIV may give wrong

results when there are height-separated slow and fast particles.

Specifically, in ref. 5 the dispersion relationship of a uniform

suspension of microrollers was measured experimentally and

predicted by a continuum model based on the RPY tensor, and

it was found that ‘‘The mean suspension velocity obtained from

the continuummodel. . . overestimates the one measured in the

experiments by a factor of around 4–5.’’

The lubrication-corrected Brownian Dynamics (BD) method

we present here adds lubrication corrections to the minimally-

resolved BD method described in ref. 2 in order to enable more

accurate modeling of densely-packed Brownian suspensions of

spherical colloids. This allows us to interrogate dense, nearly

two-dimensional suspensions, and to make quantitative pre-

dictions that can directly be compared to experiments. We also

report here new experimental results on the driven dynamics of

uniform suspensions of microrollers. We fluorescently label

only a small subset of the particles in order to enable particle

tracking in the plane parallel to the wall, even in dense

suspensions, and in the presence of multiple layers of particles.

This allows us to experimentally measure the distribution of

active velocities, as well as to measure dynamical correlation

functions for a single particle.

Lubrication corrections were originally introduced in Stokesian

dynamics (SD),6 but have since been incorporated in a variety of

related methods for Stokesian suspensions. The key idea is to

account for the near-field pairwise lubrication forces in the

resistance formulation, and for the far-field hydrodynamic inter-

actions in the mobility formulation, and combine the two to give a

lubrication-corrected mobility matrix. The far-field approximation

itself can be obtained by a variety of numerical techniques,

ranging from the minimally-resolved RPY mobility we use here,

through multipole expansions with higher-order multipoles,7–10

to boundary integral methods.3,11 The pairwise lubrication

approximation is not always accurate12 and the accuracy cannot

be controlled a priori. Nevertheless, lubrication corrections

provide a means of substantially increasing the hydrodynamic

accuracy for dense suspensions, while keeping the computa-

tional cost small enough to enable practical large-scale and

long-time simulations.

Recently, Fiore and Swan developed a fast Stokesian

dynamics method that can include Brownian motion with a

cost essentially linear in the number of particles.10 To this end

they use a combination of sophisticated numerical linear

algebra and the positively split Ewald method of ref. 13 and

14 to simultaneously account for the Brownian forces as well as

the lubrication corrections. The method we present in this work

to simulate Brownian particle suspensions is similar to the

method developed by Fiore and Swan in ref. 10, with a few

important differences. Firstly, the work in ref. 10 was tailored to

periodic (bulk) suspensions of particles in 3D, while ours is

tailored to suspensions above a bottom wall. The inclusion of a

bottom wall requires applying lubrication corrections when

particles approach the wall, and the hydrodynamic screening

with the bottom wall makes the far-field mobility matrix better

conditioned, simplifying the linear algebra required. Secondly,

since we do not study rheology, we omit the stresslet

constraints, which greatly improves the efficiency without

sacrificing the improvement in accuracy due to the lubrication

corrections.‡ Our minimally-resolved approach allows for the

design of a novel preconditioning strategy, as well as a novel

temporal integration scheme which achieves greater temporal

accuracy than the scheme used by Fiore and Swan, while also

reducing the computational cost.

In this paper we develop a minimally-resolved BD method

for suspensions above a bottom wall that incorporates lubrica-

tion corrections, and apply the method to simulating suspen-

sions of microrollers. In Section II, we describe in detail a

deterministic method to account for near-field lubrication

corrections, and outline the necessary modifications required

to account for the confinement by a bottom wall. In Section III

we account for thermal fluctuations and describe an efficient

and accurate lubrication-corrected BD method for driven

suspensions above a bottom wall, including a novel predictor–

corrector temporal integration scheme.

Section IV revisits the active dynamics of a uniform

suspension of magnetic rollers above a bottom wall. Some of

us previously used the rigid multiblob method to predict a

bimodal distribution in the particles’ velocities, caused by the

bimodal distribution of their heights above the wall.3 We

reproduce these predictions here using the simpler and

more efficient lubrication-corrected BD method, and confirm

the bimodality experimentally by using particle tracking. By

comparing results between experiments and simulation, we

demonstrate that modeling the propulsive mechanism of

the microrollers using a constrained angular velocity is more

physically accurate than using a constant applied torque,

as was done in prior work.2,3 To this end, we design a novel

preconditioned iterative method to efficiently constrain the

angular velocity of the microrollers to a prescribed value.

In ref. 15, Geyer et al. argue that active Quincke rollers

densely packed above a bottom wall will, at sufficiently large

densities, slow down and even crystalize into an almost immo-

bile solid phase, because of the pairwise lubrication friction

between nearly touching colloids. Inspired by this work, in

Section V we use our lubrication-corrected BD method to study

the collective dynamics of a sheet of microrollers constrained

to a fixed height just above the bottom wall. We study the

dependence of the mean (collective) velocity on the in-plane

packing fraction, and show that this trend is qualitatively

different when prescribing activity using a constant applied

torque versus prescribing a constant angular velocity.

‡ Mathematically, the torque and stresslet moments enter at the same level of the

multipole hierarchy and should thus, in principle, be both included or both

omitted. However, we show here empirically that the stresslets can be omitted in

practice for the types of problems we study here.
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II. Lubrication corrections

In this work, we are concerned with simulating the dynamics of

N spherical particles with uniform radii a of at most a few

microns. This length scale is small enough to consider the

effect of fluid inertia negligible and to treat the hydrodynamics

of the particle suspension using the Stokes equations with

no-slip conditions on the surfaces of the particles as well as

the surface of the bottom wall. Furthermore, the Brownian

motion due to thermal fluctuations of the fluid should not be

neglected. Nevertheless, we will briefly ignore fluctuations in

this section, and return to Brownian motion in Section III.

The linearity of the Stokes equations ensures that we can write

the translational velocities ui and angular velocities xi of all

particles 1r ir N in terms of the forces fi and torques si applied

to the particles, using the hydrodynamic mobility matrix M,

U = MF, (1)

where the vector of linear and angular velocities is U = [u1, x1,

u2, x2,. . ., uN, xN]
T, and the vector of applied forces and torques

is F = [ f1, s1, f2, s2,. . ., fN, sN]
T (where the superscript T denotes a

transpose). The inverse of the mobility matrix is the resistance

matrix: < = M�1. The mobility and resistance matrices will in

general depend of the positions and orientations of all of the

particles Q = [q1,. . ., qN]
T, though we will often omit the explicit

dependence for simplicity of notation. Because the particles we

consider are spherical, the mobility does not depend on their

orientation; however, we explicitly track and evolve the orienta-

tion of every particle in our numerical methods.

Computing the action of the true mobility matrix (i.e.,

solving the mobility problem) with high accuracy is very expen-

sive for many-particle suspensions even at moderate

densities.16,17 A commonly used approximation to the hydro-

dynamic mobility is a pairwise approximation M � MRPY

based on the Rotne–Prager–Yamakawa (RPY) tensor.18–20 This

regularized form of the mobility is sufficiently accurate in

resolving hydrodynamic interactions if particles are well sepa-

rated, and ensures that the mobility matrix is symmetric

positive semidefinite;20 this is an essential property when

including Brownian motion. Originally the RPY tensor was

formulated for particle suspensions in free space, but Swan

and Brady give a modified Rotne–Prager–Blake form which

accounts for an unbounded (in the transverse directions)

bottom wall in ref. 21. The wall corrections from ref. 21 can

be combined with the overlapping corrections as described in

ref. 20 to give analytical expressions for the elements of

M � MRPY, as described in more detail in ref. 2. Efficiently

computing MRPYF in time approximately linear in the

number of particles is not trivial but is possible, including for

systems that are periodic in some of the transverse directions,

using Fast Multipole Methods (FMMs)22 or the Fast Fourier

Transform (FFTs).23 Here we rely on Graphical Processing Units

(GPUs) to dramatically accelerate the direct (quadratic cost)

computation, but more advanced methods can be substituted

depending on the available software, hardware, and the

number of particles.

It is important to note that the Stokesian dynamics

formulation6,10,21,24,25 also accounts for shear and stresslets

but we will omit the stresslet blocks in the spirit of a minimally-

resolved approach; the reader can consult the recent work of

Fiore and Swan10 for how to efficiently include stresslet terms

in, M, at the expense of increased computational complexity.

This makes our method much simpler to implement in the

presence of a wall and also more efficient, but note that

rheological properties cannot be studied without accounting

for the particle stresslets.§ We study the deterministic accuracy

of our approach in Appendix B1, and find that even without

stresslets the lubrication corrections lead to a rather accurate

mobility matrix over a range of distances.

The RPY mobility inaccurately resolves near-field hydro-

dynamic interactions and cannot be used for dense suspensions

if quantitative accuracy is desired. The essential motivation

behind the lubrication corrections used in Stokesian dynamics6

is to maintain the desirable properties of the RPY tensor in the

far field but correct for its poor near-field hydrodynamic

resolution. The approach is to add a local pairwise correction

to the RPY resistance matrix R ¼ M�1 � RRPY for all pairs of

surfaces (e.g. two spheres or a sphere and the wall) which are

sufficiently close. The lubrication correction resistance matrix

R
sup
lub is assembled from accurate resistance matrices for each

pair of nearly touching surfaces (e.g., two spheres, or a sphere

and a wall). The corrections are applied to the resistance matrix

rather than the mobility matrix because near-field hydrodynamic

interactions are approximately pairwise additive in resistance

form, unlike far-field interactions which are approximately pair-

wise additive in mobility form. In analogy with classical asymp-

totic methods, the full lubrication-corrected mobility M is

constructed by subtracting off the ‘‘common part’’ Rsup
RPY, i.e.,

the overlapping near-field contributions between R and R
sup
lub ,

giving the lubrication-corrected mobility

M � M ¼ RþR
sup
lub �R

sup
RPY

� ��1
(2)

Here R
sup
RPY is assembled from pairwise RPY resistance

tensors for the same pairs of nearby surfaces included when

constructing R
sup
lub .

