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Abstract
Instance generation creates representative examples to interpret a learning model, as in regression and

classification. For example, representative sentences of a topic of interest describe the topic specifically for

sentence categorization. In such a situation, a large number of unlabeled observations may be available in

addition to labeled data, for example, many unclassified text corpora (unlabeled instances) are available with

only a few classified sentences (labeled instances). In this article, we introduce a novel generative method,

called a coupled generator, producing instances given a specific learning outcome, based on indirect and direct

generators. The indirect generator uses the inverse principle to yield the corresponding inverse probability,

enabling to generate instances by leveraging an unlabeled data. The direct generator learns the distribution

of an instance given its learning outcome. Then, the coupled generator seeks the best one from the indirect

and direct generators, which is designed to enjoy the benefits of both and deliver higher generation accuracy.

For sentence generation given a topic, we develop an embedding-based regression/classification in conjuncture

with an unconditional recurrent neural network for the indirect generator, whereas a conditional recurrent

neural network is natural for the corresponding direct generator. Moreover, we derive finite-sample generation

error bounds for the indirect and direct generators to reveal the generative aspects of both methods thus

explaining the benefits of the coupled generator. Finally, we apply the proposed methods to a real benchmark

of abstract classification and demonstrate that the coupled generator composes reasonably good sentences

from a dictionary to describe a specific topic of interest.

Keywords: Classification, Natural language processing, Numerical embeddings, Semisupervised generation,

Unstructured data.

1 Introduction

Generating an essay or a text for given structured information is an important Artificial

Intelligence (AI) problem, which automatically imitates a certain style of writing. Whereas

solving this AI problem is rather challenging, we tackle its simpler version in this article,
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which we call instance (example) generation, that is, generation of representative instances

given a specific outcome to describe and interpret the corresponding learning model, for

instance, classification and regression.

The use of black-box predictive models such as deep neural networks has delivered a high

empirical learning accuracy in many real-life applications [14, 15]. Yet, it is difficult to make

a sense of such a learning model. From the generative perspective, instance generation can

describe the relationship between an instance and an outcome retrospectively. Its applica-

tions include a topic description of sentence categorization, abstractive text summarization

[12], and image captioning [25], where generated sentences render descriptive examples of

topics, texts, and images. In such a situation, sentence generation allows us to compose a

novel essay and image captioning when the structured information is supplied. For example,

the UCI abstract categorization benchmark1 consists of sentences from abstracts of articles,

which are labeled with one of five topic categories. The goal here is learning a sentence gener-

ation mechanism to compose a novel abstract given a specific topic, in which the generation

performance is measured by the cross-entropy error based on a test sample.

In the literature, instance generation, despite its vast important applications in AI, re-

mains largely unexplored, although some approaches have been suggested for sentence gener-

ation. For example, a computational linguistics approach represents words/phrases as trees

to model linguistic dependencies [20], a learning approach uses a large text corpus to learn a

sentence’s structure without any access to linguistic annotation [5]. In [26], a sentence gen-

erating model is proposed to produce a document by sampling the latent topic of a sentence

and then words of the sentence using a recurrent neural network (RNN). In [37, 17], image

captioning links the image content to a language model through an interplay between a con-

volution neural network (CNN) and an RNN. Yet, there is a paucity of works on instance

generation given structured information, and incorporating both labeled and unlabeled data.

1https://archive.ics.uci.edu/ml/datasets/Sentence+Classification
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One of the primary characteristics of topic-instance data is that the amount of unlabeled

data may be significantly larger than that of labeled data. For example, in sentence genera-

tion, uncategorized sentences are about ten times more than categorized ones. This is in a

parallel situation of semisupervised learning with a different focus on leveraging unlabeled

data to enhance the predictive accuracy of supervised learning [42, 18], which is in contrast

to our generation objective given a learning outcome.

Our main contribution lies in the development of a new semisupervised generation frame-

work for producing instances given an outcome. On this ground, we propose three generative

methods–indirect, direct, and coupled generators. The indirect generator uses the principle

of inverse learning to estimate the conditional probability distribution of an outcome given

an instance, enabling to leverage unlabeled data, if available. On the other hand, the direct

generator estimates the corresponding conditional probability of an instance given an out-

come in a supervised manner. Then, the coupled generator is designed to enjoy the benefits

of both generations. The proposed generators are illustrated in sentence generation, where

we generate a sentence through sequential next-word-prediction. Specifically, we develop

regularized embedding-based regression/classification in conjuncture with an unconditional

RNN for the indirect generator, whereas we use a conditional RNN for the direct generator.

To shed light on the generative performance of the three generators, we derive finite-

sample generation error bounds for each method. Interestingly, the generation error of the

indirect generator is governed by the complexity of the parameter space of the conditional

densities of an outcome given an instance and that of marginal densities. Similarly, that of the

direct generator is determined by the conditional densities of an instance given an outcome.

As a result, the indirect and direct generators have their own advantages with respect to

generation with the unlabeled data is large, and importantly the coupled generator enjoys

the benefits of both in terms of generation accuracy. This, together with a real benchmark

of sentence categorization, demonstrates the utility of the coupled generation for composing
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reasonably good sentences to describe a specific topic. Numerically, the proposed method

outperforms a separate RNN method and the indirect generator can leverage additional

unlabeled data for further enhancing the performance.

This paper is organized as follows. Section 2 introduces the framework of coupled gener-

ation based on indirect and direct generations. Section 3 develops a theory of the generation

performance of the proposed methods. Section 4 is devoted to the development of a novel

sentence generative method given a topic of interest through sequential next-word prediction.

Section 5 investigates the operating characteristics of the coupled generator and compares

it with the direct and indirect generators as well as one competitor. The Appendix contains

technical proofs.

2 Methods

Consider a generative model in which the goal is to generate an instanceX given an outcome

Y , where X and Y represent instance and response variables, which can be numerical or

unstructured such as texts and documents that cannot be expressed in a predefined manner.

In this article, we focus on instance generation under a generative model, based on the

conditional distribution pX|Y of X given an outcome of Y . As an example, in sentence

generation [26], instance generation produces representative examples of X given a specific

topic of Y , where X and Y represent a sentence and its associated topic.

For instance generation, a labeled training sample (xi,yi)ni=1 is available as well as an

instance-only sample (xj)ñj=1, whose sample size ñ may greatly exceed or smaller than the

sample size n. In our context, we leverage the unlabeled sample to enhance the generative

accuracy of instance generation.

Indirect generator. An indirect generator produces instances using an estimate of

pX|Y through the inverse relation (1): an estimate of pY |X based on (xi,yi)ni=1 in (2) and the
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marginal density pX based on combined data (xi)ni=1 and (xj)ñj=1 in (3). That is,

Indirect: p̂bX|Y (x|y) =
p̂Y |X(y|x)p̂X(x)∫

x∈X p̂Y |X(y|x)p̂X(x)dx
, (1)

p̂Y |X = argmin
pY |X∈Fb

−n−1

n∑
i=1

log
(
pY |X(yi|xi)

)
+ λbJb(pY |X), (2)

p̂X = argmin
pX∈Fm

−(n+ ñ)−1
( n∑
i=1

log
(
pX(xi)

)
+

ñ∑
j=1

log
(
pX(xj)

))
+ λmJm(pX), (3)

where p̂Y |X and p̂X in (1) are regularized maximum likelihood estimates of pY |X and pX, Jb

and Jm are regularizers, for example, L1- or L2-regularization in a neural network model,

λb ≥ 0 and λm ≥ 0 are tuning parameters controlling the weights of regularization, and

Fb in (2) and Fm in (3) are parameter spaces of pY |X and pX, respectively. Note that∫
x∈X p̂X|Y (x|y)p̂X(x)dx in (1) normalizes p̂bX|Y to become a probability density, although

normalization is unnecessary when only some aspects of the distribution such as the modes

or percentiles are of concern, as opposed to the distribution itself. Importantly, the indi-

rect generator leverages instance-only (unlabeled) data (xj)ñj=1, but any potential bias in

estimation of pX based on (xj)ñj=1 could translate into that of pY |X.

Direct generator. A direct generator uses pX|Y to generate instances, estimated by

minimizing the negative regularized conditional likelihood ofX given Y based on (xi,yi)ni=1:

Direct: p̂f
X|Y (x|y) = p̂X|Y (x|y),

p̂X|Y = argmin
pX|Y ∈Ff

−n−1

n∑
i=1

log
(
pX|Y (xi|yi)

)
+ λfJf(pX|Y ), (4)

where Ff is a parameter space of pX|Y , Jf is a regularizer, and λf ≥ 0 is a tuning parameter

controlling the weight of regularization.

It appears that (4) can be extended to leverage additional unlabeled data through the

conditional likelihood of pX|Y and a mixture relation
∫
y
pX|Y (x|y)pY (y)dy = pX(x). Unfor-
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tunately, however, the mixture approach may suffer from an asymptotic bias when additional

unlabeled data is included, thus degrading the estimation performance of pX|Y [8, 9, 39].

This is because the aforementioned mixture relation may not hold when Ff is misspecified,

and moreover its impact could be minimal even it holds, especially when the support of

Y is large. As suggested by the theorem in Section 4 [39], the supervised and semisu-

pervised maximum likelihood estimates may converge to different values, and thus more

unlabeled data produces a larger estimation bias as measured by the Kullback-Leibler di-

vergence, when the model is misspecified in that p0
X does not belong to the parameter space

Ff = {pX(x) =
∫
y
pX|Y (x|y)pY (y)dy; pX|Y ∈ Ff} or the mixture relation is not satisfied. Fur-

thermore, as demonstrated by Figures 1 and 2 of [8] and Figure 4.1 of [7], empirical studies

indicate that an EM algorithm based on both labeled and unlabeled data tends to degrade

performance solely based on the labeled data when the size of labeled data exceeds 30 in

SecStr dataset. As a result, pX|Y estimated from labeled data renders a better performance

than that on labeled and unlabeled data.

