proceedings

O

An Efficient and Secure Location-based Alert Protocol using
Searchable Encryption and Huffman Codes

Sina Shaham Gabriel Ghinita Cyrus Shahabi
University of Southern California University of Massachusetts University of Southern California
Los Angeles, USA Boston, USA Los Angeles, USA
sshaham@usc.edu gghinita@cs.umb.edu shahabi@usc.edu
ABSTRACT may in turn share the data with third parties. And even in cases

Location data are widely used in mobile apps, ranging from
location-based recommendations, to social media and naviga-
tion. A specific type of interaction is that of location-based alerts,
where mobile users subscribe to a service provider (SP) in order
to be notified when a certain event occurs nearby. Consider, for
instance, the ongoing COVID-19 pandemic, where contact trac-
ing has been singled out as an effective means to control the virus
spread. Users wish to be notified if they came in proximity to an
infected individual. However, serious privacy concerns arise if
the users share their location history with the SP in plaintext.
To address privacy, recent work proposed several protocols
that can securely implement location-based alerts. The users up-
load their encrypted locations to the SP, and the evaluation of
location predicates is done directly on ciphertexts. When a cer-
tain individual is reported as infected, all matching ciphertexts
are found (e.g., according to a predicate such as “10 feet prox-
imity to any of the locations visited by the infected patient in
the last week”), and the corresponding users notified. However,
there are significant performance issues associated with existing
protocols. The underlying searchable encryption primitives re-
quired to perform the matching on ciphertexts are expensive, and
without a proper encoding of locations and search predicates, the
performance can degrade a lot. In this paper, we propose a novel
method for variable-length location encoding based on Huffman
codes. By controlling the length required to represent encrypted
locations and the corresponding matching predicates, we are able
to significantly speed up performance. We provide a theoreti-
cal analysis of the gain achieved by using Huffman codes, and
we show through extensive experiments that the improvement
compared with fixed-length encoding methods is substantial.

1 INTRODUCTION

Location-based alerts are an emerging area of mobile apps that
are very relevant to domains such as public safety, healthcare
and transportation. For instance, users may want to subscribe to
services that notify them whether an imminent danger exists in
their close proximity (e.g., an active shooter situation). Or, in the
recent context of COVID-19, mobile users wish to be notified if
they came in close proximity to an individual who was diagnosed
with the disease. While the advantages of location-based alerts
are undeniable, they also introduce serious privacy concerns: in
order to benefit from such services, users periodically upload
their locations to a service provider (SP). The SP monitors large
number of individuals, and evaluates spatial predicates to deter-
mine which individuals should be alerted. Disclosing individual
locations can leak sensitive personal details to the SP, which

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Cavimae ICCNT. 9227 o9NNC

DY~

where the SP is fully trusted, it can be subject to cyber-attacks,
or subpoenas by governments, resulting in the users’ moving
history being exposed.

Movement data can disclose sensitive details about an individ-
ual’s health status, political orientation, alternative lifestyles, etc.
Therefore, it is crucial to support location-based alerts while at
the same time protecting user privacy. This problem has been
recently studied in literature, and formulated in the context of
secure alert zones [14, 21, 23], where users report their encrypted
locations to the SP, and the SP evaluates alert predicates on
encrypted data. These approaches require a special kind of en-
cryption that allows predicate evaluation on ciphertexts, namely
searchable encryption (SE) [5, 19, 24]. However, the SE primitives
are not specifically designed for geospatial queries, but rather
for arbitrary keyword or wildcard queries. As a result, a data
mapping step must transform spatial queries to the primitive
operations supported on ciphertexts. Due to this translation, the
performance overhead can be significant.

Some solutions use Symmetric Searchable Encryption (SSE)
[11, 19, 24], where a trusted entity knows the secret key of the
transformation, and collects the location of all users before en-
crypting them and sending the ciphertext to the service provider.
While the performance of SSE can be quite good, the system
model that requires mobile users to share their cleartext locations
with a trusted service is not adequate from a privacy perspective,
since it still incurs a significant amount of disclosure.

Prior work in secure alert zones [14, 21, 23] uses Hidden Vector
Encryption (HVE) [5], which is an asymmetric type of encryption
that allows direct evaluation of predicates on top of ciphertexts.
Each user encrypts her own location using the public key of the
transformation, and no trusted component that accesses locations
in clear is required. However, the performance overhead of HVE
in the spatial domain remains high.

