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Summary. Adaptive enrichment designs involve preplanned rules for modifying enrolment cri-
teria based on accruing data in a randomized trial. We focus on designs where the overall
population is partitioned into two predefined subpopulations, e.g. based on a biomarker or risk
score measured at baseline. The goal is to learn which populations benefit from an experimen-
tal treatment. Two critical components of adaptive enrichment designs are the decision rule
for modifying enrolment, and the multiple-testing procedure. We provide a general method for
simultaneously optimizing these components for two-stage, adaptive enrichment designs. We
minimize the expected sample size under constraints on power and the familywise type I error
rate. It is computationally infeasible to solve this optimization problem directly because of its
non-convexity. The key to our approach is a novel, discrete representation of this optimization
problem as a sparse linear program, which is large but computationally feasible to solve by using
modern optimization techniques. We provide an R package that implements our method and is
compatible with linear program solvers in several software languages. Our approach produces
new, approximately optimal trial designs.

Keywords: Adaptive enrichment designs; Decision rules; Multiple testing; Optimization
problems; Sparse linear programs

1. Introduction

Consider the problem of planning a randomized trial of a new treatment versus control, when
the population of interest is partitioned into two subpopulations. Standard designs may have
low power if the treatment benefits only one subpopulation. Adaptive enrichment designs may
be useful in this context.

As an example, consider the phase 3 randomized trial of a treatment for angiosarcoma called
the ‘TRC105 and pazopanib versus pazopanib alone in patients with advanced angiosarcoma
trial’ (which is known as the ‘TAPPAS’ trial) (Jones et al., 2017; Mehta et al., 2019). Data from
an earlier trial provided suggestive evidence that the treatment may have a greater likelihood of
benefiting the subpopulation who enter the trial with cutaneous lesions compared with those
with non-cutaneous lesions. The TAPPAS trial design goals included having 80% power to detect
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a benefit (hazard ratio of 0.55 for progression-free survival) in the combined population, and
also 80% power to detect such a benefit only in the subpopulation with cutaneous lesions (Jones
et al., 2017). A two-stage, adaptive enrichment design was implemented. In stage 1, enrolment
was from the combined population. There were four possible choices at the end of stage 1:

(a) continue enrolling the combined population,
(b) continue enrolling the combined population but expand the sample size,
(c) enrol only those in the subpopulation with cutaneous lesions or
(d) end the trial.

A challenge was how to select the rule that uses the stage one data to decide between options
(a)–(d) to achieve the above power goals and to control type I error while minimizing the number
of participants and trial duration. Two other examples of adaptive enrichment designs are the
stroke treatment trials that were described by Albers et al. (2017) and Jovin et al. (2017).

We address trial design problems with similar types of power requirements as the TAPPAS
trial, in that a minimum power is required for detecting treatment benefits not only in the
combined population, but also in a prespecified subpopulation (and we additionally consider
the complementary subpopulation). Like the TAPPAS trial, we focus on two-stage, adaptive
enrichment designs with four options for stage 2 enrolment. Further similarities and differences
between our approach and that of the TAPPAS trial are discussed later on.

Adaptive enrichment designs have been proposed, e.g. by Follmann (1997), Russek-Cohen
and Simon (1997), Jennison and Turnbull (2007), Wang et al. (2007, 2009), Brannath et al.
(2009), Rosenblum and van der Laan (2011), Jenkins et al. (2011), Friede et al. (2012), Boessen
et al. (2013), Stallard et al. (2014), Graf et al. (2015), Krisam and Kieser (2015) and Götte
et al. (2015). This related work either does not involve optimization or optimizes over designs
that depend on a few real-valued parameters. In contrast, we simultaneously optimize over a
very large class of designs and multiple-testing procedures, described below. Wason and Jaki
(2012) and Hampson and Jennison (2015) considered the related problem of optimizing adaptive
designs involving multiple treatments for a single population. Their approaches do not apply to
our problem, as we show in Section 5.2.

A two-stage, adaptive enrichment design consists of a decision rule for potentially modifying
enrolment at the end of stage 1, and a multiple-testing procedure at the end of stage 2. The
decision rule π1 is a function from the stage 1 data to a finite set of possible enrolment choices
for stage 2. The multiple-testing procedure π2 is a function from the stage 1 and 2 data to the
set of null hypotheses that are rejected. Fig. 1(a) shows the general structure of such designs.
We put no restrictions on the functions π1 and π2 except that they are discretized, as described
below. The resulting class of possible designs is quite large. Our goal is to construct new adaptive
enrichment designs that minimize the expected sample size under constraints on power and type
I error, over this class of possible designs. This is a non-convex optimization problem that is
computationally infeasible to solve directly.

Our approach is to approximate the original optimization problem by a sparse linear program.
This idea was applied to standard designs, which do not have an enrolment modification rule,
by Rosenblum et al. (2014); they optimized power over different multiple-testing procedures. We
tackle the substantially more challenging problem of simultaneously optimizing the decision rule
and multiple-testing procedure in two-stage, adaptive enrichment designs. The added difficulty
of the latter problem is twofold: it is more difficult to construct a representation as a sparse linear
program, and the resulting linear program is more difficult to solve computationally. Another
difference between Rosenblum et al. (2014) and our problem is that we consider not only power,
but also expected sample size.
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(a)
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Fig. 1. (a) Generic, two-stage adaptive enrichment design (nks denotes the sample size in stage k for
subpopulation s) and (b) example design with cD4 possible stage 2 choices, denoted n.1b/

We show that our designs control the familywise type I error rate in the strong sense that
was defined by Hochberg and Tamhane (1987). Control of the familywise type I error rate in
confirmatory trials is generally required by regulators such as the US Food and Drug Admin-
istration and the European Medicines Agency (Food and Drug Administration and European
Medicines Agency, 1998).

As in all of the above related work and as generally required by regulators for confirmatory
adaptive trials (European Medicines Agency, 2007; Food and Drug Administration, 2016, 2019),
we require subpopulations to be defined before the trial starts. Such a definition could be based
on prior trial data and disease-specific knowledge. Freidlin and Simon (2005) and Lai et al.
(2014) gave designs that try to solve the more challenging problem of defining a subpopulation
based on accruing data and then testing for a treatment effect in that subpopulation.

In our examples, the optimized designs substantially improve power compared with standard
designs and some existing adaptive designs. A limitation is that our approach becomes compu-
tationally difficult or infeasible for more than two stages or subpopulations. Also, our approach
requires that each participant’s outcome is measured relatively soon after her or his enrolment.
We focus on designs where the only allowed adaptations are to restrict enrolment for stage 2 to be
from a single population or to stop the trial early as in Fig. 1(b). We also briefly consider designs
with c = 10 prespecified options for stage 2 sample sizes in each subpopulation as in Fig. 1(a).
We do not consider other adaptations such as allowing more flexible, data-dependent choices
of the stage 2 sample size, changing randomization probabilities or modifying treatments for
individuals on the basis of their outcomes over time.
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In Section 2, we describe the general type of sequential decision problem that our proposed
method can solve. Sections 3–6 are devoted to optimizing adaptive enrichment designs. In
Section 3, we define our adaptive enrichment design optimization problem. In Section 4, we
discretize the problem and transform it into a sparse linear program. The sparse linear program is
solved in two examples in Section 5. Trade-offs between adaptive design methods and limitations
of our approach are discussed in Section 6.

2. General sequential decision problem and our method for reducing it to a
sparse linear program

2.1. Sequential decision problem
Consider the sequential decision problem that is defined by discrete states and actions sk and ak

at each time k = 1, : : : , K. Our set-up is similar to that of Bertsekas (2017), chapter 1.2. For
computational reasons that are described below, our approach is likely to be feasible for only
relatively small K such as 2 or 3. Let t = .s1, a1, : : : , sK, aK/ denote a typical trajectory, where
each sk is in the finite state space Sk and ak is in the finite action space Ak. Let {p∆.t/ :∆∈Rd}
denote the statistical model with unknown parameter ∆, where p∆ represents a probability
mass function on the set of possible trajectories.

