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We perform detailed computational and experimental measurements of the driven dynamics of a dense,
uniform suspension of sedimented microrollers driven by a magnetic field rotating around an axis
parallel to the floor. We develop a lubrication-corrected Brownian dynamics method for dense
suspensions of driven colloids sedimented above a bottom wall. The numerical method adds lubrication
friction between nearby pairs of particles, as well as particles and the bottom wall, to a minimally-
resolved model of the far-field hydrodynamic interactions. Our experiments combine fluorescent
labeling with particle tracking to trace the trajectories of individual particles in a dense suspension, and
to measure their propulsion velocities. Previous computational studies [B. Sprinkle et al., . Chem. Phys.,
2017, 147, 244103] predicted that at sufficiently high densities a uniform suspension of microrollers
separates into two layers, a slow monolayer right above the wall, and a fast layer on top of the bottom
layer. Here we verify this prediction, showing good quantitative agreement between the bimodal
distribution of particle velocities predicted by the lubrication-corrected Brownian dynamics and those
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Accepted 20th July 2020 are observed to switch between the slow and fast layers in the experiments. We also use our numerical
DOI: 10.1039/d0sm00879f method to demonstrate the important role that pairwise lubrication plays in motility-induced phase
separation in dense monolayers of colloidal microrollers, as recently suggested for suspensions of
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rotates around an axis parallel to the floor, the broken sym-
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Driven suspensions of colloidal microrollers'™ provide a simple
but rich test-bed to explore emergent, collective hydrodynamic
phenomena in active systems. The magnetic microrollers
studied in this work are spherical colloids with an embedded
canted antiferromagnet cube of hematite, which gives the
particles a permanent magnetic moment that is sufficiently
strong to drive them with an external magnetic field, but weak
enough not to induce significant inter-particle magnetic
interactions.” A rotating magnetic field can be used to spin
the particles in phase with the applied field. When the colloids
are sedimented above a bottom wall and the magnetic field
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metry converts their angular velocity into linear velocity,”
creating an active suspension.' The collective flows generated
in dense suspensions increase the active velocity and lead to
unusual dynamics, such as the formation of stable self-
propelled clusters of microrollers termed “critters” in ref. 1.
Some of us showed in ref. 2 that thermal fluctuations are
crucial to the dynamics of microrollers as they set a character-
istic height of the particles above the wall, which in turn
controls the size of the critters. In subsequent work,® some of
us used numerical simulations to predict that sufficiently
dense, uniform suspensions of microrollers will self separate
into two groups: one group of particles which moves slowly and
stays close to the wall, and another which lies above the first
and travels much faster. In this work, we provide the first
experimental validation of this type of active particle separa-
tion, and introduce a lubrication-corrected Brownian dynamics
numerical method to model the experiments. Our method
is simple and efficient by virtue of minimally resolving the
far-field hydrodynamics, yet, as we show, provides sufficient
quantitative accuracy to reproduce our experimental results.
Previous studies of the driven microroller suspensions
obtained good qualitative agreement between simulations and
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experiments,>> however, quantitative agreement was lacking
for two reasons. First, the minimally-resolved hydrodynamics
based on the Rotne-Prager-Yamakawa (RPY) approximation
did not correctly account for near-field hydrodynamics. Second,
the experiments used Particle Image Velocimetry (PIV) to
measure the mean suspension velocity, and PIV may give wrong
results when there are height-separated slow and fast particles.
Specifically, in ref. 5 the dispersion relationship of a uniform
suspension of microrollers was measured experimentally and
predicted by a continuum model based on the RPY tensor, and
it was found that “The mean suspension velocity obtained from
the continuum model. . . overestimates the one measured in the
experiments by a factor of around 4-5.”

The lubrication-corrected Brownian Dynamics (BD) method
we present here adds lubrication corrections to the minimally-
resolved BD method described in ref. 2 in order to enable more
accurate modeling of densely-packed Brownian suspensions of
spherical colloids. This allows us to interrogate dense, nearly
two-dimensional suspensions, and to make quantitative pre-
dictions that can directly be compared to experiments. We also
report here new experimental results on the driven dynamics of
uniform suspensions of microrollers. We fluorescently label
only a small subset of the particles in order to enable particle
tracking in the plane parallel to the wall, even in dense
suspensions, and in the presence of multiple layers of particles.
This allows us to experimentally measure the distribution of
active velocities, as well as to measure dynamical correlation
functions for a single particle.

Lubrication corrections were originally introduced in Stokesian
dynamics (SD),® but have since been incorporated in a variety of
related methods for Stokesian suspensions. The key idea is to
account for the near-field pairwise lubrication forces in the
resistance formulation, and for the far-field hydrodynamic inter-
actions in the mobility formulation, and combine the two to give a
lubrication-corrected mobility matrix. The far-field approximation
itself can be obtained by a variety of numerical techniques,
ranging from the minimally-resolved RPY mobility we use here,
through multipole expansions with higher-order multipoles,”"°
to boundary integral methods.>'' The pairwise lubrication
approximation is not always accurate’® and the accuracy cannot
be controlled a priori. Nevertheless, lubrication corrections
provide a means of substantially increasing the hydrodynamic
accuracy for dense suspensions, while keeping the computa-
tional cost small enough to enable practical large-scale and
long-time simulations.

Recently, Fiore and Swan developed a fast Stokesian
dynamics method that can include Brownian motion with a
cost essentially linear in the number of particles.'® To this end
they use a combination of sophisticated numerical linear
algebra and the positively split Ewald method of ref. 13 and
14 to simultaneously account for the Brownian forces as well as
the lubrication corrections. The method we present in this work
to simulate Brownian particle suspensions is similar to the
method developed by Fiore and Swan in ref. 10, with a few
important differences. Firstly, the work in ref. 10 was tailored to
periodic (bulk) suspensions of particles in 3D, while ours is
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tailored to suspensions above a bottom wall. The inclusion of a
bottom wall requires applying lubrication corrections when
particles approach the wall, and the hydrodynamic screening
with the bottom wall makes the far-field mobility matrix better
conditioned, simplifying the linear algebra required. Secondly,
since we do not study rheology, we omit the stresslet
constraints, which greatly improves the efficiency without
sacrificing the improvement in accuracy due to the lubrication
corrections.f Our minimally-resolved approach allows for the
design of a novel preconditioning strategy, as well as a novel
temporal integration scheme which achieves greater temporal
accuracy than the scheme used by Fiore and Swan, while also
reducing the computational cost.

In this paper we develop a minimally-resolved BD method
for suspensions above a bottom wall that incorporates lubrica-
tion corrections, and apply the method to simulating suspen-
sions of microrollers. In Section II, we describe in detail a
deterministic method to account for near-field lubrication
corrections, and outline the necessary modifications required
to account for the confinement by a bottom wall. In Section III
we account for thermal fluctuations and describe an efficient
and accurate lubrication-corrected BD method for driven
suspensions above a bottom wall, including a novel predictor-
corrector temporal integration scheme.

Section IV revisits the active dynamics of a uniform
suspension of magnetic rollers above a bottom wall. Some of
us previously used the rigid multiblob method to predict a
bimodal distribution in the particles’ velocities, caused by the
bimodal distribution of their heights above the wall.> We
reproduce these predictions here using the simpler and
more efficient lubrication-corrected BD method, and confirm
the bimodality experimentally by using particle tracking. By
comparing results between experiments and simulation, we
demonstrate that modeling the propulsive mechanism of
the microrollers using a constrained angular velocity is more
physically accurate than using a constant applied torque,
as was done in prior work.>? To this end, we design a novel
preconditioned iterative method to efficiently constrain the
angular velocity of the microrollers to a prescribed value.

In ref. 15, Geyer et al. argue that active Quincke rollers
densely packed above a bottom wall will, at sufficiently large
densities, slow down and even crystalize into an almost immo-
bile solid phase, because of the pairwise lubrication friction
between nearly touching colloids. Inspired by this work, in
Section V we use our lubrication-corrected BD method to study
the collective dynamics of a sheet of microrollers constrained
to a fixed height just above the bottom wall. We study the
dependence of the mean (collective) velocity on the in-plane
packing fraction, and show that this trend is qualitatively
different when prescribing activity using a constant applied
torque versus prescribing a constant angular velocity.

+ Mathematically, the torque and stresslet moments enter at the same level of the
multipole hierarchy and should thus, in principle, be both included or both
omitted. However, we show here empirically that the stresslets can be omitted in
practice for the types of problems we study here.
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Il. Lubrication corrections

In this work, we are concerned with simulating the dynamics of
N spherical particles with uniform radii a of at most a few
microns. This length scale is small enough to consider the
effect of fluid inertia negligible and to treat the hydrodynamics
of the particle suspension using the Stokes equations with
no-slip conditions on the surfaces of the particles as well as
the surface of the bottom wall. Furthermore, the Brownian
motion due to thermal fluctuations of the fluid should not be
neglected. Nevertheless, we will briefly ignore fluctuations in
this section, and return to Brownian motion in Section III.
The linearity of the Stokes equations ensures that we can write
the translational velocities #; and angular velocities ; of all
particles 1 < i < N in terms of the forces f; and torques ; applied
to the particles, using the hydrodynamic mobility matrix 9,

U = WF, (1)

where the vector of linear and angular velocities is U = [u;, o,
Uy, ,,. . ., Uy, O5]", and the vector of applied forces and torques
isF=[fi, T, f5 T2, - fa, Tn] " (Where the superscript T denotes a
transpose). The inverse of the mobility matrix is the resistance
matrix: $® = 9", The mobility and resistance matrices will in
general depend of the positions and orientations of all of the
particles Q = [qy,. - ., gn]", though we will often omit the explicit
dependence for simplicity of notation. Because the particles we
consider are spherical, the mobility does not depend on their
orientation; however, we explicitly track and evolve the orienta-
tion of every particle in our numerical methods.