In this section we detail how to simulate driven particle

suspensions above a wall, accounting for lubrication correc-

tions, but neglecting thermal fluctuations. Specifically, we first

describe how lubrication corrections are applied to the RPY

hydrodynamic mobility M in the presence of a bottom wall.

We then describe a preconditioned Krylov method to apply the

lubrication-corrected mobility to a vector of applied forces and

torques. While here we focus on deterministic dynamics,

special care will be taken to ensure that Brownian motion can

be included, i.e., that the lubrication-corrected mobility is

positive definite. While our method is closely-related to the

fast Stokesian dynamics method recently presented by Fiore

§ Note that omitting the far-field mobility would make the method even more

efficient but would not be able to reproduce the collectively-generated active flows

studied here, and can lead to unphysical results in general.25
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and Swan10 for periodic suspensions, there are several differ-

ences that we detail in this section. Specifically, we consider

here suspensions sedimented above a bottom wall, exclude the

stresslet corrections since we are not concerned with rheology,

and develop a different preconditioner.

A. Lubrication corrected mobility

The lubrication-corrected mobilityM defined in eqn (2) can be

restated as10,26

M ¼ M
�1 þ DR

� ��1¼ M � ½I þ DR �M��1 (3)

where DR ¼ R
sup
lub �R

sup
RPY is the lubrication correction for the

resistance matrix. The basic idea6 is to subtract off the RPY

mobility for all nearby pairs of surfaces, and replace it with an

exact analytic formula, while maintaining the long-ranged

hydrodynamics using the RPY mobility/resistance.

Both R
sup
lub and R

sup
RPY take the general form of a pairwise-

additive resistance matrix Rsup, which is assembled by sum-

ming appropriate blocks of the symmetric, pair-resistance

matrices between particles i and j,

R
pair qi; qj
� �

¼
R

pair
self qi; qj
� �

R
pair
couple qi; qj

� �

R
pair
couple qj ; qi

� �

R
pair
self qi; qj
� �

" #

: (4)

Treating the wall as a surface which hydrodynamically interacts

with each particle through a pair-resistance matrix Rwall qið Þ,
Rsup is assembled as

R
sup¼

P

ja1

R
pair
self q1;qj
� �

þRwall q1ð Þ R
pair
couple q1;q2ð Þ ���

R
pair
couple q2;q1ð Þ P

ja2

R
pair
self q2;qj
� �

þRwall q2ð Þ ���

.

.

.
.
.

.
.
.

.

2

6

6

6

6

4

3

7

7

7

7

5

;

(5)

where R
pair
couple qi;qj

� �

¼ R
pair
couple qj ;qi

� �

� �T

.

B. Computing DR

Each block of Rpair, either Rpair
lub or Rpair

RPY, can be expressed in

terms of coefficients which depend on the dimensionless gap

between the surfaces of the spheres,

R
pair
s;c qi; qj
� �

¼

X tt
s;c erð Þr̂r̂T þ Y tt

s;c erð Þ I � r̂r̂T
� �

�Y tr
s;c erð Þr̂�

Y tr
s;c erð Þr̂� Xrr

s;c erð Þr̂r̂T þ Y rr
s;c erð Þ I � r̂r̂T

� �

2

4

3

5;

(6)

where a is the radius of the particles,

er ¼
qj � qi
�

�

�

�

a
� 2; r̂ ¼

qj � qi

qj � qi
�

�

�

�

;

and s, c indicates whether this is the ‘self’ or the ‘couple’ block.

In (6), the matrix r̂� represents a cross product by r̂ and the

superscripts on the coefficients denote the type of the block, i.e.

Ytrs,c denotes that this is the coefficient of the translation ‘t’ and

rotation ‘r’ coupling block. Because the coefficients of Rpair

decay as er grows, we set a cutoff distance, ecutr such thatRpair ¼
0 for er 4 ecutr . A smaller value for ecutr ensures that Rsup is more

sparse and therefore easier to construct and apply, but this, of

course, comes at the cost of reduced accuracy. In this work we

have found that ecutr = 2.5 strikes a good balance, and so we use

this value throughout.

Wall corrections to the self resistance, either Rwall
lub or Rwall

RPY,

have a similar form toR
pair
s but the coefficients depend instead

on the dimensionless wall separation eh, such that

R
wall qið Þ¼

X tt
wall ehð ÞẑẑTþY tt

wall ehð Þ I�ẑẑT
� �

�Y tr
wall ehð Þẑ�

Y tr
wall ehð Þẑ� Xrr

wall ehð ÞẑẑTþY rr
wall ehð Þ I�ẑẑT

� �

;

2

4

3

5

(7)

where ẑ is the unit vector perpendicular to the wall, and

eh ¼ qi � ẑ
a

� 1:

Unlike the pair corrections between nearby particles which

have a cutoff distance, we will always apply wall corrections

to each particle. This ensures that the diagonal blocks of Rsup

are never exactly zero for particles reasonably close to the

bottom wall—a feature which we will find useful for designing

efficient linear solvers in Section II D.

Given accurate values or formulas for the coefficients of

R
pair
lub and R

wall
lub when er and/or eh are small, we may form a

pairwise, wall-corrected, nearfield resistance matrixRwall
lub using

(5). Analytical or semi-analytical formulas for R
pair
lub and R

wall
lub

are summarized in Appendix A. For very small values of the

dimensionless gap er, the resistance functions appearing in (6)

are known to have universal asymptotic forms including also

for spheres of different radii. Since the case of a flat wall and a

sphere is the limit of one of the two spheres (the ‘wall’) being

infinitely larger than the other,27 the same applies for the

resistance functions of eh. Asymptotic expansions of resistance

functions typically involve constants, 1/e, ln e, and e ln e terms,

see ref. 28–30 for more details, and these asymptotic forms of the

resistance are sometimes referred to as ‘‘lubrication friction’’.

Here we instead use the term ‘‘lubrication’’ to refer more generally

to near-field hydrodynamics not included in the far-field approxi-

mation. As detailed in Appendix A, when no known analytical

formula is sufficiently accurate, we use the rigid multiblob

method3,31 to compute a numerical approximation.

C. A positive definite form for DR

In order to include Brownian motion, it is important that DR

be positive semi-definite, ensuring that a ‘square root’ ðDRÞ1=2
exists. The resistance correction DR will be positive semi-

definite if each pairwise block is. This is empirically known

to be true in the absence of a bottom wall when stresslets are

included, as discussed in more detail.10 We are, however, not
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aware of a mathematical proof, or any prior studies investigat-

ing this for a sphere and a bottom wall.

Numerically, we find that in the presence of a bottom wall,

DR can have small negative eigenvalues. These small eigen-

values come directly from the wall contribution to DR which

we term DRwall. For each particle whose height h \ 1.5a,

DRwall has at least one small negative eigenvalue caused by

discretization error in the rigid multiblob method31 we use to

calculate Rwall
lub , for lack of an exact method. A simple remedy is

to diagonalize DRwall and replace the spurious negative eigen-

values by 0 to form DRwall
l4 0. We also need to remove the

negative eigenvalues in R
wall
lub , which we need for the precondi-

tioner described in Section II D,

R
wall
lub

� �

l4 0
¼ DRwall

l4 0 þR
wall
RPY:

This construction ensures thatDR ¼ DRpair þ DRwall
l4 0 is positive

semi-definite.

D. Linear algebra

Given a vector of applied forces and torques on a suspension

of particles F, we need an efficient method to apply the

lubrication-corrected mobility M to find the resulting linear

and angular velocities U ¼ MF,

U ¼ ½I þMDR��1
MF; (8)

¼ M½I þ DRM��1F: (9)

We compute the action of either ½I þMDR��1 or ½I þ DRM��1

on a vector using an efficient preconditioned Krylov method.

If we wish to use eqn (8) to apply M,¶ we must solve a

system of the form

½I þMDR�x ¼ b: (10)

To develop a preconditioner for eqn (10), we ignore the far-field

hydrodynamics and approximate M � R
sup
RPY

� ��1
, giving

x ¼ ½I þMDR��1b � I þ R
sup
RPY

� ��1
DR

h i�1

b (11)

¼ I þ R
sup
RPY

� ��1
R

sup
lub �R

sup
RPY

� �

h i�1

b (12)

¼ R
sup
lub

� ��1
R

sup
RPY

� �

b ¼ P1b: (13)

We compute R
sup
lub

� ��1
using the super-nodal Cholesky solver

provided in the CHOLMOD package,32 which is very efficient

due to the quasi two-dimensional nature of sedimented

suspensions. Note that an incomplete Cholesky decomposition

could also be used here as was done in ref. 10. In all of the

numerical experiments performed here, both Cholesky solves

and Cholesky factorizations using CHOLMOD take substan-

tially less time than a single multiplication by the RPY mobility

tensor M.

A different preconditioner was obtained in ref. 10 by approx-

imating M by a block diagonal matrix, Mfree, where each

block is given by the freespace mobility of a single sphere

Mfree½ �ii ¼
1

6pZa
I 0

0
1

8pZa3
I

2

6

6

4

3

7

7

5

:

The resulting preconditioner can be stated as

x � P2b ¼ I þMfreeDRð Þ�1b; (14)

where I þMfreeDRð Þ�1 can be efficiently applied using a

super-nodal Cholesky solver, as for P1. We show in Appendix

C that for many cases the preconditioner P2 performs compar-

ably to P1, however there are some case where P1 outperforms

P2, and thus we use P1 in this work.

