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Abstract

Instance generation creates representative examples to interpret a learning model, as in regression and
classification. For example, representative sentences of a topic of interest describe the topic specifically for
sentence categorization. In such a situation, a large number of unlabeled observations may be available in
addition to labeled data, for example, many unclassified text corpora (unlabeled instances) are available with
only a few classified sentences (labeled instances). In this article, we introduce a novel generative method,
called a coupled generator, producing instances given a specific learning outcome, based on indirect and direct
generators. The indirect generator uses the inverse principle to yield the corresponding inverse probability,
enabling to generate instances by leveraging an unlabeled data. The direct generator learns the distribution
of an instance given its learning outcome. Then, the coupled generator seeks the best one from the indirect
and direct generators, which is designed to enjoy the benefits of both and deliver higher generation accuracy.
For sentence generation given a topic, we develop an embedding-based regression/classification in conjuncture
with an unconditional recurrent neural network for the indirect generator, whereas a conditional recurrent
neural network is natural for the corresponding direct generator. Moreover, we derive finite-sample generation
error bounds for the indirect and direct generators to reveal the generative aspects of both methods thus
explaining the benefits of the coupled generator. Finally, we apply the proposed methods to a real benchmark
of abstract classification and demonstrate that the coupled generator composes reasonably good sentences
from a dictionary to describe a specific topic of interest.
Keywords: Classification, Natural language processing, Numerical embeddings, Semisupervised generation,

Unstructured data.

1 Introduction

Generating an essay or a text for given structured information is an important Artificial
Intelligence (AI) problem, which automatically imitates a certain style of writing. Whereas

solving this AI problem is rather challenging, we tackle its simpler version in this article,
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which we call instance (example) generation, that is, generation of representative instances
given a specific outcome to describe and interpret the corresponding learning model, for
instance, classification and regression.

The use of black-box predictive models such as deep neural networks has delivered a high
empirical learning accuracy in many real-life applications [14], 15]. Yet, it is difficult to make
a sense of such a learning model. From the generative perspective, instance generation can
describe the relationship between an instance and an outcome retrospectively. Its applica-
tions include a topic description of sentence categorization, abstractive text summarization
[12], and image captioning [25], where generated sentences render descriptive examples of
topics, texts, and images. In such a situation, sentence generation allows us to compose a
novel essay and image captioning when the structured information is supplied. For example,
the UCT abstract categorization benchmarKT| consists of sentences from abstracts of articles,
which are labeled with one of five topic categories. The goal here is learning a sentence gener-
ation mechanism to compose a novel abstract given a specific topic, in which the generation
performance is measured by the cross-entropy error based on a test sample.

In the literature, instance generation, despite its vast important applications in Al, re-
mains largely unexplored, although some approaches have been suggested for sentence gener-
ation. For example, a computational linguistics approach represents words/phrases as trees
to model linguistic dependencies [20], a learning approach uses a large text corpus to learn a
sentence’s structure without any access to linguistic annotation [5]. In [20], a sentence gen-
erating model is proposed to produce a document by sampling the latent topic of a sentence
and then words of the sentence using a recurrent neural network (RNN). In [37, [I7], image
captioning links the image content to a language model through an interplay between a con-
volution neural network (CNN) and an RNN. Yet, there is a paucity of works on instance

generation given structured information, and incorporating both labeled and unlabeled data.
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One of the primary characteristics of topic-instance data is that the amount of unlabeled
data may be significantly larger than that of labeled data. For example, in sentence genera-
tion, uncategorized sentences are about ten times more than categorized ones. This is in a
parallel situation of semisupervised learning with a different focus on leveraging unlabeled
data to enhance the predictive accuracy of supervised learning [42] 18], which is in contrast
to our generation objective given a learning outcome.

Our main contribution lies in the development of a new semisupervised generation frame-
work for producing instances given an outcome. On this ground, we propose three generative
methods—indirect, direct, and coupled generators. The indirect generator uses the principle
of inverse learning to estimate the conditional probability distribution of an outcome given
an instance, enabling to leverage unlabeled data, if available. On the other hand, the direct
generator estimates the corresponding conditional probability of an instance given an out-
come in a supervised manner. Then, the coupled generator is designed to enjoy the benefits
of both generations. The proposed generators are illustrated in sentence generation, where
we generate a sentence through sequential next-word-prediction. Specifically, we develop
regularized embedding-based regression/classification in conjuncture with an unconditional
RNN for the indirect generator, whereas we use a conditional RNN for the direct generator.

To shed light on the generative performance of the three generators, we derive finite-
sample generation error bounds for each method. Interestingly, the generation error of the
indirect generator is governed by the complexity of the parameter space of the conditional
densities of an outcome given an instance and that of marginal densities. Similarly, that of the
direct generator is determined by the conditional densities of an instance given an outcome.
As a result, the indirect and direct generators have their own advantages with respect to
generation with the unlabeled data is large, and importantly the coupled generator enjoys
the benefits of both in terms of generation accuracy. This, together with a real benchmark

of sentence categorization, demonstrates the utility of the coupled generation for composing



reasonably good sentences to describe a specific topic. Numerically, the proposed method
outperforms a separate RNN method and the indirect generator can leverage additional
unlabeled data for further enhancing the performance.

This paper is organized as follows. Section 2 introduces the framework of coupled gener-
ation based on indirect and direct generations. Section 3 develops a theory of the generation
performance of the proposed methods. Section 4 is devoted to the development of a novel
sentence generative method given a topic of interest through sequential next-word prediction.
Section 5 investigates the operating characteristics of the coupled generator and compares
it with the direct and indirect generators as well as one competitor. The Appendix contains

technical proofs.

2 Methods

Consider a generative model in which the goal is to generate an instance X given an outcome
Y, where X and Y represent instance and response variables, which can be numerical or
unstructured such as texts and documents that cannot be expressed in a predefined manner.
In this article, we focus on instance generation under a generative model, based on the
conditional distribution px of X given an outcome of Y. As an example, in sentence
generation [26], instance generation produces representative examples of X given a specific
topic of Y, where X and Y represent a sentence and its associated topic.

For instance generation, a labeled training sample (z*,y%)", is available as well as an

n
=D

instance-only sample (x7) whose sample size n may greatly exceed or smaller than the
sample size n. In our context, we leverage the unlabeled sample to enhance the generative
accuracy of instance generation.

Indirect generator. An indirect generator produces instances using an estimate of

px|y through the inverse relation : an estimate of py x based on (z’,y")", in and the



marginal density px based on combined data ()}, and (2?)}_, in (3). That is,

Pyix (y|T)px (x) (1)

Indirect: 7%, (x|y) = Y| x ’
o Joex Prix(y|®)px (z)dz

py\x = argmin —n 1210g pY\X(y |* )) + X Jp(Pyix ), (2)

pY\XGFb i=1

Dx = argmin —(n + 1)~ (Zlog px + Zlog px iB]))) + A (Px), (3)

where pyx and px in (1)) are regularized maximum likelihood estimates of py x and px, Jp
and J,, are regularizers, for example, Li- or Ls-regularization in a neural network model,
Ay > 0 and A, > 0 are tuning parameters controlling the weights of regularization, and
Fp in (2) and F,, in (3)) are parameter spaces of py x and px, respectively. Note that
Jocx Dxiv (x|y)Px (x)de in (1) normalizes p% , to become a probability density, although
normalization is unnecessary when only some aspects of the distribution such as the modes
or percentiles are of concern, as opposed to the distribution itself. Importantly, the indi-

rect generator leverages instance-only (unlabeled) data (x7)?_;, but any potential bias in

Jj=D
estimation of px based on (x’ )?:1 could translate into that of pyx.
Direct generator. A direct generator uses pxy to generate instances, estimated by

minimizing the negative regularized conditional likelihood of X given Y based on (x, y*)1;:

Direct: ﬁx‘y(ﬂy) = Dxiv(x|y),

pX\Y = argmin —n" ZIOg pX\Y( l‘?f)) +)\fJf(pX\Y)7 (4)