Computing the action of the true mobility matrix (ie.,
solving the mobility problem) with high accuracy is very expen-
sive for many-particle suspensions even at moderate
densities."®"” A commonly used approximation to the hydro-
dynamic mobility is a pairwise approximation Wi~ Mpgpy
based on the Rotne-Prager-Yamakawa (RPY) tensor.'®*>° This
regularized form of the mobility is sufficiently accurate in
resolving hydrodynamic interactions if particles are well sepa-
rated, and ensures that the mobility matrix is symmetric
positive semidefinite;*® this is an essential property when
including Brownian motion. Originally the RPY tensor was
formulated for particle suspensions in free space, but Swan
and Brady give a modified Rotne-Prager-Blake form which
accounts for an unbounded (in the transverse directions)
bottom wall in ref. 21. The wall corrections from ref. 21 can
be combined with the overlapping corrections as described in
ref. 20 to give analytical expressions for the elements of
M = Mpgpy, as described in more detail in ref. 2. Efficiently
computing MygpyF in time approximately linear in the
number of particles is not trivial but is possible, including for
systems that are periodic in some of the transverse directions,
using Fast Multipole Methods (FMMs)** or the Fast Fourier
Transform (FFTs).>* Here we rely on Graphical Processing Units
(GPUs) to dramatically accelerate the direct (quadratic cost)
computation, but more advanced methods can be substituted
depending on the available software, hardware, and the
number of particles.
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It is important to note that the Stokesian dynamics
formulation®*%*"?*?% also accounts for shear and stresslets
but we will omit the stresslet blocks in the spirit of a minimally-
resolved approach; the reader can consult the recent work of
Fiore and Swan'® for how to efficiently include stresslet terms
in, M, at the expense of increased computational complexity.
This makes our method much simpler to implement in the
presence of a wall and also more efficient, but note that
rheological properties cannot be studied without accounting
for the particle stresslets.§ We study the deterministic accuracy
of our approach in Appendix B1, and find that even without
stresslets the lubrication corrections lead to a rather accurate
mobility matrix over a range of distances.

The RPY mobility inaccurately resolves near-field hydro-
dynamic interactions and cannot be used for dense suspensions
if quantitative accuracy is desired. The essential motivation
behind the lubrication corrections used in Stokesian dynamics®
is to maintain the desirable properties of the RPY tensor in the
far field but correct for its poor near-field hydrodynamic
resolution. The approach is to add a local pairwise correction
to the RPY resistance matrix R = M~ = Rgpy for all pairs of
surfaces (e.g. two spheres or a sphere and the wall) which are
sufficiently close. The lubrication correction resistance matrix
R, is assembled from accurate resistance matrices for each
pair of nearly touching surfaces (e.g., two spheres, or a sphere
and a wall). The corrections are applied to the resistance matrix
rather than the mobility matrix because near-field hydrodynamic
interactions are approximately pairwise additive in resistance
form, unlike far-field interactions which are approximately pair-
wise additive in mobility form. In analogy with classical asymp-
totic methods, the full lubrication-corrected mobility M is

constructed by subtracting off the “common part” Ryby, ie.,

the overlapping near-field contributions between R and R;},

giving the lubrication-corrected mobility
M M= [R+R —RuE ] 2)

Here Rypy is assembled from pairwise RPY resistance
tensors for the same pairs of nearby surfaces included when
constructing R,L.

In this section we detail how to simulate driven particle
suspensions above a wall, accounting for lubrication correc-
tions, but neglecting thermal fluctuations. Specifically, we first
describe how lubrication corrections are applied to the RPY
hydrodynamic mobility M in the presence of a bottom wall.
We then describe a preconditioned Krylov method to apply the
lubrication-corrected mobility to a vector of applied forces and
torques. While here we focus on deterministic dynamics,
special care will be taken to ensure that Brownian motion can
be included, ie., that the lubrication-corrected mobility is
positive definite. While our method is closely-related to the
fast Stokesian dynamics method recently presented by Fiore

§ Note that omitting the far-field mobility would make the method even more
efficient but would not be able to reproduce the collectively-generated active flows
studied here, and can lead to unphysical results in general.*®
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and Swan'® for periodic suspensions, there are several differ-
ences that we detail in this section. Specifically, we consider
here suspensions sedimented above a bottom wall, exclude the
stresslet corrections since we are not concerned with rheology,
and develop a different preconditioner.

A. Lubrication corrected mobility

The lubrication-corrected mobility M defined in eqn (2) can be
restated as'**®

M=[M"+AR] '= M- [I+AR - M]"' 3)

where AR = R} — Rypy is the lubrication correction for the
resistance matrix. The basic idea® is to subtract off the RPY
mobility for all nearby pairs of surfaces, and replace it with an
exact analytic formula, while maintaining the long-ranged
hydrodynamics using the RPY mobility/resistance.

Both R;Y and Rypy take the general form of a pairwise-
additive resistance matrix R*?, which is assembled by sum-
ming appropriate blocks of the symmetric, pair-resistance
matrices between particles i and j,

pair

Rpair (qh q/) _ self (q[’ q/)

pair

Rcouple (ql ) q’)

Rggrplc (qi’ q/) (4)
R (4:-4))

Treating the wall as a surface which hydrodynamically interacts
with each particle through a pair-resistance matrix R"!(g,),
R*“P is assembled as

_;Ri’é}‘fr (41.4;)+R"(q,) Rioupie(41:492)
J

R Rioupie (42:41) ZZRSS‘F (42.4;)+R"(g2) - |,
J#

(5)
h pair _ pair T
where T‘,’couple (q,'ﬂ_/) - <Rcouple (q,/7qi)> .

B. Computing AR

Each block of R, either RP4" or Ryay, can be expressed in
terms of coefficients which depend on the dimensionless gap
between the surfaces of the spheres,

’R'E,iir(‘liv q/‘> =

XU (er)fT + Y8 (&) (I — #T) — Y ()P

V(e X (o) BT+ VI (o) (1 — ##7)
(6)
where a is the radius of the particles,
&:Hﬂ:&ﬂ_; P (A L
a Hq/' - qu

and s, c indicates whether this is the ‘self’ or the ‘couple’ block.
In (6), the matrix #x represents a cross product by # and the
superscripts on the coefficients denote the type of the block, i.e.
Ys'. denotes that this is the coefficient of the translation ‘t’ and
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rotation ‘r’ coupling block. Because the coefficients of P
decay as ¢, grows, we set a cutoff distance, ££** such that RP¥" =
0 for &, > &, A smaller value for &£ ensures that R is more
sparse and therefore easier to construct and apply, but this, of
course, comes at the cost of reduced accuracy. In this work we
have found that &£ = 2.5 strikes a good balance, and so we use
this value throughout.

Wall corrections to the self resistance, either R} or Ry,
have a similar form to RP%" but the coefficients depend instead
on the dimensionless wall separation ¢, such that

Rwall (qi) —
X (en) 22T+ Y (en) (1—227) — Yo (en)ix
Y (en)Ex X@ran(ﬁh)fi“r wall (én) (IfiﬁT)’
7)

where 2 is the unit vector perpendicular to the wall, and

Unlike the pair corrections between nearby particles which
have a cutoff distance, we will always apply wall corrections
to each particle. This ensures that the diagonal blocks of R**P
are never exactly zero for particles reasonably close to the
bottom wall—a feature which we will find useful for designing
efficient linear solvers in Section II D.

Given accurate values or formulas for the coefficients of
’Rﬁfgr and R} when ¢, and/or ¢, are small, we may form a

pairwise, wall-corrected, nearfield resistance matrix R}'%! using

(5). Analytical or semi-analytical formulas for R"4" and R}

are summarized in Appendix A. For very small values of the
dimensionless gap ¢, the resistance functions appearing in (6)
are known to have universal asymptotic forms including also
for spheres of different radii. Since the case of a flat wall and a
sphere is the limit of one of the two spheres (the ‘wall’) being
infinitely larger than the other,”” the same applies for the
resistance functions of ¢,. Asymptotic expansions of resistance
functions typically involve constants, 1/¢, In¢, and ¢lne terms,
see ref. 28-30 for more details, and these asymptotic forms of the
resistance are sometimes referred to as “lubrication friction”.
Here we instead use the term “lubrication” to refer more generally
to near-field hydrodynamics not included in the far-field approxi-
mation. As detailed in Appendix A, when no known analytical
formula is sufficiently accurate, we use the rigid multiblob
method??! to compute a numerical approximation.

C. A positive definite form for AR

In order to include Brownian motion, it is important that AR
be positive semi-definite, ensuring that a ‘square root’ (AR)'/?
exists. The resistance correction AR will be positive semi-
definite if each pairwise block is. This is empirically known
to be true in the absence of a bottom wall when stresslets are
included, as discussed in more detail.'® We are, however, not
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aware of a mathematical proof, or any prior studies investigat-
ing this for a sphere and a bottom wall.

Numerically, we find that in the presence of a bottom wall,
AR can have small negative eigenvalues. These small eigen-
values come directly from the wall contribution to AR which
we term AR“. For each particle whose height & > 1.5q,
AR™! has at least one small negative eigenvalue caused by
discretization error in the rigid multiblob method*! we use to
calculate R}, for lack of an exact method. A simple remedy is

to diagonalize AR and replace the spurious negative eigen-

all

“o- We also need to remove the

values by 0 to form ARY
negative eigenvalues in R}4', which we need for the precondi-
tioner described in Section II D,

(Rib), - 0= ARSIV + Ry
This construction ensures that AR = ARPY + AR is positive
semi-definite.

D. Linear algebra

Given a vector of applied forces and torques on a suspension
of particles F, we need an efficient method to apply the
lubrication-corrected mobility M to find the resulting linear
and angular velocities U = MF,

U=[I+MAR|'MF, (8)

= M[I+ARM]|'F. 9)

We compute the action of either [I + MAR]™! or [I + ARM]™!
on a vector using an efficient preconditioned Krylov method.