At each time k =1, : : : , K in turn, nature draws the state at time k from the conditional distri-
bution p∆.sk|s1, a1, : : : , sk−1, ak−1/ given the history of states and actions s1, a1, : : : , sk−1, ak−1
before time k, and then the statistician selects the action at time k as a function (denoted by πk)
of the history s1, a1, : : : , sk. The statistician’s policy π = .π1, : : : , πK/ represents her or his rule
for selecting, for each time k and possible history s1, a1, : : : , sk, the action ak =πk.s1, a1, : : : , sk/.
The set of all policies Π is defined as all π = .π1, : : : , πK/ such that each πk is a function from
Tk =S1 ×A1 × : : : ×Sk to actions Ak. Denote the set of all trajectories by T =TK ×AK. For
any t ∈T , let p∆.t/=ΠK

k=1p∆.sk|s1, a1, : : : , sk−1, ak−1/:
We next define the optimization problem. Consider a known loss function L.∆, t/, repre-

senting the loss when the data-generating distribution is p∆ and the trajectory is t. For a given
parameter ∆ and policy π, let Sk denote the (random) state that is generated by p∆ at time
k and let Ak =πk.S1, A1, : : : , Sk/, for each k ! K; let T = .S1, A1, : : : , SK, AK/. Define the risk
under loss function L, distribution p∆ and policy π as

R.L,∆, π/=Ep∆L.∆, T/=
∑
t∈T

[
L.∆, t/p∆.t/

K∏
k=1

1{πk.s1, a1, : : : , sk/=ak}
]

, .1/

where 1{X} is the indicator variable taking value 1 if X is true and 0 otherwise. The goal is to
minimize the objective function, defined as the Bayes risk

∫
R.L0,∆, π/dΛ0.∆/=

∑
t∈T

[∫
L0.∆, t/p∆.t/dΛ0.∆/

K∏
k=1

1{πk.s1, a1, : : : , sk/=ak}
]

, .2/

for known loss function L0 and distribution Λ0 on the parameter space ∆ ∈ Rd . For each
j = 1, : : : , J , define the constraints R.Lj,∆.j/, π/ ! βj for known loss functions L1, : : : , LJ ,
parameter values ∆.1/, : : : ,∆.J/ and scalars β1, : : : , βJ . Each constraint j could be generalized
to incorporate an integral over the parameter space that is similar in form to the Bayes risk. The
sequential decision problem, in its general form, is as follows.

Find a policy π∈Π that minimizes the Bayes risk
∫

R.L0,∆, π/dΛ0.∆/ under the constraints
R.Lj,∆.j/, π/!βj for each 1! j !J .



Optimal, Two Stage, Adaptive Enrichment Designs 753

The inputs to the sequential decision problem are the state spaces, action spaces, statistical
model, loss functions, parameter values∆.1/, : : : ,∆.J/, scalars β1, : : : , βJ and the distribution Λ0
defined above. It is a design problem in that the goal is to compute the optimal policy before any
data are collected (analogous to how the decision rule for modifying enrolment and the multiple-
testing procedure of the adaptive trial design need to be selected before the trial is started).

2.2. Transformation of sequential decision problem into sparse linear program
It follows from equation (2) that the objective function and constraints of the sequential decision
problem can be represented in terms of the indicator variables 1{πk.s1, a1, : : : , sk/=ak} for each
k ! K, .s1, a1, : : : , sk/ ∈ Tk, ak ∈Ak. Any policy π ∈Π corresponds to a unique set of values of
these variables. Unfortunately, the resulting problem is non-convex because of the product in
equation (2), and so the problem is extremely difficult to solve.

To overcome this obstacle, we instead represent each policy π ∈ Π by the set of indicator
variables {vπ.t/ : t ∈T }, where we define vπ.t/ =ΠK

k=11{πk.s1, a1, : : : , sk/ = ak}, i.e. vπ.t/ = 1 if
each action ak in the trajectory t = .s1, a1, : : : , sK, aK/ is precisely what the policy π says to do
given the observed history. For any policy π∈Π, the Bayes risk (2) can be written as the following
linear function of the variables vπ.t/:

∫
R.L0,∆, π/dΛ0.∆/=

∑
t∈T

vπ.t/
∫

L0.∆, t/p∆.t/dΛ0.∆/: .3/

The constraints R.Lj,∆.j/, π/!βj can be expressed similarly. Using an arbitrary ordering of
the trajectories, we represent the set of variables {vπ.t/ : t ∈T } as the vector vπ.

The above representation of the sequential decision problem has the computational advan-
tage of being linear in the variables vπ.t/. However, this representation poses two important
challenges:

(a) most {0, 1}-valued vectors of length |T | do not represent any policy π ∈Π, since repre-
senting a policy imposes logical constraints on the entries of such a vector;

(b) there are many variables (one per trajectory t ∈T ).

We solve challenge (a) by using sparse linear constraints (i.e. linear constraints where most entries
are 0) defined in expressions (6) and (7) below to represent the condition that an arbitrary {0, 1}-
valued vector v of length |T | represents a policy π∈Π, i.e. the condition that v=vπ for some π∈Π.
Including these constraints in the optimization problem is equivalent to defining the search space
as the set of all policies Π. Challenge (b) can be addressed by using computationally efficient
algorithms for solving sparse linear programs that can handle, for example, 107 variables, as
discussed in Section 2.3.

Let s̃2: : : , s̃K denote states in S2, : : : , SK respectively, which can be chosen arbitrarily; for
example s̃k could be defined as the first state in a list of the states Sk. The states s̃2, : : : , s̃K are
fixed in advance and used to define the binary integer program below. They can be thought of as
reference states at each time. We prove in section D of the on-line supplementary material that
the sequential decision problem from Section 2.1 is equivalent to the following binary integer
program in the variables v with components denoted by v.t/ for each t ∈T .

2.2.1. Binary integer program representation of sequential decision problem

min
v

∑
t∈T

v.t/
∫

L0.∆, t/p∆.t/dΛ0.∆/, .4/

under the following constraints:
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∑
t∈T

v.t/Lj.∆.j/, t/p∆.j/ .t/!βj, for any j ∈{1, : : : , J}; .5/

∑
a1,:::,aK

v.s1, a1, s̃2, a2, : : : , s̃K, aK/=1, for any s1 ∈S1; .6/

∑
ak ,:::,aK

v.s1, a1, : : : , sk, ak, s̃k+1, : : : , s̃K, aK/−v.s1, a1, : : : , s̃k, ak, s̃k+1, : : : , s̃K, aK/=0,

for any k : 2!k !K, and any .s1, a1, : : : , sk/∈Tk; .7/

v.t/∈{0, 1}, for all t ∈T : .8/

Here we use the convention that the sum over each variable is with respect to its corresponding
domain; for example Σak represents Σak∈Ak

. The only difference between the two terms in the
sum in expression (7) is that the single variable sk on the left-hand side is replaced by s̃k on the
right-hand side. The objective function (3) and constraints R.Lj,∆.j/, π/!βj for j !J of the
sequential decision problem are encoded as the linear functions (4) and (5) respectively of v.

There is a one-to-one correspondence between the set of vectors v that satisfy the constraints
(6)–(8) and the set of policies Π. Given any v that satisfies constraints (6)–(8), we define the
corresponding policy (denoted πv) as follows: for any k "1 and .s1, a1, : : : , sk, ak/∈Tk ×Ak,

πv
k.s1, a1, : : : , sk/=ak if and only if

∑
ak+1,:::,aK

v.s1, a1, : : : , sk, ak, s̃k+1, ak+1, : : : , s̃K, aK/=1:

If the sum in the above expression equals 0 for all ak ∈ Ak, then we let πv
k.s1, a1, : : : , sk/ be

defined as an arbitrarily chosen element ãk ∈Ak; we show in the proof of theorem 1 below that
this choice has no effect since in this case the sequence s1, a1, : : : , sk can never occur.

Constraints (6)–(8) imply the following property: for any sequence of states s1, : : : , sK, there
is exactly one sequence of actions a1, : : : , aK for which v.s1, a1, : : : , sK, aK/ = 1. More than
this property is required, however, to ensure that there exists a policy π ∈Π for which v.t/ =
ΠK

k=11{πk.s1, a1, : : : , sk/=ak} for all t∈T ; we give an example showing this in section D.3 of the
on-line supplementary material. Intuitively, the problem is that the aforementioned property
does not enforce that the choice of action at time k depends only on previous (and not future)
states and actions. Constraints (6)–(8) encode this, as proved in section D of the supplementary
material. There, we prove that any choice of s̃2, : : : , s̃K leads to an equivalent definition of the
binary integer program, and we also prove the following theorem.

Theorem 1. For any vector v that satisfies constraints (6)–(8), the corresponding πv is a
policy in Π; conversely, every policy π ∈Π is represented by some vector v that satisfies these
constraints. For any optimal solution v to the binary integer program, the corresponding
policy πv is a well-defined, feasible, optimal solution to the sequential decision problem.

We relax the binary constraints (8) by replacing them by v.t/ " 0 for all t ∈T , to make the
problem computationally feasible. We prove in section D of the on-line supplementary material
that the resulting linear program, which we call the sparse linear program, is equivalent to
the sequential decision problem where the set of (deterministic) policies Π is replaced by the
larger set of stochastic policies ΠÅ, defined as all πÅ = .πÅ

1 , : : : , πÅ
K/ such that each πÅ

k is a
function that maps each .s1, a1, : : : , sk/∈Tk to a multinomial distribution on the set of actions
Ak. In other words, the action at time k is a random choice in Ak with probabilities encoded
by πÅ

k .s1, a1, : : : , sk/. Though such policies can be implemented by using a random-number
generator, in many applications it is desirable to have a deterministic policy π ∈Π, which can
sometimes be obtained from a randomized policy by rounding; for example, in our adaptive
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design application this was done and had a negligible effect since most components in the
optimal solutions are {0, 1} valued.