In summary, how to leverage unlabeled data to enhance the generation performance

remains an open question, which depends on model assumptions that may not be verifiable

in practice. It is worth mentioning that (4) is a general formulation without assuming any

specific assumption on how pX is related to Ff. However, if such an assumption becomes

available in practice, (4) can be generalized based on it to incorporate unlabeled data for

improvement. At present, we shall not pursue this aspect as the indirect method can benefit

from additional unlabeled data, as suggested by Theorem 1 in Section 3.

Coupled generator. The level of difficulty of estimating p̂f
X|Y and that of p̂bX|Y may

differ, particularly when pX can be well-estimated from both instance-only and unlabeled

data. Depending on situations, the former may be more difficult than the latter, and vice

versa. Some theoretical results for this aspect are illustrated in Section 4.5. Then we

propose coupled generation by choosing, between the two, the one maximizing a predictive
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log-likelihood, or minimizing a negative log-likelihood, such as (23) in the sentence generation

example. In particular, a coupled generator is defined as,

p̂cX|Y =

 p̂f
X|Y if p̂f

X|Y has a higher log-likelihood value on a validation set than p̂bX|Y ,

p̂bX|Y otherwise.

(5)

The probability density p̂cX|Y gives the whole spectrum of values of X given Y . First,

we may generate representative instances using the mode of pX|Y to give one representation

or sampling-based on pX|Y for multiple representations. Second, discriminative features X

with respect to Y can be extracted by comparing p̂cX|Y at different Y -values retrospectively.

For example, in classification with Y = ±1, a comparison of p̂cX|Y=1 and p̂cX|Y=−1 leads to

discriminative features. This aspect will be further investigated elsewhere.

Coupled learning has its distinct characteristics although it appears remotely related

to semisupervised variational auto-encoders [18] and inverse autoregressive flows [19]. In

particular, [19] uses a generative model pX|Y and pX to enhance a discriminative model pY |X

regarding the marginal distribution as a mixture of conditional distributions, whereas the

proposed indirect generator integrates the unlabeled data to separately estimate the marginal

distribution. Furthermore, [18] estimates the marginal density of X pX via a chain of latent

factors and inevitable transformations of autoregressive neural networks and connects blocks

by invertible relations. Yet, the proposed method links two conditional densities by Bayes’

law. Finally, the theoretical justification of [19] and [18] remains unknown.

3 Theory

This section develops a learning theory to investigate the generation errors of direct, indirect,

and coupled generators. In particular, we derive finite-sample generation error bounds for

estimators p̂bX|Y , p̂f
X|Y , and p̂cX|Y of (1), (4) and (5).
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The generation error for generating X given Y is defined as the expected Hellinger-

distance between two conditional densities pX|Y and qX|Y with respect to Y :

d
(
pX|Y , qX|Y

)
=
(
EY h2(pX|Y , qX|Y )

)1/2 ≡
(
EY
∫

(p
1/2
X|Y − q

1/2
X|Y )2dµ

)1/2
,

where µ is the Lebesgue measure on x, and EY is the expectation with respect to Y .

Three parameter spaces Fb, Fm, and Ff are defined for estimating pY |X in (2), pX in (3),

and pX|Y in (4), each of which is allowed to depend on the corresponding sample size. Then

their regularized parameter spaces are given as follows: Fb,k = {pY |X ∈ Fb : J(pY |X) ≤ k}

for (2), Fm,k = {pX ∈ Fm : J(pX) ≤ k} for (3), and Ff,k =
{
pX|Y ∈ Ff : J(pX|Y ) ≤ k

}
for

(4). On this ground, we define the metric entropy to measure their complexities to be used

for our theory.

The u-bracketing metric entropy H(u,F) of space F with respect to a distance D is

defined as the logarithm of the cardinality of the u-bracketing of F of the smallest size. A

u-bracketing of F is a finite set (of pairs of functions) {(pLj , pUj ), j = 1, · · · , N} such that for

any p ∈ F , there is a j such that pLj ≤ p ≤ pUj with d(pLj , p
U
j ) ≤ u; j = 1, · · · , N . Note that

d2(pY |X, qY |X) = EX
(
h2(pY |X, qY |X)

)
, h2(pX, qX), and EY h2(pX|Y , qX|Y ), respectively for Fb,k,

Fm,k, and Ff,k.

To quantify the degree of approximation of the true density p0
Y |X by Fb, we introduce a

distance ρb(p
0
Y |X, pY |X) = EXEY |Xgα(p0

Y |X/pY |X), where gα(x) = α−1(xα − 1) for α ∈ (0, 1).

As suggested in Section 4 of [38], this distance is stronger than the corresponding Hellinger

distance. Similarly, ρm(p0
X, pX) = EXgα(p0

X/pX) and ρf(p
0
X|Y , pX|Y ) = EXEY |Xgα(p0

X|Y /pX|Y )

are defined for approximating the true densities p0
X and p0

X|Y by Fm and Ff, respectively.

Let p∗Y |X ∈ Fb and p∗X ∈ Fm be two approximating points of p0
Y |X and p0

X in that

ρb(p
0
Y |X, p

∗
Y |X) ≤ γb and ρm(p0

X, p
∗
X) ≤ γm for some sequences γb ≥ 0 and γm ≥ 0. Of course,

γb = 0 when p0
Y |X ∈ Fb and γm = 0 when p0

X ∈ Fm.
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Theorem 1 (Indirect generator). Suppose there exist some positive constants c1-c6, such

that, for any εb > 0 and λb ≥ 0,

sup
k≥1

∫ 21/2L
1/2
k

2−8Lk

H1/2(u/c3,Fb,k)du/Lk ≤ c2n
1/2, Lk = c1ε

2
b + λb(k − 1), (6)

and, for any εm > 0 and λm ≥ 0,

sup
k≥1

∫ 21/2L
1/2
k

2−8Lk

H1/2(u/c6,Fm,k)du/Lk ≤ c5(n+ ñ)1/2, Lk = c4ε
2
m + λm(k − 1), (7)

then

P
(
d(p̂bX|Y , p

0
X|Y ) ≥ 2(ηb + ηm)

)
≤ 8 exp

(
− c7nη

2
b

)
+ 8 exp

(
− c8(n+ ñ)η2

m

)
, (8)

ηb = max(εb, γ
1/2
b ), ηm = max(εm, γ

1/2
m ),

provided that λb max(Jb(p
∗
Y |X), Jb(p

0
Y |X), 1) ≤ c9η

2
b and λm max(Jm(p∗X), Jm(p0

X), 1) ≤ c9η
2
m,

and c7-c9 are some positive constants. Consequently, d(p̂bX|Y , p
0
X|Y ) = Op(ηb + ηm) as n, ñ→

∞ under under p0
X,Y .

Theorem 1 indicates that the generation error of the indirect generator is governed by the

estimation errors εb and εm from (2) and (3), and the approximation errors γb and γm, where

εb and εm can be obtained by solving the entropy integral equations in (6) and (7). Moreover,

optimal rates of convergence can be obtained through tuning of λb and λm. Note that ηm

could be tuned as a smaller order of ηb when the size of unlabeled data greatly exceeds

the size of labeled data. Then the generalization error of the indirect method is governed

primarily by ηb. In other words,the indirect generator’s performance is mainly determined

by the estimation of pY |X.

For direct generator, let p∗X|Y ∈ Ff be an approximation of p0
X|Y in that ρf(p

0
X|Y , p

∗
X|Y ) ≤ γf
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for some γf ≥ 0.

Theorem 2 (Direct generator). Suppose there exist some positive constants c10-c12, such

that, for any εf > 0, and λf ≥ 0,

sup
k≥1

∫ 21/2L
1/2
k

2−8Lk

H1/2
(
u/c12,Ff,k

)
du/Lk ≤ c11n

1/2, Lk = c10ε
2
f + λf(k − 1), (9)

then

P
(
d(p̂fX|Y , p

0
X|Y ) ≥ ηf

)
≤ 8 exp(−c13nη

2
f ), ηf = max

(
εf, γ

1/2
f

)
, (10)

provided that λf max(Jf(p
∗
X|Y ), Jf(p

0
X|Y ), 1) ≤ c9η

2
f , and c13 > 0 is a constant. Consequently,

d(p̂f
X|Y , p

0
X|Y ) = Op(ηf) as n→∞ under p0

X,Y .

In contrast to the indirect generation, the generation error ηf of the direct generation

could be much larger or smaller than that of the indirect generation ηb depending on the

complexities of Ff, Fb, and the corresponding approximation errors γf and γb, when pX can

be sufficiently well estimated. This suggests that either may outperform the other depending

on the model assumptions.

Note that γf, γb, and γm are the approximation errors of the approximation capabilities of

function spaces Ff,Fb and Fm [35, 40]. In particular, when the function space is defined by a

ReLU deep neural network to approximate a function in a Sobolev space, the approximation

error is available and related to the scale of the neural network [40].

Theorem 3 says that the coupled generator performs no worse than the indirect and

direct generators when (5) is used to select based on an independent cross-validation sample

of size N .

Theorem 3 (Coupled generation). Under p0
X,Y , as N → ∞, the coupled generator defined

in (5) satisfies K(p0
X|Y , p̂

c
X|Y ) ≤ min

(
K(p0

X|Y , p̂
b
X|Y ), K(p0

X|Y , p̂
f
X|Y )

)
, where K(pX|Y , qX|Y ) is

the Kullback-Leibler divergence between pX|Y and qX|Y .
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Remarks: In Theorem 3, if K(p0
X|Y , pX|Y ) ≤ c2

14d
2(p0

X|Y , pX|Y ) for some constant c14 > 0,

then d(p0
X|Y , p̂

c
X|Y ) ≤ c15 min

(
d(p0

X|Y , p̂
b
X|Y ), d(p0

X|Y , p̂
f
X|Y )

)
, which occurs when the likelihood

ratio is bounded.