If we wish to use eqn (8) to apply M,q we must solve a
system of the form

I+ MAR|x =b. (10)

To develop a preconditioner for eqn (10), we ignore the far-field

hydrodynamics and approximate M =~ (RS@;'EY)A, giving

x=[I+MAR] 'b~ [1+ (Ri;‘IEY)‘IARrb (11)
sul - su su -1
= [I + (RRky) ' (Ryd - RngY)] b (12)

= ((R3D) "Ry )b = Pub. (13)
We compute (R} )71
provided in the CHOLMOD package,** which is very efficient
due to the quasi two-dimensional nature of sedimented
suspensions. Note that an incomplete Cholesky decomposition
could also be used here as was done in ref. 10. In all of the
numerical experiments performed here, both Cholesky solves
and Cholesky factorizations using CHOLMOD take substan-
tially less time than a single multiplication by the RPY mobility
tensor M.

using the super-nodal Cholesky solver

9 A preconditioner for eqn (9) can be developed through a similar method.
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A different preconditioner was obtained in ref. 10 by approx-
imating M by a block diagonal matrix, My.., where each
block is given by the freespace mobility of a single sphere

[(Miree) i = bmna 1

The resulting preconditioner can be stated as
x~ Pyb = (I + MpeeAR) b, (14)

where (I + ./\/tfmA’R)_l can be efficiently applied using a
super-nodal Cholesky solver, as for P;. We show in Appendix
C that for many cases the preconditioner P, performs compar-
ably to P;, however there are some case where P; outperforms
P,, and thus we use P, in this work.

In some systems, a few particles can become isolated from
the bulk and cause some numerical difficulty in the proposed
preconditioner (13). We define isolated particles as those which
are not close enough to the wall to provide a substantial wall
correction to the diagonal block of R, (we use & > 4.5a in
this work as a cutoff height for possible isolated particles) nor
are they close enough to other particles to contribute a pair

sup

correction to R, . These particles not only lead to poor
conditioning of R}.7, but the presence of isolated particles
makes Ry by a poor approximation to M. To remedy this, we
introduce a modified identify matrix I3, which is zero every-
where but contains 6 x 6 identity blocks on the blocks of the
diagonal corresponding to isolated particles. Isolated particles
can be considered nearly in free space, hence we modify the

preconditioner (13) to simply not apply to these particles:

X & Pb= (I — Iio) (R + eMigee ™) (I = Tio/ RS b + Tigoh.
(15)

Here we regularize R;,} by an amount proportional to the

GMRES solver tolerance ¢.

E. Specified rotational motion

In order to simulate experiments involving microrollers we
need to impose a prescribed angular velocity rather than a
prescribed torque. That is, we need to solve for the required
linear velocities # and torques 7, given some applied forces fon
the particles and the desired angular velocity w. This can be
stated mathematically by rearranging the mobility problem as

] el -2

as a linear system in the unknown quantities

0 u

e[ () ]

(16)

“

T
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We solve (16) for [u,z]" using a preconditioned GMRES
method. As a preconditioner, we will solve (16) using the
block diagonal freespace approximation M=~ M. This
results in a sparse, decoupled system of equations of the
form

1 ), _
- (I+6TmaA'R )u—a (17)

1 1 .
smnad. (1+8nna3ARt>u:b (18)

where ARY, AR™ are the translation-translation and rotation-
translation coupling blocks of AR respectively. Eqn (17) can be
solved efficiently for # using CHOLMOD, and given u, eqn (18)
is trivial to solve for 7.

lll. Brownian dynamics

In this section we describe how to account for thermal fluctua-
tions, ie., Brownian motion. Given the positive-definite,
lubrication-corrected mobility matrix M(Q), the Ito over-
damped Langevin equation

‘Z—? = U =MF + (kgT)dg - M + \/2kg TM'*W(1), (19)
governs the particle dynamics in the presence of thermal
fluctuations. In the above, T denotes the solvent temperature,
kg is Boltzmann’s constant, and W(r) is a collection of
independent white noise processes. The last term involving
M!/2 is the Brownian increment, and the second term invol-
ving g - M is the stochastic drift. Note that the first equality in
(19) is just a shorthand notation because representing orienta-
tions requires using quaternions; the precise statement of the
stochastic dynamics for full particle configurations, including
their orientations, requires a more cumbersome notation and
treatment which is described in ref. 3 and 33.

There are several challenges in solving eqn (19) efficiently.
We need an efficient way to compute the deterministic
dynamics U = MF with lubrication corrections; we discussed
this already in Section II. In the presence of thermal fluctua-
tions surface overlaps (particle-particle or particle-wall) may
occur, in which case the mobility needs to be carefully modified
and the overlap must be separated in such a way as to maintain
detailed balance. The Brownian increment also needs to be
sampled efficiently—in Section III A we describe an efficient
method of splitting M '/ into near and far fields which is
similar to what has been done in ref. 10 and 24. The drift term
is more challenging to efficiently calculate—in Section III B
we develop a novel time integration scheme for (19) which
captures this term accurately and with minimal computational
effort; our scheme is more specialized and efficient than the
more general scheme developed in ref. 10.
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A. Generating Brownian velocities

In order to perform Brownian dynamics simulations we need a
method to efficiently compute normalized| Brownian ‘‘veloci-
ties” U, which are a Gaussian random vector with mean zero

and covariance M. Following ref. 10, we generate U; as

U, = H(ARW W+ M2 Wz)
= [1+ MAR]" (MARV2 W, + MIPW), (20)

where W; and W, are independent standard Gaussian
random vectors. It is easy to confirm that Us has the correct
covariance,

(UUT) = M(AR2(w (W) )ART

(1)
n M*‘/2<W2(W2)T>M’T/2)ﬂ

=MAR+M HYM=M. (22)
To compact the notation, we will write
(MARW W, + M2 W2> LMARM + M) 2w,
(23)

where W, , is a vector of i.i.d. standard Gaussian variables. Here
the equality is in distribution since the first and second
moments of the left and right hand sides match. For the same
reason, we can write in more compact notation,

Us = [I + MAR] ' (MARM + M) PW 5 = MW,
(24)

which defines a “square root” of the lubrication-corrected
mobility matrix suitable for efficient sampling of Brownian
velocities/increments.

In eqn (20), the term AR!/>W; can be efficiently generated
by separately generating pairwise and diagonal blocks using
independent random numbers.>*** We prefer to numerically
compute AR'/? as a sparse Cholesky factor of AR using
CHOLMOD, as this is very efficient in the quasi-2D geometry
considered here. The terms involving M!/>W, in (20) are
computed using the Lanczos-like method of ref. 35, as was
done in ref. 2 and 3. The convergence of the Lanczos-like
method in a modest number of iterations (independent of
the number of particles) is demonstrated in ref. 2 for just the
‘trans-trans’ coupling block of M; we observe similar conver-
gence properties when the rotation coupling blocks are
included.

B. Stochastic time integration

In this section we describe a temporal integration scheme to
simulate the stochastic dynamics (19). Algorithm 1 summarizes
our integration scheme, termed the ‘Stochastic Trapezoidal
Split’ scheme or STS scheme. The mechanism by which the

| The scaled Brownian velocities have covariance (2kp7/Af)M, where At is the
time step size.
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STS scheme captures the thermal drift is similar to the trapezoidal-
slip scheme introduced in ref. 3 to simulate Brownian dynamics
of rigid particles using the rigid multiblob method. Both
trapezoidal schemes use a combination of random finite differ-
ences (RFD)>” and a trapezoidal predictor-corrector scheme to
capture the stochastic drift. One major advantage of the STS
scheme is that it only requires two linear solves per time
step, in contrast to the three required by the trapezoidal-slip
scheme® and by the Euler-Maruyama scheme used in ref. 10.
The STS scheme therefore achieves the second order accuracy
of an analogous deterministic scheme (by virtue of being a
trapezoidal method) with only a small additional cost to
include the Brownian dynamics. A public-domain implementa-
tion of the STS scheme for lubrication-corrected BD can be
found on github at https://github.com/stochasticHydroTools/
RigidMultiblobsWall.

The STS scheme is so named because it takes advantage of a
product rule splitting of the thermal drift term

9o - M =0p- (I + MAR]"' M) (25)

= [+ MAR]| (99 - M) + (9ol + MAR]"):M. (26)
The scheme uses the idea of random finite differences®** to
capture the first term of (26) and the natural drift produced by
the trapezoidal scheme to capture the second term. Specifically,
we will compute the quantity dg - M according to the RFD
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formula
o M= 5{[M(Q+ W) = M(Q - 3WP)| WP, (27)

where 6 = 10" * is a small parameter® and
W= [wh, L, Wi, wP = (we, L, Wi
Here random numbers are generated for each particle,

Wh = [a 'WhLW3], Wy =[aW,LW;], 1<p<N

where Wf;,, W are 3 x 1 standard Gaussian random vectors.
We show in Appendix D that step 6 of Algorithm 1 indeed
approximates eqn (19) with a weak accuracy of at least O(A1).
Specifically we show that the final configuration update in the
STS scheme can be written as
LY

AQIIH — Qn+1 _ Qn 7(Un 4 U"H’*) (28)

:%(Hnl;'n+ﬂn+l,*l;n+l,*)+ ZkBTAt(H”)I/zWLz
(29)

+(ks T)AH (00 - M) +AR (A, A1), (30)

where R (At, A'/?) denotes a Gaussian random error term with
mean and variance of O(At). This trapezoidal update maintains
second order accuracy in a deterministic setting (kg7 = 0),
which helps improve the weak accuracy in the stochastic setting

Algorithm 1: Stochastic trapezoidal split (STS) scheme

For a given time step size At and applied forcing F(Q,t), this algorithm updates the configuration Q" ~ Q(¢") at time ¢" = nAt to Q

*1, Orientations

can be tracked using quaternions and updated by rotations, as described in ref. 3 and 33. Superscripts denote the time/configuration at which a

quantity is evaluated, for example, F**'* = F(Q"™*, (n + 1)A{).