2.3. General form of sparse linear program and computational limitations
We describe the general form of the sparse linear program resulting from replacing the integrality
constraints (8) in the binary integer program by the non-negativity constraints v.t/" 0 for all
t ∈ T . Let R+ denote the non-negative real numbers and let w = |T | denote the number of
variables. The general form of the sparse linear program is

min
v∈Rw

+
cTv subject to A.1/v !a.1/, A.2/v =a.2/, .9/

for matrices A.1/ and A.2/ and vectors c, a.1/ and a.2/. The matrix A.1/ has dimensions J × w
and encodes constraints (5). Equality constraints (6) and (7) can be represented by A.2/v =a.2/

where A.2/ has the following structure (where we describe only the non-zero elements):

A.2/ =





|S1| rows, each with
K∏

k=1
|Ak| 1s

|T2| rows, each with
K∏

k=2
|Ak| 1s, and same number of−1s

:::

|TK| rows, each with |AK|1s, and same number of−1s





:

The matrix A.1/ is typically dense (most entries are non-zero). The matrix A.2/ is sparse (most
entries are 0) if the number of action sequences ΠK

k=1|Ak| is much smaller than the number
of trajectories |T |. In this case, though the matrix A.2/ is typically much larger than A.1/, the
former does not dramatically impact the computational difficulty since it is sparse. The vector c
represents the objective function (4) and is dense. The vector a.1/ = .β1, : : : , βJ /T, and the vector
a.2/ consists of |S1| 1s followed by all 0s.

There are important computational limitations to our approach for solving the sequential
decision problem by transforming it into the above sparse linear program. We expect that, for
problems with |T | ! 107 and J ! 500, it will be computationally feasible to solve the sparse
linear program. We solved problems that exceeded these thresholds for our adaptive enrichment
design application (at K =2), which is the focus of the remainder of the paper. Since the number
of trajectories is |TK ×AK|, which grows (roughly) exponentially with K, we expect that our
approach will only be computationally feasible for K =2 or K =3.

In section D.1 of the on-line supplementary material, we generalize the problem set-up above
to allow the state space at each time k "2 to depend on the history s1, a1, : : : , ak−1.

3. Adaptive enrichment design problem definition (non-discretized version)

3.1. Data, assumptions and null hypotheses
We assume that the population is partitioned into two subpopulations, defined in terms of
variables measured before randomization. Let ps denote the proportion of the population in
subpopulation s∈{1, 2}; p1 +p2 =1. Each enrolled participant is assigned to treatment (r =1)
or control (r =0) with probability 1

2 .
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For each subpopulation s ∈ {1, 2} and stage k ∈ {1, 2}, we assume that exactly half the par-
ticipants are randomized to each study arm r ∈ {0, 1}. This can be approximately achieved by
using block randomization stratified by subpopulation. For each participant i from subpop-
ulation s ∈ {1, 2} enrolled in stage k ∈ {1, 2}, denote her or his random study arm assignment
by Rksi ∈ {0, 1} and outcome by Yksi ∈ R. Let X.k/ denote all the data from stage k, and let
X=X.1/ ∪X.2/ denote the cumulative data at the end of stage 2.

For clarity, we focus on normally distributed outcomes with a known common variance.
Under regularity conditions, our results can be extended to different outcome distributions and
unknown variances, as long as we use asymptotically linear statistics, e.g. the difference between
sample means or the estimated coefficient in a proportional hazards model. We assume that,
conditioned on study arm Rksi = r, the outcome Yksi ∼N.µsr, σ2

s / and is independent of the data
from all previously enrolled participants. We assume that each participant’s outcome is observed
soon after enrolment, so that all stage 1 outcome data are available at the interim analysis.

Denote the average treatment effect for each subpopulation s∈{1, 2} by ∆s =µs1 −µs0, and
for the combined population by ∆C = p1∆1 + p2∆2. Let ∆= .∆1, ∆2/. We assume that the
parameter ∆ is unknown, but that σ2

1, σ2
2 and p1 are known. We discuss possible ways to deal

with uncertainty in p1 in Section 6.
Define the null hypotheses of no average treatment benefit in subpopulation 1, subpopulation

2 and the combined population respectively as H01 :∆1 !0, H02 :∆2 !0 and H0C :∆C !0: For
any ∆∈ R2, define HTRUE.∆/ to be the set of true null hypotheses at ∆. For each s ∈ {1, 2},
this set contains H0s if ∆s !0; it contains H0C if p1∆1 +p2∆2 !0.

3.2. Two-stage, adaptive enrichment designs
In stage 1, n1s participants are enrolled from each subpopulation s. In our examples, we set the
stage 1 sample sizes n11 and n12 proportional to the subpopulation sizes p1 and p2; however,
our general method does not require this. At the interim analysis following stage 1, a decision
rule π1 determines the number of participants to enrol from each subpopulation in stage 2
based on the stage 1 data. There are c <∞ possible choices for stage 2 enrolment, denoted by
the action set A1 ={1, : : : , c}. Each action a1 ∈A1 represents a possible pair of stage 2 sample
sizes denoted by n21.a1/ and n22.a1/ for subpopulations 1 and 2 respectively. At the end of stage
2, a multiple-testing procedure π2 determines which subset (if any) of the null hypotheses to
reject, based on the data from stages 1 and 2.

Define an adaptive design template, denoted by n, to be the possible end of stage 1 decisions
and corresponding sample sizes n = .A1, n11, n12, {n21.a1/, n22.a1/}a1∈A1/: A generic adaptive
design template is depicted in Fig. 1(a). A specific example for p1 = 1

2 is given in Fig. 1(b), where,
for a given n > 0, the stage 1 sample sizes satisfy n11 =n12 =n=4, and there are four choices for
stage 2 enrolment: a1 =1, stop the trial, i.e. n21.1/=n22.1/=0; a1 =2, enrol exactly as in stage 1,
i.e. n21.2/=n22.2/=n=4; a1 =3, enrol from only subpopulation 1, i.e. n21.3/=3n=4 and n22.3/=
0; a1 =4, enrol from only subpopulation 2, i.e. n21.4/=0 and n22.4/=3n=4. This adaptive design
template, denoted n.1b/, is used in Section 5. It allows enrichment of subpopulation 1 (a1 = 3)
or subpopulation 2 (a1 = 4), in which case the total enrolled from the enriched subpopulation
is n (n=4 from stage 1 plus 3n=4 from stage 2). This sample size choice was motivated by the
problems in Section 5.

3.3. Sufficient statistics
Let Nks denote the number enrolled during stage k ∈{1, 2} from subpopulation s ∈{1, 2}. The
stage 1 sample sizes are set in advance, whereas those in stage 2 are functions of the stage 1 data.
For each subpopulation s∈{1, 2} and stage k ∈{1, 2}, define the z-statistic
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Z.k/
s =

{
Nks∑
i=1

YksiRksi

Nks∑
i=1

Rksi

−

Nks∑
i=1

Yksi.1−Rksi/

Nks∑
i=1

.1−Rksi/

}
(

4σ2
s

Nks

)−1=2
, .10/

where the quantity in parentheses on the right-hand side is the variance of the difference between
sample means on the left-hand side. Define the final (cumulative) z-statistic based on pooling
all stage 1 and 2 data for subpopulation s by

Z.F/
s =

{ 2∑
k=1

Nks∑
i=1

YksiRksi

2∑
k=1

Nks∑
i=1

Rksi

−

2∑
k=1

Nks∑
i=1

Yksi.1−Rksi/

2∑
k=1

Nks∑
i=1

.1−Rksi/

}
(

4σ2
s

N1s +N2s

)−1=2
: .11/

Let Z.k/ = .Z
.k/
1 , Z

.k/
2 / for each stage k ∈{1, 2}, and Z.F/ = .Z

.F/
1 , Z

.F/
2 /. The joint distribution of

these random vectors is given in section A of the on-line supplementary materials. The first-stage
z-statistics Z.1/ are bivariate normal, as are the second-stage statistics Z.2/ conditionally on the
decision π1 for stage 2 enrolment; the final z-statistic Z

.F/
s for subpopulation s is a weighted

combination of the corresponding first- and second-stage statistics, with each subpopulation s
participant contributing equal information.

The distribution of the data X depends on three unknown parameters: our parameter of
interest ∆= .∆1, ∆2/ and the variation-independent nuisance parameters µs1 + µs0 for each
s∈{1, 2}. We prove the following theorem in section C of the on-line supplementary materials.

Theorem 2. Consider any fixed values of the nuisance parameters. Then Z.1/ is a minimal
sufficient statistic at the end of stage 1. Also, for any end of stage 1 policy π1.Z.1//, we have
that .π1.Z.1//, Z.F// is a minimal sufficient statistic at the end of stage 2. Furthermore, the
joint distribution of these statistics does not depend on the nuisance parameters.

We henceforth focus on decision rules π1 that depend on the data only through Z.1/, and
multiple-testing procedures π2 that depend on the data only through .π1.Z.1//, Z.F//. We refer
to Z.1/ and .π1.Z.1//, Z.F// as the stage 1 and 2 sufficient statistics respectively. Because of the
presence of nuisance parameters, these should be called ‘specific sufficient for ∆’ (Basu, 1978),
but for conciseness we call them ‘sufficient’. Let Π1 denote the set of all possible stage 1 policies,
i.e. all functions from the sample space R2 of the stage 1 sufficient statistics Z.1/ to A1.