Px|y €Ff i—1

where F; is a parameter space of px|y, J; is a regularizer, and A\¢ > 0 is a tuning parameter
controlling the weight of regularization.
It appears that can be extended to leverage additional unlabeled data through the

conditional likelihood of pxy and a mixture relation fy Pxy (Z|Y)py (y)dy = px (). Unfor-



tunately, however, the mixture approach may suffer from an asymptotic bias when additional
unlabeled data is included, thus degrading the estimation performance of pxy [8, @, B39].
This is because the aforementioned mixture relation may not hold when F; is misspecified,
and moreover its impact could be minimal even it holds, especially when the support of
Y is large. As suggested by the theorem in Section 4 [39], the supervised and semisu-
pervised maximum likelihood estimates may converge to different values, and thus more
unlabeled data produces a larger estimation bias as measured by the Kullback-Leibler di-
vergence, when the model is misspecified in that p}. does not belong to the parameter space
Fi = {px(x) = fy Px v (Z|Y)py (Y)dy; px )y € Ft} or the mixture relation is not satisfied. Fur-
thermore, as demonstrated by Figures 1 and 2 of [8] and Figure 4.1 of [7], empirical studies
indicate that an EM algorithm based on both labeled and unlabeled data tends to degrade
performance solely based on the labeled data when the size of labeled data exceeds 30 in
SecStr dataset. As a result, pxy estimated from labeled data renders a better performance
than that on labeled and unlabeled data.

In summary, how to leverage unlabeled data to enhance the generation performance
remains an open question, which depends on model assumptions that may not be verifiable
in practice. It is worth mentioning that is a general formulation without assuming any
specific assumption on how px is related to F;. However, if such an assumption becomes
available in practice, (4)) can be generalized based on it to incorporate unlabeled data for
improvement. At present, we shall not pursue this aspect as the indirect method can benefit
from additional unlabeled data, as suggested by Theorem (1 in Section 3.

Coupled generator. The level of difficulty of estimating ﬁx‘y and that of ﬁ;m, may
differ, particularly when px can be well-estimated from both instance-only and unlabeled
data. Depending on situations, the former may be more difficult than the latter, and vice
versa. Some theoretical results for this aspect are illustrated in Section 4.5. Then we

propose coupled generation by choosing, between the two, the one maximizing a predictive



log-likelihood, or minimizing a negative log-likelihood, such as in the sentence generation

example. In particular, a coupled generator is defined as,

Pk if Py has a higher log-likelihood value on a validation set than pf

Pxy Ab
Pxjy Otherwise.

(5)

The probability density p% , gives the whole spectrum of values of X given Y. First,
we may generate representative instances using the mode of pxy to give one representation
or sampling-based on pxy for multiple representations. Second, discriminative features X
with respect to Y can be extracted by comparing p%, at different Y-values retrospectively.
For example, in classification with Y = %1, a comparison of j)\CX|Y:1 and ]’?X‘Y:_l leads to
discriminative features. This aspect will be further investigated elsewhere.

Coupled learning has its distinct characteristics although it appears remotely related
to semisupervised variational auto-encoders [I§] and inverse autoregressive flows [19]. In
particular, [19] uses a generative model px|y and px to enhance a discriminative model py|x
regarding the marginal distribution as a mixture of conditional distributions, whereas the
proposed indirect generator integrates the unlabeled data to separately estimate the marginal
distribution. Furthermore, [I8] estimates the marginal density of X px via a chain of latent
factors and inevitable transformations of autoregressive neural networks and connects blocks
by invertible relations. Yet, the proposed method links two conditional densities by Bayes’

law. Finally, the theoretical justification of [19] and [I8] remains unknown.

3 Theory

This section develops a learning theory to investigate the generation errors of direct, indirect,

and coupled generators. In particular, we derive finite-sample generation error bounds for

estimators Pl y, Py, and P,y of (I, and ().

7



The generation error for generating X given Y is defined as the expected Hellinger-

distance between two conditional densities pxy and gxy with respect to Y':

d<pX|Y7qx\Y) = (EYhQ(pX\Y7qX\Y>)1/2 = (EY /(p;/ﬁy - qi/lz,)Zdﬂ) 1/27

where p is the Lebesgue measure on «, and Ey is the expectation with respect to Y.

Three parameter spaces Fyp, F,, and F; are defined for estimating py x in (2)), px in (3),
and pxy in (4)), each of which is allowed to depend on the corresponding sample size. Then
their regularized parameter spaces are given as follows: Fpr = {pyx € Fp : J(pyx) < k}
for , Foke = {0x € Fi : J(px) < k} for , and Fgp = {px‘y € Fr: J(pxyy) < k} for
. On this ground, we define the metric entropy to measure their complexities to be used
for our theory.

The wu-bracketing metric entropy H(u,F) of space F with respect to a distance D is
defined as the logarithm of the cardinality of the u-bracketing of F of the smallest size. A
u-bracketing of F is a finite set (of pairs of functions) {(ij , pgj), j=1,---, N} such that for
any p € F, there is a j such that pt < p < p¥ with d(p},p%) <wu; j=1,--- ,N. Note that
d*(pyix, qvix) = Ex (hQ(py,X, qy‘x)), h%(px,qx), and Ey h?(px v, gxv ), respectively for Fy
Fo i, and Fip.

To quantify the degree of approximation of the true density pg,‘ < by Fp, we introduce a
distance py(pY x> Py 1x) = ExEy|xga (DS x/Pyix), Where go(z) = o' (z* — 1) for a € (0,1).
As suggested in Section 4 of [38], this distance is stronger than the corresponding Hellinger
distance. Similarly, p,,(p%, px) = Exga(p% /px) and pf(pgﬂy,pxw) = EXEy|Xga(p§ﬂY/pX‘Y)
are defined for approximating the true densities p% and p(j{ly by F,. and Ft, respectively.

Let p} x € F, and py € Fp be two approximating points of pY , and p% in that
pb(pg,‘x,p;ilx) < 7 and p,(p%, p%) < Ym for some sequences v, > 0 and 7, > 0. Of course,

v, = 0 when pg,lx € Fp and v, = 0 when p) € F,..



Theorem 1 (Indirect generator). Suppose there exist some positive constants cy-cg, such
that, for any e, > 0 and A\, > 0,

21/2L]1€/2

sup/ Hl/2(u/03,fb7k)du/Lk <con'?, L= crep + p(k — 1), (6)
2

k>1 —8L

and, for any €, >0 and \,, > 0,

1/2

21/2,
sup/ ’ H1/2(U/CG,Fm7k)dU/Lk <cs(n+ ﬁ)l/Q, L, = 0463,1 + (k= 1), (7)
2

k>1 J2-8L,

then

P(d(ﬁ;qyapgﬂy) > 2(7717 + nm)) < 8exp ( - C?””I?) + 8exp ( - CS(n + ﬁ)n?n)a (8)
M = maX(eba 71}/2)7 Nm = maX(emv 7;1/2)7

provided that Ny max(Jy(p}x), Jo(P% x): 1) < comp and Ay max(Jp (0% ), S (0% ), 1) < conp,
and cz-cy are some positive constants. Consequently, d(Dy,y,P%y) = Op(y + ) as n, i —

oo under under p% .

Theorem [I]indicates that the generation error of the indirect generator is governed by the
estimation errors €, and €, from and , and the approximation errors 7, and 7,,, where
€, and €, can be obtained by solving the entropy integral equations in @ and . Moreover,
optimal rates of convergence can be obtained through tuning of A\, and \,,. Note that n,,
could be tuned as a smaller order of 7, when the size of unlabeled data greatly exceeds
the size of labeled data. Then the generalization error of the indirect method is governed
primarily by 7,. In other words,the indirect generator’s performance is mainly determined
by the estimation of py x.

For direct generator, let p} , € F¢be an approximation of p% , in that pe(p% .y, Pxy) < 7



for some ¢ > 0.

