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Abstract. The electrochemical oxidation of single colloidal Ag nanoparticles at an electrode surface has
previously been studied as an in-situ particle-sizing methodology. However, the discovery of multipeak
amperometric behavior in 2017 sparked new interest towards understanding the precise physical
mechanism of the manner in which a freely diffusing Ag nanoparticle interacts with the electrode surface.
Random walk simulations, unique electrochemical experiments, and correlated optical/spectroscopic
techniques have revealed exciting new results regarding the physical and chemical processes occurring

upon single nanoparticle collision.
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ultramicroelectrode (UME) to generate a small but Figure 1: Amperometric Ag NP Collision
Traces (a) A representative Ag NP collision
detectable current spike (Figure 1a). The specific amperometric trace recorded using 60 nm Ag
NP’s on an Au UME biased at 0.6 V vs.
mechanism guiding the dynamics of the NP-electrode Ag/AgClin 20 mM KNO; 8 mM sodium citrate
pH 7.7. Adapted from Ref. 24. (b-e)
interaction has been a hotly debated topic over the past | Amperometric traces recorded with a 10 pm Au
UME held at a potential of 0.6 V vs. Ag/AgCl at
few years. In this review, we aim to introduce the filter frequencies of (b) 0.2, (c) 2, and (d) 20
kHz. (e) Relationship between the overall width
history of these measurements, their analytical merit, of the electrochemical current spike and filter
frequency of a low-pass Bessel filter. b-e are
complicating discoveries, and new correlative adapted from Ref. 42.

analytical measurements investigating the single Ag NP oxidation mechanism. We encourage interested

readers to explore the cited references for more details, acknowledging the brevity of this article.

Ag NP Quantitation. In 2011, Compton and coworkers first reported the detection of single colloidal Ag
NPs colliding on an UME [10°]. Impacting NPs were claimed to be fully oxidized in single 1-20 ms
current spikes [11]. Subsequent studies indicated that the charge integrated from individual oxidative
spikes correlated with the expected charge distribution calculated from transmission electron microscopy
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(TEM) measurements [12,13]. Thus, Ag NP collision was touted as an in-situ quantitation methodology
more accurate than dynamic light scattering (DLS) for sizing particles >10 nm in diameter [14] and
applicable towards the detection of increasing Ag NP wastewater contamination [15,16]. Many papers
were later published exploring the effects of varied conditions including electrolyte concentration [17],
electrolyte identity [12], and capping agent[18,19]. Studies were also extended toward the oxidative
collision and quantification of other metallic NPs such as Au [20,21] and Cu [22]. Importantly, full Ag
NP oxidation was claimed for particle diameters ranging from 10 to 50 nm [12,14], and even upwards of
150 nm in one case [23].

In 2017, however, three papers were published nearly simultaneously by the labs of White and
Zhang [24°], Unwin [25°], and Long [26°] that instead observed ‘multipeak’ collision behavior consisting
of rapid, successive, small peaks separated by ms spacing. These findings were indicative of a new nano-
motion mechanism at the NP-electrode interface distinctly different from Compton’s reported mechanism
of full oxidation upon collision. Unwin also reported incomplete oxidation for NPs above 40 nm in
diameter, suggesting that larger particles would more likely deviate away from full oxidation. White and
Zhang’s work confirmed incomplete oxidation for ~60 nm diameter NPs. The release of these papers
raised questions as to why new quantitation limits were observed relative to previous studies.

A significant difference in experimental conditions between the multipeak studies and previous
work is in the applied low-pass filtering frequency. The applied low-pass filter relates to the extent to
which rapid current changes can be measured [27°°]. Higher applied filter frequencies correspondingly
increase the temporal resolution of the measurement and therefore can more accurately quantify the
number of particle-electrode interactions (see Figure 1b-d). Yet, the total charge transferred (and
therefore the calculated particle size) [11] is theoretically independent of the applied filtering rate [28],
further contributing to the quantitation discrepancy. In 2018, however, work by Compton and coworkers
instead showed that filtering rate does indeed indirectly affect the measured amount of charge transferred
[29°]. They argue that the baseline noise significantly increases at higher filtering rates, meaning slow and
small multipeaks may become indistinguishable from the baseline, thereby leading to less total
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quantifiable charge. The authors importantly suggest that higher filtering frequencies (kHz) may be used
for nano-motion investigations, but a post-acquisition filtering rate of 100 Hz should be applied for more
accurate quantitation due to decreased baseline noise. Ultimately, quantitation of 50 nm Ag NPs is the
largest particle size that has been shown to date [12] without assuming full quantitation of aggregate

particles [23].