At the end of stage 2, the multiple-testing procedure π2 determines which (if any) null hy-
potheses are rejected. Let A2 denote the power set of {H01, H02, H0C}, except that we exclude
the subset {H01, H02} since if H01 and H02 are false then so is H0C. Let Π2 denote the set of all
possible stage 2 policies, i.e. all functions π2 from the sample space A1 ×R2 of stage 2 sufficient
statistics .π1.Z.1//, Z.F// to A2. The set of all policies is Π=Π1 ×Π2.

For a given adaptive design template n, an adaptive enrichment design is defined as a pair
π = .π1, π2/∈Π. Given .p1, n, π,∆, σ2

1, σ2
2/, let P∆ denote the induced joint distribution of the

statistics .Z.1/, π1.Z.1//, Z.F// and let E∆ denote expectation with respect to this distribution
(where we suppress dependence on p1, n, π, σ2

1 and σ2
2 for clarity).

3.4. Adaptive enrichment design optimization problem
Our optimization problem can be represented by using the decision theory framework from
Section 2 with K = 2 time points. The states s1 and s2 represent sufficient statistics at the end
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of stages 1 and 2 respectively. Here we allow the state spaces S1 and S2 to be infinite; these are
discretized in Section 4. The actions a1 ∈A1 and a2 ∈A2 represent how many to enrol in stage
2 from each subpopulation and the set of null hypotheses rejected after stage 2 respectively.

We consider loss functions L that are bounded, integrable functions of the treatment ef-
fect ∆, the enrolment decision a1 and the set of hypotheses rejected a2. For a given loss
function L.∆, a1, a2/, the risk at treatment effect vector ∆ ∈ R2 is defined as R.L,∆, π/ =
E∆L[∆, π1.Z.1//, π2{π1.Z.1//, Z.F/}]. By selecting an appropriate loss function L, the risk
can be made to represent, for example, expected sample size, type I error, power or expected
number assigned to an ineffective treatment (or weighted combinations of these). For exam-
ple, the loss function could be set as the total number of enrolled participants (sample size)
LSS.∆, a1, a2/=n11 +n12 +n21.a1/+n22.a1/; the corresponding risk at ∆∈R2 is the expected
sample size under treatment effect vector ∆. A familywise type I error, i.e. rejecting one or more
true null hypotheses, is encoded by the loss function LFWE.∆, a1, a2/=1{HTRUE.∆/∩a2 (=∅}.
Similarly, a type II error for a null hypothesis H ∈{H01, H02, H0C} is encoded by the loss function
L.H/.∆, a1, a2/=1{H (∈a2, H (∈HTRUE.∆/}.

We aim to minimize the Bayes risk, i.e. the risk integrated with respect to a distribution Λ on
the treatment effect vector∆∈R2. For example, we could let Λ denote a weighted sum of the four
point masses in the set Q = {.0, 0/, .∆min, 0/, .0, ∆min/, .∆min, ∆min/}, where ∆min represents
the minimum, clinically meaningful treatment effect, which is user specified. Let Λpm denote
this distribution with weight 1

4 on each point mass. Then the Bayes risk corresponding to the
pair .L, Λ/= .LSS, Λpm/ is the expected sample size under ∆, averaged over the four scenarios
∆∈Q. As another example, let Λmix denote the mixture of four bivariate normal distributions
with one centred at each point in Q and each having covariance matrix cΛ.∆min/2I2 for I2 the
2×2 identity matrix and constant cΛ > 0.

3.4.1. Adaptive design optimization problem
Find the adaptive enrichment design π ∈Π minimizing the Bayes risk,

∫
R.L0,∆, π/dΛ0.∆/, .12/

under the familywise type I error constraints

P∆{π2 rejects any null hypotheses in HTRUE.∆/}!α, for any ∆∈R2, .13/

and power constraints

P∆.m/{π2 rejects at least the null hypothesis H.m/}"1−βm, .14/

for each m=1, : : : , M, where 1−βm is the required power, ∆.m/ ∈R2 and H.m/ ∈{H01, H02, H0C}
is a false null hypothesis under ∆.m/, i.e. H.m/ (∈HTRUE.∆.m//.

Constraints (13) represent strong control of the familywise type I error rate, i.e., for any pair
of treatment effects ∆1 and ∆2, the probability of rejecting one or more true null hypotheses is
at most α. An adaptive enrichment design π ∈Π is feasible if it satisfies all the constraints (13)
and (14).

We informally refer to the distribution Λ0 as a prior, with the understanding that our opti-
mization problem uses the frequentist decision theory framework and the only role of Λ0 is in
defining the objective function (12). Our general approach can also be used to solve a minimax
version of the above optimization problem where the outer integral in the objective function
(12) is replaced by the maximum over ∆ in a finite subset of R2.
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3.5. Example optimization problems
We consider design problems with similar types of power and type I error requirements as in
the TAPPAS trial that was described in Section 1. The TAPPAS trial had power goals for a
single subpopulation and the combined population, whereas we additionally set a power goal
for the complementary subpopulation. The trade-offs between these approaches were discussed
by Freidlin et al. (2013). We also solved problems analogous to examples 1 and 2 below, except
involving only the null hypotheses H01 and H0C and only allowing enrichment of subpopulation
1, which is more similar to the TAPPAS trial set-up; see Section 6.

We give examples of goals below to illustrate our approach. We solve the following two
example problems in Section 5, for values of p1, n, σ2

1, σ2
2, α, β, ∆min and cΛ defined there.

3.5.1. Example 1
Consider the problem of minimizing the expected sample size averaged over the four point
masses in Q, under the type I error constraints (13) and the following power constraints for
given type II error β > 0.

Condition 1. At ∆.1/ = .∆min, 0/, the power to reject H01 is at least 1−β.

Condition 2. At ∆.2/ = .0, ∆min/, the power to reject H02 is at least 1−β.

Condition 3. At ∆.3/ = .∆min, ∆min/, the power to reject H0C is at least 1−β.

This problem can be represented by setting .L0, Λ0/= .LSS, Λpm/.

3.5.2. Example 2
We modify the above example by replacing the prior Λpm by Λmix.

4. Discretization of adaptive design optimization problem and transformation
into sparse linear program

4.1. Overview
The adaptive design optimization problem is extremely difficult to solve directly. This is because
the optimization is over the very large class of decision rules Π1 and multiple-testing procedures
Π2, and involves infinitely many familywise type I error constraints (13).

We propose a novel approach to solving a discretized version of the above problem, involving
three steps. We first discretize the decision rule, multiple-testing procedure and familywise type
I error constraints in Section 4.2. The resulting discretized problem can be naturally represented
in terms of a finite set of {0, 1}-valued variables, as shown in Section 4.3. However, this rep-
resentation is non-convex and so is still extremely difficult to solve. Step 2, which is handled
in Section 4.4, involves reparameterizing this problem so that it can be represented as a sparse
linear program: a class of problems that is much easier to solve than non-convex problems.
This reparameterization uses our general method from Section 2.2. The third step is to apply
large-scale optimization methods to solve the sparse linear program, which is described for our
examples in Section 5.2.

4.2. Definition of discretized problem and class of designs ΠDISC

The first of the above steps is to discretize the adaptive design optimization problem. This
involves partitioning the sample space R2 of the first-stage z-statistics Z.1/ into a finite set of
rectangles, and similarly partitioning the sample space of the z-statistics Z.F/ at the end of stage
2. One approach to constructing a partition, as in Rosenblum et al. (2014), is to start with a
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box B = [−b, b] × [−b, b] for a given integer b > 0. We partition the box into rectangles each
having side lengths τ = .τ1, τ2/ such that b=τs is an integer for each s ∈{1, 2}. For each pair of
integers j and j′, define the rectangle Rj,j′ = [jτ1, .j +1/τ1/× [j′τ2, .j′ +1/τ2/. Define the set of
such rectangles in the bounded region B as RB ={Rj,j′ : j, j′ ∈ Z, Rj,j′ ⊂B}. Lastly, define the
partition R=RB ∪ {R2 \ B} of R2. Even though R2 \ B is not a rectangle, for conciseness we
still call R a partition of rectangles.

Let the finite state spaces S1 and S2 (for stages 1 and 2 respectively) denote partitions of R2

into rectangles. We restrict to the subclass ΠDISC
1 of decision rules π1 ∈Π1 that depend on the

data only through the rectangle that contains the first-stage z-statistics, i.e. decision rules π1 ∈Π1
such that, for any s1 ∈S1 and z.1/, z.1/′ ∈ s1, we have π1.z.1//=π1.z.1/′/.

Similarly, we restrict to the subclass ΠDISC
2 of multiple-testing procedures π2 ∈Π2 that depend

on the data only through the end of stage 1 decision a1 and the rectangle in S2 that contains
the cumulative statistics Z.F/ at the end of stage 2, i.e. we restrict to π2 ∈Π2 such that, for any
a1 ∈ A1, s2 ∈ S2, z.F/ ∈ s2 and z.F/′ ∈ s2, we have π2.a1, z.F// = π2.a1, z.F/′/: Define the class of
discretized adaptive enrichment designs as ΠDISC =ΠDISC

1 ×ΠDISC
2 .