Theorem 2 (Direct generator). Suppose there exist some positive constants cip-c12, such

that, for any e > 0, and ¢ > 0,

21/2L11€/2
sup H'? (U/Cl2, Ff,k)du/Lk < 011711/27 Ly = 0106? + )\f(k - 1)> (9)
k>1 J2-8L;
then
P(d(B iy P%yy) = ) < 8exp(—ciznnf), 1 = max (e, %1/2)7 (10)

provided that Aymax(Je(pl y ), Ji(P% v ). 1) < conf, and c13 > 0 is a constant. Consequently,

d(ﬁfx‘y,pgly) = O,(nr) as n — oo under pgm,.

In contrast to the indirect generation, the generation error 7; of the direct generation
could be much larger or smaller than that of the indirect generation 7, depending on the
complexities of F¢, Fp, and the corresponding approximation errors ~; and ~,, when px can
be sufficiently well estimated. This suggests that either may outperform the other depending
on the model assumptions.

Note that ¢, 75, and 7, are the approximation errors of the approximation capabilities of
function spaces Fy, Fy, and F,,, [35, 40]. In particular, when the function space is defined by a
ReLU deep neural network to approximate a function in a Sobolev space, the approximation
error is available and related to the scale of the neural network [40].

Theorem |3| says that the coupled generator performs no worse than the indirect and
direct generators when ({5)) is used to select based on an independent cross-validation sample

of size N.

Theorem 3 (Coupled generation). Under p()){’y, as N — 00, the coupled generator defined

in " Satisﬁes K(p[))qyaﬁg(w) S min (K(pg(\YJ/)\l;QY)aK(p(})(\y7ﬁfx|Y)): whe’r@ K(pX|Y7qX|Y) is

the Kullback-Leibler divergence between px;y and gxy -
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Remarks: In Theorem 3] if K(p% .y, px1y) < 14d°(Px )y, Px)y) for some constant ¢4 > 0,
then d(p% .y, Dy y) < cis min (d(p%,y, a1y ) APy Pl jy)), Which occurs when the likelihood

ratio is bounded.

4 Sentence generation given a topic

This section derives generative methods of sentence generation, which integrates the like-
lihood methods developed previously with language models to compose a sentence. As a
result, a new sentence can be generated, which may not appear in training data; see Table
for an example.

A complete sentence is represented by a word vector X170 = (Xy, -+, Xr)', where X is
the t-th word, T is a sentence-specific length, and ' denotes the transpose of a vector. For
convenience, we write X; = “START” and X7, = “END” as the null words of the first
and last words of a sentence, respectively. For example, X; =“START”, Xy, = “Football”,
X3 = 48”7, Xy = “a”, X5 = “popular”, Xg = “sport”, and X; = “END”. Together with
Xi.7, its associated topic category ¥ = (Y1,---,Yk) is available, where Y; € {0,1} or
Y; € R. Finally, we construct a dictionary D = (wy,--- ,wjp|)’ to contain all composing
words, that is X; € D; t =1,--- ,T, with |D| denoting D’s size.

For simplicity, we consider the case of a fixed T', where sentences of different lengths can be
processed with a fixed length, as illustrated in Table[I} Sentence generation given a topic Y
generates a sentence X.741 using the conditional probability P(X1:T+1 =xr|Y = y).
However, estimation of this probability at the sentence level is infeasible. Therefore, we

decompose it at the word level by the probability chain rule:

T
log (p(XlzT+1 =xrn|Y = y)) = ZIOg (p(Xt+1 = 21| Xy = 21, Y = y)) (11)
t=1

11



This decomposition permits sequential generation of a sentence through next-word-

prediction given existing words by learning p(X;11 = ¢41|®14,y) from data; t =1,--- | T.
Yet, estimation of p(X;11 = zy11|®1.4, y) remains challenging for unstructured Xi.; be-

cause of a lack of observations in any conditioning event of X, given Y even with large

training data. Furthermore, it is difficult to utilize unlabeled data to estimate p(X;; 1 =

$t+1|$1:t, y)-

4.1 Indirect generator
In this context, we derive a version of and that of (3) through to estimate the inverse

probabilities. Specifically, p(xyy1|®14,y) can be written as

P(Y|T 1) p(Tis1|T 1)
T141€D P(Y| 1.4, Teg1)P(Tig1|® 1)

p(ze|®rs, y) = 5 (12)

fort =1,--- ,T. Then, we estimate the inverse probability p(y|x.,1) based on labeled data
(¢, y")", and estimate p(z;,1|T1.¢) based on (xi )", fort =1,--- T and unlabeled data
(2] )i, fort =1,--- ,T9.

Estimation of p(y|zi,) may proceed with unstructured predictors xq.,. To proceed, we
map a sentence x;,; to a numerical vector £(x1,;) € RP, known as a numerical embedding
of size p via a pre-trained embedding model such as Doc2Vec [23, 24] and BERT [I1]. If a
pre-trained embedding model is sufficient in that p(y| X1, = ®14) = p(y|E(X14) = E(x14))
[10], the numerical embedding £(x.;) captures word-to-word relations expressed in terms of
co-occurrence of words, which may raise the level of predictability of unstructured predictors

X1 Next, we model p(y|ey,) through p(y|E(@1,)) when Y € {0,1}X is categorical or

12



Y € R is continuous with an embedded label Y:

/0' E 1.t s if ) Ka
piyleny = Y (f(E(@1a))) 2 y € {0,1} 13)
@2m) K exp (= 3|y — f(E(®))]],), if y € RE,

where K is the dimension of Y, o(-) is the softmax function [I], and f is a nonparametric
classification or regression function forest [3] or linear function f(E(x1.4)) = 0,€(x14) with

6, € RF>P. For illustration, we use a linear representation f(€(x14)) = & (x1) in (13)

sequentially. Now the cost function L;(6,) in (2)) becomes

Ly(8y) = 12 Zlog (WIE(E)) + Mol f). (14)

=1

where A\, > 0 is a tuning parameter and J,(f) > 0 is a regularizer, for example, J,(f) = [|6,/|%

if f(c‘,’(:r;lzt)) = 0,E(x1.4), where || - |r is the Frobenius-norm of a matrix.

Figure |1| about here

On the other hand, the next word probability is estimated by a RNN in a form of

p($t+1|fl31:t) = O[zt+1](xt7 hy; Om); with h; = h(It, h;_1; 0m)7 hy =0, (15)

where [z:41] = {j : wj = 2411}, 0;(z4, he, 0,,) is the probability of occurrence of the j-th
word in D, and h(xy, h;_1,0,,) is a hidden state function, such as a long short-term memory
unit (LSTM) [16], a bidirectional unit [32], a gated recurrent unit (GRU) [6], and GPT2
[30], 8,, is the parameter of a specific RNN model, for example, 8,, = (W2, W2 W) in a
basic RNN,

o(xy, hy,0,) = c(Woky), hy = ¢(Wily, + W/lh,_), and hy = 0, (16)

13



where o (), as defined before, is the softmax and ¢ is an activation function such as the

ReLU function [I], W¢ € R™*Pl_ Wz ¢ RPIx'm and Wh € R™*™ and r,, is the number

of latent factors of the RNN. See Figure |1| for a display of the architecture of a basic RNN.
On the ground of (15]), the cost function L,,(6,,) in (3) becomes

Lm(em) - _<n+ﬁ Z Zlog O[z .’L't,h;,e ))
i=1

(n+a)~" ) (T Zlog . ]xt,hg,e ) + A (O),  (17)
Jj=1 =

where \,, > 0 is a tuning parameter and .J,,(8,,) is a regularizer regularizing the weights
matrix and the activation layer [22].