1. Compute Brownian displacements (see Section III A)

2kg T
At

AQy =

M(AR 2w+

2kgT

At (M) 2w,

2. Compute a predicted velocity U" by ignoring the drift term entirely and solving
I+ M'AR"|U" = M"F" + AQy,

to give:

2kgT

U”:H’I F"+ _(ARn)1/2W1> +

At
3. Compute the relevant RFD term D using (27),

2kgT

v I+ MIAR) (MDY P W,

DM = é[M(Q" + WD) — M(Q" — W)W,

such that

(DM = (9g - M)"+0O(5?).

4. Compute predicted configurations of the particles

Q"x = Q"+ AtU".

5. Compute corrected velocities by solving

[+ MHARSTI U = MUY 4 (2kp T)DM + AQyy,

to obtain

Un+l.* _ HnJrl,*FnJrl,* +(2kBT) [I+Mn+l.*ARn+l_*}leM

2kpgT

+Ar

[l+M"+l‘*A'R_"+l’*:|7I(M”+M”AR”M")1/2W112_

6. Update configurations to time ¢ + At using velocity U"™/> = (U" + U""%)/2,

Qn+1 — Qn + AtUn+1/2.
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compared to the first-order Euler-Maruyama scheme used in
ref. 10 (results not shown but see ref. 3 for related studies). We
demonstrate the accuracy of our hydrodynamic model and the
STS temporal integrator in Appendix B 2 by comparing to the
rigid multiblob method** previously developed by some of us
in ref. 3 and 31.

C. Firm repulsion between spheres

Thermal fluctuations may introduce unphysical events such as
particle-particle overlaps or particle-wall overlaps. For these
unphysical configurations, special care must be taken in defin-
ing the lubrication-corrected mobility so that overlaps occur
rarely, and, should an overlap occur, the particles ought to
separate quickly and through a thermodynamically reversible
means. Physically, there is a separation distance J., below
which additional physics enters (electrostatic repulsion, surface
roughness, contact/friction forces, etc.). Motivated by this, we
introduce a strong repulsive ‘firm’ potential between particles
and particles and the wall, and carefully modify M to accom-
modate the new contact dynamics.

The pairwise resistance R blows up when particles
approach each other, and thus M will vanish. With a very
small mobility, two nearly touching particles will tend to stay
nearly touching unless acted upon by a large force. To push
(nearly) overlapping surfaces apart when they are separated by
less than ad.,, we include a short-ranged but differentiable
“firm’ repulsive potential of the form>

1+db—r r<d
&(r) = b j{r . (31)
exp(b ) r>d
cut

For particle-particle interactions, r is the center-to-center dis-
tance and we take d = 2a(1 — J.y), and for particle-wall
interactions r is the particle center height and d = a(1 — dcur)-
We choose bey = 2adq,/In(10) as a cut-off length so that the
inter-surface potential ®(2a(1 + dcu)) = 10 °P,. This ensures
that the force is small when two surfaces are further than adg,.
from touching and large when they overlap (f, = —0®(r)/or ~
®o/beye). We have found that taking d., = 102 is sufficient for
our purposes, and we use this value henceforth.

The resistance correction AR is not physically realistic for
dimensionless surface separations (gaps) ¢ < Ocyut (¢ =1/(2a) — 1
for pairs of particles, or ¢ = h/a — 1 for a particle and a wall).
A simple correction that we find to work fairly well is to take
& <« max(¢,0cy). This approach compliments the repulsive
potential (31). Namely, the dimensionless perpendicular self-
mobility coefficient of two overlapping surfaces is X ~ Jeye,
and therefore the relative radial separation velocity of two
overlapping surfaces will be on the order of u;, ~ X"f,/
(6mna) ~ ®/(na*). We use &, ~ 4kgT in this work to ensure
that the repulsive energy for overlapping particles is larger than

** The rigid multiblob method we use here does not incorporate lubrication
corrections but resolves the far-field hydrodynamics considerably more accurately
than the RPY approximation.
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the thermal energy, but not so large as to require a sub-diffusive
time step size. Thus, over a diffusive time scale tp ~ na3/(kBT),
two overlapping surfaces will typically separate by a distance
iy ~ a on the order of the particle size, thus effectively
eliminating the overlaps.

IV. Uniform suspensions of magnetic
rollers

In past works, some of the authors have investigated active
suspensions of rotating particles above a bottom wall, termed
magnetic microrollers."™> The rotation of the particles is
achieved in experiments by embedding a small cube of canted
antiferromagnet hematite in each particle and applying a
rotating magnetic field to the suspension® (see the inset of
Fig. 2 for a diagram of a typical roller suspension). The bottom
wall couples the rotation of the particles to their linear velocity,
and the coherence of the flow fields generated by each particle
results in a greatly enhanced linear velocity for the whole
suspension.

In ref. 3 a uniform suspension of rollers was simulated using
the rigid multiblob method, and for sufficiently large packing
densities (¢ ~ 0.4), a bimodal distribution was observed in the
propulsion velocity of the particles. It was found that the
bimodality of the velocity distribution is caused by a dynamic
separation of the particles into two layers: a ‘slow lane’ of
particles whose center height was less than a particle diameter
above the wall, and a ‘fast lane’ of particle higher than
one diameter above the wall. Previous experiments’ relied on
PIV measurements of the suspension velocity, and could not
capture a bimodal distribution. In this section we reinvestigate
this problem using new particle-tracking-based experimental
measurements, which do capture the bimodal distribution in
the population velocity, and model the experiments using the
more efficient numerical methods presented in this work.

A. Experimental setup

In our experiments, the suspensions of microrollers are
composed of colloids with a canted antiferromagnet core
suspended in water and driven by a rotating magnetic field.
The spherical colloids are made of an off-center hematite cube
embedded in 3-(trimethoxysilyl)propyl methacrylate (TPM),*®
which can be fluorescently labeled for imaging with fluores-
cence microscopy using 4-methylaminoethylmethacrylate-7-
nitrobenzo-2-oxa-1,3-diazol (NBD-MAEM).*”*® The cubes have
a side length of 770 nm (with 100 nm standard deviation) and
have rounded edges.

We measured the size of the microrollers with both scan-
ning electron microscopy (SEM) and dynamic light scattering
(DLS), see Appendix E for details. From SEM, we found a
diameter of 2.11 £+ 0.08 pm by measuring the diameter of 161
particles, which corresponds to a polydispersity (standard
deviation/mean diameter) of 4%. From DLS, we found a
diameter of 2.03 &+ 0.04 pm. The particles were suspended in
a 0.14 mM lithium chloride (LiCl) in water solution, which
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corresponds to a Debye length of ~25 nm. We put the suspen-
sion in a glass sample cell with a height of ~150 um, as
described in Appendix E, and equilibrated for at least 30 min-
utes before imaging.

For the measurement of the diffusion constant D of the
particles parallel to the floor, we imaged fluorescently labeled
particles (see Appendix E) at a very dilute concentration at a
frame rate of 2 s~'. The particle trajectories were determined
using particle tracking.*>*

In order to determine the rolling velocity at different driving
frequencies of dilute microrollers, we applied a rotating magnetic
field using a home-built set of tri-axial nested Helmholtz coils,*"
placed on top of a fluorescence microscope as described in detail
in Appendix E. A magnetic field of 40 G, rotating around an axis
parallel to the bottom glass wall, was applied and the fluorescently
labeled particles were imaged at a rate of 9.0 s . To prevent the
particles from ending up at one side of the sample container, we
inverted the direction of the rotating field every 30 seconds. We
obtained the positions of the particles in the microscope images
and linked them using particle tracking,***® where overly bright
(i.e. clusters) or stuck particles were left out of the analysis.

For the rolling experiments of dense suspensions, we mixed
together particles with and without fluorescent labeling in a
1:1200 number ratio. This makes it possible to follow the
dynamics of single rollers in a crowded layer using particle
tracking (see ESL, movie 1). The area fraction of the monolayer
of particles after sedimentation was estimated to be 0.4 by
feature finding®>*° in a single bright field microscope image,
using the SEM estimate of the particle diameter.

B. Simulation parameters

In order to determine appropriate parameters for the simula-
tions, we use a very dilute suspension to experimentally mea-
sure key parameters for an isolated microroller. The diffusion
constant D of an isolated particle parallel to the glass wall was
measured to be Dy = 0.103 £ 0.003 pm* s, from a total of
21000 displacements.

We also measured the average velocity of dilute fluorescent
rollers driven by a 40 G magnetic field for frequencies up to
20 Hz, see Fig. 1. Up to a frequency of ~9.8 Hz (black dashed
line), the velocity of the rollers increases linearly with the
frequency of the applied rotating magnetic field with a slope
of A; = 0.223 pm. Above this frequency the velocity starts to
decrease upon an increase in the frequency. This is due to the
inability of the particles to overcome the viscous torque of
the surrounding liquid as the particles start to slip relative to
the field." To prevent this, we use a frequency of 9 Hz in our
dense suspension experiments, and confirm using simulations
that the slippage is minimal.

The ambient room temperature for the experiments was
T = 22 °C, and therefore the viscosity of water is taken to be
n = 0.96 x 10°° cP. We use the DLS measurement of the
particles’ radius and take a = 1.02 pm. Using SEM measure-
ments, the volume of hematite core of the particles was
estimated to be Ve & 0.95 x (770 nm)? (where the 0.95 factor
corresponds to a 5% loss in volume from rounded edges). Using
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Fig. 1 Measured velocity of dilute microrollers as a function of the
frequency of the applied rotating magnetic field (40 G). Up to a frequency
of ~9.8 Hz (vertical black dashed line), the velocity increases linearly with
the frequency (blue line, slope = 4; = 0.223 um). At higher frequencies the
velocity decreases for increasing frequency, as the rollers cannot over-
come the viscous torque of the surrounding liquid.

literature values for the density of hematite and the TPM
colloid,**** we estimate the buoyant mass m. of the particles
as 3.1 x 10° " ke.