In existing HVE work for geospatial data [14], [21], the data
domain is partitioned into a hierarchical data structure, and each
node in this structure is assigned a binary string identifier. The
binary representation of each node plays an important part in
query encoding, and it influences the amount of computation that
needs to be executed when evaluating predicates on ciphertexts.
In [14], the earliest solution for secure alert zones, the impact
of the specific encoding is not evaluated in-depth. In [23], the
geospatial data domain is embedded to a high-dimensional hy-
percube, and then graph embedding [7] is applied to reduce the
computation overhead in the predicate evaluation step.

However, all previous solutions use fixed-length encoding of
locations and alert zones, meaning that the same number of bits
is used to represent each location. In cases where the distribution
of alert zones and/or locations is not uniform, using fixed-length
encoding can introduce unnecessary overhead. Motivated by
this fact, we propose techniques to reduce the computational
overhead of HVE by using variable-length encoding. Specifically,

AN CAA4 /000 7/~A+ N1 DA

Service provzdez

if index; satisfies Cond;

otherwise

Mobile Users

< C; = Encryptpy (index;, M;)

Figure 1: Location-based alert system.

TK, = Encryptsg (Cond,) (unfrusted
sse
ﬁ TK,, = Encryptsg (Cond,)
| 4
M.
Match(TK;, C) =4
1
Predicate: Predicate:
[« [0 0]
Attribute: Attribute:
Lofo]o] L[1]o0]
(a) Match (b) Nonmatch

Figure 2: HVE evaluation

we use Huffman compression codes to represent both user lo-
cations and alert predicates. Areas of the domain that are more
popular, or more likely to result in a secure alert being triggered,
are encoded with fewer bits than less popular areas. This allows
us to perform spatial query execution on ciphertexts in a less
computationally-intensive manner.

Our specific contributions are:

e We consider for the first time the use of variable-length
encoding, specifically Huffman compression codes, for the
problem of secure alert zones on encrypted location data;

e We devise specialized domain encoding techniques for
both user locations and alert zones that take into account
location popularity;

e We provide algorithms to evaluate the secure alert zone en-
closure predicates directly on ciphertexts when both user
locations and alert zones are represented using variable-
length encoding;

e We perform an extensive experimental evaluation which
shows that the proposed approach reduces considerably
the performance overhead of secure alert zones compared
to fixed-length encoding approaches.

The rest of the paper is organized as follows: Section 2 intro-
duces necessary background and the system model. Section 3
provides the details of the proposed variable-length encoding
techniques for user locations and alert zones. Section 4 general-
izes our solution to non-binary identifiers. Section 5 analyzes the
overhead of variable-length encoding on ciphertext size. Section
6 provides a security discussion, followed by evaluation of the
proposed approach on both real and synthetic datasets in Section
7. We survey related work in Section 8 and conclude in Section 9.

2 BACKGROUND

Consider a map divided into a set of n non-overlapping partitions
V ={o1,,02, ..., 08} (1)

Each partition v; represents a spatial area on the map referred to
as cell. Cells are identified by a unique binary code called index,
and can have arbitrary shapes and sizes (although equal-size
square cells are most likely in practice). We refer to the parti-
tioning as a grid. The assignment of indexes to cells is referred
to as grid encoding. All indexes must have the same length for
security purposes (to prevent an adversary from distinguishing

DYSY4

cells based on length). Fig. 1 shows a sample grid with five cells,
each associated with an index of length three.

When an event of interest occurs, an alert zone is created,
which spans a number of grid cells. We refer to such cells inter-
changeably as alert cells or alerted cells. In Fig. 1, cells v3 and v
associated with the indexes 100 and 000 (shown highlighted) are
alert cells. We denote the likelihood of cell v; being alerted by
p(v;), or alternatively p;. Our goal is to exploit alert cell likeli-
hoods in order to choose an encoding that reduces the computa-
tional complexity of HVE.

2.1 Hidden Vector Encryption

Hidden Vector Encryption (HVE) [5] is a searchable encryption sys-
tem that supports predicates in the form of conjunctive equality,
range and subset queries. Search on ciphertexts can be performed
with respect to a number of index attributes. HVE represents an
attribute as a bit vector (each element has value 0 or 1), and the
search predicate as a pattern vector where each element can be
0, 1 or ’* that signifies a wildcard (or “don’t care”) value. Let
denote the HVE width, which is the bit length of the attribute, and
consequently that of the search predicate. A predicate evaluates
to True for a ciphertext C if the attribute vector I used to encrypt
C has the same values as the pattern vector of the predicate in
all positions that are not " in the latter. Fig. 2 illustrates the two
cases of Match and Non-Match for HVE.