It remains to discretize the set ∆∈R2 in the type I error constraints (13) by selecting a finite
subset G ⊆ R2. Define the boundaries of the null spaces for H01, H02 and H0C to be {.0, ∆2/ :
∆2 ∈ R}, {.∆1, 0/ : ∆1 ∈ R} and {.∆1, ∆2/ ∈ R2 : p1∆1 + p2∆2 = 0} respectively. Let G denote
a grid of points on the union of these boundaries; an example is given in Section 5.2. This
choice of G is based on the conjecture that the active constraints in expression (13) will be on
the null space boundaries. We demonstrate that, by a careful selection of G, the solutions to
the discretized problem in our examples satisfy constraints (13) at all ∆∈ R2, if we solve the
discretized problem by using a slightly smaller α than the required value in expression (13).

The discretized problem is defined as the adaptive design optimization problem from Section
3.4 restricted to policies ΠDISC and using only the type I error constraints (13) for ∆∈G. From
here on, we fix S1, S2 and G, and focus on solving the discretized problem.

4.3. (Non-convex) representation of discretized problem
The discretized problem can be represented in terms of the variables 1{π1.s1/ = a1} and
1{π2.s1, a1, s2/ = a2} for each trajectory t = .s1, a1, s2, a2/ ∈ T where T = S1 × A1 × S2 × A2.
Any policy π ∈ΠDISC corresponds to a unique set of values of these variables. It follows from
equation (2) that the Bayes risk (12) and constraints (14) can be represented in terms of these
variables. It follows from equation (1) that each type I error constraint (13), which equals the
risk R.LFWE,∆, π/, can be represented in terms of these variables.

Unfortunately, the resulting problem is non-convex because of the products of variables in
equations (1) and (2). It is computationally intractable to solve, since only ad hoc methods ex-
ist for solving non-convex optimization problems and even if a local minimum is found there
is no general way to determine whether it is the global minimum. Our solution is to trans-
form this problem into a sparse linear program by applying our method from Section 2.2 at
K =2.

4.4. Transformation of discretized problem into linear program
Define the new variables v.t/ = 1{π1.s1/ = a1, π2.s1, a1, s2/ = a2} for each trajectory t ∈T . We
denote the set of {0, 1}-valued variables {v.t/ : t∈T } by v, which we consider as a vector of length
|T |. By replacing the product term Π2

k=11{πk.s1, a1, : : : , sk/=ak} in equations (1) and (2) by the
new variable v.t/, we have that the risk and the Bayes risk respectively are linear functions of v.
A challenge is that most vectors in {0, 1}|T | do not represent any policy π ∈ΠDISC. To handle
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this, we add the sparse linear constraints (6)–(8). By theorem 1, these constraints enforce that
v represents a unique policy π ∈ΠDISC and every policy π ∈ΠDISC is represented by a vector
v ∈{0, 1}|T | satisfying these constraints.

It follows from theorem 1 that the discretized problem is equivalent to the binary integer
program (4)–(8) from Section 2.2 at K = 2, where the objective function (12) is represented by
equation (4) and the type I error (13) and power (14) constraints respectively are represented by
the following constraints of type (5):

∑
t∈T

v.t/p∆.t/LFWE.∆, t/!α, for each ∆∈G; .15/

∑
t∈T

v.t/p∆.m/ .t/LH.m/
.∆.m/, t/!βm, for each m∈{1, : : : , M}: .16/

The binary integer program is sparse since the vast majority of elements of the corresponding
constraint matrix are 0, which follows from Section 2.3.

Define the sparse linear program as the binary integer program (4)–(8) tailored to represent
the discretized problem as described in the previous paragraph, except with the integrality
constraints (8) replaced by v.t/"0 for all t ∈T to make the problem computationally feasible.
This is equivalent to constraining each variable v.t/ to be in the unit interval rather than being
{0, 1} valued. We prove in section D of the on-line supplementary material that the sparse linear
program is equivalent to the discretized problem where the set of (deterministic) policies ΠDISC

is replaced by the larger set of stochastic policies ΠÅ defined in Section 2.2. The importance
of representing the discretized problem over ΠÅ as the sparse linear program is that we have
derived a computationally feasible approximation of the original adaptive design optimization
problem (12)–(14). This relies on the fact that even very large, sparse linear programs can be
computationally feasible to solve.

For any trajectory t = .s1, a1, s2, a2/ ∈ T , the probability p∆.t/ that appears in the binary
integer program satisfies p∆.t/=Pr∆,a1{Z.1/ ∈ s1, Z.F/ ∈ s2}, where Pr∆,a1 represents the mul-
tivariate normal distribution on the z-statistics .Z.1/, Z.F// under ∆ in the design that always
enrols in stage 2 according to action a1. This distribution is given in section A of the on-line
supplementary material and can be evaluated by using the multivariate normal distribution
function using the R package mvtnorm (Genz and Bretz, 2009). We also show at the end of sec-
tion E of the supplementary material how the integral in the objective function (4) can similarly
be computed for examples 1 and 2.

5. Solutions to examples 1 and 2

5.1. Problem definition
We solve the optimization problems in examples 1 and 2 from Section 3.5 over the class of
discretized adaptive enrichment designs ΠDISC. The problem inputs depend on p1, n, σ2

1, σ2
2, α, β,

∆min and σ2
Λ, which we specify next. Let p1 = 1

2 and α= 0:05 and assume a common variance
σ2 =σ2

1 =σ2
2.

We use the adaptive design template n.1b/ defined in Section 3.2 and depicted in Fig. 1(b); the
corresponding sample sizes are functions of n, i.e. the total sample size under a1 =2 (where both
subpopulations are enrolled during stage 2). This adaptive design template allows enrichment
of subpopulation 1 (a1 = 3) or subpopulation 2 (a1 = 4), in which case the total enrolled from
the enriched subpopulation is n. We next describe the intuition for this choice of sample sizes.
The power conditions 1–3 in Section 3.5.1 require the same power 1 − β to reject H0C when
∆1 =∆2 =∆min as to reject H0s when ∆s =∆min and ∆s′ =0, for s, s′ ∈{1, 2}, s (= s′. We chose
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the stage 2 sample sizes in n.1b/ so that the information at the end of stage 2 for ∆C under a1 =2
equals the information for ∆s under a1 =2 + s, for each s∈{1, 2}, i.e. it is possible to generate
the same information for the parameter of interest in each of conditions 1–3 by a corresponding
choice for stage 2 enrolment.

For each of examples 1 and 2, the optimal solution to the adaptive design optimization
problem depends on the inputs .σ2, ∆min, n/ only through the non-centrality parameter ζ =
.n=8/1=2∆min=σ, as proved in section E of the on-line supplementary material. We set ζ =
21=2Φ−1.1 − 0:05/≈ 2:33, for Φ the standard normal cumulative distribution function; for any
σ2 > 0 and ∆min > 0, this is equivalent to setting n=16σ2{Φ−1.1−0:05/}2.∆min/−2:

We use n defined above as a benchmark sample size, since it is the smallest n such that, in
a standard (non-adaptive) design enrolling n=2 from each subpopulation, the uniformly most
powerful test of H0C at level α= 0:05 has power 0:95 at the alternative ∆= .∆min, ∆min/; this
power constraint is identical to condition 3 in Section 3.5.1 at 1 − β = 0:95. In contrast, our
optimization problem has the more stringent set of power conditions 1–3, which involve null
hypotheses for subpopulations as well as the combined population. We therefore expect our
optimization problems to be solvable only if we set the required power in conditions 1–3 to
be lower than 1 − β = 0:95. Below, we determine the greatest value of 1 − β for which our
optimization problems can be solved; for this and smaller values of 1 − β, we determine the
minimum expected sample size for examples 1 and 2 respectively.

We next set the constant cΛ, which is used to define the covariance matrix cΛ.∆min/2I2 in
Λmix. As a benchmark, compare the distribution of Z.1/ under

(a) a point mass at ∆= .∆min, ∆min/ versus
(b) a bivariate normal distribution on ∆ centred at .∆min, ∆min/ with covariance matrix

cΛ.∆min/2I2.

In scenario (a), Z.1/ is bivariate normal with covariance matrix I2. In scenario (b), Z.1/ is bivariate
normal with the same mean as in (a) and with covariance matrix .1+cΛζ2=2/I2. We set cΛ =ζ−2

so that the latter covariance is 50% more than the former.

5.2. Implementation, discretization and iterative selection of G
To solve each sparse linear program, we used the IBM CPLEX solver (https://www.ibm.
com/support/knowledgecenter/SSSA5P 12.7.0/ilog.odms.studio.help/pdf/
usrcplex.pdf), version 12.4. To take advantage of the sparse structure of the problem, we
used an interior point algorithm. To achieve high precision, we set the tolerance of the relative
duality gap to 10−10.