In some systems, a few particles can become isolated from

the bulk and cause some numerical difficulty in the proposed

preconditioner (13). We define isolated particles as those which

are not close enough to the wall to provide a substantial wall

correction to the diagonal block of Rsup
lub (we use h 4 4.5a in

this work as a cutoff height for possible isolated particles) nor

are they close enough to other particles to contribute a pair

correction to R
sup
lub . These particles not only lead to poor

conditioning of R
sup
lub , but the presence of isolated particles

makesRsup
RPY a poor approximation toM�1. To remedy this, we

introduce a modified identify matrix Iiso which is zero every-

where but contains 6 � 6 identity blocks on the blocks of the

diagonal corresponding to isolated particles. Isolated particles

can be considered nearly in free space, hence we modify the

preconditioner (13) to simply not apply to these particles:

x � P1b ¼ I � I isoð Þ R
sup
lub þ eMfree

�1
� ��1

I � I isoð ÞRsup
RPYbþ I isob:

(15)

Here we regularize R
sup
lub by an amount proportional to the

GMRES solver tolerance e.

E. Specified rotational motion

In order to simulate experiments involving microrollers we

need to impose a prescribed angular velocity rather than a

prescribed torque. That is, we need to solve for the required

linear velocities u and torques s, given some applied forces f on

the particles and the desired angular velocity x. This can be

stated mathematically by rearranging the mobility problem as

M
f
s

	 


¼ ðI þMDRÞ�1
M

f
s

	 


¼ u
x

	 


;

as a linear system in the unknown quantities

M

0

s

" #

�ðIþMDRÞ
u

0

" #

¼ðIþMDRÞ
0

x

" #

�M

f

0

" #

¼
a

b

" #

:

(16)¶ A preconditioner for eqn (9) can be developed through a similar method.
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We solve (16) for [u,s]T using a preconditioned GMRES

method. As a preconditioner, we will solve (16) using the

block diagonal freespace approximation M�Mfree. This

results in a sparse, decoupled system of equations of the

form

� Iþ 1

6pZa
DRtt

� �

u¼a (17)

1

8pZa3
s� Iþ 1

8pZa3
DRrt

� �

u¼b (18)

where DRtt, DRrt are the translation–translation and rotation-

translation coupling blocks of DR respectively. Eqn (17) can be

solved efficiently for u using CHOLMOD, and given u, eqn (18)

is trivial to solve for s.

III. Brownian dynamics

In this section we describe how to account for thermal fluctua-

tions, i.e., Brownian motion. Given the positive-definite,

lubrication-corrected mobility matrix MðQÞ, the Ito over-

damped Langevin equation

dQ

dt
¼ U ¼ MF þ kBTð Þ@Q �Mþ

ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT
p

M
1=2

WðtÞ; (19)

governs the particle dynamics in the presence of thermal

fluctuations. In the above, T denotes the solvent temperature,

kB is Boltzmann’s constant, and WðtÞ is a collection of

independent white noise processes. The last term involving

M1=2 is the Brownian increment, and the second term invol-

ving @Q �M is the stochastic drift. Note that the first equality in

(19) is just a shorthand notation because representing orienta-

tions requires using quaternions; the precise statement of the

stochastic dynamics for full particle configurations, including

their orientations, requires a more cumbersome notation and

treatment which is described in ref. 3 and 33.

There are several challenges in solving eqn (19) efficiently.

We need an efficient way to compute the deterministic

dynamics U ¼ MF with lubrication corrections; we discussed

this already in Section II. In the presence of thermal fluctua-

tions surface overlaps (particle–particle or particle–wall) may

occur, in which case the mobility needs to be carefully modified

and the overlap must be separated in such a way as to maintain

detailed balance. The Brownian increment also needs to be

sampled efficiently—in Section III A we describe an efficient

method of splitting M1=2W into near and far fields which is

similar to what has been done in ref. 10 and 24. The drift term

is more challenging to efficiently calculate—in Section III B

we develop a novel time integration scheme for (19) which

captures this term accurately and with minimal computational

effort; our scheme is more specialized and efficient than the

more general scheme developed in ref. 10.

A. Generating Brownian velocities

In order to perform Brownian dynamics simulations we need a

method to efficiently compute normalized8 Brownian ‘‘veloci-

ties’’ Us, which are a Gaussian random vector with mean zero

and covariance M. Following ref. 10, we generate Us as

U s ¼ M DR1=2W1 þM
�1=2W2

� �

¼ ½I þMDR��1
MDR1=2W1 þM

1=2W2

� �

; (20)

where W1 and W2 are independent standard Gaussian

random vectors. It is easy to confirm that Us has the correct

covariance,

U sU
T
s

� �

¼ M DR1=2 W1 W1ð ÞT
D E

DRT=2
�

þ M
�1=2 W2 W2ð ÞT

D E

M
�T=2

�

M

(21)

¼ M DRþM
�1

� �

M ¼ M: (22)

To compact the notation, we will write

MDR1=2W1 þM
1=2W2

� �

¼d ðMDRMþMÞ1=2W1;2;

(23)

whereW1,2 is a vector of i.i.d. standard Gaussian variables. Here

the equality is in distribution since the first and second

moments of the left and right hand sides match. For the same

reason, we can write in more compact notation,

U s ¼ ½I þMDR��1ðMDRMþMÞ1=2W1;2 ¼ M
1=2W1;2;

(24)

which defines a ‘‘square root’’ of the lubrication-corrected

mobility matrix suitable for efficient sampling of Brownian

velocities/increments.

In eqn (20), the term DR1=2W1 can be efficiently generated

by separately generating pairwise and diagonal blocks using

independent random numbers.24,34 We prefer to numerically

compute DR1=2 as a sparse Cholesky factor of DR using

CHOLMOD, as this is very efficient in the quasi-2D geometry

considered here. The terms involving M1=2W2 in (20) are

computed using the Lanczos-like method of ref. 35, as was

done in ref. 2 and 3. The convergence of the Lanczos-like

method in a modest number of iterations (independent of

the number of particles) is demonstrated in ref. 2 for just the

‘trans–trans’ coupling block of M; we observe similar conver-

gence properties when the rotation coupling blocks are

included.

B. Stochastic time integration

In this section we describe a temporal integration scheme to

simulate the stochastic dynamics (19). Algorithm 1 summarizes

our integration scheme, termed the ‘Stochastic Trapezoidal

Split’ scheme or STS scheme. The mechanism by which the

8 The scaled Brownian velocities have covariance 2kBT=Dtð Þ �M, where Dt is the

time step size.
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STS scheme captures the thermal drift is similar to the trapezoidal-

slip scheme introduced in ref. 3 to simulate Brownian dynamics

of rigid particles using the rigid multiblob method. Both

trapezoidal schemes use a combination of random finite differ-

ences (RFD)2,3 and a trapezoidal predictor–corrector scheme to

capture the stochastic drift. One major advantage of the STS

scheme is that it only requires two linear solves per time

step, in contrast to the three required by the trapezoidal-slip

scheme3 and by the Euler–Maruyama scheme used in ref. 10.

The STS scheme therefore achieves the second order accuracy

of an analogous deterministic scheme (by virtue of being a

trapezoidal method) with only a small additional cost to

include the Brownian dynamics. A public-domain implementa-

tion of the STS scheme for lubrication-corrected BD can be

found on github at https://github.com/stochasticHydroTools/

RigidMultiblobsWall.

The STS scheme is so named because it takes advantage of a

product rule splitting of the thermal drift term

@Q �M ¼ @Q � ½I þMDR��1
M

� �

(25)

¼ ½I þMDR��1 @Q �M
� �

þ @Q½I þMDR��1
� �

:M: (26)

The scheme uses the idea of random finite differences3,33 to

capture the first term of (26) and the natural drift produced by

the trapezoidal scheme to capture the second term. Specifically,

we will compute the quantity @Q �M according to the RFD

formula

@Q �M � 1

d
M Qþ dWD
� �

�M Q� dWD
� �� �

W f t
� �

; (27)

where d = 10�4 is a small parameter3 and

W ft = [W ft
1 ,. . ., W

ft
N]

T, WD = [WD
1 ,. . ., W

D
N]

T.

Here random numbers are generated for each particle,

W ft
p = [a�1W f

p,W
t
p], WD

p = [aW f
p,W

t
p], 1 r p r N

where W f
p, W

t
p are 3 � 1 standard Gaussian random vectors.

We show in Appendix D that step 6 of Algorithm 1 indeed

approximates eqn (19) with a weak accuracy of at least OðDtÞ.
Specifically we show that the final configuration update in the

STS scheme can be written as

DQnþ1 ¼ Qnþ1 �Qn ¼ Dt

2
Un þUnþ1;�� �

(28)

¼ Dt

2
M

nFn þM
nþ1;�Fnþ1;�� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTDt
p

M
n

� �1=2
W1;2

(29)

þ kBTð ÞDt @Q �M
� �nþDtR Dt;Dt1=2

� �

; (30)

whereR Dt;Dt1=2
� �

denotes a Gaussian random error term with

mean and variance ofOðDtÞ. This trapezoidal update maintains

second order accuracy in a deterministic setting (kBT = 0),

which helps improve the weak accuracy in the stochastic setting

Algorithm 1: Stochastic trapezoidal split (STS) scheme
For a given time step size Dt and applied forcing F(Q,t), this algorithm updates the configuration Qn

E Q(tn) at time tn = nDt to Qn+1. Orientations
can be tracked using quaternions and updated by rotations, as described in ref. 3 and 33. Superscripts denote the time/configuration at which a
quantity is evaluated, for example, Fn+1,* = F(Qn+1,*, (n + 1)Dt).
1. Compute Brownian displacements (see Section III A)

DQW ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

Dt

r

M
n DRnð Þ1=2W1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

Dt

r

M
nð Þ1=2W2:

2. Compute a predicted velocity Un by ignoring the drift term entirely and solving

I þM
nDRn½ �Un ¼ M

nFn þ DQW;
to give:

Un ¼ M
n Fn þ

ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

Dt

r

DRnð Þ1=2W1

 !