4 Sentence generation given a topic

This section derives generative methods of sentence generation, which integrates the like-

lihood methods developed previously with language models to compose a sentence. As a

result, a new sentence can be generated, which may not appear in training data; see Table

3 for an example.

A complete sentence is represented by a word vector X1:T = (X1, · · · , XT )′, where Xt is

the t-th word, T is a sentence-specific length, and ′ denotes the transpose of a vector. For

convenience, we write X1 = “START” and XT+1 = “END” as the null words of the first

and last words of a sentence, respectively. For example, X1 =“START”, X2 = “Football”,

X3 = “is”, X4 = “a”, X5 = “popular”, X6 = “sport”, and X7 = “END”. Together with

X1:T , its associated topic category Y = (Y1, · · · , YK)′ is available, where Yj ∈ {0, 1} or

Yj ∈ R. Finally, we construct a dictionary D = (w1, · · · , w|D|)′ to contain all composing

words, that is Xt ∈ D; t = 1, · · · , T , with |D| denoting D’s size.

For simplicity, we consider the case of a fixed T , where sentences of different lengths can be

processed with a fixed length, as illustrated in Table 1. Sentence generation given a topic Y

generates a sentence X1:T+1 using the conditional probability P
(
X1:T+1 = x1:T+1|Y = y

)
.

However, estimation of this probability at the sentence level is infeasible. Therefore, we

decompose it at the word level by the probability chain rule:

log
(
p
(
X1:T+1 = x1:T+1|Y = y

))
=

T∑
t=1

log
(
p(Xt+1 = xt+1|X1:t = x1:t,Y = y)

)
. (11)
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This decomposition (11) permits sequential generation of a sentence through next-word-

prediction given existing words by learning p(Xt+1 = xt+1|x1:t,y) from data; t = 1, · · · , T .

Yet, estimation of p(Xt+1 = xt+1|x1:t,y) remains challenging for unstructured X1:t be-

cause of a lack of observations in any conditioning event of X1:t given Y even with large

training data. Furthermore, it is difficult to utilize unlabeled data to estimate p(Xt+1 =

xt+1|x1:t,y).

4.1 Indirect generator

In this context, we derive a version of (2) and that of (3) through (11) to estimate the inverse

probabilities. Specifically, p(xt+1|x1:t,y) can be written as

p(xt+1|x1:t,y) =
p(y|x1:t+1)p(xt+1|x1:t)∑

xt+1∈D p(y|x1:t, xt+1)p(xt+1|x1:t)
; (12)

for t = 1, · · · , T . Then, we estimate the inverse probability p(y|x1:t+1) based on labeled data

(xi1:t,y
i)ni=1 and estimate p(xt+1|x1:t) based on (xi1:t)

n
i=1 for t = 1, · · · , T i, and unlabeled data

(xj1:t)
ñ
j=1 for t = 1, · · · , T j.

Estimation of p(y|x1:t) may proceed with unstructured predictors x1:t. To proceed, we

map a sentence x1:t to a numerical vector E(x1:t) ∈ Rp, known as a numerical embedding

of size p via a pre-trained embedding model such as Doc2Vec [23, 24] and BERT [11]. If a

pre-trained embedding model is sufficient in that p(y|X1:t = x1:t) = p(y|E(X1:t) = E(x1:t))

[10], the numerical embedding E(x1:t) captures word-to-word relations expressed in terms of

co-occurrence of words, which may raise the level of predictability of unstructured predictors

X1:t. Next, we model p(y|x1:t) through p
(
y|E(x1:t)

)
when Y ∈ {0, 1}K is categorical or
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Y ∈ RK is continuous with an embedded label Y :

p(y|x1:t) =

 y′σ
(
f
(
E(x1:t)

))
, if y ∈ {0, 1}K ,

(2π)−K/2 exp
(
− 1

2

∥∥y − f(E(x1:t)
)∥∥2

2

)
, if y ∈ RK ,

(13)

where K is the dimension of Y , σ(·) is the softmax function [1], and f is a nonparametric

classification or regression function forest [3] or linear function f(E(x1:t)) = θbE(x1:t) with

θb ∈ RK×p. For illustration, we use a linear representation f
(
E(x1:t)

)
= θbE(x1:t) in (13)

sequentially. Now the cost function Lb(θb) in (2) becomes

Lb(θb) = − 1

n

n∑
i=1

(T i)−1

T i∑
t=1

log
(
p(yi|E(xi1:t)

)
+ λbJb(f), (14)

where λb ≥ 0 is a tuning parameter and Jb(f) ≥ 0 is a regularizer, for example, Jb(f) = ‖θb‖2
F

if f
(
E(x1:t)

)
= θbE(x1:t), where ‖ · ‖F is the Frobenius-norm of a matrix.

Figure 1 about here

On the other hand, the next word probability is estimated by a RNN in a form of

p(xt+1|x1:t) = o[xt+1](xt,ht;θm), with ht = h(xt,ht−1;θm),h0 = 0, (15)

where [xt+1] = {j : wj = xt+1}, oj(xt,ht,θm) is the probability of occurrence of the j-th

word in D, and h(xt,ht−1,θm) is a hidden state function, such as a long short-term memory

unit (LSTM) [16], a bidirectional unit [32], a gated recurrent unit (GRU) [6], and GPT2

[30], θm is the parameter of a specific RNN model, for example, θm = (W o
m,W

x
m,W

h
m) in a

basic RNN,

o(xt,ht,θm) = σ(W o
mht), ht = φ(W x

m1[xt] +W h
mht−1), and h0 = 0, (16)
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where σ(·), as defined before, is the softmax and φ is an activation function such as the

ReLU function [1], W o
m ∈ Rrm×|D|, W x

m ∈ R|D|×rm , and W h
m ∈ Rrm×rm , and rm is the number

of latent factors of the RNN. See Figure 1 for a display of the architecture of a basic RNN.

On the ground of (15), the cost function Lm(θm) in (3) becomes

Lm(θm) = −(n+ ñ)−1

n∑
i=1

(T i)−1

T i∑
t=1

log
(
o[xit+1](x

i
t,h

i
t,θm)

)
− (n+ ñ)−1

ñ∑
j=1

(T j)−1

T j∑
t=1

log
(
o[xjt+1](x

j
t ,h

j
t ,θm)

)
+ λmJm(θm), (17)

where λm ≥ 0 is a tuning parameter and Jm(θm) is a regularizer regularizing the weights

matrix and the activation layer [22].

Minimizing (14) and (17) yields estimators θ̂b and θ̂m, respectively. Then the condi-

tional probabilities are estimated as p̂(y|x1:t+1; θ̂b) = σ
(
θ̂bE(x1:t+1)

)
and p̂(xt+1|x1:t; θ̂m) =

o[xt+1](xt,ht−1, θ̂m). Plugging these estimates into (12), we obtain the estimated probability,

and the process is summarized as,

p̂b(Xt+1 = x|x1:t,y) =
p̂(y|x1:t, x; θ̂b)p̂(Xt+1 = x|x1:t; θ̂m)∑
x∈D p̂(y|x1:t, x; θ̂b)p̂(Xt+1 = x|x1:t; θ̂m)

(18)

θ̂b = argmin
θb

Lb(θb), θ̂m = argmin
θm

Lm(θm).

Then, a sentence is sequentially generated as follows:

x̂t+1 = argmax
x∈D

p̂b(Xt+1 = x|X1:t = x1:t,Y = y); t = 1, · · · , T̂ . (19)

This generation process begins with x̂1 = “START” or pre-specified t0-words x̂1:t0 and

proceeds until x̂T̂ = “END” is reached, where T̂ is an index at termination. It is worth

mentioning that the denominator in (18) normalizes the probability but may not need to be

14



computed when a maximizer of (18) is desired in (19).

4.2 Direct generator

The direct generation is inspired by a conditional RNN (C-RNN; [37, 17]) by estimating

p(xt+1|x1:t,y) = o[xt+1](xt,ht−1,y,θf), with ht = h(xt,ht−1,θf), h0 = h0(y,θf), (20)

where θf represents the parameters of a RNN, and h0 is built on the label information as

opposed to h0 = 0 in (16). As in (16), the direct generator requires additional parameters

W y
f ∈ Rrf×K for θf = (W o

f ,W
x
f ,W

h
f ,W

y
f ) to model the effect from y as follows:

o(xt,ht,y,θf) = σ(W o
f ht), ht = φ(W x

f 1[xt] +W h
f ht−1), and h0 = φ(W y

f y), (21)

where W o
f ∈ Rrf×|D|, W x

f ∈ R|D|×rf , W h
f ∈ Rrm×rf , and rf is the number of latent factors of

the RNN. On this ground, the cost function in (4) becomes

Lf(θf) = −n−1

n∑
i=1

(T i)−1

Ti∑
t=1

log
(
o[xit+1](x

i
t,h

i
t−1,y

i,θf)
)

+ λfJf(θf), (22)

where λf ≥ 0 is a tuning parameter and Jf(θf) is a nonnegative regularizer. Minimizing (22)

in θf yields an estimate θ̂f, thus the estimated probability p̂f(x|x1:t,y) = o[x](xt,ht−1,y, θ̂f),

from (20). Then, sentence generation proceeds as in (19).