Minimizing and yields estimators éb and gm, respectively. Then the condi-
tional probabilities are estimated as p(y|Ti.411; §b) = 0(§bg(w1:t+1)) and p(xyyq|@1.; §m) =
O] (@e, p—1, ém) Plugging these estimates into , we obtain the estimated probability,

and the process is summarized as,

ﬁ(y‘mlzt; Z; 91))]/7\(Xt+1 = 5€|5131:t; em)

=b
p (Xt—i-l = :U|w1:t7y) = — ~_ = (18)
Zmepp('mwl:t; T, Ob)p(Xt—H = $|331:t; 9m)
6, = argmin L,(6),), 6,, = argmin L,,(6,,).
0, 0
Then, a sentence is sequentially generated as follows:
Ty = argmaXﬁb(Xtﬂ = $|X1:t =x14,Y = ’!J)% t=1,---,T. (19)
€D
This generation process begins with &; = “START” or pre-specified to-words &y, and
proceeds until £z = “END” is reached, where T is an index at termination. It is worth

mentioning that the denominator in ((18) normalizes the probability but may not need to be

14



computed when a maximizer of is desired in ([19)).

4.2 Direct generator

The direct generation is inspired by a conditional RNN (C-RNN; [37, I7]) by estimating
P(Tp1 |14, Y) = O[xt“](xt, hi_1,y,60), with hy = h(zy, hy_1,6), ho = ho(y, 6;), (20)

where @; represents the parameters of a RNN, and hg is built on the label information as
opposed to hyg = 0 in . As in , the direct generator requires additional parameters
W¢ e RE for 6; = (W2, W Wl W) to model the effect from y as follows:

O<xt7 ht7 Yy, Of) = U(Wfoht)u ht = (b(fol[xt] + thht71>7 and hU = (b(nyy)u (21>

where W¢ € R™*IPI Wiz ¢ RIPxre W ¢ R™ " and r¢ is the number of latent factors of
the RNN. On this ground, the cost function in becomes

T;

Li(0) = —n™" Y (T)7") log (O, (@1 hi_1, Y, 6r)) + A Ji(6y), (22)

=1 t=1

where A\¢ > 0 is a tuning parameter and Ji(6) is a nonnegative regularizer. Minimizing
in O; yields an estimate §f, thus the estimated probability p(z|@1.+, y) = o) (@, hu—1, Y, (9}),
from . Then, sentence generation proceeds as in ([19)).

Worth of note is that the direct and indirect generators can be respectively implemented
using different RNN models, for example, GPT2 for the direct RNN while LSTM for the
indirect RNN in . Moreover, different model architectures of RNNs may yield different

empirical results. This aspect is illustrated in Section 5.
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4.3 Coupled generator

Given the estimated probabilities p'(z41|® 1., ¥) and p°(xs41|®1.4, y). The coupled generator
chooses one between p' and p® on a validation set by minimizing an empirical version of the

log-likelihood loss,

T
Ent(p) = =T ) log p(Xpp1 = 24| X1a = 14, Y = y). (23)

t=1

4.4 Large-scale computation

This section develops a computational scheme for the indirect generator in —, and
the direct generator in can be treated by a standard RNN implementation as in [36] 29].
In particular, when stochastic backpropagation is used through the time gradient method,
the computation complexity is of order of the number of parameters per time step [27].

In what follows, we apply gradient descent [41] or stochastic gradient descent [31] to
solve . For , we apply a classical back-propagation algorithm. In each case, we use
analytic a gradient expression for updates.

Gradient for indirect generation. The gradient expression for 6, in (17) is given in
[29], while that for 6, in is computed as

oLy, MOy —n > (T thl (yi — ou(6E () E(2s,,), y' € {0,1}K, 24

DB | My~ S (TS, (- O @) E,), € RE,

where 8, denotes the kth column of 6y.

The detail of gradient descent for the indirect generator is summarized as follows.
Algorithm 1 (Gradient descent for indirect generator):

Step 1 (Initialization): Specify a RNN architecture, randomly initialize 6, and 6,,, a

step size for gradient descent, tuning parameters )\, and JA,,, and the number of maximal
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training iterations.

Step 2 (Regression): Updating 6, in based on the gradient in ([24)).

Step 3 (RNN Gradient update): Solving by updating the indirect RNN parameters
0, via gradient descent based on back-propagation in [29].

Step 4 (Termination): Iterate Step 3 until a stopping criterion is met.

Algorithm 1 can be updated by a stochastic gradient scheme [2]. Lemma [I| describes

computational properties of Algorithm 1.

Lemma 1. If the cost functions Ly, in (14) and L., in are continuously twice differential,
and the probability measure of random initialization is absolutely continuous with respect to
the Lebesque measure. Then, éb 1s a global minimizer of , while é\m 1s a local minimizer

of almost surely, provided that the step size in Algorithm 1 is sufficiently small.

4.5 Theory for sentence generation

This section generalizes the theoretical result of Section 3 to the problem of next-word-
prediction.

Now we use px|v, Pyix, and px to respectively represent {px,,,|x,..¥ H1, 1P¥|X10 }ie1s

and {px,,, x,. }i—1- The expected square Hellinger-distance for next-word-prediction is

1
2

d(pX|Y7qX|Y) — (I_Ehz(pXt+1|X1;t,Y7th+1|X1;t,Y)> ) (25)

where E() =T Zle EXl;t,Y<'>‘
The metric entropy of F, is defined by a distance £2(py x, @y x) = Eh? (PY1 X105 @Y1 X120) -
Similarly, HQ(an QX) = Ehz(pXtﬂ\Xl:w th-s—l\Xl:t)’ and dQ(pxly’ qX|Y) are used for Pk and

Ft 1, respectively.

P°(Y|X1:641)

p(Y[X1:641) ) Similarly, the ap-

The approximation error for pg,l x 18 ,Ob(qu x:Pyix) = ]Ega(

PO (X1 X1:¢) pO(Xt+1|X1:t7Y))

proximation errors p,,(p%, Px) = Ega(—p(XHﬂXl;t) ) and pf(pg(ly7pX|Y) — Ega( X XY
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are used for p% and p .

Corollary 1 (Sequential generation). All the results in Theorems |1 and |9 continue to hold
with the distance d(-,-) defined in (25)).

Next we provide a theoretical example to illustrate Corollary
Theoretical example. Suppose that the RNN in is a basic recurrent network with
0., = (W2, Wi W), that is, o(xs, hi—1,0,,) = c(Wohi_1), hy = ¢(WEL, + Wh,_y),
and hg = 0,,,, where W2 € R™*Pl_ W= ¢ RIPIxrm and W ¢ R™*™ r_ is the number
of latent factors of the RNN, and ¢(z) is an activation function, such as the sigmoid function
o(z) = 1/(1 4 exp(—z)), the tanh function ¢(z) = tanh(z), and the Rectified linear unit
(ReLU) ¢(z) = z;. For illustration, we focus on the sigmoid function.

The RNN in is that o(z, hi—1,6¢) = o(W¢hi_1), hy = ¢(W{l,) + Wih,_1), and
ho = ¢(W/y). The network parameters are 0y = (W2, W W} W), where W¢ € R <Pl
W € RIPIxre Wik € Rro<meand WY € R™K | and r¢ is the number of latent factors of the
RNN in the direct generation.

Corollary [2| gives the generation errors of the direct and indirect generators.

Corollary 2 (Theoretical example). For the estimated next-word probabilities ﬁfX‘Y by the

direct generator in , we have that d(ﬁX|Y,p0X|Y) = O,(nr), where

A¢ nmax(ry, 2c15) 27T Y2 N3 1
nf:max{<glog( A )) ,yf}7

A¢ = r¢(2|D|+ 1+ K), Ak = cim?, and ¢15 > 0 and c16 > 0 are constants with By ||[Y ||3 < ¢15.

Similarly, the estimated next-word probabilities ﬁ’XlY by the indirect generator in and
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(L7) satisfies: d(ﬁbX|Y7pox|Y) = Op(N + 1m), where

e (B (40)) o8,

o = (g o (P

n+n

3

Ay = Kp, Ny = 102D + 1), Xo = c1snE, A = c1sn2, and cig > 0 and ¢35 > 0 are

Sl

constants with I_EHE(Xl:t)H; < 6.