We describe the discretization and two-step approach that we used to solve the discretized
problem corresponding to example 2; the problem in example 1 had a similar structure and was
solved analogously. In step 1, the sparse linear program was constructed by using the following
discretization: S1 consisted of length 0:5 squares covering the region [−3, 3] × [−3, 3] and unit
squares covering [−6, 6]× [−6, 6]\ .[−3, 3]× [−3, 3]/; for each possible action a1, the multiple-
testing procedure partition S2 consisted of unit squares covering [−6, 7]× [−6, 7] except that for
a1 (= 1 (i.e. a1 (= STOP) we replaced all squares in the lower left quadrant [−6, 0] × [−6, 0] by a
single large square. Our use of different state spaces S2 depending on the action a1 involves a
minor extension of our general method from Section 2, which we present in section D of the
on-line supplementary material.

We define G to be the 541 type I error constraints corresponding to the pairs of non-
centrality parameters {.n=8/1=2σ−1}.∆1, ∆2/ in the set {.x, y/ : [x = 0, y ∈ {−9, − 8:9, : : : , 9}],
or [x ∈ {−9, − 8:9, : : : , 9}, y = 0] or [x ∈ {−9, − 8:9, : : : , 9}, y =−x]}, which are grids along the



Optimal, Two Stage, Adaptive Enrichment Designs 763

boundaries of the null spaces for H01, H02 and H0C respectively. This resulted in w ≈ 106 vari-
ables in v and approximately 105 equality constraints in A.2/. We call the solution to the above
sparse linear program the ‘step 1’ solution.

In step 2, we used features of the step 1 solution to refine the choice of G and the discretization
in S1 and S2; we then solved the resulting discretized problem and iterated this refinement
process. The refinement of G involved using the dual of the step 1 solution to identify the active
type I error constraints approximately; we then augmented G by points ∆ concentrated in small
neighbourhoods of these active constraints. Further augmentation of G was done as described
in section B.1 of the on-line supplementary material. A finer discretization was obtained by
iteratively breaking some rectangles in S1 into smaller rectangles; this was done for rectangles
near the decision region boundary of the current solution, i.e. rectangles for which an adjacent
rectangle made a different decision for stage 2 enrolment. To offset the computational cost of
adding such rectangles, we merged rectangles that were far from the boundary. A similar process
was applied to refine S2. We incorporated additional constraints as described in section G of
the supplementary materials to produce an easier-to-visualize solution, as long as this did not
affect the value of the optimization problem.

The resulting solution after several iterations of step 2 is denoted by vopt. This solution had
97% of its components equal to 0 or 1, with the remaining components in .0, 1/. This means that
the corresponding adaptive enrichment design is deterministic (non-randomized) except on a
small fraction of rectangles; for each such rectangle, we rounded the corresponding fractional
values. Each enrolment decision was set to the action a1 in A1 with the largest corresponding
probability. Each null hypothesis is rejected if the corresponding probability is above a threshold
that depends on the end of stage 1 decision; the threshold is 0.5 when a1 ∈{1, 2}and 0:9 otherwise.
We picked these thresholds by examining the fractional parts of the solution, which occurred on
the boundaries of decision and rejection regions, and then used trial and error to select thresholds
that maintain strong control of the familywise type I error rate while changing expected sample
size and power at conditions 1–3 in Section 3.5.1 by a negligible amount (each by less than 1%).
The resulting policy .πopt

1 , πopt
2 / is depicted in Fig. 2. Strong control of the familywise type I

error rate, i.e. that constraints (13) hold for all ∆∈R2, was verified as described in section B of
the supplementary materials.

Hampson and Jennison (2015) solved a two-stage optimization problem related to ours,
but involving multiple treatments instead of multiple populations. If applied to our example
problems and class of designs, their method would not work since it requires the solution to the
optimization problem that constrains type I error only at the global null hypothesis ∆= .0, 0/
to control the familywise type I error constraints at all other values of ∆ also; the approach
of Wason and Jaki (2012) has a similar requirement. This requirement does not hold for our
example problems. For example, when we solve our optimization problem in example 2 over
ΠDISC but replacing the set of familywise type I error constraints by the single constraint at the
global null hypothesis, the resulting optimal design has familywise type I error 0.953 at non-
centrality parameters .0, 3:57/ and .3:57, 0/; these correspond to one subpopulation benefiting
from treatment and no effect for the other subpopulation. This shows the need for including
more type I error constraints than the global null hypothesis.

5.3. Optimal solution for example 2
We present the optimal adaptive enrichment design .πopt

1 , πopt
2 / ∈ ΠDISC for the problem in

example 2, which was computed by using sparse linear programming as described above; the
solution to example 1 was qualitatively similar. We separately solved each sparse linear program
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Fig. 2. Optimal design .πopt
1 ,πopt

2 / for the discretized problem in example 2 at 1 !β D 0.82 (stage 2 enrol-
ment choices ‘STOP’, ‘ALL’, ‘ONLY 1’ and ‘ONLY 2’ correspond to πopt

1 D 1, 2, 3, 4): (a) decision rule πopt
1 for

stage 2 enrolment (z-statistics correspond to Z.1/); (b)–(e) rejection regions of πopt
2 after each decision πopt

1
(z-statistics correspond to Z.F/); (b) πopt

1 "STOP; (c) πopt
1 "ALL; (d) πopt

1 "ONLY 1; (e) πopt
1 "ONLY 2
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at every power constraint threshold β ∈ {0:01, : : : , 0:99}, where 1 − β represents the required
power in each power constraint 1–3 in Section 3.5.1. Larger values of 1 − β correspond to
stricter constraints. Our results show that the problems are feasible, i.e. the type I error and
power constraints 1–3 can be simultaneously satisfied, if and only if 1−β < 0:83.

For the case of 1−β =0:82, Fig. 2 depicts the optimal solution .πopt
1 , πopt

2 /∈ΠDISC to example
2. We first focus on Fig. 2(a), which represents the decision rule πopt

1 . The different regions
correspond to the four possible stage 2 enrolment choices from the adaptive design template
n.1b/. The top right and bottom left regions (in red) of Fig. 2(a) correspond to stopping the trial
after stage 1 (i.e. πopt

1 =1, marked ‘STOP’). Intuitively, the top right region represents stopping
early for efficacy (since, as described below, at least one null hypothesis is rejected whenever
the first-stage statistic Z.1/ is in this region), whereas the bottom left region represents stopping
early for futility (since no null hypothesis is rejected if Z.1/ is in this region). The black region
marked ‘ALL’ represents the choice πopt

1 =2 to continue enrolment from both subpopulations in
stage 2. Intuitively, this occurs when the stage 1 z-statistics for each subpopulation both indicate
a non-negligible, positive signal that is not sufficiently strong to allow outright rejection of any
null hypothesis; this motivates the investment of stage 2 enrolment from both subpopulations,
to determine which (if any) null hypotheses to reject. The green and blue regions marked ‘ONLY
1’ (representing πopt

1 =3) and ‘ONLY 2’ (representing πopt
1 =4) respectively represent choosing

stage 2 enrolment to be only from the corresponding subpopulation.
Figs 2(b)–2(e) represent the multiple-testing procedure πopt

2 that is used after each of the four
enrolment choices. For each possible value of the enrolment decision πopt

1 , the corresponding
plot shows the mapping from the final z-statistics Z.F/ to the set of null hypotheses rejected.
Figs 2(b), 2(c), 2(d) and 2(e) correspond to πopt

1 = 1, 2, 3, 4 respectively. Each plot has a white
region where nothing is rejected (marked ‘NONE’) and coloured regions where specified null
hypotheses are rejected.

The plot of πopt
2 for πopt

1 ≡ STOP in Fig. 2(b) has coloured regions whose union is approxi-
mately identical to the red ‘STOP’ region in the upper right of Fig. 2(a). This means that, when
the first-stage z-statistics are in the red ‘STOP’ region in the upper right of Fig. 2(a), at least
one null hypothesis will be rejected by πopt

2 (since, when πopt
1 ≡ STOP, the first-stage z-statistics

Z.1/ are identical to the final z-statistics Z.F/). Intuitively, this corresponds to stopping early
for efficacy. The match between the aforementioned regions is only approximate since a coarser
level of discretization was used for πopt

2 compared with πopt
1 : a choice we made to reduce the

computational requirements for solving the optimization problem.
Next, consider the plot of πopt

2 for πopt
1 ≡ ALL in Fig. 2(c). This is qualitatively similar to

the plot of πopt
2 for πopt

1 ≡ STOP, except for two important differences. First, the rejection
thresholds are generally lower (i.e. the rejection regions are larger), which makes sense since
the final z-statistics after the enrolment decision πopt

1 ≡ ALL incorporate twice as much data
as under πopt

1 ≡ STOP and therefore more information is available. This property is analo-
gous to what occurs in standard group sequential designs, e.g. using efficacy stopping bound-
aries of O’Brien and Fleming (1979), which decrease (on the z-statistic scale) at each stage
because more information is available. The second difference is that there are white areas
to the left of the H02-region and under the H01-region in the plot of πopt

2 for πopt
1 ≡ ALL

where we might have expected red and black (i.e. extensions of these regions) respectively.
We conjecture that this is due to the very small joint probability of πopt

1 .Z.1// ≡ ALL and
πopt

2 being in these white areas; these probabilities would not contribute enough to the ob-
jective function or constraints to lead to added value in rejecting null hypotheses in these
areas, up to the precision that is used in solving the sparse linear program. Asymmetries in
the plots, which occur at some rectangles on or near the boundaries of different regions, may
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have a similar explanation; some arise from minor differences that are accentuated because of
rounding.