Worth of note is that the direct and indirect generators can be respectively implemented

using different RNN models, for example, GPT2 for the direct RNN (20) while LSTM for the

indirect RNN in (15). Moreover, different model architectures of RNNs may yield different

empirical results. This aspect is illustrated in Section 5.
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4.3 Coupled generator

Given the estimated probabilities p̂f(xt+1|x1:t,y) and p̂b(xt+1|x1:t,y). The coupled generator

chooses one between p̂f and p̂b on a validation set by minimizing an empirical version of the

log-likelihood loss,

Ent(p̂) = −T−1

T∑
t=1

log p̂(Xt+1 = xt+1|X1:t = x1:t,Y = y). (23)

4.4 Large-scale computation

This section develops a computational scheme for the indirect generator in (14)-(17), and

the direct generator in (22) can be treated by a standard RNN implementation as in [36, 29].

In particular, when stochastic backpropagation is used through the time gradient method,

the computation complexity is of order of the number of parameters per time step [27].

In what follows, we apply gradient descent [41] or stochastic gradient descent [31] to

solve (14). For (17), we apply a classical back-propagation algorithm. In each case, we use

analytic a gradient expression for updates.

Gradient for indirect generation. The gradient expression for θm in (17) is given in

[29], while that for θb in (14) is computed as

∂Lb
∂θb,k

=

 λbθb,k − n−1
∑n

i=1(T i)−1
∑T i

t=1

(
yik − σk(θbE(xi1:t)

)
E(xi1:t), y

i ∈ {0, 1}K ,

λbθb,k − n−1
∑n

i=1(T i)−1
∑T i

t=1

(
yik − θ′b,kE(xi1:t)

)
E(xi1:t), yi ∈ RK ,

(24)

where θb,k denotes the kth column of θb.

The detail of gradient descent for the indirect generator is summarized as follows.

Algorithm 1 (Gradient descent for indirect generator):

Step 1 (Initialization): Specify a RNN architecture, randomly initialize θb and θm, a

step size for gradient descent, tuning parameters λb and λm, and the number of maximal

16



training iterations.

Step 2 (Regression): Updating θb in (14) based on the gradient in (24).

Step 3 (RNN Gradient update): Solving (17) by updating the indirect RNN parameters

θm via gradient descent based on back-propagation in [29].

Step 4 (Termination): Iterate Step 3 until a stopping criterion is met.

Algorithm 1 can be updated by a stochastic gradient scheme [2]. Lemma 1 describes

computational properties of Algorithm 1.

Lemma 1. If the cost functions Lb in (14) and Lm in (17) are continuously twice differential,

and the probability measure of random initialization is absolutely continuous with respect to

the Lebesgue measure. Then, θ̂b is a global minimizer of (14), while θ̂m is a local minimizer

of (17) almost surely, provided that the step size in Algorithm 1 is sufficiently small.

4.5 Theory for sentence generation

This section generalizes the theoretical result of Section 3 to the problem of next-word-

prediction.

Now we use pX|Y , pY |X, and pX to respectively represent {pXt+1|X1:t,Y }Tt=1, {pY |X1:t}Tt=1,

and {pXt+1|X1:t}Tt=1. The expected square Hellinger-distance for next-word-prediction is

d
(
pX|Y , qX|Y

)
=
(
Ēh2(pXt+1|X1:t,Y , qXt+1|X1:t,Y )

) 1
2
, (25)

where Ē(·) = T−1
∑T

t=1 EX1:t,Y (·).

The metric entropy of Fb,k is defined by a distance κ2(pY |X, qY |X) = Ēh2(pY |X1:t , qY |X1:t).

Similarly, κ2(pX, qX) = Ēh2(pXt+1|X1:t , qXt+1|X1:t), and d2(pX|Y , qX|Y ) are used for Fm,k and

Ff,k, respectively.

The approximation error for p0
Y |X is ρb(p

0
Y |X,pY |X) = Ēgα

(p0(Y |X1:t+1)
p(Y |X1:t+1)

)
. Similarly, the ap-

proximation errors ρm(p0
X,pX) = Ēgα

(p0(Xt+1|X1:t)
p(Xt+1|X1:t)

)
and ρf(p

0
X|Y ,pX|Y ) = Ēgα

(p0(Xt+1|X1:t,Y )
p(Xt+1|X1:t,Y )

)
17



are used for p0
X and p0

X|Y .

Corollary 1 (Sequential generation). All the results in Theorems 1 and 2 continue to hold

with the distance d(·, ·) defined in (25).

Next we provide a theoretical example to illustrate Corollary 1.

Theoretical example. Suppose that the RNN in (15) is a basic recurrent network with

θm = (W o
m,W

x
m,W

h
m), that is, o(xt,ht−1,θm) = σ(W o

mht−1), ht = φ(W x
m1[xt] +W h

mht−1),

and h0 = 0rm , where W o
m ∈ Rrm×|D|, W x

m ∈ R|D|×rm , and W h
m ∈ Rrm×rm , rm is the number

of latent factors of the RNN, and φ(z) is an activation function, such as the sigmoid function

φ(z) = 1/(1 + exp(−z)), the tanh function φ(z) = tanh(z), and the Rectified linear unit

(ReLU) φ(z) = z+. For illustration, we focus on the sigmoid function.

The RNN in (20) is that o(xt,ht−1,θf) = σ(W o
f ht−1), ht = φ(W x

f 1[xt] +W h
f ht−1), and

h0 = φ(W y
f y). The network parameters are θf = (W o

f ,W
x
f ,W

h
f ,W

y
f ), where W o

f ∈ Rrf×|D|,

W x
f ∈ R|D|×rf , W h

f ∈ Rrf×rf , and W y
f ∈ Rrf×K , and rf is the number of latent factors of the

RNN in the direct generation.

Corollary 2 gives the generation errors of the direct and indirect generators.

Corollary 2 (Theoretical example). For the estimated next-word probabilities p̂f
X|Y by the

direct generator in (22), we have that d(p̂f
X|Y ,p

0
X|Y ) = Op(ηf), where

ηf = max
{(Λf

n
log
(nmax(rf, 2c15)2TT−1/2

Λf

)) 1
2
, γ

1
2
f

}
,

Λf = rf(2|D|+rf +K), λf = c17η
2
f , and c15 > 0 and c16 > 0 are constants with EY ‖Y ‖2

2 ≤ c15.

Similarly, the estimated next-word probabilities p̂bX|Y by the indirect generator in (14) and
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(17) satisfies: d(p̂bX|Y ,p
0
X|Y ) = Op(ηb + ηm), where

ηb = max
{(Λb

n
log
(c16n

Λb

)) 1
2
, γ

1
2
b

}
,

ηm = max
{( Λm

n+ ñ
log
(rm(n+ ñ)2TT−1/2

Λm

)) 1
2
, γ

1
2
m

}
,

Λb = Kp, Λm = rm(2|D| + rm), λb = c18η
2
b , λm = c18η

2
m, and c16 > 0 and c18 > 0 are

constants with Ē
∥∥E(X1:t)

∥∥2

2
≤ c16.

Corollary 2 says that the generation error of the indirect generator in (1) becomes

d(p̂bX|Y ,p
0
X|Y ) = Op

(
Λb
n

log
(
n
Λb

)) 1
2 when (ñ+n)/n = O(Λm log(rmn/Λm)

Λb log(c16n/Λb)
), when γb = γm = 0. In

fact, the generation error is primarily dominated by its estimation error of p(Y |X1:t), because

p(Xt+1|X1:t) can be well estimated with the help of large unlabeled data with ñ� n. In this

situation, the indirect method outperforms the direct method, particularly when Λb < Λf,

suggesting that the estimation complexity of the indirect method is less than that of the

direct method. Interestingly, the generation error of the direct generator agrees with that of

the maximum likelihood estimates under the Hellinger-distance [34, 38]. With respect to tun-

ing, a large value of Λb, Λm, and Λf increases the complexity of the corresponding functional

space for probability estimation, thus reduces the generation errors. Consequently, the gen-

eration errors of the direct and indirect generators indeed depend on the model complexity

of parameter spaces Fb and Ff.

To illustrate the synergy of indirect and direct generators’ respective strengths, we con-

sider two situations. First, d
(
p̂f
X|Y ,p

0
X|Y

)
= op

(
1
)

but d
(
p̂bX|Y ,p

0
X|Y

)
is bounded away

from zero if an unlabeled sample (Xj
1:T j

)ñj=1 follows a different marginal distribution of the

labeled sample (X i
1:T i)

n
i=1. Second, d

(
p̂bX|Y ,p

0
X|Y

)
= op(1) but d

(
p̂f
X|Y , p̂

0
X|Y

)
is bounded

away from zero in the presence of a new word in labeled but unlabeled samples. However,

in both situations, d
(
p̂cX|Y ,p

0
X|Y

)
= op(1), when Kullback-Leibler divergence is equivalent

to the Hellinger-distance. In other words, only the coupled generator has a generation error
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tending to zero in both situations.

5 Benchmark

This section examines the performance of the coupled, indirect, and direct generators in

one benchmark example, and compares with a baseline method “Separate RNN”, which fits

RNNs for each topic as in [36]. The benchmark concerns sentence categorization based on a

text corpus in the UCI machine learning repository2. This corpus contains 1,039 labeled sen-

tences collected from abstracts and introductions of 30 articles, in which five topic categories

are AIM (a specific aim of the present paper), OWN (description of own work presented in

the present paper), CONTRAST (comparison statements with other works, including strengths

and weaknesses), BASIS (statements of agreement with other works or continuation of other

works), and MISC (generally accepted scientific background or description of other works).