Corollary 2| says that the generation error of the indirect generator in becomes
APy Poyy) = Op(2 log (Alb))% when (n+n)/n = O(%), when v, = 7, = 0. In
fact, the generation error is primarily dominated by its estimation error of p(Y | X1.), because
p(Xi41|X1.) can be well estimated with the help of large unlabeled data with 72 > n. In this
situation, the indirect method outperforms the direct method, particularly when A, < Ay,
suggesting that the estimation complexity of the indirect method is less than that of the
direct method. Interestingly, the generation error of the direct generator agrees with that of
the maximum likelihood estimates under the Hellinger-distance [34], 38]. With respect to tun-
ing, a large value of A,, A,,, and A¢ increases the complexity of the corresponding functional
space for probability estimation, thus reduces the generation errors. Consequently, the gen-
eration errors of the direct and indirect generators indeed depend on the model complexity
of parameter spaces F, and Fy.

To illustrate the synergy of indirect and direct generators’ respective strengths, we con-
sider two situations. First, d(ﬁX|Y,p0X|Y) = 0,(1) but d(ﬁx‘y,pgﬂy) is bounded away

)?_, follows a different marginal distribution of the

from zero if an unlabeled sample (X7 h

1:T9
labeled sample (X7 .)% ;. Second, d(ﬁbXW,pqu) = 0,(1) but d(ﬁx|y,ﬁox|y) is bounded
away from zero in the presence of a new word in labeled but unlabeled samples. However,
in both situations, d (ﬁCX‘Y, pgﬂy) = 0,(1), when Kullback-Leibler divergence is equivalent

to the Hellinger-distance. In other words, only the coupled generator has a generation error
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tending to zero in both situations.

5 Benchmark

This section examines the performance of the coupled, indirect, and direct generators in
one benchmark example, and compares with a baseline method “Separate RNN”, which fits
RNNs for each topic as in [36]. The benchmark concerns sentence categorization based on a
text corpus in the UCI machine learning repositoryfl This corpus contains 1,039 labeled sen-
tences collected from abstracts and introductions of 30 articles, in which five topic categories
are AIM (a specific aim of the present paper), OWN (description of own work presented in
the present paper), CONTRAST (comparison statements with other works, including strengths
and weaknesses), BASIS (statements of agreement with other works or continuation of other
works), and MISC (generally accepted scientific background or description of other works).
These labels originate from three scientific domains: computational biology (PLOS), the
machine learning repository on arXiv (ARXIV), and the psychology journal judgment and
decision making (JDM). For example, a typical sentence such as “The instantaneous loss
bound of SYMBOL implies only convergence in probability.” is labeled as “MISC” according
to scientific topic classification. In addition to the aforementioned labeled sentences, this
corpus contains 34,481 unlabeled sentences from 300 articles in PLOS, ARXIV, and JDM.
Before proceeding, we pre-process the text corpus to filter out redundant each sentence’s
component so that numerical embeddings are applied for the indirect generator. First, we
replace all numerical values, symbolic values, and citations by “NUMBER”, “SYMBOL”, and
“CITATION”, respectively, and remove all standalone punctuation marks except commas,
periods, and semicolons. For unlabeled sentences, we remove words appearing less than 20

times in the corpus, which leads to an unlabeled corpus of 8,286 sentences. On this ground,

’https://archive.ics.uci.edu/ml/datasets/Sentence+Classification
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a dictionary is constructed, consisting of 5,369 words extracted from labeled and unlabeled
sentences.

For training, we generate word strings for next-word-prediction based on the maximum
length of all sentences in the dataset. Thus, all the previous tokens in the sentence are con-
tributing to predict the next word. Specifically, we create next-word-prediction sequences
consisting of consecutive previous words and fill with the null word “NULL” to pad all word
strings as the same length. An example of such a next-word-prediction sequence is displayed
in Table [T} In this fashion, we gather enough training sentences as the null words do not
impact our learning process. Now, 28,180 labeled next-word-prediction sequences are gen-
erated from the original 1,039 labeled sentences, together with 174,355 unlabeled sequences
from the original 8,286 unlabeled sentences.

The generation performance is measured by two commonly used metrics, namely, the
next-word entropy loss and the Bi-Lingual Evaluation Understudy (BLEU) loss [28] over a
test sample, approximating the predicted Kullback-Leibler divergence and Jaccard distance

)ntest

[13], respectively. Given sentences (Z' -.)%* generated from p and its reference sentence

1.7

% ) Ntest

Lri)isst given a topic gy, the entropy loss is defined in as the empirical version of ,

while the BLEU;-loss (I = 1,--- ,4) can be written as

(x

Ntest i 7 ~1
P Jgramy (il p.) N gromy (& )
=\ -1 : : 1.7
BLEU-loss(p) = 1 — ngog E exp (min(1 — T 0)) p— ,
i=1 1.7
where 7y is the number of sentences in the testing set, |- | denotes a set’s size and gram,(-)

is the [-gram set for a sentence. For a sentence “the cat in the hat”, its 1-gram set is {
“the”, “cat”, “in”, “the”, “hat”}, the 2-gram set is { “the cat”, “cat in”, “in the”, “the
hat”}, and the 3-gram set is { “the cat in”, “cat in the”, “in the hat” }. The BLEU,-loss
can be computed using the NLTK library in Python. Whereas the entropy loss measures the
occurrence probability of the reference sentences, the BLEU;-loss focuses on exact matching

between [ consecutive words of two sentence. Moreover, we also consider the SF-BLEU ;-loss
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to evaluate the diversity of a generated sentences [43], defined as

Ntest i Lo ~1 ~7
R Ti max;; [gramy (! ) N gram(z- - )|
SF-BLEU;-loss(p) = 1 — ngk g exp (min(l S ,0)) i LT 1.7

=1 min

A'L M
gram (@ _)|

where T}

in = ATGMING; i, |79 — T"|, and a high SF-BLEU,-loss score means more diverse.

For training, validation, and testing, we randomly split all the labeled articles into three
sets with a partition ratio of 60%, 20%, and 20%, respectively. Moreover, for a sentence ;.7
and its associated topic y in a testing set, five starting words @,.5 as opposed to the null
word are given to predict the rest of a sentence.

Consider two situations of the semantic label: (1) Y € {0, 1} is categorical and is coded
as a 0-1 vector using the one-hot encoding from the topic category; (2) Y € R¥ is continuous
with each topic as a p = 128-dimensional vector based on Doc2Vec. In (2), each topic is
represented by the averaged embedding of all the sentences in this topic category in training
data.

In the case of Y € {0,1}*, the indirect generator involves and . For , we
perform regularized multinomial logistic regression using the Python library sklearn’|on the
embedded next-word prediction sequence training samples (€(x},),y"), where £(x!,,) is the
numerical embedding of Doc2Ved'] of size p = 128 and the optimal A, is obtained by minimiz-
ing the entropy loss based on validation data over a set of grids {.0001,.001, .01, .1, 1,10, 100}.
For , the indirect RNN is trained based on both labeled and unlabeled next-word predic-
tion sequences in training data. The indirect RNN model in is structured in four layers,
including an embedding layer consisting of 5,369 nodes with each node corresponding one
word in the dictionary D, an LSTM layer of 128 latent factors, a dense layer with output
dimension 5,369. Note that the tuning parameter in (17) is fixed as A, = .0001 through in

the embedding layer to regularize words in the absence in a training set. Similarly, the direct

3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
“https://radimrehurek.com/gensim/models/doc2vec.html
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generator trains the RNN model in (22]), which has the same configuration as the indirect
RNN expect that the input dimension is |D| 4+ K = 5,374 in its embedding layer. Moreover,
Separate RNN has the same structure as the indirect RNN given each topic.

As discussed in Section 4.2, different RNN model architectures may yield different em-
pirical performance. Toward this end, we compare the LSTM architecture with GPT2 ar-
chitecture for the direct RNNs. In particular, we consider the base GPT2 with 12 layers and
117M parameters [30] for the direct method, denoted as direct-GPT2. One key difference
between LSTM and GPT?2 lies in its masked self-attention layer, which masks future tokens
and passes the attention information through tokens that are positioned at the left of the
current position.