The equilibrium Gibbs-Boltzmannn distribution for the
height 7 of a single particle sedimented above the bottom
wall is

Pgp(h) o exp(—(megh + U(h))/ksT). (32)

The steric potential U(h) is U(h) = Ugirm(h) + Usore(h), where Ugirm
is the firm potential described in Section III C, and Ug.g; is a soft
potential of the form (31) which captures the electrostatic
repulsion from the bottom wall. We also include a soft, pair-
wise repulsion between particles with the same form as Usof.

The excess mass m,, the strength of the soft potential &y,
and the effective Debye length bg are difficult to measure
precisely, and combine together to control the typical height
of the particles above the wall. To estimate suitable values of @
and b, for our simulations, we fix m. = 3.1 x 10~"° kg, and try to
match the experimentally measured values of the parallel
diffusion coefficient D', and the slope of V(f) for f < f., Ag
described in Section IV A. We compare these measurements to
numerical estimates computed by averaging the lubrication-
corrected mobility for an isolated particle over the equilibrium
Gibbs-Boltzmann distribution (32),

Dl = kg T(F"M" %), (33)

A= VI(f <o) = (SR (M) ) (34)

We numerically find the values of (®s,bs) which minimize the
total relative error with experiments

(2525 e

While this error never completely vanishes, we find that taking
&, ~ 8kgT and by ~ 0.04a ~ 40 nm minimizes the error at
about 11.5%, and we use those values in the rest of this section.
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Note that the selected value of by is consistent with the ~25 nm
Debye length estimated from the experimental parameters.

Fig. 1 in Section IV A shows that a single particle begins to
‘slip’ behind the magnetic field when the angular velocity of the
field @ > 2n(f. = 9.8 Hz) = |w.|. The constant torque .
required to rotate an isolated particle with an average angular
velocity of w. = Q.y satisfies

(M) GpTe = @,

and we compute || = 2.0 x 10”"®* N m. This is the maximal
torque T = m x B that the magnetic field can exert on any
particle, where m is the magnetic moment of the hematite.
From 1. = mB we compute the strength of the magnetic moment
in the particles as m = |m| = 5.0 x 10~ '° A m* (using B = 40 G),
in perfect agreement with the estimate given in ref. 1.

C. Dense suspensions

We experimentally measured the trajectories of the microrol-
lers in a dense suspension (in-plane packing fraction ¢ ~ 0.4)
in a rotating magnetic field (40 G, 9 Hz). The effective
(apparent) particle velocities in the direction of bulk motion
(x-direction) were computed over a time interval of 1 s. Fig. 2
shows the probability distribution of particle velocities P(V,).
The histogram was computed by averaging eight independent
30 s runs and the shaded region around the ‘Experiment’ curve
shows the 95% (2 std) confidence bounds. Also included in
Fig. 2 is an analogous velocity distribution computed from
simulations of this uniform roller suspension, described next.
The agreement between the simulated and measured bimodal

0.08 r
—Experiment
|—Simulation
—h < 2a
0.06F| h>2a
= 0.04}
Ry
0.02
0 10 20 30 40 50 60 70 80

Vi (um/s)

Fig. 2 The distribution of velocities in the direction of collective motion
for the microroller suspension shown in the inset. We compare
the experimentally measured distribution (green solid line) with the dis-
tribution computed using our lubrication-corrected Brownian dynamics
method (black solid line). The experimental data represents the mean
over 8 independent runs, and the extents of the shaded area represent
95% confidence bounds. The simulated data is broken into two sub-
distributions according to the height of the particles above the wall
(h < 2a or h > 2a), showing a clear correlation between the ‘slow’ peak
in the velocity distribution and the lowest particles (with a similar correla-
tion for fast and high particles). Inset: A typical configuration for a uniform
suspension of microrollers at density ¢ = 0.4 and driving frequency
f = 9 Hz. The hematite cube embedded in the particles is overemphasized
here for visual clarity. Low (slow) particles are colored magenta while high
(fast) particles are colored yellow. Also see supplementary media for videos
from simulations as well as experiments.
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distributions is quite good, and demonstrates that the lubrication-
corrected BD method has quantitative accuracy sufficient to
reproduce the experimental measurements.

Fig. 2 also shows sub-distributions of the simulated P(V,)
wherein the particle velocities are grouped into high particles
(whose height # > 2a from the bottom wall) and low particles
(7 < 2a). While there is some small overlap, it is quite clear that
the low particles correspond to the slow peak in P(V,), and the
high particles correspond to the fast peak, as originally
observed in ref. 3. For the first time, we show here that the
peaks of the sub-distributions corresponding to 7 > 2a and
h < 2a closely coincide with the peaks of the experimentally
measured bimodal distribution.

1. Simulations of dense uniform suspensions. Fig. 2 shows
results for the distribution of propulsion velocities obtained
by simulating a uniform suspension with a packing density
¢ ~ ma’N/L* = 0.4, where N is the number of particles in the
square domain and L is the length of the domain (see ESLt
movie 2). We use N = 2048 particles and periodic boundary
conditions (implemented using periodic images as in ref. 2).
We confirmed that the number of particles is large enough that
periodic artifacts are negligible by computing the velocity
distribution for a larger domain size that include one periodic
image in each direction, i.e., N =9 x 2048 particles.

Following our experiments we compute (apparent) particle
velocities over intervals of one second for all of the distributions
presented in this section. By convention we take the applied
magnetic field to be rotating in the x-z plane and compute
statistics of the particles’ velocity V, in the x-direction. Velocity
distributions are computed as a normalized histogram of the
apparent velocities using 1500 samples taken after a sufficiently
long period of equilibration.

Fig. 1 confirms experimentally that magnetic rollers driven
by an AC magnetic field below the critical frequency ( f. = 9.8 Hz)
rotate coherently with the magnetic field. Following Section II E,
we compute the applied torques 7, required to constrain the
angular velocity of each particle to be w = 2n(9 Hz)y = Qy in
the absence of Brownian motion. Panel A of Fig. 3 shows the
distribution of torque magnitudes |[lz,[| = 1, & [t,],, With
a black vertical bar demarcating the slip cutoff 7, = .. We
see that the torques are broadly distributed with a long tail
including torques larger than t., dominated by slow particles
with 2 < 2a. In panel A of Fig. 3 we also show that a constant
torque with |t| = 8mya’w (as was used in ref. 3) correctly
estimates the most probable torque, without, however, accounting
for the broad distribution of torques.

To account for the upper bound 7. = mB on the magnitude of
the torque exerted by the applied field, we cap the applied
torque and define

. min(te, 1)

Ty = L
Panel B in Fig. 3 shows velocity distributions from suspensions
driven by applying a torque 7, (solid black line, also included
in Fig. 2) or 7, (dashed-dotted orange line). The difference
between using 7,, over t,, is small compared to the experimental
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Fig. 3 (panel A) Probability distribution of applied torques required to
maintain an approximately constant angular velocity o for all particles. The
distribution is grouped into particles whose center is above 2a from the
wall and those below, which Fig. 2 shows correspond to fast and slow
particles, respectively. The low (slow) particles dominate the tail of the
torque distribution. Also shown is a yellow line representing the constant
torque approximation t, = 8mna’w. The solid black line represents the ‘slip’
limit where the applied torque exceeds 7. = mB. (panel B) Comparison of
velocity distributions P(V,) when the particles are driven either by a
prescribed angular velocity wy, with and without a cutoff of z. for the
applied torque, or a prescribed torque t = 8ma’wy.

and statistical uncertainties. Panel B also shows P(V,) for a
suspension driven by applying 7 = 8na’Qy (dashed blue line),
which clearly maintains the qualitative features of the experi-
mental velocity distribution (e.g. bimodality, and relative mass of
the modes), but provides a notably worse quantitative agreement
with our experiments. In Appendix B 2 we compare the propulsion
velocities computed using the lubrication-corrected BD method
(for constant applied torques) to reference results computed using
the rigid multiblob method.” We find a very good agreement with
the results obtained using 42 blobs per colloid, which is consider-
ably more expensive than our minimally-resolved approach that
uses one blob per colloid for the far-field hydrodynamics.

2. Switching lanes. Fig. 2 shows that we can separate the
two peaks in the velocity distribution of the roller suspension
by the height of the colloids. The fast peak roughly corresponds
to particles whose center £ is above a distance of 2a from the
wall and the slow peak to particles below 2a. These lanes form
as a result of the driven dynamics in the suspension, and it is
natural to ask how often a particle changes lanes.

Using our simulation data, we can compute the joint dis-
tribution function P(V,,k) for the particles’ height and velocity.
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Fig. 4 (panel A) Pseudocolor map of the joint steady-state distribution
P(V,.h) of particle velocities and heights, computed from the simulation
data. Two elliptical regions demarcate regions we have identified as the
‘fast-lane’ (region B) and the 'slow-lane’ (region A). The one dimensional
intervals V and Vg demarcated by color-coded vertical lines correspond
to the V, extents of the sets A and B, respectively. (panel B) The probability
of a particle starting in set Vo to end up in set Vg/n after a time T.
Simulated data is shown as solid lines which asymptote to P(A) or P(B)
depending on the state that the particle’s trajectory is conditioned to arrive
in. Experimental data, shown as circular markers, agrees with our simulated
data within a 95% confidence interval (2 std), shown as a shaded region.

Panel A in Fig. 4 shows a pseudocolor map of P(V,,h), where
we identify two elliptical regions corresponding to the
modes (peaks) of the distribution, readily identified as the slow
(region A) and fast (region B) lanes. The elliptical regions are
identified by fitting a bimodal Gaussian mixture model to
P(V,,h), and we have plotted level sets corresponding 95% of
the probability mass in each mode, separately. The large
eccentricity of these elliptical regions quantifies our observa-
tion that height and velocity in the suspension are highly
correlated. Hence, to identify which lane a particle resides in,
we only look at its velocity, allowing us to compare simulated
results with experimental ones. Specifically, we use the velocity
extrema of groups A and B to define the intervals V, =
[9.37, 17.4] um s~ " and Vi = [19.9, 62.6] um s~ ' respectively
as the slow and fast lanes (shown in panel A of Fig. 4 as color
coded vertical lines). The probability of a particle occupying
these groups is calculated as P(V,) = 0.28 and P(V3) = 0.62.