These labels originate from three scientific domains: computational biology (PLOS), the

machine learning repository on arXiv (ARXIV), and the psychology journal judgment and

decision making (JDM). For example, a typical sentence such as “The instantaneous loss

bound of SYMBOL implies only convergence in probability.” is labeled as “MISC” according

to scientific topic classification. In addition to the aforementioned labeled sentences, this

corpus contains 34,481 unlabeled sentences from 300 articles in PLOS, ARXIV, and JDM.

Before proceeding, we pre-process the text corpus to filter out redundant each sentence’s

component so that numerical embeddings are applied for the indirect generator. First, we

replace all numerical values, symbolic values, and citations by “NUMBER”, “SYMBOL”, and

“CITATION”, respectively, and remove all standalone punctuation marks except commas,

periods, and semicolons. For unlabeled sentences, we remove words appearing less than 20

times in the corpus, which leads to an unlabeled corpus of 8,286 sentences. On this ground,

2https://archive.ics.uci.edu/ml/datasets/Sentence+Classification
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a dictionary is constructed, consisting of 5,369 words extracted from labeled and unlabeled

sentences.

For training, we generate word strings for next-word-prediction based on the maximum

length of all sentences in the dataset. Thus, all the previous tokens in the sentence are con-

tributing to predict the next word. Specifically, we create next-word-prediction sequences

consisting of consecutive previous words and fill with the null word “NULL” to pad all word

strings as the same length. An example of such a next-word-prediction sequence is displayed

in Table 1. In this fashion, we gather enough training sentences as the null words do not

impact our learning process. Now, 28,180 labeled next-word-prediction sequences are gen-

erated from the original 1,039 labeled sentences, together with 174,355 unlabeled sequences

from the original 8,286 unlabeled sentences.

The generation performance is measured by two commonly used metrics, namely, the

next-word entropy loss and the Bi-Lingual Evaluation Understudy (BLEU) loss [28] over a

test sample, approximating the predicted Kullback-Leibler divergence and Jaccard distance

[13], respectively. Given sentences (x̂i
1:T̂ i

)ntest
i=1 generated from p̂ and its reference sentence

(xi1:T i)
ntest
i=1 given a topic y, the entropy loss is defined in as the empirical version of (23),

while the BLEUl-loss (l = 1, · · · , 4) can be written as

BLEUl-loss(p̂) = 1− n−1
test

ntest∑
i=1

exp
(

min(1− T̂ i

T i
, 0)
) |graml(x

i
1:T i) ∩ graml(x̂

i
1:T̂ i

)|
|graml(x̂

i
1:T̂ i

)|
,

where ntest is the number of sentences in the testing set, | · | denotes a set’s size and graml(·)

is the l-gram set for a sentence. For a sentence “the cat in the hat”, its 1-gram set is {

“the”, “cat”, “in”, “the”, “hat”}, the 2-gram set is { “the cat”, “cat in”, “in the”, “the

hat”}, and the 3-gram set is { “the cat in”, “cat in the”, “in the hat” }. The BLEUl-loss

can be computed using the NLTK library in Python. Whereas the entropy loss measures the

occurrence probability of the reference sentences, the BLEUl-loss focuses on exact matching

between l consecutive words of two sentence. Moreover, we also consider the SF-BLEUl-loss
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to evaluate the diversity of a generated sentences [43], defined as

SF-BLEUl-loss(p̂) = 1− n−1
test

ntest∑
i=1

exp
(

min(1− T̂ i

T̂−imin

, 0)
)maxj 6=i |graml(x̂

i
1:T̂ i

) ∩ graml(x̂
j

1:T̂ j
)|

|graml(x̂
i
1:T̂ i

)|
,

where T̂−imin = argminT̂ j ;j 6=i |T̂ j − T̂ i|, and a high SF-BLEUl-loss score means more diverse.

For training, validation, and testing, we randomly split all the labeled articles into three

sets with a partition ratio of 60%, 20%, and 20%, respectively. Moreover, for a sentence x1:T

and its associated topic y in a testing set, five starting words x1:5 as opposed to the null

word are given to predict the rest of a sentence.

Consider two situations of the semantic label: (1) Y ∈ {0, 1}K is categorical and is coded

as a 0-1 vector using the one-hot encoding from the topic category; (2) Y ∈ RK is continuous

with each topic as a p = 128-dimensional vector based on Doc2Vec. In (2), each topic is

represented by the averaged embedding of all the sentences in this topic category in training

data.

In the case of Y ∈ {0, 1}K , the indirect generator involves (14) and (17). For (14), we

perform regularized multinomial logistic regression using the Python library sklearn3 on the

embedded next-word prediction sequence training samples (E(xi1:t),y
i), where E(xi1:t) is the

numerical embedding of Doc2Vec4 of size p = 128 and the optimal λb is obtained by minimiz-

ing the entropy loss based on validation data over a set of grids {.0001, .001, .01, .1, 1, 10, 100}.

For (17), the indirect RNN is trained based on both labeled and unlabeled next-word predic-

tion sequences in training data. The indirect RNN model in (17) is structured in four layers,

including an embedding layer consisting of 5, 369 nodes with each node corresponding one

word in the dictionary D, an LSTM layer of 128 latent factors, a dense layer with output

dimension 5, 369. Note that the tuning parameter in (17) is fixed as λm = .0001 through in

the embedding layer to regularize words in the absence in a training set. Similarly, the direct

3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
4https://radimrehurek.com/gensim/models/doc2vec.html
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generator trains the RNN model in (22), which has the same configuration as the indirect

RNN expect that the input dimension is |D|+K = 5, 374 in its embedding layer. Moreover,

Separate RNN has the same structure as the indirect RNN given each topic.

As discussed in Section 4.2, different RNN model architectures may yield different em-

pirical performance. Toward this end, we compare the LSTM architecture with GPT2 ar-

chitecture for the direct RNNs. In particular, we consider the base GPT2 with 12 layers and

117M parameters [30] for the direct method, denoted as direct-GPT2. One key difference

between LSTM and GPT2 lies in its masked self-attention layer, which masks future tokens

and passes the attention information through tokens that are positioned at the left of the

current position.

In the case of continuous Y ∈ Rp after numerical embedding, the indirect generation

proceeds as in the categorical case except that linear regression as opposed to multinomial

logistic regression in (14) is performed using sklearn on the labeled embedded next-word

prediction sequences in training data (E(xi1:t),y
i), where each yi is a 128-dimensional em-

bedding vector.

All RNN models are trained using Keras5 with the batch and epoch sizes 200 and 100,

and optimizer as Adam, and the over-fitting is prevented by early termination [4] of patience

as 20. Moreover, the coupled generator is tuned as in (5).

Table 2 about here

As indicated in Table 2, when only labeled data is available, the coupled generator delivery

higher accuracy than direct and indirect generators, which suggests the advantage of the

proposed method. When combining with unlabeled data, the coupled generator outperforms

the direct generator and separate RNN for both categorical and continuous labels, which

selects the indirect generator in this case. With respect to the entropy loss, the amounts of

5https://keras.io/
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improvement of the indirect generator over the separate RNN method and direct generator

are 20.3% and 14.5% for the categorical case and 29.1% and 16.1% for the continuous case.

With respect to BLEU1–BLEU4 losses, a similar situation occurs, with the amounts of

improvement vary with the best improvement around 15.6%. Concerning unlabeled data, a

comparison between the indirect generator with and without unlabeled data suggests that

unlabeled data indeed help to improve the performance of the indirect generation over 14.5%.

Interestingly, in terms of the entropy loss, the direct generator based on fine-tuned GPT2

outperforms the direct generator and indirect generator based on LSTM without unlabeled

data, while the coupled generator achieves the best performance between them. However,

they perform similarly in terms of BLEUl scores. In view of the SF-BLEUl scores, sentences

generated by the direct and indirect generators have a high degree of diversity. Moreover,

the semantic label Y after sentence embeddings Doc2Vec performs slightly worse than its

categorical counterpart for the indirect and direct generations, indicating that semantic

relations or linguistics dependencies, as captured by the sentence embeddings, may not have

an impact given that there are only five categories. Finally, as suggested in Table 3, an

abstract generated based on the five categories is reasonable except for three grammatical

errors that are correctable by a grammar checker6.

Supplementary Materials

The supplementary materials provide Python codes used in real data application.
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Appendix

Proof of Lemma 1. Note that Lb(θb) in (14) is convex in θb and Lb(θb) and Lm(θm) in

(17) are continuously twice-differential. Then the result follows from Theorem 4 of [21]. This

completes the proof. �

Proof of Theorem 1. Note that p̂bY (y) =
∫
p̂bY |X(y|x)p̂bX(x)dx and

d2(p̂bX|Y , p
0
X|Y ) =

∫ ((p0
Y (y)p̂bY |X(y|x)p̂bX(x)

p̂bY (y)

)1/2 −
(
p0
Y (y)p0

X|Y (x|y)
)1/2
)2

dxdy.