þ
ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

Dt

r

I þM
nDRn½ ��1

M
nð Þ1=2W2:

3. Compute the relevant RFD term DM using (27),

DM ¼ 1

d
M Qn þ dWD
� �

�M Qn � dWD
� �� �

W f t;

such that

DM
� �

¼ @Q �M
� �nþO d2

� �

:
4. Compute predicted configurations of the particles

Qn+1,* = Qn + DtUn.
5. Compute corrected velocities by solving

I þM
nþ1;�DRnþ1;�� �

Unþ1;� ¼ M
nþ1;�Fnþ1;� þ 2kBTð ÞDM þ DQW;

to obtain

Unþ1;� ¼ M
nþ1;�Fnþ1;� þ 2kBTð Þ I þM

nþ1;�DRnþ1;�� ��1
DM

þ
ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

Dt

r

I þM
nþ1;�DRnþ1;�� ��1

M
n þM

nDRn
M

nð Þ1=2W1;2:

6. Update configurations to time t + Dt using velocity Un+1/2 = (Un + Un+1,*)/2,

Qn+1 = Qn + DtUn+1/2.
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compared to the first-order Euler–Maruyama scheme used in

ref. 10 (results not shown but see ref. 3 for related studies). We

demonstrate the accuracy of our hydrodynamic model and the

STS temporal integrator in Appendix B 2 by comparing to the

rigid multiblob method** previously developed by some of us

in ref. 3 and 31.

C. Firm repulsion between spheres

Thermal fluctuations may introduce unphysical events such as

particle–particle overlaps or particle–wall overlaps. For these

unphysical configurations, special care must be taken in defin-

ing the lubrication-corrected mobility so that overlaps occur

rarely, and, should an overlap occur, the particles ought to

separate quickly and through a thermodynamically reversible

means. Physically, there is a separation distance dcut below

which additional physics enters (electrostatic repulsion, surface

roughness, contact/friction forces, etc.). Motivated by this, we

introduce a strong repulsive ‘firm’ potential between particles

and particles and the wall, and carefully modify M to accom-

modate the new contact dynamics.

The pairwise resistance R
sup
lub blows up when particles

approach each other, and thus M will vanish. With a very

small mobility, two nearly touching particles will tend to stay

nearly touching unless acted upon by a large force. To push

(nearly) overlapping surfaces apart when they are separated by

less than adcut, we include a short-ranged but differentiable

‘firm’ repulsive potential of the form2

FðrÞ ¼ F0

1þ d � r

bcut
ro d

exp
d � r

bcut

� �

r 	 d

8

>

>

<

>

>

:

: (31)

For particle–particle interactions, r is the center-to-center dis-

tance and we take d = 2a(1 � dcut), and for particle–wall

interactions r is the particle center height and d = a(1 � dcut).

We choose bcut = 2adcut/ln(10) as a cut-off length so that the

inter-surface potential F(2a(1 + dcut)) = 10�2F0. This ensures

that the force is small when two surfaces are further than adcut
from touching and large when they overlap ( f> = �qF(r)/qr B

F0/bcut). We have found that taking dcut = 10�2 is sufficient for

our purposes, and we use this value henceforth.

The resistance correction DR is not physically realistic for

dimensionless surface separations (gaps) e o dcut (e = r/(2a) � 1

for pairs of particles, or e = h/a � 1 for a particle and a wall).

A simple correction that we find to work fairly well is to take

e ’ max(e,dcut). This approach compliments the repulsive

potential (31). Namely, the dimensionless perpendicular self-

mobility coefficient of two overlapping surfaces is Xtt
B dcut,

and therefore the relative radial separation velocity of two

overlapping surfaces will be on the order of u> B Xttf>/

(6pZa) B F0/(Za
2). We use F0 B 4kBT in this work to ensure

that the repulsive energy for overlapping particles is larger than

the thermal energy, but not so large as to require a sub-diffusive

time step size. Thus, over a diffusive time scale tD B Za3/(kBT),

two overlapping surfaces will typically separate by a distance

tDu> B a on the order of the particle size, thus effectively

eliminating the overlaps.

IV. Uniform suspensions of magnetic
rollers

In past works, some of the authors have investigated active

suspensions of rotating particles above a bottom wall, termed

magnetic microrollers.1–3,5 The rotation of the particles is

achieved in experiments by embedding a small cube of canted

antiferromagnet hematite in each particle and applying a

rotating magnetic field to the suspension1 (see the inset of

Fig. 2 for a diagram of a typical roller suspension). The bottom

wall couples the rotation of the particles to their linear velocity,

and the coherence of the flow fields generated by each particle

results in a greatly enhanced linear velocity for the whole

suspension.

In ref. 3 a uniform suspension of rollers was simulated using

the rigid multiblob method, and for sufficiently large packing

densities (f B 0.4), a bimodal distribution was observed in the

propulsion velocity of the particles. It was found that the

bimodality of the velocity distribution is caused by a dynamic

separation of the particles into two layers: a ‘slow lane’ of

particles whose center height was less than a particle diameter

above the wall, and a ‘fast lane’ of particle higher than

one diameter above the wall. Previous experiments1 relied on

PIV measurements of the suspension velocity, and could not

capture a bimodal distribution. In this section we reinvestigate

this problem using new particle-tracking-based experimental

measurements, which do capture the bimodal distribution in

the population velocity, and model the experiments using the

more efficient numerical methods presented in this work.

A. Experimental setup

In our experiments, the suspensions of microrollers are

composed of colloids with a canted antiferromagnet core

suspended in water and driven by a rotating magnetic field.

The spherical colloids are made of an off-center hematite cube

embedded in 3-(trimethoxysilyl)propyl methacrylate (TPM),36

which can be fluorescently labeled for imaging with fluores-

cence microscopy using 4-methylaminoethylmethacrylate-7-

nitrobenzo-2-oxa-1,3-diazol (NBD-MAEM).37,38 The cubes have

a side length of 770 nm (with 100 nm standard deviation) and

have rounded edges.

We measured the size of the microrollers with both scan-

ning electron microscopy (SEM) and dynamic light scattering

(DLS), see Appendix E for details. From SEM, we found a

diameter of 2.11 
 0.08 mm by measuring the diameter of 161

particles, which corresponds to a polydispersity (standard

deviation/mean diameter) of 4%. From DLS, we found a

diameter of 2.03 
 0.04 mm. The particles were suspended in

a 0.14 mM lithium chloride (LiCl) in water solution, which

** The rigid multiblob method we use here does not incorporate lubrication

corrections but resolves the far-field hydrodynamics considerably more accurately

than the RPY approximation.
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corresponds to a Debye length of B25 nm. We put the suspen-

sion in a glass sample cell with a height of B150 mm, as

described in Appendix E, and equilibrated for at least 30 min-

utes before imaging.

For the measurement of the diffusion constant %D8 of the

particles parallel to the floor, we imaged fluorescently labeled

particles (see Appendix E) at a very dilute concentration at a

frame rate of 2 s�1. The particle trajectories were determined

using particle tracking.39,40

In order to determine the rolling velocity at different driving

frequencies of dilute microrollers, we applied a rotating magnetic

field using a home-built set of tri-axial nested Helmholtz coils,41

placed on top of a fluorescence microscope as described in detail

in Appendix E. A magnetic field of 40 G, rotating around an axis

parallel to the bottom glass wall, was applied and the fluorescently

labeled particles were imaged at a rate of 9.0 s�1. To prevent the

particles from ending up at one side of the sample container, we

inverted the direction of the rotating field every 30 seconds. We

obtained the positions of the particles in the microscope images

and linked them using particle tracking,39,40 where overly bright

(i.e. clusters) or stuck particles were left out of the analysis.

For the rolling experiments of dense suspensions, we mixed

together particles with and without fluorescent labeling in a

1 : 1200 number ratio. This makes it possible to follow the

dynamics of single rollers in a crowded layer using particle

tracking (see ESI,† movie 1). The area fraction of the monolayer

of particles after sedimentation was estimated to be 0.4 by

feature finding39,40 in a single bright field microscope image,

using the SEM estimate of the particle diameter.

B. Simulation parameters

In order to determine appropriate parameters for the simula-

tions, we use a very dilute suspension to experimentally mea-

sure key parameters for an isolated microroller. The diffusion

constant %D8 of an isolated particle parallel to the glass wall was

measured to be %D8 = 0.103 
 0.003 mm2 s�1, from a total of

21 000 displacements.

We also measured the average velocity of dilute fluorescent

rollers driven by a 40 G magnetic field for frequencies up to

20 Hz, see Fig. 1. Up to a frequency of B9.8 Hz (black dashed

line), the velocity of the rollers increases linearly with the

frequency of the applied rotating magnetic field with a slope

of Āf = 0.223 mm. Above this frequency the velocity starts to

decrease upon an increase in the frequency. This is due to the

inability of the particles to overcome the viscous torque of

the surrounding liquid as the particles start to slip relative to

the field.1 To prevent this, we use a frequency of 9 Hz in our

dense suspension experiments, and confirm using simulations

that the slippage is minimal.

The ambient room temperature for the experiments was

T = 22 1C, and therefore the viscosity of water is taken to be

Z = 0.96 � 10�3 cP. We use the DLS measurement of the

particles’ radius and take a = 1.02 mm. Using SEM measure-

ments, the volume of hematite core of the particles was

estimated to be Vcore E 0.95 � (770 nm)3 (where the 0.95 factor

corresponds to a 5% loss in volume from rounded edges). Using

literature values for the density of hematite and the TPM

colloid,42,43 we estimate the buoyant mass me of the particles

as 3.1 � 10�15 kg.

The equilibrium Gibbs–Boltzmannn distribution for the

height h of a single particle sedimented above the bottom

wall is

PGB(h) p exp(�(megh + U(h))/kBT). (32)

The steric potential U(h) is U(h) = Ufirm(h) + Usoft(h), where Ufirm

is the firm potential described in Section III C, and Usoft is a soft

potential of the form (31) which captures the electrostatic

repulsion from the bottom wall. We also include a soft, pair-

wise repulsion between particles with the same form as Usoft.