In the case of continuous Y € RP after numerical embedding, the indirect generation
proceeds as in the categorical case except that linear regression as opposed to multinomial
logistic regression in is performed using sklearn on the labeled embedded next-word
prediction sequences in training data (€(x%,),y"), where each ¢’ is a 128-dimensional em-
bedding vector.

All RNN models are trained using Kerasﬂ with the batch and epoch sizes 200 and 100,
and optimizer as Adam, and the over-fitting is prevented by early termination [4] of patience

as 20. Moreover, the coupled generator is tuned as in ([5)).

Table |2| about here

As indicated in Table[2] when only labeled data is available, the coupled generator delivery
higher accuracy than direct and indirect generators, which suggests the advantage of the
proposed method. When combining with unlabeled data, the coupled generator outperforms
the direct generator and separate RNN for both categorical and continuous labels, which

selects the indirect generator in this case. With respect to the entropy loss, the amounts of

Shttps://keras.io/
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improvement of the indirect generator over the separate RNN method and direct generator
are 20.3% and 14.5% for the categorical case and 29.1% and 16.1% for the continuous case.
With respect to BLEU;-BLEU, losses, a similar situation occurs, with the amounts of
improvement vary with the best improvement around 15.6%. Concerning unlabeled data, a
comparison between the indirect generator with and without unlabeled data suggests that
unlabeled data indeed help to improve the performance of the indirect generation over 14.5%.
Interestingly, in terms of the entropy loss, the direct generator based on fine-tuned GPT2
outperforms the direct generator and indirect generator based on LSTM without unlabeled
data, while the coupled generator achieves the best performance between them. However,
they perform similarly in terms of BLEU; scores. In view of the SF-BLEU;, scores, sentences
generated by the direct and indirect generators have a high degree of diversity. Moreover,
the semantic label Y after sentence embeddings Doc2Vec performs slightly worse than its
categorical counterpart for the indirect and direct generations, indicating that semantic
relations or linguistics dependencies, as captured by the sentence embeddings, may not have
an impact given that there are only five categories. Finally, as suggested in Table [3| an
abstract generated based on the five categories is reasonable except for three grammatical

errors that are correctable by a grammar checkef’]

Supplementary Materials

The supplementary materials provide Python codes used in real data application.
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Appendix

Proof of Lemma Note that Ly(6p) in (14) is convex in 6, and L,(6,) and L,,(6,,) in
are continuously twice-differential. Then the result follows from Theorem 4 of [21]. This

completes the proof. O
Proof of Theorem (1, Note that p% (y) = [ D} x(y|x)p} (x)de and

( (poy(y)@x(y\w)@((fv)

) (R ely) ) dwdy,

dZ(ﬁ;qugqy) = /

Furthermore, [ p% . (y|z)dy = 1. It follows from the triangular inequality that

d(ﬁgﬂy,pg‘y) < (/ <(p9,(y)ﬁ§,§(y|m)ﬁ§(w))1/g B (ﬁ,|x(y|m)]3§<(w))l/2>2dwdy>1/2

% (y)
([ (Bontwlore@)” = @ alvlapie) ) dwdy)
([ (ontwlonmb@)” = 6 avlapie) ) dwdy)
= DY, P) + h(p, D) + (WP %)) (26)
Note that p% (@, y) = P}, x (y|2)P% (z). By the triangle inequality,

h(pS, py) = (/ ((/pxy(w y)dx) 2 _ /pr x,y)d 5>2dy)2
< ([ (Pl w)? = (Pry (@,y))?) dady)?
< ([ (0hr(@w)’ - (h @k (le)) ) dody)
([ (@) - (@) o)t < hh 70 + (B2 Po)))
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Hence, d(Phy D) < 2(h(Bh, %) + (E(B2 (5% x. PY.x))) %) Consequently,

P(d@ngpgqy) > 2(7717 + nm))

< P(h(p%,Px) = 1) + P((EX(hQ(p%\X,ﬁm)))

=

2 7’]b> = [1 +IQ

To bound I, let I3 = P((n +7) S (log(p% (X)) — log(0% (X)) — AnJ (0%) +
)\mJ<p;)) > 69777%1/4>’ Iy = P<Supdm(p,p0)2nm(n + ﬁ)il Z?ilﬁ (log(gigizg - )\mJ(pX) +
And (0%)) > —097772,1/4)7 where cg = 1 — 2exp(—7/2)/(1 — exp(—7/2))* > 0 is a constant

defined by the truncation constant 7 > 0. Then [I; is upper bounded by

P<d< p ()73 (10g(x (X5 (XD) = AT ) + And (5) 2 0) < Is+ I,

By the Markov inequality,

Iy < P((n 7)Y (log(p% (X)) — log(pk (X)) = can /4 = AT (05)
< TLex () oxn (= )

i=1

Cox
8

Co¥

<(1+ Cwm)n@ exp ( — ?(n + s, 4 (n+ 7)aym).

(n+a)n2,) <exp (-

By Corollary 1 of [33], Iy < 7exp(—cg(n + n)n2,/2), implying I} < Texp(—cy(n + n)n?) +
exp (— 22 (n+7)n2 + (n+7)ay,) for some constant ¢; > 0. For I, a similar probabilistic
bound can be established by applying the same argument of Theorem [2| and switching the
role of X and Y. This leads to I < 7Texp ( — 087”72) + exp ( — %mﬁ + na’yb) for some

constant ¢cg > 0. The desired result then follows. ]
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Proof of Theorem [2. Denote

1 i xiy (XY .
=p( o (7 (o)) ) + T30 20),
=Py <1og<%>) CAT() M () > con/4).

By the definition of a minimizer, for any n > 0,

P(d(ﬁfxw’pgqy) > nf) <I;+ IG;
where log(F{”) = log(pZ)y (X'[Y7)) — log(p v (X7|Y)) and

() exp(—T)p}lY(w|y), if pX\Y($|y> < eXp(—T)quY<£E|y),
pxw(w|y) =
pxy (Z|Y), otherwise,

is the left truncation of pxy (x|y).

Next, we bound I5 and I separately. An application of the same argument as in [3§]

yields that

3

< P(n Y (1080 (XUIY)) ~ log(piy (XUIY))) > o /4~ Ao ()
=1
n 0 7 i
pX\Y(X ’Y) a Cotx
< P( ———————=) >exp nn >
G o) 2 e G
n 0 7 )
pX\Y(X |Y) a Colx o n Cglv o
< EyE —— ) exp(— —nn;) < (1 +ay) exp(——nn
o «
< exp ( — §09m7f2 + nlog(l + Oé'Yf)) < exp ( - ganan + nomf), (27)

where the second inequality follows from A¢J(p,y) < conf/8 and the third inequality follows

from Markov’s inequality.
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Our treatment of bounding I relies on a chaining argument over a suitable partition of
Fi and the left-truncation of likelihood ratios as in [38, B33]. Now, consider a partition of

Fig={p € Fr: 27", < (", p) < 23, 277100 < J(p) 27T (1)}

FkO = {p € Ff : 22’—1772 < dz(poap) < 21777217J(p> < J<p0)}ﬂ k= 17 e 7j = 07' )
where log(F\”) = log(p$ )y (X[Y?)) — log(p%y (X'[Y™)). Then for any n¢ > 0,

I < P( sup ( Zlog FET — At (pxpy) + )\fJ(pX|Y>> > —0977f2/4>

d(p,p®)>n¢

< ZZP( sup (n Zlog IF( — M (px)y) +)\fJ(px\Y>> > —0977f2/4>

k= 1] 0 PEFkj

where Ij;; = P(supfefkj ('3, log (IFZ(-T)) =Mt (Pxpy) + AT (0% 1y)) = —conp /4) To treat

Iij, we control the mean and variance of log (F(). By Lemma 4 of [38],

— sup E(log(IF(T))) =— sup Ey (Ex|y(10g(F(T)))> > ¢y inf d?(p, p*) > co(25 1ny)?,

PEF g PEF; PEFk;
(29)
and the variance is bounded by
sup Var(log(IF(T))) < sup Ey (EX‘Y(log(IF(T))QD
PEFk; PEFkj
< dexp(r) sup Eyh®(p |y, px|y) < 4exp(r)(2%n;)? < 8exp(r)dy;/co, (30)

pej:k]
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where the second inequality follows from Lemma 3 of [38]. Then, I;; is upper-bounded by