Furthermore,
∫
p̂bY |X(y|x)dy = 1. It follows from the triangular inequality that

d(p̂bX|Y , p
0
X|Y ) ≤

(∫ ((p0
Y (y)p̂bY |X(y|x)p̂bX(x)

p̂bY (y)

)1/2 −
(
p̂bY |X(y|x)p̂bX(x)

)1/2
)2

dxdy
)1/2

+
(∫ ((

p̂bY |X(y|x)p̂bX(x)
)1/2 −

(
p̂bY |X(y|x)p0

X(x)
)1/2
)2

dxdy
)1/2

+
(∫ ((

p̂bY |X(y|x)p0
X(x)

)1/2 −
(
p0
Y |X(y|x)p0

X(x)
)1/2
)2

dxdy
)1/2

= h(p0
Y , p̂

b
Y ) + h(p0

X, p̂
b
X) +

(
E
(
h2(p̂bY |X, p

0
Y |X)

))1/2
. (26)

Note that p̂bX,Y (x,y) = p̂bY |X(y|x)p̂bX(x). By the triangle inequality,

h(p0
Y , p̂

b
Y ) =

(∫ (( ∫
p0
X,Y (x,y)dx

) 1
2 −

( ∫
p̂bX,Y (x,y)dx

) 1
2

)2

dy
) 1

2

≤
( ∫ ((

p0
X,Y (x,y)

) 1
2 −

(
p̂bX,Y (x,y)

) 1
2
)2
dxdy

) 1
2

≤
( ∫ ((

p0
X,Y (x,y)

) 1
2 −

(
p0
X(x)p̂bY |X(y|x)

) 1
2
)2
dxdy

) 1
2

+
( ∫ ((

p̂bX(x)
) 1

2 −
(
p0
X(x)

) 1
2
)2
dx
) 1

2 ≤ h(p0
X, p̂

b
X) +

(
E
(
h2
(
p0
Y |X, p̂

b
Y |X

))) 1
2 .
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Hence, d(p̂bX|Y , p
0
X|Y ) ≤ 2

(
h(p̂bX, p

0
X) +

(
E
(
h2(p̂bY |X, p

0
Y |X)

))1/2)
. Consequently,

P
(
d(p̂bX|Y , p

0
X|Y ) ≥ 2(ηb + ηm)

)
≤ P

(
h(p0

X, p̂X) ≥ ηm
)

+ P
((

EX
(
h2(p0

Y |X, p̂Y |X)
)) 1

2 ≥ ηb

)
≡ I1 + I2.

To bound I1, let I3 = P
(

(n + ñ)−1
∑n+ñ

i=1

(
log(p0

X(X i)) − log(p∗X(X i))
)
− λmJ(p0

X) +

λmJ(p∗X)
)
≥ c9η

2
m/4

)
; I4 = P

(
supdm(p,p0)≥ηm(n + ñ)−1

∑n+ñ
i=1

(
log(pX(Xi)

p0X(Xi)
− λmJ(pX) +

λmJ(p0
X)
)
≥ −c9η

2
m/4

)
, where c9 = 1 − 2 exp(−τ/2)/(1 − exp(−τ/2))2 > 0 is a constant

defined by the truncation constant τ > 0. Then I1 is upper bounded by

P
(

sup
d(p,p0)≥ηm

(n+ ñ)−1

n+ñ∑
i=1

(
log(pX(X i)/p∗X(X i))

)
− λmJ(pX) + λmJ(p∗X)

)
≥ 0
)
≤ I3 + I4.

By the Markov inequality,

I3 ≤ P
(

(n+ ñ)−1

n+ñ∑
i=1

(
log(p0

X(X i))− log(p∗X(X i))
)
≥ c9η

2
m/4− λmJ(p∗X)

)
≤

n+ñ∏
i=1

EX
(p0

X(X i)

p∗X(X i)

)α
exp

(
− c9α

8
(n+ ñ)η2

m

)
≤
(
1 + αγm

)n+ñ
exp

(
− c9α

8
(n+ ñ)η2

m

)
≤ exp

(
− c9α

8
(n+ ñ)η2

m + (n+ ñ)αγm
)
.

By Corollary 1 of [33], I4 ≤ 7 exp(−c8(n + ñ)η2
m/2), implying I1 ≤ 7 exp(−c7(n + ñ)η2

m) +

exp
(
− c9α

8
(n+ ñ)η2

m + (n+ ñ)αγm
)

for some constant c7 > 0. For I2, a similar probabilistic

bound can be established by applying the same argument of Theorem 2 and switching the

role of X and Y . This leads to I2 ≤ 7 exp
(
− c8nη

2
b

)
+ exp

(
− c9α

8
nη2

b + nαγb
)

for some

constant c8 > 0. The desired result then follows. �
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Proof of Theorem 2. Denote

I5 = P
(

sup
d(p,p0)≥ηf

(
n−1

n∑
i=1

(
log(

p
(τ)
X|Y (X i|Y i)

p∗X|Y (X i|Y i)
)
)
− λJ(pX|Y ) + λJ(p∗X|Y )

)
≥ 0
)
,

I6 = P
(
n−1

n∑
i=1

(
log(

p0
X|Y (X i|Y i)

p∗X|Y (X i|Y i)
)
)
− λJ(p0

X|Y ) + λJ(p∗X|Y ) ≥ c9η
2
f /4
)
.

By the definition of a minimizer, for any ηf > 0,

P
(
d(p̂f

X|Y , p
0
X|Y ) ≥ ηf

)
≤ I5 + I6,

where log(F(τ)
i ) = log(p

(τ)
X|Y (X i|Y i))− log(p0

X|Y (X i|Y i)) and

p
(τ)
X|Y (x|y) =

 exp(−τ)p∗X|Y (x|y), if pX|Y (x|y) < exp(−τ)p∗X|Y (x|y),

pX|Y (x|y), otherwise,

is the left truncation of pX|Y (x|y).

Next, we bound I5 and I6 separately. An application of the same argument as in [38]

yields that

I5 ≤ P
(
n−1

n∑
i=1

(
log(p0

X|Y (X i|Y i))− log(p∗X|Y (X i|Y i))
)
≥ c9η

2
f /4− λfJ(p∗X|Y )

)
≤ P

( n∏
i=1

(p0
X|Y (X i|Y i)

p∗X|Y (X i|Y i)

)α ≥ exp
(c9α

8
nη2

f

))
≤

n∏
i=1

EY EX|Y
(p0

X|Y (X i|Y i)

p∗X|Y (X i|Y i)

)α
exp

(
− c9α

8
nη2

f

)
≤
(
1 + αγf

)n
exp

(
− c9α

8
nη2

f

)
≤ exp

(
− α

8
c9nη

2
f + n log(1 + αγf)

)
≤ exp

(
− α

8
c9nη

2
f + nαγf

)
, (27)

where the second inequality follows from λfJ(p∗X|Y ) ≤ c9η
2
f /8 and the third inequality follows

from Markov’s inequality.
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Our treatment of bounding I6 relies on a chaining argument over a suitable partition of

Ff and the left-truncation of likelihood ratios as in [38, 33]. Now, consider a partition of

Ff = ∪∞k=1 ∪∞j=0 Fkj:

Fkj =
{
p ∈ Ff : 2i−1η2

n ≤ d2(p0, p) ≤ 2iη2
n, 2

j−1J0 ≤ J(p) ≤ 2jJ(p0)
}
,

Fk0 =
{
p ∈ Ff : 2i−1η2

n ≤ d2(p0, p) ≤ 2iη2
n, J(p) ≤ J(p0)

}
; k = 1, · · · , j = 0, · · · ,

where log(F(τ)
i ) = log(p

(τ)
X|Y (X i|Y i))− log(p0

X|Y (X i|Y i)). Then for any ηf > 0,

I6 ≤ P
(

sup
d(p,p0)≥ηf

(
n−1

n∑
i=1

log
(
F(τ)
i

)
− λfJ(pX|Y ) + λfJ(p0

X|Y )
)
≥ −c9η

2
f /4
)

≤
∞∑
k=1

∞∑
j=0

P
(

sup
p∈Fkj

(
n−1

n∑
i=1

log
(
F(τ)
i

)
− λfJ(pX|Y ) + λfJ(p0

X|Y )
)
≥ −c9η

2
f /4
)

≡
∞∑
k=1

∞∑
j=0

Ikj, (28)

where Ikj = P
(

supf∈Fkj
(
n−1

∑n
i=1 log

(
F(τ)
i

)
−λfJ(pX|Y )+λfJ(p0

X|Y )
)
≥ −c9η

2
f /4
)

. To treat

Ikj, we control the mean and variance of log
(
F(τ)

)
. By Lemma 4 of [38],

− sup
p∈Fkj

E
(

log(F(τ))
)

= − sup
p∈Fkj

EY
(
EX|Y

(
log(F(τ))

))
≥ c9 inf

p∈Fkj
d2(p, p∗) ≥ c9(2k−1ηf)

2,

(29)

and the variance is bounded by

sup
p∈Fkj

Var
(

log(F(τ))
)
≤ sup

p∈Fkj
EY
(
EX|Y

(
log(F(τ))2

))
≤ 4 exp(τ) sup

p∈Fkj
EY h2

(
p0
X|Y , pX|Y

)
≤ 4 exp(τ)(2kηf)

2 ≤ 8 exp(τ)δkj/c9, (30)
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where the second inequality follows from Lemma 3 of [38]. Then, Ikj is upper-bounded by

Ikj ≤ P
(

sup
f∈Fkj

(
n−1

n∑
i=1

log
(
F(τ)
i

)
− E log

(
F(τ)

))
≥ − sup

f∈Fkj

(
E log

(
F(τ)

)
+ λ
(
J(p0

X|Y )− J(pX|Y )
))
− c9η

2
f /4
)

≤ P
(

sup
f∈Fkj

(
n−1

n∑
i=1

log
(
F(τ)
i

)
− E log

(
F(τ)

))
≥ δkj

)
≤ 3 exp

(
− a3nδkj

)
, (31)

where a3 > 0 is a constant, δkj = c92k−1η2
n/2 + λ(2j−1 − 1)J(p0

X|Y ), δk0 = c92k−2η2
n/2,

the second inequality follows from the assumption that λJ(p0
X|Y ) ≤ c9η

2
f /4 and (29), and

the last inequality follows from Lemma 2 and the fact that the j-th (j ≥ 2) moment

E
(∣∣ log(

p
(τ)
X|Y (X|Y )

p0
X|Y (X|Y )

)
∣∣j) is bounded by

EY EX|Y
(

exp
(∣∣ log(

p
(τ)
X|Y (X|Y )

p0
X|Y (X|Y )