The excess mass me, the strength of the soft potential Fs,

and the effective Debye length bs are difficult to measure

precisely, and combine together to control the typical height

of the particles above the wall. To estimate suitable values of Fs

and bs for our simulations, we fix me = 3.1 � 10�15 kg, and try to

match the experimentally measured values of the parallel

diffusion coefficient %D8, and the slope of V( f ) for f o fc, Āf,

described in Section IV A. We compare these measurements to

numerical estimates computed by averaging the lubrication-

corrected mobility for an isolated particle over the equilibrium

Gibbs–Boltzmann distribution (32),

Dk ¼ kBT x̂TMttx̂
� �

GB
; (33)

Af ¼ V 0 f o fcð Þ ¼ 2p x̂TMtr
M

rr
� ��1

ŷ
D E

GB
: (34)

We numerically find the values of (Fs,bs) which minimize the

total relative error with experiments

Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dk � �Dk

�Dk

� �2

þ Af � �Af

�Af

� �2
s

: (35)

While this error never completely vanishes, we find that taking

Fs E 8kBT and bs E 0.04a E 40 nm minimizes the error at

about 11.5%, and we use those values in the rest of this section.

Fig. 1 Measured velocity of dilute microrollers as a function of the
frequency of the applied rotating magnetic field (40 G). Up to a frequency
of B9.8 Hz (vertical black dashed line), the velocity increases linearly with
the frequency (blue line, slope = Āf = 0.223 mm). At higher frequencies the
velocity decreases for increasing frequency, as the rollers cannot over-
come the viscous torque of the surrounding liquid.
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Note that the selected value of bs is consistent with theB25 nm

Debye length estimated from the experimental parameters.

Fig. 1 in Section IV A shows that a single particle begins to

‘slip’ behind the magnetic field when the angular velocity of the

field O 4 2p( fc = 9.8 Hz) = 8xc8. The constant torque sc

required to rotate an isolated particle with an average angular

velocity of xc = Ocŷ satisfies

M
rrh iGBsc ¼ xc;

and we compute 8sc8 = 2.0 � 10�18 N m. This is the maximal

torque s = m � B that the magnetic field can exert on any

particle, where m is the magnetic moment of the hematite.

From tc =mB we compute the strength of the magnetic moment

in the particles as m = 8m8 = 5.0 � 10�16 A m2 (using B = 40 G),

in perfect agreement with the estimate given in ref. 1.

C. Dense suspensions

We experimentally measured the trajectories of the microrol-

lers in a dense suspension (in-plane packing fraction f E 0.4)

in a rotating magnetic field (40 G, 9 Hz). The effective

(apparent) particle velocities in the direction of bulk motion

(x-direction) were computed over a time interval of 1 s. Fig. 2

shows the probability distribution of particle velocities P(Vx).

The histogram was computed by averaging eight independent

30 s runs and the shaded region around the ‘Experiment’ curve

shows the 95% (2 std) confidence bounds. Also included in

Fig. 2 is an analogous velocity distribution computed from

simulations of this uniform roller suspension, described next.

The agreement between the simulated and measured bimodal

distributions is quite good, and demonstrates that the lubrication-

corrected BD method has quantitative accuracy sufficient to

reproduce the experimental measurements.

Fig. 2 also shows sub-distributions of the simulated P(Vx)

wherein the particle velocities are grouped into high particles

(whose height h 4 2a from the bottom wall) and low particles

(ho 2a). While there is some small overlap, it is quite clear that

the low particles correspond to the slow peak in P(Vx), and the

high particles correspond to the fast peak, as originally

observed in ref. 3. For the first time, we show here that the

peaks of the sub-distributions corresponding to h 4 2a and

h o 2a closely coincide with the peaks of the experimentally

measured bimodal distribution.

1. Simulations of dense uniform suspensions. Fig. 2 shows

results for the distribution of propulsion velocities obtained

by simulating a uniform suspension with a packing density

f E pa2N/L2 = 0.4, where N is the number of particles in the

square domain and L is the length of the domain (see ESI,†

movie 2). We use N = 2048 particles and periodic boundary

conditions (implemented using periodic images as in ref. 2).

We confirmed that the number of particles is large enough that

periodic artifacts are negligible by computing the velocity

distribution for a larger domain size that include one periodic

image in each direction, i.e., N = 9 � 2048 particles.

Following our experiments we compute (apparent) particle

velocities over intervals of one second for all of the distributions

presented in this section. By convention we take the applied

magnetic field to be rotating in the x–z plane and compute

statistics of the particles’ velocity Vx in the x-direction. Velocity

distributions are computed as a normalized histogram of the

apparent velocities using 1500 samples taken after a sufficiently

long period of equilibration.

Fig. 1 confirms experimentally that magnetic rollers driven

by an ACmagnetic field below the critical frequency ( fc = 9.8 Hz)

rotate coherently with the magnetic field. Following Section II E,

we compute the applied torques so required to constrain the

angular velocity of each particle to be x = 2p(9 Hz)ŷ = Oŷ in

the absence of Brownian motion. Panel A of Fig. 3 shows the

distribution of torque magnitudes 8so8 = to E [so]y, with

a black vertical bar demarcating the slip cutoff to = tc. We

see that the torques are broadly distributed with a long tail

including torques larger than tc, dominated by slow particles

with h o 2a. In panel A of Fig. 3 we also show that a constant

torque with 8s8 = 8pZa3o (as was used in ref. 3) correctly

estimates the most probable torque, without, however, accounting

for the broad distribution of torques.

To account for the upper bound tc =mB on the magnitude of

the torque exerted by the applied field, we cap the applied

torque and define

~to ¼ min tc; toð Þ
to

so:

Panel B in Fig. 3 shows velocity distributions from suspensions

driven by applying a torque so (solid black line, also included

in Fig. 2) or so (dashed-dotted orange line). The difference

between using ~so over so is small compared to the experimental

Fig. 2 The distribution of velocities in the direction of collective motion
for the microroller suspension shown in the inset. We compare
the experimentally measured distribution (green solid line) with the dis-
tribution computed using our lubrication-corrected Brownian dynamics
method (black solid line). The experimental data represents the mean
over 8 independent runs, and the extents of the shaded area represent
95% confidence bounds. The simulated data is broken into two sub-
distributions according to the height of the particles above the wall
(h o 2a or h 4 2a), showing a clear correlation between the ‘slow’ peak
in the velocity distribution and the lowest particles (with a similar correla-
tion for fast and high particles). Inset: A typical configuration for a uniform
suspension of microrollers at density f = 0.4 and driving frequency
f = 9 Hz. The hematite cube embedded in the particles is overemphasized
here for visual clarity. Low (slow) particles are colored magenta while high
(fast) particles are colored yellow. Also see supplementary media for videos
from simulations as well as experiments.
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and statistical uncertainties. Panel B also shows P(Vx) for a

suspension driven by applying s = 8pZa3Oŷ (dashed blue line),

which clearly maintains the qualitative features of the experi-

mental velocity distribution (e.g. bimodality, and relative mass of

the modes), but provides a notably worse quantitative agreement

with our experiments. In Appendix B 2 we compare the propulsion

velocities computed using the lubrication-corrected BD method

(for constant applied torques) to reference results computed using

the rigid multiblob method.3 We find a very good agreement with

the results obtained using 42 blobs per colloid, which is consider-

ably more expensive than our minimally-resolved approach that

uses one blob per colloid for the far-field hydrodynamics.

2. Switching lanes. Fig. 2 shows that we can separate the

two peaks in the velocity distribution of the roller suspension

by the height of the colloids. The fast peak roughly corresponds

to particles whose center h is above a distance of 2a from the

wall and the slow peak to particles below 2a. These lanes form

as a result of the driven dynamics in the suspension, and it is

natural to ask how often a particle changes lanes.

Using our simulation data, we can compute the joint dis-

tribution function P(Vx,h) for the particles’ height and velocity.

Panel A in Fig. 4 shows a pseudocolor map of P(Vx,h), where

we identify two elliptical regions corresponding to the

modes (peaks) of the distribution, readily identified as the slow

(region A) and fast (region B) lanes. The elliptical regions are

identified by fitting a bimodal Gaussian mixture model to

P(Vx,h), and we have plotted level sets corresponding 95% of

the probability mass in each mode, separately. The large

eccentricity of these elliptical regions quantifies our observa-

tion that height and velocity in the suspension are highly

correlated. Hence, to identify which lane a particle resides in,

we only look at its velocity, allowing us to compare simulated

results with experimental ones. Specifically, we use the velocity

extrema of groups A and B to define the intervals VA =

[9.37, 17.4] mm s�1 and VB = [19.9, 62.6] mm s�1 respectively

as the slow and fast lanes (shown in panel A of Fig. 4 as color

coded vertical lines). The probability of a particle occupying

these groups is calculated as P(VA) = 0.28 and P(VB) = 0.62.

To interrogate how often a particle will switch lanes,

say from the slow to the fast lane, we compute the probability

P(VA- VB) that a particle will be in VB at time t = T, given that it

Fig. 4 (panel A) Pseudocolor map of the joint steady-state distribution
P(Vx,h) of particle velocities and heights, computed from the simulation
data. Two elliptical regions demarcate regions we have identified as the
‘fast-lane’ (region B) and the ‘slow-lane’ (region A). The one dimensional
intervals VA and VB demarcated by color-coded vertical lines correspond
to the Vx extents of the sets A and B, respectively. (panel B) The probability
of a particle starting in set VA/B to end up in set VB/A after a time T.
Simulated data is shown as solid lines which asymptote to P(A) or P(B)
depending on the state that the particle’s trajectory is conditioned to arrive
in. Experimental data, shown as circular markers, agrees with our simulated
data within a 95% confidence interval (2 std), shown as a shaded region.

Fig. 3 (panel A) Probability distribution of applied torques required to
maintain an approximately constant angular velocity x for all particles. The
distribution is grouped into particles whose center is above 2a from the
wall and those below, which Fig. 2 shows correspond to fast and slow
particles, respectively. The low (slow) particles dominate the tail of the
torque distribution. Also shown is a yellow line representing the constant
torque approximation ty = 8pZa3o. The solid black line represents the ‘slip’
limit where the applied torque exceeds tc = mB. (panel B) Comparison of
velocity distributions P(Vx) when the particles are driven either by a
prescribed angular velocity oŷ, with and without a cutoff of tc for the
applied torque, or a prescribed torque s = 8pZa3oŷ.
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started in VA at t = 0. At long times, a particle will forget where it

started and P(VA - VB) will asymptotically approach P(VB), as

seen in panel B of Fig. 4. To compute an unbiased estimator for

P(VA - VB), we consider segments of particles’ trajectories

which start in VA at t = 0 or enter VA at a certain time t, and

check whether they end up in VB a time T later. The variance of

the estimate for P(VA - VB) at each time T can be computed

as the variance of the average of Nt independent binomial

variables, var(P) E P(1 � P)/Nt, since the Nt trajectory snippets

(samples) are approximately statistically independent.