Ii; < P( sup (n_l Zlog (IFZ(-T)) — Elog (IF(T))>
fE€EFk; i

> — sup <Elog (IF(T)) + AT (D%y) — J(]%qy))) - 0977?/4>
JE€Fk;

< <fse%fr,:] (n Zlog JF( ™) — Elog (IF(T))> > (5kj> < 3exp ( — agnékj), (31)

where ag > 0 is a constant, dp; = 2" "2 /2 + X277 — 1)J(p%\y), ko = 092’“_2772/2,
the second inequality follows from the assumption that AJ(p%,) < conf/4 and (29), and
the last inequality follows from Lemma [2 and the fact that the j-th (j > 2) moment

E(|log %)‘ ) is bounded by

pg:\)Y(X‘Y) pg{\)Y<X|Y)

EyExjy (exp (|log(~5 (X|Y))D —1——\1 m)b

X\Y

< j!2ja1EYH<px\Y>1/2 - (pgc|y)1/2||§7

where a; = (exp(r/2)—1—7/2)/(1— exp(—7'/2))2 > 0 is a constant and the last inequality
follows from Lemma 5 in [34]. It suffices to verify the condition (2.4) of [38]. A combination of
and yield that Is < 372, Y72 3exp(—ci3ndy;) < 7exp(—cignnf), which, together
with yields that P(d(DYy, 0% y) = m) < Is + Is < Texp(—ciznng) + exp (— Seonnf +
na’yf). The desired result then follows. 0J
Proof of Theorem I. Let (X%, Y)Y, be a cross-validation sample. By (5 @,

N N N
1 fones v iyl : 1 IR Y 1 IR Y
_N E long\Y<X |Y ) < min ( - N E logﬁX\Y(X |Y )7 _N E logﬁl))qy(X |Y )))
i=1 i=1 i=1

then the desired result follows from the law of large number, by taking the limit for both

the sides as N — oo. This completes the proof. 0]
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Proof of Corollary [Il For the direct sequential generation, we apply the same argument

in the proof of Theorem 2] Denote

7= sup —= 08\ 7+ — MeJi(p Ji(p > S0
dpp*)=n: =y T p (Xt+1|X1ta B! x|y X|v 1
n T
1 P Xinl X1, YY) 0 con?
Iy = P( sup — » log — MJi(Pxy) + M e(PYy) > __>.
d(pvpo)anZZ_; nT tz_; ( ( t+1|X1 £ ) ) Xy XY 1

Then P(d(ﬁx‘y,pgﬂy) > nf) < I; + Iy, where p7(X,41|X14,Y) is the left truncation of
p(Xi41]X14,Y) as defined in the proof of Theorem .

For I,
L r P (X7 XL, YO 2 Cox
e P(IHI S ey) 2 o)
Z.ll tl;[p*(Xt+1|X1t7 Y?) 8 !
n T 0 i
p( t+1’X1t7 ) Cotv o
<TIE Z. T exp(— L)
H (gp*( t+1|X1-t7YZ)) g
T = ( t+1‘X1t7 )a Colx 5
< IE( )eXp(——nn)
(G ) 5
Colx a
< (L4 ay)" exp(—%mﬁ) < feXp(—gc@)nn? + nays).

For Ig, let IFY) = log (p(T) (X1 X1, Y) /0 (X1 | X 1t Y)) For the first moment,

T
E(T7' Y FD) = ZEX”Y (Ex,., (F7 X1, Y))
t=1 t=1
T 1 112
< _C9Ti1 ZIEXM,Y(”(pgz:z)JrﬂXl:t,Y)5 o (pg(t+1|X1:t,Y>§||2) - _09d2(p;)|y’pOX|Y)'
t=1
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For the j-th moment with 5 > 2,

T T
E}T_l Z ]FTET) |j < T Z EXl:t,Y (EXt+1 (|]F15T)|j|X1:ta Y))
t=1 t=1

T
<7 Ex,, v (Ex,., ((exp(|F;”]/2) — 1 — [F{”]/2)| X1, Y))

t=1

T
L . 1 1
S ]!2'70/3( ZEXLt,Y(||(pg(t)+1\X1:t,Y)2 - ( 0Xt+l|Xl:t7Y>2 ||§))
t=1

< j!2ja1d2(pg7(-)‘y>p0X\Y)a
where the first inequality follows from the Jensen’s inequality. Then
a
P(d(Pxyy Pxjy) = 1) < Gexp(—crnnt) + exp(—zeonn; + na), (32)

follows the same arguments as in the proof of Theorem [2|

For the indirect generation, let pi(-) = p(-|X1.;) and E;(-) = E(-|X;.). Then,

N

T
d(ﬁbX‘Y7pg(|Y) = <T_1 ZEXLt]E'Y|X1:th’2 (ﬁbXtJrﬂXl;t,Y’pg(t+1|X1;t,Y))

t=1
T 1
— ~ ~ 132\ 2
< 2<T ' Z (E(h(pxt+1|X1:t7pg{t+1|X1:t) + (EthQ(pY|X1:t+1’pOY\Xl:tH)) 2) ))
t=1
T 1
— ~ o~ 2
S 2(2T ! Z (Eh2(pxt+1|xlzt7pg(t+1|X1;t) + Eh2<pY‘X1:t+l7p0Y|X1;t+1)>>
t=1

< 2\/§(d(ﬁx,pg() + d(ﬁY|X,p[1)f|X)),

where the first inequality follows from by replacing p(-) as pi(-), and d*(px,p%) =
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Eh2(Px, 1 X100 PX, 110, ) P2 (By1x Py x) = ER2 (X100 Py x,.,., ) Therefore,

P(d(ﬁbX|Y7p0X|Y) > 2v/2(mp + Mm)) < P(d(Px,PX) = 1) + P(d(ﬁY|X>pg’\X) > 1)
< Texp(—cy(n+ R)) + exp(— "< (n -+ A2, + aln + 7))

C
+ Texp(—cynn?) + exp(= i + any),

where the last inequality follows from ([32)). Similarly, bounds for P(d(px,p%) > nn) and
d(pyx, p% x) can be established. The desired result then follows. O
Proof of Corollary It suffices to verify the entropy conditions in Corollary 1. For the
direct generation, let pxjy = {p(Xi11|X14, Y65}, and pxjy = {p(Xp11| X1, Y 0},
in F¢j. Then

K (px|y, Pxly) < EHJ%(Wtht—l) - %(Wfoht—l)ﬂ

AN

1- _
§EHWfoht—1 — Weh, |,

VAN
=

(Il0Wg = W yheoa |+ W (e = )

IN

/_\

E(IW = We |Gl heallz + [WE I [ hes — ﬁH\I%)
(2k (4k)T+1
+

IN

) (W7 = Wl 20 W= W o ke | W7 — W)

’f’f“Wf Wfo”% S T_l max(QTf, 4k015)2(4]€)T”0f — éf“%,

where the last inequality uses the fact that ||k, — h,||? < 4k (2| W — W |2+ dr| W —

W Z) + (4k)Y | W — WZ||%]|Y||3, which uses the fact that

lhe = hell3 < (W = Wi)1x,) + Wihe o — Wby i

< 2||W — W[ + drel [W = WEE + 4k Ry — heoaf3,

32



and [lho — holl3 < WY — W3] Y[I3.

Hence, H(u, Fii) < Arlog (3max@”’%cls)(4k)<T+1)/2/ Tl/Q) and the entropy condition is met

u

(ﬁ log (max(rf,2015)2T/T1/2n ) ) 1/2‘

by setting ¢; = X

For the indirect generation, it suffices to verify the entropy conditions in Corollary 2. Let
px = {Px(Xi+1|X1.450,) 1" and px = {Px(Xy41|X1:4;0m) 11" Note that hg = hy =
0

and

Tm

K(px, px) < E(IWy = Wil e |3 + Wl et — heea3)

ok (4k) T+
= T(4k — 1)?