)
∣∣)− 1− 1

2

∣∣ log(
p

(τ)
X|Y (X|Y )

p0
X|Y (X|Y )

)
∣∣)

≤ j!2ja1EY ‖(pX|Y )1/2 − (p0
X|Y )1/2‖2

2,

where a1 =
(

exp(τ/2)−1− τ/2
)
/
(
1− exp(−τ/2)

)2
> 0 is a constant and the last inequality

follows from Lemma 5 in [34]. It suffices to verify the condition (2.4) of [38]. A combination of

(28) and (31) yield that I6 ≤
∑∞

k=1

∑∞
j=0 3 exp(−c13nδ

2
kj) ≤ 7 exp(−c13nη

2
f ), which, together

with (27) yields that P
(
d(p̂f

X|Y , p
0
X|Y ) ≥ ηf

)
≤ I5 + I6 ≤ 7 exp(−c13nη

2
f ) + exp

(
− α

8
c9nη

2
f +

nαγf

)
. The desired result then follows. �

Proof of Theorem 3. Let (X̃ i, Ỹ i)Ni=1 be a cross-validation sample. By (5),

− 1

N

N∑
i=1

log p̂cX|Y (X̃ i|Ỹ i) ≤ min
(
− 1

N

N∑
i=1

log p̂f
X|Y (X̃ i|Ỹ i),− 1

N

N∑
i=1

log p̂bX|Y (X̃ i|Ỹ i)
)
,

then the desired result follows from the law of large number, by taking the limit for both

the sides as N →∞. This completes the proof. �
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Proof of Corollary 1. For the direct sequential generation, we apply the same argument

in the proof of Theorem 2. Denote

I7 = P
(

sup
d(p,p0)≥ηf

n∑
i=1

1

nT

T∑
t=1

log
(p0(X i

t+1|X i
1:t,Y

i)

p∗(X i
t+1|X i

1:t,Y
i)

)
− λfJf(p

0
X|Y ) + λfJf(p

∗
X|Y ) ≥ c9η

2
f

4

)
,

I8 = P
(

sup
d(p,p0)≥ηf

n∑
i=1

1

nT

T∑
t=1

log
(p(τ)(X i

t+1|X i
1:t,Y

i)

p0(X i
t+1|X i

1:t,Y
i)

)
− λfJf(pX|Y ) + λfJf(p

0
X|Y ) ≥ −c9η

2
f

4

)
.

Then P
(
d(p̂f

X|Y ,p
0
X|Y ) ≥ ηf

)
≤ I7 + I8, where p(τ)(Xt+1|X1:t,Y ) is the left truncation of

p(Xt+1|X1:t,Y ) as defined in the proof of Theorem 2.

For I7,

I7 ≤ P
( n∏
i=1

( T∏
t=1

p0(X i
t+1|X i

1:t,Y
i)

p∗(X i
t+1|X i

1:t,Y
i)

) α
T−1 ≥ exp(

c9α

8
nη2

f )
)

≤
n∏
i=1

E
( T∏
t=1

p0(X i
t+1|X i

1:t,Y
i)

p∗(X i
t+1|X i

1:t,Y
i)

) α
T−1 exp(−c9α

8
nη2

f )

≤
n∏
i=1

Ē
((p0(X i

t+1|X i
1:t,Y

i)

p∗(X i
t+1|X i

1:t,Y
i)

)α)
exp(−c9α

8
nη2

f )

≤ (1 + αγf)
n exp(−c9α

8
nη2

f ) ≤ r̄ exp(−α
8
c9nη

2
f + nαγf).

For I8, let F(τ)
t = log

(
p(τ)(Xt+1|X1:t,Y )/p0(Xt+1|X1:t,Y )

)
. For the first moment,

E
(
T−1

T∑
t=1

F(τ)
t

)
= T−1

T∑
t=1

EX1:t,Y

(
EXt+1

(
F(τ)
t |X1:t,Y

))
≤ −c9T

−1

T∑
t=1

EX1:t,Y

(∥∥(p
(τ)
Xt+1|X1:t,Y

)
1
2 − (p0

Xt+1|X1:t,Y
)
1
2

∥∥2

2

)
= −c9d

2(p
(τ)
X|Y ,p

0
X|Y ).
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For the j-th moment with j ≥ 2,

E
∣∣T−1

T∑
t=1

F(τ)
t

∣∣j ≤ T−1

T∑
t=1

EX1:t,Y

(
EXt+1

(
|F(τ)
t |j

∣∣X1:t,Y
))

≤ j!2jT−1

T∑
t=1

EX1:t,Y

(
EXt+1

(
(exp(|F(τ)

t |/2)− 1− |F(τ)
t |/2)

∣∣X1:t,Y
))

≤ j!2ja3

( T∑
t=1

EX1:t,Y

(
‖(p(τ)

Xt+1|X1:t,Y
)
1
2 − (p0

Xt+1|X1:t,Y
)
1
2‖2

2

))
≤ j!2ja1d

2(p
(τ)
X|Y ,p

0
X|Y ),

where the first inequality follows from the Jensen’s inequality. Then

P
(
d(p̂f

X|Y ,p
0
X|Y ) ≥ ηf

)
≤ 6 exp(−c7nη

2
f ) + exp(−α

8
c9nη

2
f + nαγf), (32)

follows the same arguments as in the proof of Theorem 2.

For the indirect generation, let pt(·) = p(·|X1:t) and Et(·) = E(·|X1:t). Then,

d(p̂bX|Y ,p
0
X|Y ) =

(
T−1

T∑
t=1

EX1:tEY |X1:th
2
(
p̂bXt+1|X1:t,Y

, p0
Xt+1|X1:t,Y

)) 1
2

≤ 2
(
T−1

T∑
t=1

(
E
(
h(p̂Xt+1|X1:t , p

0
Xt+1|X1:t

) +
(
Eth2(p̂Y |X1:t+1 , p

0
Y |X1:t+1

)
) 1

2
)2
)) 1

2

≤ 2
(

2T−1

T∑
t=1

(
Eh2(p̂Xt+1|X1:t , p

0
Xt+1|X1:t

) + Eh2(p̂Y |X1:t+1 , p
0
Y |X1:t+1

)
)) 1

2

≤ 2
√

2
(
d(p̂X ,p

0
X) + d(p̂Y |X ,p

0
Y |X)

)
,

where the first inequality follows from (26) by replacing p(·) as pt(·), and d2(p̂X ,p
0
X) =
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Ēh2(p̂Xt+1|X1:t , p
0
Xt+1|X1:t

), d2(p̂Y |X ,p
0
Y |X) = Ēh2(p̂Y |X1:t+1 , p

0
Y |X1:t+1

). Therefore,

P
(
d(p̂bX|Y ,p

0
X|Y ) ≥ 2

√
2(ηb + ηm)

)
≤ P (d(p̂X ,p

0
X) ≥ ηm) + P (d(p̂Y |X ,p

0
Y |X) ≥ ηb)

≤ 7 exp(−c7(n+ ñ)η2
m) + exp(−αc9

8
(n+ ñ)η2

m + α(n+ ñ)γm)

+ 7 exp(−c8nη
2
b ) + exp(−αc9

8
nη2

b + αnγb),

where the last inequality follows from (32). Similarly, bounds for P (d(p̂X ,p
0
X) ≥ ηm) and

d(p̂Y |X ,p
0
Y |X) can be established. The desired result then follows. �

Proof of Corollary 2. It suffices to verify the entropy conditions in Corollary 1. For the

direct generation, let pX|Y = {p(Xt+1|X1:t,Y ;θf)}Tt=1 and p̄X|Y = {p(Xt+1|X1:t,Y ; θ̄f)}Tt=1

in Ff,k. Then

κ2(pX|Y , p̄X|Y ) ≤ Ē
∥∥σ 1

2 (W o
f ht−1)− σ

1
2 (W̄ o

f h̄t−1)
∥∥2

2

≤ 1

2
Ē
∥∥W o

f ht−1 − W̄ o
f h̄t−1

∥∥2

2

≤ Ē
(∥∥(W o

f − W̄ o
f )ht−1

∥∥2

2
+
∥∥W̄ o

f (ht−1 − h̄t−1)
∥∥2

2

)
≤ Ē

(
‖W o

f − W̄ o
f ‖2

F‖ht−1‖2
2 + ‖W̄ o

f ‖2
F‖ht−1 − h̄t−1‖2

2

)
≤
( 2k(4k)T+1

T (4k − 1)2

)(
‖W x

f − W̄ x
f ‖2

F + 2rf‖W h
f − W̄ h

f ‖2
F + 4kcY ‖W y

f − W̄
y
f ‖

2
F

)
+ rf‖W o

f − W̄ o
f ‖2

F ≤ T−1 max(2rf, 4kc15)2(4k)T‖θf − θ̄f‖2
2,

where the last inequality uses the fact that ‖ht− h̄t‖2
2 ≤

(4k)t−1
4k−1

(2‖W x
f −W̄ x

f ‖2
F + 4rf‖W h

f −

W̄ h
f ‖2

F ) + (4k)t‖W y
f − W̄

y
f ‖2

F‖Y ‖2
2, which uses the fact that

‖ht − h̄t‖2
2 ≤ ‖(W x

f − W̄ x
f )1[Xt] +W h

f ht−1 − W̄ h
f h̄t−1‖2

2

≤ 2‖W x
f − W̄ x

f ‖2
F + 4rf‖W h

f − W̄ h
f ‖2

F + 4k‖ht−1 − h̄t−1‖2
2,
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and ‖h0 − h̄0‖2
2 ≤ ‖W

y
f − W̄

y
f ‖2

F‖Y ‖2
2.