The switching dynamics can be modeled as a simple two-

state Markov model for the lane changing dynamics where a

particle will switch from VA to VB with rate rAB and vice versa

with rate rBA, giving

P VA ! VBð Þ
P VBð Þ ¼ P VB ! VAð Þ

P VAð Þ ¼ 1� exp � t

tAB

� �

where tAB = P(VB)/rAB = P(VA)/rBA. These predictions match the

simulation data for tAB = 1.5 s (rAB = 0.42 and rBA = 0.19).

Panel B of Fig. 4 compares experimentally measured values

of P(VA - VB) and P(VB - VA) against simulations. Note

that the particle trajectories measured in our experiments

range in duration from 3 s to 25 s and are therefore not

long enough to accurately sample the long-time behavior.

Nevertheless, we see good agreement in the switching dynamics

between experiments and simulations, showing again that our

lubrication-corrected BD method models the driven dynamics

with quantitative accuracy.

V. Lubrication friction in a dense
monolayer of microrollers

In ref. 15, Geyer et al. showed experimentally that a suspension

of Quincke rollers can self separate into a dense active solid

phase and a sparse ‘polar’ phase. By increasing the average

packing density of the system, they observe that the average

velocity of the suspension initially increases with density but

eventually becomes an ‘active solid’ where the velocity of the

suspension is retarded to the point of arrest. In Appendix A

of ref. 15, the authors conjecture that this dynamic arrest seen

in their experiments is due to inter-particle lubrication inter-

actions frustrating the motion of the suspension at high

in-plane packing fractions. Specifically, they conjecture that the

arrest happens when there is a balance between viscous torque

from inter-particle lubrication and the applied electrodynamic

torque. In this section, we interrogate whether lubrication

interactions cause a dynamic arrest in dense suspensions of

microrollers driven by a constant applied torque, rather than

attempting to simulate the complex electrohydrodynamics of

Quincke rollers.15

In the following simulations, we take the particle radius

a = 1 mm. As in Section IV, we will take Z = 0.96 � 10�3 cP and

Fig. 5 (panel A) Comparison of two driving mechanisms for a monolayer of rollers which are confined by a strong harmonic potential to remain fixed in a
plane separated by a gap of 0.1a from the bottom wall, mimicking a suspension of Quincke rollers. Each curve shows the mean velocity (in mm s�1) in the
direction of collective motion (x-direction) as a function of the in-plane packing fraction. The solid black curve corresponds to particles driven by a
constant applied torque s = 8pZa3(2p)ŷ, and the solid fuchsia curve corresponds to particles driven by constraining their angular velocity to a constant
value x = 2pŷ. When the particles are driven by a constant torque there is a clear peak in V(f) around f E 0.5. On the other hand, particles driven by a
constant O show a steady, though diminishing, increase in velocity as f is increased. Also shown as dashed lines are V(f) profiles for both driving
mechanisms but without pairwise lubrication forces between neighboring particles. (panel B) Velocity distributions in the x-direction for constant applied
torque with pairwise lubrication friction. The color of each curve corresponds to the packing density f used in the simulation, coded according to the
corresponding colored marker on the solid black curve in panel A. Also see supplementary media for a video of one of the simulations.
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T = 22 1C. We confine the particles to remain approximately

fixed in a plane above the bottom wall at a height hc = 1.1a

using a strong harmonic potential

Fc(h) = 103kBT(h � hc)
2,

and therefore we neglect gravity. The height hc is taken to be very

close to the wall to mimic the experiments of ref. 15. The strength

of the potential was chosen through numerical experimentation

to ensure that the particles remain strictly fixed in the desired

plane h = hc even at high packing densities. Following what was

done in Section IV, we include a soft repulsive potential between

the particles in the form of (31) with bcut = 0.1a and F0 = 4kBT, in

addition to the ‘firm potential’ discussed in Section III C.

We take the geometry of our domain to be semi-infinite in z

and periodic in x and y, and use a fixed number of particles

N = 1024 in every simulation. We use the periodic domain size

L to control the in-plane packing fraction f = pa2N/L2. To

interrogate the dependence of velocity on packing fraction,

we examine suspensions driven by a constant torque

Tc = 8pZa3Ocŷ = 8pZa3(2p(1 Hz))ŷ,

as well as suspensions driven to maintain a constant rotation

rate xc = Ocŷ using the method described in Section II E. The

rolling motion of each particle generates a net translation in

the x direction with a steady state velocity distribution P(Vx). We

take the velocity of the whole sheet to be the mean of this

distribution V � hVxi, and study the dependence V(f).

Fig. 5 shows a bulk slowdown of the suspension at high

densities, f 4 0.5, when a constant torque is applied (the solid

black curve with colored markers). Panel B in this figure shows

that the velocity distribution P(Vx) for each packing density is

approximately Gaussian, with a variance that narrows as f is

increased. Hence, asf is increased the particles tend tomove with

a more uniform velocity as would a ‘solid’ phase. Both the

maximum in the plot of V(f) vs. f, and the narrowing variance

in P(Vx) as f is increased, are due to the increasing lubrication

force between nearly touching particles as f is increased. To show

that the lubrication between particles retards their hydrodynamic

responsiveness to applied torques, we turn off the pairwise

lubrication corrections.†† The dashed black curve in Fig. 5 shows

that when pairwise lubrication corrections are not included, V(f)

exhibits a monotonically increasing dependence on f.

If we change the driving mechanism of the particles in the

sheet from a constant applied torque to a prescribed angular

velocity x = Ocŷ, we see a marked change of behavior in the V(f)

curve. The solid teal line in Fig. 5 shows a monotonic growth in

V(f) as f is increased. This is not so surprising. One needs to

generate a large enough applied torque so that x remains

constant regardless of packing density, thus overcoming the

lubrication force. In practice, however, the maximum torque

must be limited by the physical driving mechanism, for both

Quincke rollers and magnetic particles. When we remove the

effects of pairwise lubrication for particles driven by a constant

angular velocity, the trend in V(f) (the dashed teal line in Fig. 5)

is similar to when pairwise lubrication was included but with a

less pronounced saturation in the growth of V(f) for larger f.

VI. Conclusions

We reported new experimental and computational results on the

collective dynamics of a dense suspension of colloids sedimented

above a bottom wall and spun by a rotating magnetic field. The

experiments used fluorescent tracers to enable precise measure-

ments of the motion of individual active particles. We also

developed a lubrication-corrected Brownian dynamics method

for driven suspensions of spherical colloids confined above a

bottom wall. We showed that our numerical method can predict

both static and dynamic nonequilibrium statistics of a driven

Brownian suspension of microrollers accurately enough to provide

quantitative agreement with our experiments. Specifically, both

simulations and experiments showed a bimodal distribution of the

particles’ velocities, with good agreement about the locations and

widths of the two peaks. The two sub-populations of microrollers

correspond to particles in a slow layer right above the floor, and a

faster layer above the first layer. We showed good agreement

between simulations and experiments on the distribution of

switching times between the two sub-populations of particles.

The accuracy of our minimally-resolved simulation method is

owed, in no small part, to the improved hydrodynamic accuracy

provided by lubrication corrections for pairs of nearby surfaces

(particles and the bottom wall or pairs of particles).

We also showed numerically that lubrication forces between

nearly touching particles in a dense suspensions of rollers are a

plausible explanation for the formation of the active solid

phase observed in ref. 15. Our suspension of microrollers does

not exhibit a sharp motility-induced phase separation (MIPS),

at least for the system sizes studied here. However, the collec-

tive slowdown for f 4 0.5 is qualitatively similar to that seen

for Quincke rollers in ref. 15. Specifically, we saw that when a

constant torque is used to drive particles in the suspension, the

average velocity of the suspension V has a maximum at packing

density f E 0.5, and that this maximum is directly caused by

pairwise lubrication between particles. The stark difference in

trends in V(f) when angular velocity or torque is prescribed

agrees with the results that we saw for magnetic rollers.

Together, these examples demonstrate that the collective

dynamics of dense suspensions held close to a bottom wall,

for which lubrication plays a big role, is strongly affected by the

driving mechanism.
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Appendix A: semi-analytical formulas
for the pair resistance matrices

In this Appendix we detail how we construct the resistance

matrices between a pair of particles,Rpair
lub , and between a single†† The lubrication corrections with the bottom wall are still included.
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particle and a bottom wall,Rwall
lub , for small inter-surface gaps. In

both cases a combination of asymptotic formulas and tabulated

numerical calculations are used to provide an accurate charac-

terization of the resistance matrices across a wide range of

dimensionless gap sizes; from very small to intermediate.

1. Semi-analytical formulas for Rpair
lub

There have been many works which calculate or tabulate the

coefficients of Rpair
lub for different particle separations er.

12,28,44

Unfortunately we have found that no one of them provides

sufficient accuracy at all distances we may wish to consider.

Hence, we will use different formula for the coefficients X(er)

and Y(er) appearing inR
pair
lub (see eqn (6)) depending on whether

er is small, large or some intermediate distance. We determine

the cutoff distances for the different formula as the distances

which minimize the error between formulas in neighboring

regions, i.e., where the formulas ‘overlap’.