Investigations of the Nano-Motion

Mechanism. The discovery of

multipeak behavior sparked a new
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electrode interaction. These studies Figure 2: Multipeak Behavior with Correlated Mechanism
Diffusional motion of an Ag NP interacting with a biased Au UME.
aimed to investigate a more accurate An example amperometric trace reflecting the particle’s motion is

shown above. Adapted from Ref. 25.

particle collision mechanism,

distinctly separate from the previously accepted ‘hit and fully oxidize’ scheme. While the initial
multipeak papers proposed mechanisms dominated by diffusion [25°] (see Figure 2) or interfacial forces
due to electric fields resulting from NP surface charge or local Ag" generation [24°], subsequent studies
aimed to validate these ideas. An important study from White and coworkers used lattice random-walk
simulations of particle motion coupled with electrochemical kinetic parameters to reproduce the observed
multipeak current behavior [30°°]. Their simulations quantitatively matched the measured magnitude of
peak currents, overall duration of the individual particle-electrode interactions, and the degree of particle
oxidation. Interestingly, these simulations considered Einstein diffusion relations and mass-based thermal
NP velocity while ignoring the effects of interfacial forces. Their model suggests that a single particle
may undergo tens to thousands of nanosecond collisions with the electrode surface before diffusing away.
In a follow-up paper, they determined that modern electronic low-noise, high-bandwidth current
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amplifiers cannot achieve the temporal resolution necessary to resolve each individual ns duration event
[27°°]. Instead, modern instruments record averaged overlapping events as the low pass filtering cutoff
decreases. Furthermore, a study by Long and coworkers compared experimental data to Poisson-
Boltzmann simulations to investigate potential-dependent motion trajectories [31]. Importantly, their
results also supported a dynamic motion mechanism.

Following these reports, there was much interest in the community to further explore the
mechanism of a single Ag NP interacting with an UME. For example, our lab used nanoband electrodes
sized 60, 110, and 180 nm in thickness and observed an increased number of single peak events,
suggesting that detectable nano-motion may be limited with the application of thin electrodes [32°].
White and coworkers used an adjustable micro-gap between two opposing UMEs with opposite biases to
oxidize a colliding particle and subsequently reduce the generated Ag" [33°*]. Interestingly, they found
that only 50% of the oxidized Ag NP is released as free Ag", suggesting the formation of an insoluble
complex such as Ag>O. The generation of Ag,O was further validated by our lab by recording a higher
frequency of events containing long trailing tails generated using alkaline conditions. The extended decay
durations were proposed to be due to electrocatalytic water oxidation across Ag>O formed at potentials >1

V [34].

Correlated Optical and Spectroscopic Methods. Despite the excellent temporal resolution achievable
with amperometry alone, the integration with correlated optical methods can provide added spatial
information while correlated spectroscopic measurements can yield further chemical information
regarding the NP-electrode interaction. Correlated measurements can aid in revealing key mechanistic
insights which are unapproachable with pure electrochemistry such as distinguishing particle dissolution
vs. departure, deconvolution of overlapping electrochemical processes, and identification of oxidation
products. While these techniques are powerful tools for studying single particles, one drawback is that

many of them are also low-throughput and therefore require greater effort to characterize a statistically



relevant quantity of data. Our discussion will be separated into two categories: (1) techniques monitoring
NPs immobilized on the electrode surface followed by (2) those investigating freely-diffusing particles.

Dark field microscopy (DFM) has been extensively used to study the oxidation behavior of
immobilized Ag NPs. In a 2016 study, Kanoufi and coworkers correlated DFM with electrochemistry and
found they were able to distinguish NP aggregates [35]. Interestingly, the aggregates did not fully oxidize,
which was thought to be due to poor electrical contact with the electrode. Separately, Willets and
coworkers revealed stunning new mechanistic behavior in a similar DFM-electrochemistry study when
they noticed AgiOy particles forming on the electrode surface following the oxidation and dissolution of
Ag NPs [36°°]. They proposed that the large injection of Ag* following particle oxidation promoted
immediate electrodeposition and aggregation of AgOy, with observed clusters appearing up to several pm
away from the original particle. In another study, Willets and coworkers combined DFM with
superlocalization to monitor Ag,O formation across a single particle with <10 nm spatial precision [37°°].
Correlated studies revealed that Ag NPs undergo electrodissolution in either a spatially symmetric or
asymmetric manner, likely influenced by the directionality of the surface oxide formation.

Tschulik and coworkers have also uniquely combined DFM with hyperspectral imaging (HSI-
DFM) to identify chemical changes during NP oxidation. They demonstrated that AgCl is further
oxidized at potentials overlapping with water splitting [38] and were separately able to monitor the
chemical transformation from AgSCN to a higher order soluble species in the presence of high SCN-
concentration [39]; the authors emphasize that these processes are only distinguishable with the use of
correlated spectroscopy. They have also separately compared the kinetics of Ag NP oxidation in the
presence of both NO;™ and Cl” electrolytes [40]. It was found that Ag NP oxidation proceeds more slowly
in the absence of a precipitating anion such as CI', an observation which they attribute to the
thermodynamically unfavorable formation of solvated Ag" cations. The authors conclude that the
inhibited kinetics may indicate that the oxidation of a single Ag NP during collision experiments occurs

over the course of multiple events while the NP remains in contact with the electrode surface.