To interrogate how often a particle will switch lanes,
say from the slow to the fast lane, we compute the probability
P(Vy — Vg) that a particle will be in Vj at time ¢ = 7, given that it
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started in V, at ¢ = 0. At long times, a particle will forget where it
started and P(V, — Vg) will asymptotically approach P(V3), as
seen in panel B of Fig. 4. To compute an unbiased estimator for
P(Vy, — Vg), we consider segments of particles’ trajectories
which start in V, at ¢t = 0 or enter V, at a certain time ¢, and
check whether they end up in Vg a time T later. The variance of
the estimate for P(V, — Vg) at each time T can be computed
as the variance of the average of N, independent binomial
variables, var(P) ~ P(1 — P)/N,, since the N trajectory snippets
(samples) are approximately statistically independent.

The switching dynamics can be modeled as a simple two-
state Markov model for the lane changing dynamics where a
particle will switch from V, to Vg with rate r,g and vice versa
with rate rga, giving

P(VA — V)
P(Vg)

7P(VB—>VA)7 _ _L
— P(Va) ! exp( TAB)

where tog = P(Vg)/Tag = P(V4)/rsa. These predictions match the
simulation data for 1y = 1.5 s (rag = 0.42 and g, = 0.19).
Panel B of Fig. 4 compares experimentally measured values
of P(Vy, —» Vg) and P(Vz — V,) against simulations. Note
that the particle trajectories measured in our experiments
range in duration from 3 s to 25 s and are therefore not
long enough to accurately sample the long-time behavior.
Nevertheless, we see good agreement in the switching dynamics
between experiments and simulations, showing again that our
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lubrication-corrected BD method models the driven dynamics
with quantitative accuracy.

V. Lubrication friction in a dense
monolayer of microrollers

In ref. 15, Geyer et al. showed experimentally that a suspension
of Quincke rollers can self separate into a dense active solid
phase and a sparse ‘polar’ phase. By increasing the average
packing density of the system, they observe that the average
velocity of the suspension initially increases with density but
eventually becomes an ‘active solid’ where the velocity of the
suspension is retarded to the point of arrest. In Appendix A
of ref. 15, the authors conjecture that this dynamic arrest seen
in their experiments is due to inter-particle lubrication inter-
actions frustrating the motion of the suspension at high
in-plane packing fractions. Specifically, they conjecture that the
arrest happens when there is a balance between viscous torque
from inter-particle lubrication and the applied electrodynamic
torque. In this section, we interrogate whether lubrication
interactions cause a dynamic arrest in dense suspensions of
microrollers driven by a constant applied torque, rather than
attempting to simulate the complex electrohydrodynamics of
Quincke rollers.”

In the following simulations, we take the particle radius
a =1 pm. As in Section IV, we will take 1 = 0.96 x 10> cP and

(a) Panel A (b) Panel B
4 : : : 1.2 r : .
-e-const. 2
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Fig. 5 (panel A) Comparison of two driving mechanisms for a monolayer of rollers which are confined by a strong harmonic potential to remain fixed in a
plane separated by a gap of 0.1a from the bottom wall, mimicking a suspension of Quincke rollers. Each curve shows the mean velocity (in pm s~ in the
direction of collective motion (x-direction) as a function of the in-plane packing fraction. The solid black curve corresponds to particles driven by a
constant applied torque t = 8ma®(2n)y, and the solid fuchsia curve corresponds to particles driven by constraining their angular velocity to a constant
value o = 2ny. When the particles are driven by a constant torque there is a clear peak in V(¢) around ¢ ~ 0.5. On the other hand, particles driven by a
constant Q show a steady, though diminishing, increase in velocity as ¢ is increased. Also shown as dashed lines are V(¢) profiles for both driving
mechanisms but without pairwise lubrication forces between neighboring particles. (panel B) Velocity distributions in the x-direction for constant applied
torque with pairwise lubrication friction. The color of each curve corresponds to the packing density ¢ used in the simulation, coded according to the
corresponding colored marker on the solid black curve in panel A. Also see supplementary media for a video of one of the simulations.
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T = 22 °C. We confine the particles to remain approximately
fixed in a plane above the bottom wall at a height i, = 1.1a
using a strong harmonic potential

& (h) = 10°kgT(h — h.)?,

and therefore we neglect gravity. The height 4. is taken to be very
close to the wall to mimic the experiments of ref. 15. The strength
of the potential was chosen through numerical experimentation
to ensure that the particles remain strictly fixed in the desired
plane % = h. even at high packing densities. Following what was
done in Section IV, we include a soft repulsive potential between
the particles in the form of (31) with b, = 0.1a and @, = 4kgT, in
addition to the ‘firm potential’ discussed in Section III C.

We take the geometry of our domain to be semi-infinite in z
and periodic in x and y, and use a fixed number of particles
N =1024 in every simulation. We use the periodic domain size
L to control the in-plane packing fraction ¢ = na’N/L*. To
interrogate the dependence of velocity on packing fraction,
we examine suspensions driven by a constant torque

T, = 8nna’ QY = 8mna’(2n(1 Hz))y,

as well as suspensions driven to maintain a constant rotation
rate o, = Q. using the method described in Section II E. The
rolling motion of each particle generates a net translation in
the x direction with a steady state velocity distribution P(V,). We
take the velocity of the whole sheet to be the mean of this
distribution V = (V,), and study the dependence V(¢).

Fig. 5 shows a bulk slowdown of the suspension at high
densities, ¢ > 0.5, when a constant torque is applied (the solid
black curve with colored markers). Panel B in this figure shows
that the velocity distribution P(V,) for each packing density is
approximately Gaussian, with a variance that narrows as ¢ is
increased. Hence, as ¢ is increased the particles tend to move with
a more uniform velocity as would a ‘solid’ phase. Both the
maximum in the plot of V() vs. ¢, and the narrowing variance
in P(V,) as ¢ is increased, are due to the increasing lubrication
force between nearly touching particles as ¢ is increased. To show
that the lubrication between particles retards their hydrodynamic
responsiveness to applied torques, we turn off the pairwise
lubrication corrections.}{ The dashed black curve in Fig. 5 shows
that when pairwise lubrication corrections are not included, V(¢)
exhibits a monotonically increasing dependence on ¢.

If we change the driving mechanism of the particles in the
sheet from a constant applied torque to a prescribed angular
velocity o = Q.y, we see a marked change of behavior in the V(¢)
curve. The solid teal line in Fig. 5 shows a monotonic growth in
V(¢) as ¢ is increased. This is not so surprising. One needs to
generate a large enough applied torque so that o remains
constant regardless of packing density, thus overcoming the
lubrication force. In practice, however, the maximum torque
must be limited by the physical driving mechanism, for both
Quincke rollers and magnetic particles. When we remove the
effects of pairwise lubrication for particles driven by a constant
angular velocity, the trend in V(¢) (the dashed teal line in Fig. 5)

F1 The lubrication corrections with the bottom wall are still included.
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is similar to when pairwise lubrication was included but with a
less pronounced saturation in the growth of V(¢) for larger ¢.

VI. Conclusions

We reported new experimental and computational results on the
collective dynamics of a dense suspension of colloids sedimented
above a bottom wall and spun by a rotating magnetic field. The
experiments used fluorescent tracers to enable precise measure-
ments of the motion of individual active particles. We also
developed a lubrication-corrected Brownian dynamics method
for driven suspensions of spherical colloids confined above a
bottom wall. We showed that our numerical method can predict
both static and dynamic nonequilibrium statistics of a driven
Brownian suspension of microrollers accurately enough to provide
quantitative agreement with our experiments. Specifically, both
simulations and experiments showed a bimodal distribution of the
particles’ velocities, with good agreement about the locations and
widths of the two peaks. The two sub-populations of microrollers
correspond to particles in a slow layer right above the floor, and a
faster layer above the first layer. We showed good agreement
between simulations and experiments on the distribution of
switching times between the two sub-populations of particles.
The accuracy of our minimally-resolved simulation method is
owed, in no small part, to the improved hydrodynamic accuracy
provided by lubrication corrections for pairs of nearby surfaces
(particles and the bottom wall or pairs of particles).

We also showed numerically that lubrication forces between
nearly touching particles in a dense suspensions of rollers are a
plausible explanation for the formation of the active solid
phase observed in ref. 15. Our suspension of microrollers does
not exhibit a sharp motility-induced phase separation (MIPS),
at least for the system sizes studied here. However, the collec-
tive slowdown for ¢ > 0.5 is qualitatively similar to that seen
for Quincke rollers in ref. 15. Specifically, we saw that when a
constant torque is used to drive particles in the suspension, the
average velocity of the suspension V has a maximum at packing
density ¢ & 0.5, and that this maximum is directly caused by
pairwise lubrication between particles. The stark difference in
trends in V(¢) when angular velocity or torque is prescribed
agrees with the results that we saw for magnetic rollers.
Together, these examples demonstrate that the collective
dynamics of dense suspensions held close to a bottom wall,
for which lubrication plays a big role, is strongly affected by the
driving mechanism.
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Appendix A: semi-analytical formulas
for the pair resistance matrices

In this Appendix we detail how we construct the resistance

pair

matrices between a pair of particles, R, , and between a single
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Fig. 6 Coefficients of Rm“ appearing in egn (7) as a function the normalized gap &,. Each panels shows that value of one of the coefficients computed
using the rigid multiblob method®! with 2562 blobs (solid blue line), and the corresponding asymptotic result from Table 1 (dashed pink line). Plots for Y.,
and Y,y include the original asymptotic results computed in ref. 4 (dotted green line) as well as our modification to include a linear term (where
appropriate). The 9/9 Padé approximation given by Cichocki and Jones?” (dot-dashed yellow line) agrees well with out ‘Assymptotic + Linear' results
within the cutoff regions. Plots for Yoo Yoo and YL, also show data calculated by O'Neill (circles) and compiled in Tables 1.1 and 2 respectively in ref. 4.
The vertical black lines show the cuttoff transitions between different estimates.

particle and a bottom wall, R}, for small inter-surface gaps. In

both cases a combination of asymptotic formulas and tabulated
numerical calculations are used to provide an accurate charac-
terization of the resistance matrices across a wide range of
dimensionless gap sizes; from very small to intermediate.