At very small distances, Townsend gives asymptotic formu-

las for the coefficients of R
pair
lub in ref. 44. These asymptotic

formulas break down as the particle separation is increased,

and hence for large particle separations, we use tabulated

values and linear interpolation for the coefficients of R
pair
lub

computed using Jeffrey and Onishi’s series expansion28 trun-

cated at 200 terms.‡‡ The mismatch between Townsend’s

asymptotic formulas and Jeffrey and Onishi’s series formulas,

however, is too large for all particle separations. In the inter-

stitial region where neither Townsend nor Jeffrey and Onishi’s

suffice, we use tabulated values from Wilson’s Fortran code12

(based on Lamb’s method of reflections) and linear interpola-

tion to compute the coefficients of Rpair
lub . Minimizing the error

between successive formulas gives the cutoff transitions:

Townsend: er o 6 � 10�3

Wilson: 6 � 10�3
o er o 10�1

Jeffrey and Onishi: er 4 10�1

2. Semi-analytical formulas for Rwall
lub

For small wall–particle separations, we assemble asymptotic

formulas for the coefficients from a few different sources. For

larger wall–particle separations, we compute the coefficients

using linear interpolation of tabulated values computed

using our rigid multiblob method31 with 2562 blobs. For each

coefficient we determine a cutoff transition distance for eh by

minimizing the error between the asymptotic formulas and the

multiblob values.

When eh is very small, Cooley and O’Neill give an asymptotic

formula for Xttwall(eh) as eqn (5.13) in ref. 45. This formula agrees

with our multiblob computations for eh 4 0.1 and hence we

will take this as our cutoff value for this coefficient. Goldman,

Cox, and Brenner give asymptotic formula for Yttwall(eh), Y
tr
wall(eh),

Yrrwall(eh) as eqn (2.65a and b) and (3.13b) respectively in ref. 4.

Fig. 6 Coefficients of Rwall
lub appearing in eqn (7) as a function the normalized gap eh. Each panels shows that value of one of the coefficients computed

using the rigid multiblob method31 with 2562 blobs (solid blue line), and the corresponding asymptotic result from Table 1 (dashed pink line). Plots for Ytrwall

and Yrrwall include the original asymptotic results computed in ref. 4 (dotted green line) as well as our modification to include a linear term (where
appropriate). The 9/9 Padé approximation given by Cichocki and Jones27 (dot-dashed yellow line) agrees well with out ‘Assymptotic + Linear’ results
within the cutoff regions. Plots for Yttwall, Y

tr
wall, and Yrrwall also show data calculated by O’Neill (circles) and compiled in Tables 1.1 and 2 respectively in ref. 4.

The vertical black lines show the cuttoff transitions between different estimates.

‡‡ We thank James Swan for providing us a Mathematica notebook which

calculates this expansion.
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While these equations are certainly accurate enough at very

small eh, not enough terms are included in eqn (2.65b) and

(3.13b) to give good agreement with our multiblob results at

larger eh, or to give good agreement with the data provided by

O’Neill in Table 1 of ref. 4. To remedy this, we add a linear term

in eh to eqn (2.65b) and (3.13b) from ref. 4 and fit the coefficient

to our multiblob results. Fig. 6 shows all of the coefficients of

the wall mobility computed by combining the rigid multiblob

method with asymptotic formulas. We see that for larger values

of eh, the new formulas we computed for Ytrwall and Yrrwall, which

include a linear term in eh, agree well with both our multiblob

calculations as well as the data of O’Neill. Finally, an asympto-

tic formula for Xrr
wall is given by Liu and Prosperetti in eqn (4.1)

of ref. 46. This formula largely agrees with out multiblob results

for eh 4 0.01 so we use this as the cutoff. Table 1 show the

asymptotic formulas for each coefficient of Rwall
lub (normalized

by 1/(6pZa)) along with their respective cutoff values and

sources.

During the review process, an anonymous reviewer brought

to our attention the work of Cichocki and Jones,27 which also

computes the functions in Table 1. They do this using a

systematic formulation of a multipole expansion for one sphere

near a wall using Blake’s tensor as the Green’s function for

Stokes equations. They then substract from this expansion an

asymptotic expansion for very small gaps computed by taking

the asymptotic formulas from Jeffrey and Onishi28 for unequal

spheres and taking the limit as one sphere becomes infinitely

larger than the other one. The difference gives a more rapidly

convergent remainder series,38 to which they compute a 9/9

Padé (rational) approximation to the difference, see eqn (63)

and (43) in ref. 27. We include some of their semi-analytical

results in Table 1 and in Fig. 6 for comparison with ours. We

see that the Cichocki–Jones formula agrees with ours well over

the range of gaps shown in the figure. However, for larger gaps

we find a persistent difference with respect to our numerical

results, which is significantly larger than the accuracy of the

2562-blob estimates. Furthermore, we find that some of the

rational approximations exhibit poles for relative gaps of O(1),

and therefore are not sufficiently robust and accurate over the

whole range of gaps we need in this work.

Appendix B: accuracy of the lubrication
approximation

In this section we will assess the accuracy of the lubrication-

corrected mobility M, using the rigid multiblob method as a

basis of comparison.3,31 The multiblob method we use here

does not include lubrication corrections but the accuracy can

be improved by adding more blobs (nodes) per sphere.

1. Colloidal tetrahedron

We first consider a colloidal tetrahedron above a wall, as

depicted in the inset of Fig. 7. Nearby particle surfaces are

separated from each other by a distance e, which we vary e as

a control parameter. We compare the lubrication-corrected

mobility M to that computed by the rigid multiblob method,

for several different spatial resolutions. We use 12, 42, 162 and

642 blobs to discretize each sphere in the colloidal tetrahedron

with the rigid multiblob method, and we take a calculation

using 2562 blobs to be sufficiently accurate to provide a

reference result.31

Fig. 7 shows the relative error between the hydrodynamic

mobility computed using the rigid multiblob method for

Table 1 Asymptotic formulas for the coefficients of Rwall
lub , along with their cutoff values and sources. The coefficient 0.95(88,43) in Yttwall indicates that

the value we used was 0.9588 while Cichocki and Jones27 give a value of 0.9543; the two references agree for the coefficient 0.9713 in Xttwall. For the
coefficient Xrrwall, the constant term matches in the two references, but the linear term is replaced by a term of O(eh ln(eh)) in Cichocki and Jones.27 For the
remaining coefficients we add a linear term and fit the value of the constant together with the linear term, so direct comparison to Cichocki and Jones27

is not possible; see Fig. 6 for a visual comparison

Coefficient Formula Cutoff Source

Xttwall(eh) 1

eh
� 1

5
log ehð Þ þ 0:9713

eh o 0.1 (5.13) in ref. 45

Yttwall(eh) � 8

15
log ehð Þ þ 0:95ð88; 43Þ eh o 0.01 (2.65a) in ref. 4

Ytrwall(eh) 4

3

1

10
log ehð Þ þ 0:1895� 0:4576eh

� �

eh o 0.1 (2.65b) in ref. 4 + linear

Xrrwall(eh) 4

3
1:2021� 3

p2

6
� 1

� �

eh

� �

eh o 0.01 (4.1) in ref. 46

Yrrwall(eh) 4

3
�2

5
log ehð Þ þ 0:3817þ 1:4578eh

� �

eh o 0.1 (3.13b) in ref. 4 + linear

Fig. 7 Relative L2 error in the mobility matrix of the colloidal tetrahedron
shown in the inset as a function of the relative gap e, for the lubrication-
corrected mobility M (solid black line), as well as the mobility matrix
computed using the rigid multiblob method31 using 12, 42, 162, and 642
blobs to discretize each sphere. The error is measured relative to the
mobility matrix computed using 2562 blobs to discretize each sphere.
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different resolutions, as well as the lubrication-corrected mobility

M, as measured against our reference result. We see that for

small e, the lubrication-corrected mobility is roughly as precise as

the most accurate multiblob results and remains more accurate

than both the 12 and 42 blob results for all distances considered.

The error in M is larger than the more resolved multiblobs for

intermediate separation distances 0.1 t e t 2, but decays to

approximately that of the 642-blob calculation for large values of e.

2. Dense suspension of microrollers

Next we compare the particle displacements computed by the STS

scheme summarized in Algorithm 1 with those computed by the

Trapezoidal Slip (TS) scheme developed for the rigid multiblob

method in ref. 3. Specifically, we use both schemes to simulate the

dense microroller suspension of N = 2048 particles studied in

Section IV. We drive the suspension using a constant torque s =

8pZa3oŷ. The TS scheme, like the STS scheme, is a stochastic

temporal integration method based on the deterministic trapezoid

rule and we expect the two schemes to have similar temporal

accuracy. Therefore we use a use a single step of the STS and TS

schemes withDt = 0.01 to compute the one-step apparent velocities

Vx (i.e., particle displacements VxDt) along the direction of collec-

tive motion, and compare the results.

We use the distribution of one-step velocities, P(Vx), computed by

the STS scheme with lubrication corrections as a reference result,

and compare with the TS scheme using 12 and 42 blobs per particle,

without any lubrication corrections. To enable a direct comparison

of the methods, we generate 100 statistically independent config-

urations at steady state using the STS scheme, and compute one-step

apparent velocities starting from these configurations using the TS

scheme with 12 and 42 blobs per particle. It is worthwhile noting

that the lubrication-corrected BD method is not only considerably

simpler but it is also more efficient; for our GPU-based implementa-

tion, one step of the TS scheme using 12 blobs per sphere takes

about 6 times longer, while using 42 blobs per sphere takes almost

100 times longer, than one step of the STS scheme.

Fig. 8 shows that the P(Vx) distribution computed using the

TS scheme approaches the distribution computed using the STS

scheme as the spatial resolution of the TS scheme is increased

from 12 to 42 blobs. The largest mismatch between the more

accurate 42 blob case and the lubrication-corrected BD method

is the smallest velocities. We showed in Section IV that this is

precisely the portion of the distribution due to particles nearest

to the wall, and therefore most affected by lubrication. This

example demonstrates that the minimally-resolved lubrication-

corrected calculation is no less accurate overall than a 42-blob

approximation that has not been corrected for lubrication, as we

already saw for the colloidal tetrahedron.