Collisions between freely diffusing Ag NPs and a positively biased electrode have also been

investigated with similar dual optical-electrochemical experiments. For example, surface plasmon

resonance microscopy (SPRM) methods monitor the scattered intensity of a plasmonic wave propagating

across the surface of a transparent Au electrode. The Tao group introduced the elegant plasmonic

electrochemical current microscopy (P-ECM) in which changes in the scattered plasmonic intensity are

correlated to NP size and, by extension, oxidation current [41]. Wang and coworkers used a similar

SPRM method to provide evidence that physical contact between a colliding Ag NP and the detecting

electrode may be maintained when multipeak behavior is exhibited [42]. They suggest that thermal

motion and microconvection are responsible for the appearance of multiple closely spaced detection

events. However, the high SPRM noise levels producing uncertainty of ~13 nm and suboptimal temporal

resolution achieved in this study (2.5 ms) must also be considered.

Our group has introduced a
unique method that enables
fluorescence monitoring of colliding
Ag NPs confined within a nanoscale
electrochemical cell [43°]. By detecting
the fluorescence of Ag nanoclusters
formed from the photocatalytic
decomposition of the Ag,O oxidation
product, we were able to image
dynamic collision events of a single Ag

NP within the nanocell as it
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Figure 3: Fluorescence Monitoring of Ag NP Collision: A
schematic of the experimental setup used to image single NP
collisions in a nanopipette electrochemical cell is shown on the left.
A single Ag NP collides on the Pt nanoelectrode surface and is
partially oxidized resulting in the formation of Ag,O. The oxide
layer is photodecomposed leading to the formation of fluorescent
Ag nanoclusters. The oxidation of Ag inside the nanocell is
electrically coupled to the reduction of protons on the external
surface of the Pt. A panel of representative fluorescence images of
the NP collision process is shown on the right. Adapted from Ref.
43.

encountered the electrode/solution interface. We attribute the repeated motion of the particle to balanced

electrostatic interactions between the NP, Pt electrode, and walls of the quartz nanocell (see Figure 3).

3D holography also provides an especially attractive means of tracking NP motion during

collision experiments. It measures the z-distance between incident particles and the electrode surface in
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addition to traditional 2D NP tracking by collecting interference patterns from the light source. The phase

information contained in these interference patterns enables the complete 3D reconstruction of the

position of any NP within a volume extending several tens of microns from the electrode surface into the

solution [44]. This microscopy technique was jointly used by Kanoufi and Tessier in the first correlated

electrochemical and optical detection of Ag NP collisions on an UME [45]. The authors demonstrated that

NP oxidation with NO; electrolyte does not commence immediately upon contact with the electrode

surface. Two explanations were proposed for these interesting results: the NP may have landed on a

region with poor electroactivity, thereby requiring time for it to diffuse to a more active location; or near-

wall hindered diffusion slowed the NP movement within <10 nm of the electrode surface and 3D super-

resolution holography could not distinguish between a contacting NP and one less than 10 nm away.

Separate studies by the same authors have also examined diffusiophoretic transport of Ag NPs to the

electrode surface and NP dissolution kinetics (see Figure 4) [46,47].

Conclusion. Overall, we have surveyed
the recent literature in which the
electrochemical oxidation of single Ag
NPs has been investigated. With the aid
of ultrafast electrochemical
measurements, simulations, and
correlated analytical techniques, a more
complete understanding of the NP-
electrode interaction can be achieved.
Many opportunities for further study

remain, such as correlated imaging of
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Figure 4: Correlated Imaging with 3D Holography: A schematic
for holographic imaging in which a holographic microscope
records the transport and oxidation processes about a positively-
biased Au electrode in an Ag NP colloidal solution. Ag NP
scattering intensity (/) is recorded over time and correlated with
electrochemical measurements. Adapted from Ref. 46.

single particle motion at the electrode surface with nm resolution while exposed to bulk solution. This

phenomenon could be investigated with the use of correlated in-situ TEM to enable the observation of a
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single particle moving across a biased electrode. Alternatively, new advances in low-noise high-
bandwidth current amplifiers may also enable improved amperometric resolution of recorded multipeak
events. Such studies would further explore the random-walk collision mechanisms proposed by White
and coworkers. Furthermore, the lessons learned in fast temporal recording of single Ag NP collisions
may also be extended toward other stochastic collision studies to reveal previously unresolvable physical
or chemical mechanistic behaviors. These studies would offer new insights into the fundamentals of the

electrode-analyte interface.
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