1. Semi-analytical formulas for RF%"

There have been many works which calculate or tabulate the

pair 12,28,44

coefficients of R’ for different particle separations &,.
Unfortunately we have found that no one of them provides
sufficient accuracy at all distances we may wish to consider.
Hence, we will use different formula for the coefficients X(,)
and Y(¢,) appearing in R (see eqn (6)) depending on whether
& is small, large or some intermediate distance. We determine
the cutoff distances for the different formula as the distances
which minimize the error between formulas in neighboring
regions, i.e., where the formulas ‘overlap’.

At very small distances, Townsend gives asymptotic formu-
las for the coefficients of Rﬁfgr in ref. 44. These asymptotic
formulas break down as the particle separation is increased,
and hence for large particle separations, we use tabulated
values and linear interpolation for the coefficients of R
computed using Jeffrey and Onishi’s series expansion®® trun-
cated at 200 terms.if The mismatch between Townsend’s

asymptotic formulas and Jeffrey and Onishi’s series formulas,

i+ We thank James Swan for providing us a Mathematica notebook which
calculates this expansion.

This journal is © The Royal Society of Chemistry 2020

however, is too large for all particle separations. In the inter-
stitial region where neither Townsend nor Jeffrey and Onishi’s
suffice, we use tabulated values from Wilson’s Fortran code'?
(based on Lamb’s method of reflections) and linear interpola-
tion to compute the coefficients of Rﬁf‘;r. Minimizing the error
between successive formulas gives the cutoff transitions:

Townsend: & < 6 x 10>
Wilson: 6 x 1072 < ¢ < 10°*

Jeffrey and Onishi: &, > 10"

2. Semi-analytical formulas for R}

For small wall-particle separations, we assemble asymptotic
formulas for the coefficients from a few different sources. For
larger wall-particle separations, we compute the coefficients
using linear interpolation of tabulated values computed
using our rigid multiblob method®! with 2562 blobs. For each
coefficient we determine a cutoff transition distance for ¢, by
minimizing the error between the asymptotic formulas and the
multiblob values.

When ¢y, is very small, Cooley and O’Neill give an asymptotic
formula for Xi.y(¢n) as eqn (5.13) in ref. 45. This formula agrees
with our multiblob computations for ¢, > 0.1 and hence we
will take this as our cutoff value for this coefficient. Goldman,
Cox, and Brenner give asymptotic formula for Y.(en), Yoran(en),
Ywan(en) as eqn (2.65a and b) and (3.13b) respectively in ref. 4.

Soft Matter, 2020, 16, 7982-8001 | 7995
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Table 1 Asymptotic formulas for the coefficients of R}};“h”, along with their cutoff values and sources. The coefficient 0.95(88,43) in Y&, indicates that
the value we used was 0.9588 while Cichocki and Jones®’ give a value of 0.9543; the two references agree for the coefficient 0.9713 in XY, For the
coefficient X7au, the constant term matches in the two references, but the linear term is replaced by a term of Ole, In(ep)) in Cichocki and Jones.?” For the

remaining coefficients we add a linear term and fit the value of the constant together with the linear term, so direct comparison to Cichocki and Jones

is not possible; see Fig. 6 for a visual comparison

27

Coefficient Formula Cutoff Source

Xwan(en) ;7 élog(&‘h) 109713 &n < 0.1 (5.13) in ref. 45

Yivan(en) —h%log(sh) +0.95(88,43) en < 0.01 (2.65a) in ref. 4
Yivan(en) %(%log(sh) +0.1895 — 0.4576811) e < 0.1 (2.65b) in ref. 4 + linear
Xvani(en) §<1.2021 _3 (1%2 B l>3h> en < 0.01 (4.1) in ref. 46

Yevan(én) 4 ep < 0.1 (3.13Db) in ref. 4 + linear

2
§<f§10g(£h) +0.3817 + 1,4578811)

While these equations are certainly accurate enough at very
small &,, not enough terms are included in eqn (2.65b) and
(3.13b) to give good agreement with our multiblob results at
larger &y, or to give good agreement with the data provided by
O’Neill in Table 1 of ref. 4. To remedy this, we add a linear term
in &, to eqn (2.65b) and (3.13b) from ref. 4 and fit the coefficient
to our multiblob results. Fig. 6 shows all of the coefficients of
the wall mobility computed by combining the rigid multiblob
method with asymptotic formulas. We see that for larger values
of ¢y, the new formulas we computed for Yi,,; and Yiy, which
include a linear term in &y, agree well with both our multiblob
calculations as well as the data of O’Neill. Finally, an asympto-
tic formula for Xy, is given by Liu and Prosperetti in eqn (4.1)
of ref. 46. This formula largely agrees with out multiblob results
for &, > 0.01 so we use this as the cutoff. Table 1 show the
asymptotic formulas for each coefficient of R} (normalized
by 1/(6mna)) along with their respective cutoff values and
sources.

During the review process, an anonymous reviewer brought
to our attention the work of Cichocki and Jones,?” which also
computes the functions in Table 1. They do this using a
systematic formulation of a multipole expansion for one sphere
near a wall using Blake’s tensor as the Green’s function for
Stokes equations. They then substract from this expansion an
asymptotic expansion for very small gaps computed by taking
the asymptotic formulas from Jeffrey and Onishi*® for unequal
spheres and taking the limit as one sphere becomes infinitely
larger than the other one. The difference gives a more rapidly
convergent remainder series,*® to which they compute a 9/9
Padé (rational) approximation to the difference, see eqn (63)
and (43) in ref. 27. We include some of their semi-analytical
results in Table 1 and in Fig. 6 for comparison with ours. We
see that the Cichocki-Jones formula agrees with ours well over
the range of gaps shown in the figure. However, for larger gaps
we find a persistent difference with respect to our numerical
results, which is significantly larger than the accuracy of the
2562-blob estimates. Furthermore, we find that some of the
rational approximations exhibit poles for relative gaps of O(1),
and therefore are not sufficiently robust and accurate over the
whole range of gaps we need in this work.
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Appendix B: accuracy of the lubrication
approximation

In this section we will assess the accuracy of the lubrication-
corrected mobility M, using the rigid multiblob method as a
basis of comparison.>*' The multiblob method we use here
does not include lubrication corrections but the accuracy can
be improved by adding more blobs (nodes) per sphere.

1. Colloidal tetrahedron

We first consider a colloidal tetrahedron above a wall, as
depicted in the inset of Fig. 7. Nearby particle surfaces are
separated from each other by a distance ¢, which we vary ¢ as
a control parameter. We compare the lubrication-corrected
mobility M to that computed by the rigid multiblob method,
for several different spatial resolutions. We use 12, 42, 162 and
642 blobs to discretize each sphere in the colloidal tetrahedron
with the rigid multiblob method, and we take a calculation
using 2562 blobs to be sufficiently accurate to provide a
reference result.*'

Fig. 7 shows the relative error between the hydrodynamic
mobility computed using the rigid multiblob method for

ic 12 blobs
s 42 blobs

3 --162 blobs
--642 blobs
—Lubrication|

10

&
5
=

102 1 L
102 10! 10"

Fig. 7 Relative L, error in the mobility matrix of the colloidal tetrahedron
shown in the inset as a function of the relative gap ¢, for the lubrication-
corrected mobility M (solid black line), as well as the mobility matrix
computed using the rigid multiblob method®! using 12, 42, 162, and 642
blobs to discretize each sphere. The error is measured relative to the
mobility matrix computed using 2562 blobs to discretize each sphere.
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different resolutions, as well as the lubrication-corrected mobility
M, as measured against our reference result. We see that for
small ¢, the lubrication-corrected mobility is roughly as precise as
the most accurate multiblob results and remains more accurate
than both the 12 and 42 blob results for all distances considered.
The error in M is larger than the more resolved multiblobs for
intermediate separation distances 0.1 < ¢ < 2, but decays to
approximately that of the 642-blob calculation for large values of ¢.

2. Dense suspension of microrollers

Next we compare the particle displacements computed by the STS
scheme summarized in Algorithm 1 with those computed by the
Trapezoidal Slip (TS) scheme developed for the rigid multiblob
method in ref. 3. Specifically, we use both schemes to simulate the
dense microroller suspension of N = 2048 particles studied in
Section IV. We drive the suspension using a constant torque t =
8m1a3wj;. The TS scheme, like the STS scheme, is a stochastic
temporal integration method based on the deterministic trapezoid
rule and we expect the two schemes to have similar temporal
accuracy. Therefore we use a use a single step of the STS and TS
schemes with At = 0.01 to compute the one-step apparent velocities
Vy (i.e., particle displacements V,At) along the direction of collec-
tive motion, and compare the results.

We use the distribution of one-step velocities, P(V,), computed by
the STS scheme with lubrication corrections as a reference result,
and compare with the TS scheme using 12 and 42 blobs per particle,
without any lubrication corrections. To enable a direct comparison
of the methods, we generate 100 statistically independent config-
urations at steady state using the STS scheme, and compute one-step
apparent velocities starting from these configurations using the TS
scheme with 12 and 42 blobs per particle. It is worthwhile noting
that the lubrication-corrected BD method is not only considerably
simpler but it is also more efficient; for our GPU-based implementa-
tion, one step of the TS scheme using 12 blobs per sphere takes
about 6 times longer, while using 42 blobs per sphere takes almost
100 times longer, than one step of the STS scheme.

Fig. 8 shows that the P(V,) distribution computed using the
TS scheme approaches the distribution computed using the STS
scheme as the spatial resolution of the TS scheme is increased
from 12 to 42 blobs. The largest mismatch between the more
accurate 42 blob case and the lubrication-corrected BD method
is the smallest velocities. We showed in Section IV that this is
precisely the portion of the distribution due to particles nearest
to the wall, and therefore most affected by lubrication. This
example demonstrates that the minimally-resolved lubrication-
corrected calculation is no less accurate overall than a 42-blob
approximation that has not been corrected for lubrication, as we
already saw for the colloidal tetrahedron.