Appendix C: performance of
preconditioners

To interrogate the effectiveness of the preconditioner P1, we

consider a doubly-periodic suspension of Np spherical particles

above a bottom wall. We take the particle radius a = 1 mm and

choose the particle’s added mass me to control the distribution

of their height above the wall through the gravitational height

hg � a = kBT/(meg) = 1/4 mm, where g is the acceleration of

gravity. We change the in-plane packing fraction of the particles

f ¼ Nppa
2

L2
; (C1)

where L is the periodic length of the domain. Periodic boundary

conditions are approximated using 8 periodic images as in

ref. 2.

Since the packing fraction is moderate compared to the

theoretical in-plane packing limit fmax ¼ p
ffiffiffi

3
p �

6 � 0:91
� �

, the

particles form an approximate monolayer. Increasing f can

cause multi-layered particle configurations to become energe-

tically favorable even for f below the in-plane packing limit,

due to the moderate gravitational height. In the remainder of

this section, we will study how varying f effects the conver-

gence of the GMRES solver for (10) using both P1 (see eqn (13))

and P2 (see eqn (14)) as preconditioners. We find that varying hg
has only a mild effect on the convergence of the GMRES solver

(not shown).

For f = 0.4, 0.8, 1.6, we increase the number of particles Np

while keeping f fixed. The reference configurations shown in

Fig. 9 illustrate how increasing f increases the number of

particle layers in the configuration from one for f = 0.4 to

about three at f = 1.6. Fig. 9 shows clearly that the precondi-

tioner P1 greatly improves the convergence of the GMRES solver

over an unpreconditioned method for all of the values of f

considered. Further, the performance of the preconditioner is

largely independent of Np.

The preconditioner P2 performs similarly to P1 for f = 0.4,

0.8, but with a notably worse convergence rate for tighter

tolerances (o10�1) and more variation in the performance for

different particle numbers. For f = 1.6 the preconditioner P2
performs only nominally better than no preconditioner at all,

while P1 gives some increased convergence; though not as

much as the f = 0.4, 0.8 cases. We suspect that P1 outperforms

P2 in the multilayered case (f = 1.6) because pairwise

Fig. 8 Histogram of one-step velocities for a dense uniform suspension
of microrollers, computed using the lubrication-corrected STS scheme
developed here (solid line), and the TS scheme of ref. 3 using 12
(dashed-dotted) and 42 (dashed) blobs to discretize each sphere in the
suspension.
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information is used to approximate M in P1 but not in P2.

Clearly, however, multiple, tightly-packed layers of particles can

hinder the effectiveness of both P1 and P2 as preconditioners.

We note that the unpreconditioned method converges with

roughly the same rate for each packing fraction f, gravitational

height hg, and all of the values of Np considered in each case.

This is likely due to the hydrodynamic screening provided by

the bottom wall which causes the hydrodynamic interactions

between particles to decay like 1/r3 and aids in the conditioning

of the mobility matrix.2,3 Hence the presence of a bottom wall

allows for an unpreconditioned GMRES method to be used

while maintaining an overall complexity which scales linearly

in the number of particles. Still, both preconditioners P1 and P2
are cheap, easy to compute and apply, and potentially speed up

convergence by a factor of two to three; and therefore we

employ P1 in this work.

Appendix D: weak accuracy of the STS
scheme

In this appendix, we will prove that the value of Un+1,* com-

puted in step 5 of Algorithm 1 is such that

Unþ1;� ¼d Mnþ1;�Fnþ1;� þ 2kBT @Q �M
� �nþ

ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

Dt

r

M
n

� �1=2
W1;2

þR Dt;Dt1=2
� �

;

(D1)

where R a; b1=2
� �

denotes a Gaussian random error term with

mean OðaÞ and variance OðbÞ. This combined with the fact that

the predicted velocity computed in step 2 can be simplified

using the shorthand notation from eqn (23) and (24) as

Un ¼d M
nFn þ

ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

Dt

r

M
n

� �1=2
W1;2; (D2)

shows that

DQnþ1 ¼ Qnþ1 �Qn ¼ Dt

2
Un þUnþ1;�� �

(D3)

¼d Dt

2
M

nFn þ �Mnþ1;�Fnþ1;�� �

(D4)

þkBTDt @Q �M
� �nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTDt
p

M
n

� �1=2
W1;2

þ DtR Dt;Dt1=2
� �

: (D5)

This proves that the STS scheme obtains the correct stochastic

drift, is second-order accurate in the deterministic setting, and

is weakly first-order accurate in the stochastic setting.

For simplicity, we take F � 0 at all time levels as the main

difficulty here is showing that the stochastic increments are

correct. Using the RFD approximation (27), we write the value of

Un+1,* computed in step 5 (with F � 0) as

DtUnþ1;� ¼d 2kBTDt I þM
nþ1;�DRnþ1;�� ��1

@Q �M
� �n

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTDt
p

I þM
nþ1;�DRnþ1;�� ��1

� M
n þM

nDRn
M

nð Þ1=2W1;2 þR d2;Dt
� �

:

(D6)

Fig. 9 Convergence rates of the GMRES solver for (10) using the proposed preconditioner P1, the block diagonal preconditioner P2,
10 as well as an

unpreconditioned GMRES method for reference (termed ‘No PC’ in the legend). Each panel shows convergence rates for a fixed value of f, as the
number of particles Np is varied. Below the legend is a frontal view of the particle configurations for Np = 3200 and for each value of f. Particles are
colored based on their height above the wall with the highest particles colored the darkest while the lowest particles are colored the lightest. Higher
values of f cause multiple layers of particles to form.
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Now if we Taylor expand I þMnþ1;�DRnþ1;�� ��1
about the

configuration Qn, we may write

I þM
nþ1;�DRnþ1;�� ��1

@Q �M
� �n

(D7)

¼ I þM
nDRn½ ��1 @Q �M

� �nþR Dt;Dt1=2
� �

; (D8)

where in the last equality we have used the fact that

DQ� ¼ Qnþ1;� �Qn ¼ DtUn

¼d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBTDt
p

I þM
nDRn½ ��1

M
n þM

nDRn
M

nð Þ1=2W1;2

¼ R 0;Dt1=2
� �

:

(D9)

By Taylor expanding the second term in eqn (D6) around Qn

and using the shorthand (24) and eqn (D9), we may write

ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

Dt

r

I þM
nþ1;�DRnþ1;�� ��1

M
n þM

nDRn
M

nð Þ1=2W1;2

(D10)

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

Dt

r

M
n

� �1=2
W1;2 þ 2kBT @Q½I þMDR��1

� �n
: (D11)

M
nþM

nDRn
M

nð Þ IþM
nDRnð Þ�TW1;2W

T
1;2

h i

þR Dt;Dt1=2
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

Dt

r

M
n

� �1=2
W1;2þ2kBT @Q½IþMDR��1

� �n
:M

n

þR Dt;Dt1=2
� �

:

(D12)

Combining eqn (D12) and (D8) with eqn (D6) and using

eqn (26) from the main text to simplify

½I þMDR��1 @Q �M
� �

þ @Q½I þMDR��1
� �

:M ¼ @Q �M;

gives the desired result (D5).

Appendix E: experimental details

For the SEM size measurement the particles were imaged using

a Gemini Field Emission Scanning Electron Microscope (Zeiss).

In the DLS measurement the particles were dispersed in a

nonionic density gradient medium47 mixed with water to pre-

vent significant sedimentation during the measurement.

Iohexol (Sigma-Aldrich) was mixed with ultrapure water (Milli-

Q, Millipore) at a 74 w/v% concentration (density: 1.39 g mL�1)

and the viscosity of the mixture was measured to be 17.2 cP

(22 1C) using an Ubbelohde viscometer (CANNON Instrument

Company). The DLS measurement was done using a Zetasizer

Nano ZS (Malvern Instruments Ltd).

The glass sample cell was constructed in the following way:

two glass spacers (no. 1 coverslips, B150 mm thick) were glued

to a microscope slide with a B3 mm separation using UV glue

(Norland Adhesives, no. 68). On top of this a basebath-treated

coverslip was glued to created a channel. This channel was

filled with the dispersion and both ends were glued shut. In the

final step the UV glue was cured while the dispersion was

shielded from the UV light by a piece of aluminum foil, to

prevent the bleaching of the dye inside the particles. After

curing, the sample was placed with the coverslip down.

For the measurement of the diffusion constant %D8 of the

particles parallel to the glass wall, fluorescent particles were imaged

with an inverted microscope (IX83, Olympus) and a 20�/0.7 NA air

objective in fluorescent mode with 488 nm LED excitation.

For the roller experiments a home-built tri-axial nested

Helmholtz coil set41 was put on top of an inverted microscope

(IX83, Olympus) to allow simultaneous imaging and magnetic

Fig. 10 Photograph and schematic (side view) of the setup used for the roller experiments. The setup consists of a home-built tri-axial Helmholtz coil
set41 mounted on the stage of an inverted microscope. The sample is placed in the center of the coil set and the microscope objective is raised into the
coil set using an extension tube.
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field exposure. The square coil bobbins were made by 3D

printing (see Fig. 10). The sample was placed in the center of

the coil set and an extension tube (Thorlabs) was used to raise

the objective (20�/0.7 NA air) into the center of the coil set.

A p/2 out-of-phase sinusoidal magnetic field (40 G) was generated

by two coils using a computer code, a data acquisition system

(DAQ, Measurement Computing), and two AC current amplifiers

(EMB Professional). One of the two coils was parallel to gravity

and the optical axis of the microscope, while the other was

perpendicular to the first, resulting in a rotating magnetic field

perpendicular to the lateral plane of imaging and bottom glass

wall. The fluorescently labelled particles in the middle of the

channel were imaged in fluorescent mode using 488 nm LED

illumination at a frame rate of 9.0 s�1. At the same time the

particles were kept in focus using a drift compensation module

(IX3-ZDC2, Olympus) in continuous mode. To prevent the particles

from ending up at one side of the sample container, the direction of

the rotating field was inverted every 30 seconds.
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