Consider the plot of πopt
2 for πopt

1 ≡ ONLY 1 in Fig. 2(d). No null hypothesis is rejected when
Z

.F/
2 > 1:25. In fact, it is not possible to have both πopt

1 .Z.1//≡ ONLY 1 and Z
.F/
2 > 1:25. This

is a consequence of the green ‘ONLY 1’ region in Fig. 2(a) being below the horizontal line
Z

.1/
2 = 1:25, as explained next. Since the enrolment decision πopt

1 ≡ ONLY 1 occurs precisely
when Z.1/ is in the green ‘ONLY 1’ region in Fig. 2(a), and since Z

.1/
2 =Z

.F/
2 whenever πopt

1 ≡
ONLY 1 (because no new subpopulation 2 data are collected in stage 2), it is not possible to
have πopt

1 .Z.1//≡ ONLY 1 and Z
.F/
2 > 1:25. The plot of πopt

2 for πopt
1 ≡ ONLY 2 in Fig. 2(e) is

(approximately) a symmetric version of the plot for πopt
1 ≡ ONLY 1.

The decision rule πopt
1 in Fig. 2(a) continues to enrol subpopulation 1 when Z.1/ = .2:9, 0/

but stops the trial when Z.1/ = .2:9, −3/. We conjecture that, because of the power constraint
condition 1 in Section 3.5.1 and the prior distribution, there is a greater incentive to enrol
subpopulation 1 in stage 2 in the former case. A related phenomenon is that in Fig. 2(b) (πopt

1 ≡
STOP), H01 is rejected when Z.F/ = .2:9, −3/ but nothing is rejected if the second component is
increased to 0. Rejecting nothing in the latter case is a result of the shape of Fig. 2(a), which makes
it impossible to have πopt

1 ≡ STOP and Z.F/ = .2:9, 0/ (since this would require Z.1/ = .2:9, 0/
but then πopt

1 would continue enrolling from subpopulation 1).

5.4. Comparison with some alternative designs
For each problem in Section 5.1, we compare the performance of optimal designs from different
classes. Some of these classes use much simpler decision rules and/or multiple-testing procedures
than ΠDISC. All designs below (except in the final two paragraphs of this subsection) use the
same template from Section 5.1 i.e. n.1b/ with n defined in Section 5.1.

Let πSTD
1 ∈ ΠDISC

1 denote the decision rule corresponding to the standard (non-adaptive)
design that always enrols from both subpopulations in stage 2, i.e. πSTD

1 =2 for all values of the
stage 1 statistics. This is equivalent to a design with no interim analysis that enrols n participants,
with psn from each subpopulation (where each ps = 1

2 in our case). Define the class of standard
(non-adaptive) designs to be ΠSTD ={.πSTD

1 , π2/ :π2 ∈ΠDISC
2 }.

We next define a class ΠCOMB of adaptive enrichment designs based on the p-value com-
bination approach of Bauer (1989), Bauer and Köhne (1994) and Lehmacher and Wassmer
(1999), with the closed testing principle of Marcus et al. (1976). This approach has been used
to construct adaptive enrichment designs by, for example, Bretz et al. (2006), Schmidli et al.
(2006), Jennison and Turnbull (2007), Brannath et al. (2009), Jenkins et al. (2011) and Boessen
et al. (2013). This general approach was used in the TAPPAS trial as well. Since it is an open
problem how to optimize over the class of all possible designs that can be constructed by us-
ing this approach, we instead define a low dimensional, simple class ΠCOMB of such designs.
The full description of ΠCOMB is given in section F of the on-line supplementary material, but
we summarize the key features. The multiple-testing procedure, denoted πpv

2 , uses the Dun-
nett intersection test (Dunnett, 1955; Jennison and Turnbull, 2007), with p-values combined
across stages by using the weighted inverse normal rule with equal weights for each stage. We
slightly modified this approach to incorporate early stopping for efficacy after stage 1 as in,
for example, Jennison and Turnbull (2007), using the equivalent of the boundaries of O’Brien
and Fleming (1979) for the stage 1 p-values. We consider a class of decision rules that in-
volve two thresholds tc and ti. Define the decision rule π.tc, ti/

1 .Z.1// as follows: if the multiple-
testing procedure πpv

2 rejects any null hypothesis at the end of stage 1, stop the entire trial;
otherwise, if the combined population statistic .Z

.1/
1 + Z

.1/
2 /=

√
2 > tc, enrol both subpopula-

tions in stage 2; otherwise, enrol in stage 2 from each subpopulation s for which Z
.1/
s > ti. Let
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Fig. 3. Enrolment decision rule π
.tc,ti/
1 for .tc, ti/ D .1.6, 0.6/, which corresponds to the optimal design

over ΠCOMB for the problem in example 2 under the power constraints 1–3 at 1!β D0.74 (the z-statistics in
the plot correspond to first-stage statistics Z.1/; stage 2 enrolment choices ‘STOP’, ‘ALL’, ‘ONLY 1’ and ‘ONLY
2’ correspond to decisions 1, 2, 3 and 4 respectively, from the adaptive design template n.1b/): , stopping
the trial at the end of stage 1

ΠCOMB ={.π.tc,ti/
1 , πpv

2 / : .tc, ti/∈ .−3, −2:9, : : : , 3/× .−3, −2:9, : : : , 3/}. An example of the de-
cision rule π.tc,ti/

1 is depicted in Fig. 3. Each design in ΠCOMB strongly controls the familywise
type I error rate. This holds even if the end of stage 1 decision rule is not followed, which is a
general property of using the p-value combination approach for multiple testing; this property
does not generally hold for designs in ΠDISC.

A referee suggested a hybrid class of designs that incorporates features from both ΠDISC and
ΠCOMB. Specifically, it uses the end of stage 1 decision rules ΠDISC

1 , but instead of allowing for
optimization of the multiple-testing procedure it uses the p-value combination test πpv

2 at the
end of stage 2. Define the hybrid class ΠHYBRID ={.π1, πpv

2 / :π1 ∈ΠDISC
1 }. Each design in this

class maintains the advantageous feature of the p-value combination test that the familywise
type I error rate is strongly controlled at level 0:05 even if the end of stage 1 decision rule is not
followed.

We next compare the expected sample size of the optimal design in each of the classes ΠDISC,
ΠSTD, ΠCOMB and ΠHYBRID as we vary the power constraint 1 −β. Let ESS denote the value
of the objective function (12), which represents the expected sample size with respect to the
corresponding prior. For each of examples 1 and 2 and each value of 1 −β in the top row of
Table 1, we solved the adaptive design optimization problem from Section 5.1 over each class of
designs ΠDISC, ΠSTD, ΠCOMB and ΠHYBRID. For all except ΠCOMB, we used the sparse linear
programming method from Section 4.4. For ΠCOMB, we did an exhaustive search over the set
of thresholds .tc, ti/ given above.

We first compare the optimal designs over ΠDISC versus ΠSTD. The problems in examples 1
and 2 are infeasible for the class ΠSTD whenever the power constraint 1−β > 0:65, i.e. it is not
possible to satisfy simultaneously the type I error constraints and power constraint conditions
1–3 in Section 3.5.1; in contrast, the problem is feasible for the class ΠDISC up to power thresh-
old 1 − β = 0:82. We similarly considered the above optimization problems over the class of
standard designs with total sample size 5n=4, i.e. the maximum total sample size that can occur
in any adaptive enrichment design in ΠDISC (which uses adaptive design template n.1b/); these
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Table 1. Performance comparison of optimal adaptive designs from different classes, for examples 1
and 2†

Results for the following power constraints 1−β:

58% 62% 66% 70% 74% 78% 82%

Example 1
Minimum ESS over ΠDISC 0.65n 0.69n 0.74n 0.79n 0:85n 0:92n 1:04n
Minimum ESS over ΠHYBRID 0.74n 0.78n 0.82n 0.86n 0.92n 1.07n ×
Minimum ESS over ΠCOMB 0.86n 0.89n 0.92n 0:97n 1:01n × ×

Example 2
Minimum ESS over ΠDISC 0.64n 0.67n 0.72n 0.76n 0.81n 0.88n 1.00n
Minimum ESS over ΠHYBRID 0.73n 0.76n 0.79n 0.83n 0.88n 1.04n ×
Minimum ESS over ΠCOMB 0.89n 0.92n 0.95n 0:98n 1:01n × ×

Example 2, for design classes with 10 end of stage 1 enrolment options
Minimum ESS over ΠDISC,10 0.59n 0.63n 0.67n 0.72n 0.78n 0.86n 0.98n
Minimum ESS over ΠDISC,10,FS 0.55n 0.60n 0.66n 0.72n 0:78n 0:86n 0:95n
Total stage 1 sample size for optimal design in ΠDISC,10,FS 0:25n 0:31n 0:38n 0:44n 0:50n 0:50n 0:56n

†The top two sections compare the three classes of adaptive designs ΠDISC,ΠHYBRID and ΠCOMB; the bottom
section compares the augmented design classes ΠDISC,10 and ΠDISC,10,FS only for example 2. The symbol ‘×’
indicates that no design in the class satisfies the type I error constraints and power constraints 1–3 in Section
3.5.1 at the required power threshold 1−β.

problems are infeasible for any such standard design when 1 −β > 0:73: This shows that there
is a substantial advantage in using adaptive enrichment designs versus the standard designs for
our problems.