Hence, H(u,Ff,k) ≤ Λf log
(3 max(2rf,4kc15)(4k)(T+1)/2/T 1/2

u

)
and the entropy condition is met

by setting εf =
(

Λf

n
log
(max(rf,2c15)2T /T 1/2n

Λf

))1/2
.

For the indirect generation, it suffices to verify the entropy conditions in Corollary 2. Let

pX = {PX(Xt+1|X1:t;θm)}T−1
t=1 and p̄X = {PX(Xt+1|X1:t; θ̄m)}T−1

t=1 . Note that h0 = h̄0 =

0rm and

κ2(pX , p̄X) ≤ Ē
(
‖W o

m − W̄ o
m‖2

F‖ht−1‖2
2 + ‖W̄ o

m‖2
F‖ht−1 − h̄t−1‖2

2

)
≤ 2k(4k)T+1

T (4k − 1)2

(
‖W x

m − W̄ x
m‖2

F + 2rf‖W h
m − W̄ h

m‖2
F

)
+ rf‖W o

m − W̄ o
m‖2

F

≤ 2rmT
−1(4k)T‖θm − θ̄m‖2

2.

Then, H(u,Fm,k) ≤ Λm log
(3rm(4k)(T+1)/2T−1/2

u

)
and the entropy condition is met by setting

εm = Op

((
Λm
n+ñ

log( rm(n+ñ)2TT−1/2)
Λm

)
)1/2
)

.

Moreover, if Y ∈ {0, 1}K ,

κ2(pY |X , p̄Y |X) ≤ Ē
∥∥(σ(θbE(X1:t))

) 1
2 −

(
σ
(
θ̄bE(X1:t))

) 1
2
∥∥2

2
,

≤ Ē
∥∥σ 1

2

(
θbE(X1:t))− σ

1
2

(
θ̄bE(X1:t))

∥∥2

2
≤ 1

2
Ē
∥∥(θb − θ̄b)E(X1:t)

∥∥2

2

≤ 1

2

∥∥θb − θ̄b∥∥2

F
Ē
∥∥E(X1:t)

∥∥2

2
.

Similarly, H(u,Fb,k) ≤ Λb log
(

3
√
kc16

u
√

2

)
and the entropy condition is met by setting εb =

Op

((
Λb
n

log(
√
c16n

Λb
)
)1/2
)

.

If y ∈ RK , then

κ2(pY |X , p̄Y |X) = Ē
(

1− exp
(
− 1

8
‖(θb − θ̄b)E(X1:t)‖2

2

))
,

≤ 1

8
Ē
∥∥(θb − θ̄b)E(X1:t)

∥∥2

2
≤ 1

8

∥∥θb − θ̄b∥∥2

F
Ē
∥∥E(X1:t)

∥∥2

2
, (33)
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implying that H(u,Fb,k) ≤ Λb log
(

3
√
kc16

2
√

2u

)
, and the entropy condition holds when εb =

Op

((
Λb
n

log(
√
c16n

Λb
)
)1/2)

. This completes the proof. �

Lemma 2. Let vn(f) = n−1/2
∑n

i=1

(
v
(
f(X i), f 0(X i)

)
− Ev

(
f(X i), f 0(X i)

))
, assume that

there exist some generic constants a2 > 0 and a3 > 0, for j ≥ 2, such that

E
∣∣v(f(X), f 0(X)

)∣∣j ≤ a2j!2
jd2(f, f 0),

and for any δ > 0, if ∫ 21/2δ1/2

δ/28
H1/2(u,Vδ)du ≤ a3n

1/2δ,

where Vδ =
{
v
(
f, f 0

)
: d2(f, f 0) ≤ δ, f ∈ F

}
, then there exist some constants a4 > 0 and

a5 > 0 depending on a2 and a3 such that

P ∗
(

sup
d2(f,f0)≤δ;f∈F

vn(f) ≥ a4n
1/2δ
)
≤ 3 exp(−a5nδ), (34)

where P ∗ is the outer probability measure corresponding to p0
X .

Proof of Lemma 2. The result follows from Lemmas 5 and Lemma 7 in [38], by replacing

the Hellinger distance in Lemma 5 as a generic distance d(·, ·). �
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Figure 1: A generated sentence by indirect and direct RNN generators in (20) and (15),
where the RNN architecture is displayed, in which sentence “The instantaneous loss bound
of SYMBOL implies only convergence in probability” with topic “MISC” is consecutively
generated by words, ht is the hidden node of RNNs in (20) and (15), and h0 is the initial
hidden state, which is zero under (15) and “MISC” under (20).

Table 1: Eleven next-word-prediction sequences with associated with a sentence.

Topic Sentence

MISC The loss bound of SYMBOL implies convergence in probability.

1. Null Null Null Null Null Null Null Null Null Null Null START → The

2. Null Null Null Null Null Null Null Null Null START The → loss

3. Null Null Null Null Null Null Null Null START The loss → bound

4. Null Null Null Null Null Null Null START The loss bound → of

5. Null Null Null Null Null Null START The loss bound of → SYMBOL

6. Null Null Null Null Null START The loss bound of SYMBOL → implies

7. Null Null Null Null START The loss bound of SYMBOL implies → convergence

8. Null Null Null START The loss bound of SYMBOL implies convergence → in

9. Null Null START The loss bound of SYMBOL implies convergence in → probability

10. Null START The loss bound of SYMBOL implies only convergence in probability → .

11. START The loss bound of SYMBOL implies only convergence in probability . → END
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Table 2: Test errors in loss functions–Entropy, BLEUl, and SF-BLEUl (standard errors
in parentheses) of various generators based on 20 random partitions of the UCI sentence
categorization text corpus. Here “Separate RNN”, “Indirect”, “Direct”, “Direct-GPT2”
and “Coupled” denote the separate RNN, indirect, and direct generators based on the RNN-
LSTM architecture, the direct generator based on the RNN-GPT architecture, and the
coupled generator, while Indirect-label or Coupled-label refers to the generation without
unlabeled data.

Method Entropy BLEU1-loss BLEU2-loss BLEU3-loss BLEU4-loss

Y : categorical label

Separate RNN 9.317(.040) 0.895(.010) 0.926(.008) 0.954(.007) 0.971(.005)
Indirect 7.424(.049) 0.768(.003) 0.854(.002) 0.885(.002) 0.914(.002)
Indirect-label 8.839(.060) 0.831(.008) 0.878(.005) 0.899(.004) 0.923(.003)
Direct 9.537(.054) 0.823(.008) 0.872(.005) 0.895(.005) 0.919(.004)
Direct-GPT2 8.684(.051) 0.900(.006) 0.954(.002) 0.970(.001) 0.981(.001)
Coupled 7.424(.049) 0.768(.003) 0.854(.002) 0.885(.002) 0.914(.002)
Coupled-label 8.644(.050) 0.880(.008) 0.932(.008) 0.949(.007) 0.963(.006)

SF-BLEU1-loss SF-BLEU2-loss SF-BLEU3-loss SF-BLEU4-loss

Separate RNN 0.076(.010) 0.208(.027) 0.271(.036) 0.303(.043)
Indirect 0.105(.006) 0.296(.009) 0.416(.012) 0.502(.013)
Indirect-label 0.138(.008) 0.363(.022) 0.472(.029) 0.545(.036)
Direct 0.139(.006) 0.372(.019) 0.487(.026) 0.561(.032)
Direct-GPT2 0.053(.006) 0.159(.019) 0.255(.031) 0.320(.040)
Coupled 0.105(.006) 0.296(.009) 0.416(.012) 0.502(.013)
Coupled-label 0.082(.011) 0.233(.028) 0.342(.038) 0.417(.045)

Method Entropy BLEU1-loss BLEU2-loss BLEU3-loss BLEU4-loss

Y : continuous label based on Doc2Vec [23, 24]

Indirect 7.641(.036) 0.768(.005) 0.851(.003) 0.883(.003) 0.912(.003)
Indirect-label 8.512(.041) 0.912(.010) 0.937(.008) 0.949(.007) 0.960(.005)
Direct 9.102(.050) 0.916(.010) 0.939(.007) 0.950(.005) 0.961(.004)
Coupled 7.641(.036) 0.768(.005) 0.851(.003) 0.883(.003) 0.912(.003)
Coupled-label 8.512(.041) 0.912(.010) 0.937(.008) 0.949(.007) 0.960(.005)

SF-BLEU1-loss SF-BLEU2-loss SF-BLEU3-loss SF-BLEU4-loss

Indirect 0.097(.005) 0.261(.008) 0.361(.010) 0.440(.012)
Indirect-labeled 0.064(.010) 0.165(.026) 0.211(.035) 0.232(.040)
Direct 0.079(.014) 0.202(.037) 0.252(.046) 0.271(.050)
Coupled 0.097(.005) 0.261(.008) 0.361(.010) 0.440(.012)
Coupled-label 0.064(.010) 0.165(.026) 0.211(.035) 0.232(.040)
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Table 3: An abstract generated by the coupled generator based on one random partition
of the UCI benchmark text corpus for sentence categorization. Here five sentences (1)-
(5) correspond to five categories: AIM, OWN, CONTRAST, BASIS, MISC, with the first
five words of each sentence prespecified. All sentences are grammatically legitimate except
”improves” in (4) suffers from an error, and kolmogorov in (1) and israelis in (3) should
be capitalized. These errors are correctable by a grammar checker.

(1) The paper extends research on the theory of choice rules. (2) We test our predic-
tions using the ideas and the notion of kolmogorov complexity bound on the number
of examples of the data sets. (3) The results demonstrate that israelis models can be
used to provide new results for classification accuracy. (4) We show that implementation
concerns the performance of the learning algorithm for improves the optimal predictor
of the prediction. (5) The effect of balance is described by a high level of events and the
objects that are shared.
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