Appendix C: performance of
preconditioners

To interrogate the effectiveness of the preconditioner P;, we
consider a doubly-periodic suspension of N, spherical particles
above a bottom wall. We take the particle radius @ = 1 pm and

This journal is © The Royal Society of Chemistry 2020
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Fig. 8 Histogram of one-step velocities for a dense uniform suspension
of microrollers, computed using the lubrication-corrected STS scheme
developed here (solid line), and the TS scheme of ref. 3 using 12
(dashed-dotted) and 42 (dashed) blobs to discretize each sphere in the
suspension.

choose the particle’s added mass m, to control the distribution
of their height above the wall through the gravitational height
hgy — a = kgT/(meg) = 1/4 um, where g is the acceleration of
gravity. We change the in-plane packing fraction of the particles

b= Nprta2
==

(1)

where L is the periodic length of the domain. Periodic boundary
conditions are approximated using 8 periodic images as in
ref. 2.

Since the packing fraction is moderate compared to the
theoretical in-plane packing limit (¢, = 7©v/3/6 ~ 0.91), the
particles form an approximate monolayer. Increasing ¢ can
cause multi-layered particle configurations to become energe-
tically favorable even for ¢ below the in-plane packing limit,
due to the moderate gravitational height. In the remainder of
this section, we will study how varying ¢ effects the conver-
gence of the GMRES solver for (10) using both P, (see eqn (13))
and P, (see eqn (14)) as preconditioners. We find that varying A,
has only a mild effect on the convergence of the GMRES solver
(not shown).

For ¢ = 0.4, 0.8, 1.6, we increase the number of particles N,
while keeping ¢ fixed. The reference configurations shown in
Fig. 9 illustrate how increasing ¢ increases the number of
particle layers in the configuration from one for ¢ = 0.4 to
about three at ¢ = 1.6. Fig. 9 shows clearly that the precondi-
tioner P; greatly improves the convergence of the GMRES solver
over an unpreconditioned method for all of the values of ¢
considered. Further, the performance of the preconditioner is
largely independent of Np,.

The preconditioner P, performs similarly to P; for ¢ = 0.4,
0.8, but with a notably worse convergence rate for tighter
tolerances (<10~ ') and more variation in the performance for
different particle numbers. For ¢ = 1.6 the preconditioner P,
performs only nominally better than no preconditioner at all,
while P; gives some increased convergence; though not as
much as the ¢ = 0.4, 0.8 cases. We suspect that P; outperforms
P, in the multilayered case (¢ = 1.6) because pairwise
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information is used to approximate M in P; but not in P,.
Clearly, however, multiple, tightly-packed layers of particles can
hinder the effectiveness of both P, and P, as preconditioners.

We note that the unpreconditioned method converges with
roughly the same rate for each packing fraction ¢, gravitational
height 74, and all of the values of N, considered in each case.
This is likely due to the hydrodynamic screening provided by
the bottom wall which causes the hydrodynamic interactions
between particles to decay like 1//* and aids in the conditioning
of the mobility matrix.>® Hence the presence of a bottom wall
allows for an unpreconditioned GMRES method to be used
while maintaining an overall complexity which scales linearly
in the number of particles. Still, both preconditioners P; and P,
are cheap, easy to compute and apply, and potentially speed up
convergence by a factor of two to three; and therefore we
employ P; in this work.

Appendix D: weak accuracy of the STS
scheme

In this appendix, we will prove that the value of U™"* com-
puted in step 5 of Algorithm 1 is such that

2kgT
At

1/2

U LA P 4 kg T (9 - M)+ (M) W,

R(At, Azl/z),
(D1)

where R (2, f!/?) denotes a Gaussian random error term with
mean O(x) and variance O(f). This combined with the fact that
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Fig. 9 Convergence rates of the GMRES solver for (10) using the proposed preconditioner P;, the block diagonal preconditioner P,,°
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the predicted velocity computed in step 2 can be simplified
using the shorthand notation from eqn (23) and (24) as

U éﬂ”F”%» lsz (‘/\/‘_n)l/zu/]‘27 (DZ)

Qn+l Qn+1 Qn _ %(U” +

shows that

Uttt (D3)
d At AAN N Tan+1x 1,
=5 (MIF" + M) (D4)

+hp TAL(Dg - M)"++/2ks TAL(A") P W,
+ AR (Az, At'/2). (D5)

This proves that the STS scheme obtains the correct stochastic
drift, is second-order accurate in the deterministic setting, and
is weakly first-order accurate in the stochastic setting.

For simplicity, we take F = 0 at all time levels as the main
difficulty here is showing that the stochastic increments are
correct. Using the RFD approximation (27), we write the value of
U"™* computed in step 5 (with F = 0) as

AU L2k TALT + M AR1) ™ (8 - M)

+ \/M[I + M"*L*ARWA,*]*]

i (Mn+MnARnMn)l/2W12+R(527At).
(D6)

1 5 101520253035404550
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——-P;: n = 3200 —+P: n = 3200 -+-No PC: n = 3200

——P;: n = 6400 —P5: n = 6400 -&-No PC: n = 6400

Py: n = 12800 P,: n = 12800-a-No PC: n = 12800
=16

No PC: n = 1600

as well as an

unpreconditioned GMRES method for reference (termed ‘No PC' in the legend). Each panel shows convergence rates for a fixed value of ¢, as the
number of particles Ny is varied. Below the legend is a frontal view of the particle configurations for N, = 3200 and for each value of ¢. Particles are
colored based on their height above the wall with the highest particles colored the darkest while the lowest particles are colored the lightest. Higher
values of ¢ cause multiple layers of particles to form.
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Now if we Taylor expand [I+M"™*AR™!*]™" about the
configuration Q", we may write

[T+ MPARY ] (99 - M) (D7)

= 1+ M'AR] ™ (90 - M)"+R (A1, A2, (D8)
where in the last equality we have used the fact that
AQ" = QY — Q' = AU
L2k TAUI + M'AR"] (M" + MIAR' M™)' P W,
- R(O,Azl/2).
(D9)

By Taylor expanding the second term in eqn (D6) around Q"
and using the shorthand (24) and eqn (D9), we may write
—yZT [+ MPARY] (M + MIAR M)W
(D10)

=\ ZIZT(ﬂ”)I/ZWu + 2ks T (Joll + MAR]™)": (D11)

[(M"+M”AR”M”)(1+M"AR”)’T Wi, W{2] +R(Az,Az'/2)

_ W(ﬂ”) W4 2k T (BT + MAR] ) M

+R (Az,Azl/Z).
(D12)

Combining eqn (D12) and (D8) with eqn (D6) and using
eqn (26) from the main text to simplify
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I+ MAR] " (9g - M) + ([l + MAR] " ):M = 8p - M,

gives the desired result (D5).

Appendix E: experimental details

For the SEM size measurement the particles were imaged using
a Gemini Field Emission Scanning Electron Microscope (Zeiss).
In the DLS measurement the particles were dispersed in a
nonionic density gradient medium®’ mixed with water to pre-
vent significant sedimentation during the measurement.
Iohexol (Sigma-Aldrich) was mixed with ultrapure water (Milli-
Q, Millipore) at a 74 w/v% concentration (density: 1.39 g mL ™)
and the viscosity of the mixture was measured to be 17.2 cP
(22 °C) using an Ubbelohde viscometer (CANNON Instrument
Company). The DLS measurement was done using a Zetasizer
Nano ZS (Malvern Instruments Ltd).

The glass sample cell was constructed in the following way:
two glass spacers (no. 1 coverslips, ~150 um thick) were glued
to a microscope slide with a ~3 mm separation using UV glue
(Norland Adhesives, no. 68). On top of this a basebath-treated
coverslip was glued to created a channel. This channel was
filled with the dispersion and both ends were glued shut. In the
final step the UV glue was cured while the dispersion was
shielded from the UV light by a piece of aluminum foil, to
prevent the bleaching of the dye inside the particles. After
curing, the sample was placed with the coverslip down.

For the measurement of the diffusion constant D, of the
particles parallel to the glass wall, fluorescent particles were imaged
with an inverted microscope (IX83, Olympus) and a 20x/0.7 NA air
objective in fluorescent mode with 488 nm LED excitation.

For the roller experiments a home-built tri-axial nested
Helmbholtz coil set** was put on top of an inverted microscope
(IX83, Olympus) to allow simultaneous imaging and magnetic

Helmholtz coils

/ N

sample
objective

extension
tube

microscope
stage

Fig. 10 Photograph and schematic (side view) of the setup used for the roller experiments. The setup consists of a home-built tri-axial Helmholtz coil
set** mounted on the stage of an inverted microscope. The sample is placed in the center of the coil set and the microscope objective is raised into the

coil set using an extension tube.
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field exposure. The square coil bobbins were made by 3D
printing (see Fig. 10). The sample was placed in the center of
the coil set and an extension tube (Thorlabs) was used to raise
the objective (20x/0.7 NA air) into the center of the coil set.
A 11/2 out-of-phase sinusoidal magnetic field (40 G) was generated
by two coils using a computer code, a data acquisition system
(DAQ, Measurement Computing), and two AC current amplifiers
(EMB Professional). One of the two coils was parallel to gravity
and the optical axis of the microscope, while the other was
perpendicular to the first, resulting in a rotating magnetic field
perpendicular to the lateral plane of imaging and bottom glass
wall. The fluorescently labelled particles in the middle of the
channel were imaged in fluorescent mode using 488 nm LED
illumination at a frame rate of 9.0 s™'. At the same time the
particles were kept in focus using a drift compensation module
(IX3-ZDC2, Olympus) in continuous mode. To prevent the particles
from ending up at one side of the sample container, the direction of
the rotating field was inverted every 30 seconds.
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