The top two sections of Table 1 give the optimal ESS for the adaptive design optimization
problems in examples 1 and 2, comparing the classes of adaptive designs ΠDISC, ΠHYBRID and
ΠCOMB. At all values of 1−β that we considered, the minimum value of ESS was substantially
lower for the optimal design over ΠDISC compared with the optimal design over ΠCOMB. For
example, in example 1 at power constraint 1 −β = 0:74, the value of ESS for the latter is 20%
larger than for the former. The optimization problems are infeasible for the p-value combination
designs ΠCOMB at 1 −β " 0:78, i.e. it is not possible to satisfy simultaneously the type I error
constraints and power constraints 1–3; in contrast, the problem is feasible for the class ΠDISC

up to power threshold 1−β =0:82. One reason that the designs ΠCOMB achieve lower power is
that their maximum type I error over ∆∈ R2 is less than 0:05; for example, it is 0.039 for the
optimal such design for example 2 at 1−β =0:74.

We next examine optimal designs from ΠHYBRID. Each design in this class maintains the
advantageous feature of the p-value combination test that the familywise type I error rate is
strongly controlled at level 0:05, even if the end of stage 1 decision rule is not followed. This
added flexibility comes at the cost of larger expected sample size compared with the optimal
design in ΠDISC. Consider examples 1 and 2 and each power threshold between 58% and 74%.
The expected sample size of the optimal design in ΠHYBRID is roughly halfway between that
of ΠDISC and ΠCOMB (being a little closer to the former than to the latter). This shows that
just over half of the improvement in expected sample size comparing ΠDISC with ΠCOMB can
be attributed to the improved end of stage 1 decision rule in the former. The optimal design in
ΠHYBRID can achieve the 78% power threshold (like ΠDISC but not ΠCOMB) but not the 82%
power threshold (only achieved by ΠDISC).
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We next evaluate the effect of adding more stage 2 enrolment options to the template n.1b/

in ΠDISC. Define the class ΠDISC,10 to be ΠDISC except with the following 10 options for stage
2 enrolment: (0,0), (1,1), (2,2), (3,3), (0,1), (0,2), (0,3), (1,0), (2,0) and (3,0), where each pair
.x, y/ represents stage 2 sample sizes .n21, n22/ = .xn=4, yn=4/; for example, (3,0) represents
3n=4 enrolled from subpopulation 1 and none from subpopulation 2 in stage 2. The pairs (0,0),
(1,1), (3,0) and (0,3) represent the original four enrolment choices shown in Figs 1(b)–1(e). The
other choices allow enrolment of both subpopulations or a single subpopulation at different
sample sizes. The expected samples sizes of the optimal designs over ΠDISC,10 for example 2
are shown in the bottom third of Table 1. Compared with ΠDISC, the expected sample sizes are
somewhat lower, with the relative difference decreasing from 8% to 2% as the power constraint
is increased from 58% to 82%.

We next explored the effect of the first-stage sample sizes. We modified the class ΠDISC,10 by
setting .n11, n12/ to be the original .n=4, n=4/ multiplied by each of the following nine scaling
factors: 0.5, 0.625, 0.75, 0.875, 1, 1.125, 1.25, 1.375 and 1.5. Let ΠDISC,10,FS denote the union
of the resulting nine classes of designs (each corresponding to ΠDISC,10 but with first-stage sam-
ple size scaled by one of the above factors). To optimize over this larger class ΠDISC,10,FS, we
constructed nine sparse linear programs, solved them separately and selected the solution with
the smallest expected sample size. The results, shown in Table 1, indicate only small improve-
ments compared with using the original first-stage sample sizes. The first-stage total sample size
n11 +n12 for the optimal design in ΠDISC,10,FS is shown in the last row of Table 1; this should be
compared with the original, total first-stage sample size 0:5n. Unsurprisingly, smaller first-stage
sample sizes are optimal for less stringent power constraints.

6. Discussion

Our general approach from Section 2 outputs a stochastic policy. In our applications, most
components of the optimal policy were deterministic ({0, 1} valued) and the remaining fractional
components were rounded, leading to a negligible effect on expected sample size and type I–II
error. This is not guaranteed to occur in general.

We solved problems that are analogous to examples 1 and 2, except involving only the
null hypotheses H01 and H0C and allowing enrichment of subpopulation 1 only. The reduc-
tions in expected sample size comparing the optimal designs from ΠDISC to ΠCOMB were
roughly similar in magnitude to those for the original problems involving the three null hy-
potheses H01, H02 and H0C. Full details are given in section H of the on-line supplementary
material.

The optimal adaptive enrichment designs from ΠDISC that were generated by our approach
are probably too complex to be directly used in practice. However, these optimal designs could
be used as a benchmark to determine how much can be gained, in principle, from adaptive
enrichment for a given adaptive design template n. The class of hybrid designs ΠHYBRID may be
a useful efficiency or flexibility compromise, because they achieve some of the expected sample
size reductions of ΠDISC while retaining strong control of the familywise type I error rate even
if the end of stage 1 decision rule is not followed. Alternatively, when the added value of the
optimal design in ΠDISC is substantial, its decision rule could be approximated by replacing the
discretized regions in Fig. 2 by simpler curves.

We assumed that subpopulation proportions are known in advance. To deal with uncertainty
in these proportions, one could build in constraints on power and type I error that need to
hold over a range of these values; this would define a new optimization problem that could be
approximated by our approach, e.g. by using a grid of values of the subpopulation proportions
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over a prespecified range. This is an area for future research. Another future research direction is
to optimize over different prior distributions by using priors elicited from subject matter experts,
to investigate sensitivity to this choice.

A limitation of our approach, as stated in Section 1, is that we assume that each participant’s
outcome is measured relatively soon after her or his enrolment. In contrast, the TAPPAS trial
involved survival outcomes, which lead to correlations between statistics computed by using
stage 1 data and statistics computed by using stage 2 data; this is because some participants will
contribute information to both stages. Our approach can be modified to handle such correla-
tions by incorporating them into the joint distribution of statistics in section A of the on-line
supplementary material; there, we describe how the only change in implementing our method
would be to include these correlations as inputs in each evaluation of the multivariate normal
distribution function.

The main feature that made our adaptive design problem challenging was the multiple con-
straints (on power and type I error), which cannot generally be handled by backward induction
methods. This situation arises more generally when it is desired to optimize average case per-
formance under constraints on worst-case performance (or when the goal is simply to minimize
the maximum expected loss). Our method can incorporate such constraints, and the objective
function can be modified to represent minimax problems. This may be useful in problems where
there is substantial a priori uncertainty about parameter values and the goal is to ensure good
performance over a range of such values.

Our general method in Section 2 has potential applications to other two-stage experimental
design problems where statistics at each stage have one or two discrete components or real-
valued components that can be discretized by using the approach in Section 4.2. We briefly
discuss potential applications to two-stage, non-linear regression problems from Abdelbasit
and Plackett (1983), section 4, and Lane et al. (2014), and to the group screening problem of
Lewis and Dean (2001), in section J of the on-line supplementary material.

We created an R package implementing our method, which is described in section I of the
supplementary material.

Acknowledgements

This work was funded by the Patient-Centered Outcomes Research Institute (grant ME-1306-
03198) and the US Food and Drug Administration (grant HHSF223201400113C); we used IBM
CPLEX software that was generously made available through the IBM academic initiative. This
publication’s contents are solely the responsibility of the authors and do not represent the views
of these organizations.

Han Liu was supported by National Science Foundation grants BIGDATA 1840866,
CAREER 1841569, TRIPODS 1740735 and grants DARPA-PA-18-02-09-QED-RML-FP-003,
along with an Alfred P. Sloan Fellowship and a PECASE award.

Ethan X. Fang was supported by National Science Foundation grants DMS-1820702 and
DMS-1953196.

References
Abdelbasit, K. M. and Plackett, R. L. (1983) Experimental design for binary data. J. Am. Statist. Ass., 78, 90–98.
Albers, G. W., Lansberg, M. G., Kemp, S., Tsai, J. P., Lavori, P., Christensen, S., Mlynash, M., Kim, S., Hamilton,

S., Yeatts, S. D., Palesch, Y., Bammer, R., Broderick, J. and Marks, M. P. (2017) A multicenter randomized
controlled trial of endovascular therapy following imaging evaluation for ischemic stroke (defuse 3). Int. J.
Stroke, 12, 896–905.



Optimal, Two Stage, Adaptive Enrichment Designs 771

Basu, D. (1978) On partial sufficiency: a review. J. Statist. Planng Inf., 2, 1–13.
Bauer, P. (1989) Multistage testing with adaptive designs (with discussion). Biometr. Inform. Med. Biol., 20, 130–

148.
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