< 2, T7(4K)")|6,, — 0,3

5 (W = Wil %+ 2l [ Wy, = W7) + e[ Wiy, — Wi |1

Then’ H(uv ‘Fm k) S Am log (3”"(4]“)@::1)/27171/2

rm(n47)2TT—1/2 1/2
€m = OP((n—H’L 10g(%)) )

Moreover, if Y € {0, 1} %,

) and the entropy condition is met by setting

K (pyix, Brix) < B[ (0(8,E(X1)))* — (0/(8,E(X1))? ||
< EHaz 0,£(X 1)) — o2 (ebg(xlt H2 < %EH(Gb — eb)g(Xu)Hz
< 5[0 - B[ E[le(x00)|

Similarly, H(u,Fpr) < Aplog (3—”“16) and the entropy condition is met by setting ¢, =

uv2
O, (4 log(+521)) %),
If y € RE, then

10, — B)EXL) ) ).

< 1[0, ~ B x| < Lo, - B 2B, 3

“2(PY\x7ﬁY\X) = E(l — exp ( —
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implying that H(u, Fpr) < Aplog (?’2—%‘), and the entropy condition holds when ¢, =

Op((% log(%))lﬂ). This completes the proof. O
Lemma 2. Let v,(f) =n""23 7" (v(f(X7), f9(X?)) — Ev(f(X7), fO(X7))), assume that
there exist some generic constants as > 0 and az > 0, for j > 2, such that

E|o(f(X), f2(X))[ < azj!2d*(f, f°),

and for any 6 > 0, if
91/241/2

/ HY?(u, Vs)du < agn'/?s,
5

28
where Vs = {o(f, f°) : d*(f, f°) < 6, f € F}, then there exist some constants ay > 0 and

as > 0 depending on as and az such that

P*( sup v (f) > a4n1/2(5> < 3exp(—asnd), (34)
d2(f,f0)<é;feF

where P* is the outer probability measure corresponding to p%.

Proof of Lemma [2} The result follows from Lemmas 5 and Lemma 7 in [38], by replacing

the Hellinger distance in Lemma 5 as a generic distance d(-, -). U
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The instantaneous loss bound of SYMBOL  implies only convergence in probability ~ END

nitial hidden
e O O O O O O e O O O O O
h

START The instantaneous |oss bound of SYMBOL implies only convergence in probability

Figure 1: A generated sentence by indirect and direct RNN generators in and ,
where the RNN architecture is displayed, in which sentence “The instantaneous loss bound
of SYMBOL wmplies only convergence in probability” with topic “MISC” is consecutively
generated by words, h; is the hidden node of RNNs in and , and hg is the initial
hidden state, which is zero under and “MISC” under ([20)).

Table 1: Eleven next-word-prediction sequences with associated with a sentence.

Topic Sentence
MISC  The loss bound of SYMBOL implies convergence in probability.

Null Null Null Null Null Null Null Null Null Null Null START — The

Null Null Null Null Null Null Null Null Null START The — loss

Null Null Null Null Null Null Null Null START The loss — bound

Null Null Null Null Null Null Null START The loss bound — of

Null Null Null Null Null Null START The loss bound of — SYMBOL

Null Null Null Null Null START The loss bound of SYMBOL — implies

Null Null Null Null START The loss bound of SYMBOL implies — convergence

Null Null Null START The loss bound of SYMBOL implies convergence — in

Null Null START The loss bound of SYMBOL implies convergence in — probability
Null START The loss bound of SYMBOL implies only convergence in probability — .
START The loss bound of SYMBOL implies only convergence in probability . — END

—_

© 0N O WD
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Table 2: Test errors in loss functions—Entropy, BLEU;, and SF-BLEU, (standard errors
in parentheses) of various generators based on 20 random partitions of the UCI sentence
categorization text corpus. Here “Separate RNN”, “Indirect”, “Direct”, “Direct-GPT2”
and “Coupled” denote the separate RNN, indirect, and direct generators based on the RNN-
LSTM architecture, the direct generator based on the RNN-GPT architecture, and the
coupled generator, while Indirect-label or Coupled-label refers to the generation without
unlabeled data.

Method Entropy BLEU;-loss BLEUj,-loss BLEUj;-loss BLEU,-loss
Y : categorical label

Separate RNN 9.317(.040) 0.895(.010) 0.926(.008) 0.954(.007) 0.971(.005)
Indirect 7.424(.049) 0.768(.003) 0.854(.002) 0.885(.002) 0.914(.002)
Indirect-label 8.839(.060) 0.831(.008) 0.878(.005) 0.899(.004) 0.923(.003)
Direct 9.537(.054) 0.823(.008) 0.872(.005) 0.895(.005) 0.919(.004)
Direct-GPT?2 8.684(.051) 0.900(.006) 0.954(.002) 0.970(.001) 0.981(.001)
Coupled 7.424(.049) 0.768(.003) 0.854(.002) 0.885(.002) 0.914(.002)
Coupled-label 8.644(.050) 0.880(.008) 0.932(.008) 0.949(.007) 0.963(.006)

SF-BLEU;-loss SF-BLEU,-loss SF-BLEUs-loss SF-BLEU,-loss

Separate RNN 0.076(.010) 0.208(.027) 0.271(.036) 0.303(.043)
Indirect 0.105(.006) 0.296(.009) 0.416(.012) 0.502(.013)
Indirect-label 0.138(.008) 0.363(.022) 0.472(.029) 0.545(.036)
Direct 0.139(.006) 0.372(.019) 0 487( 026) 0.561(.032)
Direct-GPT?2 0.053(.006) 0.159(.019) 55(.031) 0.320(.040)
Coupled 0.105(.006) 0.296(.009) 0 416( 012) 0.502(.013)
Coupled-label 0.082(.011) 0.233(.028) 0.342(.038) 0.417(.045)
Method Entropy BLEU;-loss BLEUj;-loss BLEUj3-loss BLEU,-loss
Y : continuous label based on Doc2Vec [23)[2]]

Indirect 7.641(.036) 0.768(.005) 0.851(.003) 0.883(.003) 0.912(.003)
Indirect-label 8.512(.041) 0.912(.010) 0.937(.008) 0.949(.007) 0.960(.005)
Direct 9.102(.050) 0.916(.010) 0.939(.007) 0.950(.005) 0.961(.004)
Coupled 7.641(.036) 0.768(.005) 0.851(.003) 0.883(.003) 0.912(.003)
Coupled-label 8.512(.041) 0.912(.010) 0.937(.008) 0.949(.007) 0.960(.005)

SF-BLEU;-loss SF-BLEUs-loss SF-BLEUj3-loss SF-BLEU -loss

Indirect 0.097(.005) 0.261(.008) 0.361(.010) 0.440(.012)
Indirect-labeled 0.064(.010) 0.165(.026) 0.211(.035) 0.232(.040)
Direct 0.079(.014) 0.202(.037) 0.252(.046) 0.271(.050)
Coupled 0.097(.005) 0.261(.008) 0.361(.010) 0.440(.012)
Coupled-label 0.064(.010) 0.165(.026) 0.211(.035) 0.232(.040)
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Table 3: An abstract generated by the coupled generator based on one random partition
of the UCI benchmark text corpus for sentence categorization. Here five sentences (1)-
(5) correspond to five categories: AIM, OWN, CONTRAST, BASIS, MISC, with the first
five words of each sentence prespecified. All sentences are grammatically legitimate except
”improves” in (4) suffers from an error, and kolmogorov in (1) and israelis in (3) should
be capitalized. These errors are correctable by a grammar checker.

(1) The paper extends research on the theory of choice rules. (2) We test our predic-
tions using the ideas and the notion of kolmogorov complexity bound on the number
of examples of the data sets. (3) The results demonstrate that israelis models can be
used to provide new results for classification accuracy. (4) We show that implementation
concerns the performance of the learning algorithm for improves the optimal predictor
of the prediction. (5) The effect of balance is described by a high level of events and the
objects that are shared.
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