HVE is built on top of a symmetrical bilinear map of composite
order [5], which is a function e : GXG — Gr such thatVa,b € G
and Yu,v € Z it holds that e(a%, b°) = e(a, b)*?. G and Gt are
cyclic multiplicative groups of composite order N = P - Q where
P and Q are large primes of equal bit length. We denote by G,
Gy the subgroups of G of orders P and Q, respectively. Let !
denote the HVE width, which is the bit length of the attribute,
and consequently that of the search predicate. HVE consists of
the following phases:

Setup. The public/private (PK/SK) key pair has the form:

K = (gq € Gq, ac Zp, Vie[1.l]: uj, hi, wi,g,v € Gp)

To generate PK, we first choose at random elements Ry, Rp, ;,
Ry, € Gg, Vi € [1.l] and Ry € Ggq. Next, PK is determined as:

PK =(9q. V =0Ry, A=e(g.0)%
Vi€ [1.0] : Ui = uiRyi, Hi=hiRy; Wi=wiRw;)
Encryption uses PK and takes as parameters index attribute

I and message M € Gr. The following random elements are
generated: Z, Z;1,Z;» € Gg and s € Zy,. Then, the ciphertext is:

C=(C =MAS, Cy=V°Z,
Vie [1.0]:Ci = (UiIiHi)SZi,l, Ciz=W;Z;2)
Token Generation. Using SK, and given a search predicate
encoded as pattern vector I, a search token TK is generated

as follows: let J be the set of all indexes i where I.[i] # * We
randomly generate rj; and rj2 € Zp, Vi € J. Then

TK = (I, Ko = g° n(”fx[i]hi)r‘?lw;i'z,
ie]
Vie[ld]:Kip=0"! Kig=0"?)
Query is executed at the service provider, and evaluates if the

predicate represented by TK holds for ciphertext C. The server
attempts to determine the value of M as

M = C /(e(Co, Ko)/ 1_[e(Ci1,Ki1)e(Ciz, Ki2)
ieJ
If the index I based on which C was computed satisfies TK, then
the actual value of M is returned, otherwise a special number
which is not in the valid message domain (denoted by 1) is
obtained.

The HVE query, or matching, is the most important operation
in a location-based alert system, because it is executed every time
an alert occurs, and it requires processing of a large number of
ciphertexts. Our goal is to reduce the overhead of matching, and
the most direct way to do so is by reducing the number of non-star
bits in a token, since the number of expensive bilinear maps is
proportional to the count of non-star bits.

)

2.2 System Model

The architecture of location-based alert systems is shown in Fig. 1.
There are three types of entities: mobile users, a service provider
(SP) and a trusted authority (TA).

Mobile users subscribe to the location-based alert system and
periodically submit their encrypted location updates. Users want
to be notified when they are in an alert cell, without their privacy
being compromised. They the public key (PK) of the HVE cryp-
tosystem to encrypt their locations before sending them to the
SP. For example, users A and B on the grid encrypt their indexes
110 and 000, generating two ciphertexts C4 and Cp, respectively.

The Trusted Authority (TA) has the secret key (SK) of the
HVE cryptosystem. In practice, the TA role could be played by
a reputable organization such as a law enforcement agency, or
the center for disease control, who issue HVE search tokens corre-
sponding to alerts. The TA does not have access to user locations,
and is assumed not to collude with the SP. The TA is acting in the
interest of the general public, but does not have the infrastructure
to run a complex alert system, which is why this service is out-
sourced to the SP. One important aspect when generating tokens
is to minimize the number of non-star bits in a token, in order
to reduce the computational overhead of matching. A common
approach is to use binary minimization on the cell identifiers.
For example, the two alerted indexes 100 and 000 are combined
using binary expression minimization to obtain *00, then, the
new index is encrypted using the SK to create a token with two
non-star bits, instead of two tokens with three non-star bits each.
The overhead is reduced from six sets of bilinear pairings to two.

The SP implements the alert service. It receives encrypted
updates from users and tokens from the TA, and performs the
matching to decide whether encrypted location C; of user i falls
within alert zone j represented by token TKj. If the matching
outcome is positive, the SP learns that the user is inside the alert
zone, and notifies the user. For a matching process to result in
a positive outcome, all the token’s non-star bits should exactly
match the user index. Star bits ('don’t care’ bits), as the name
suggests, match with either a zero or one bit in the user index.
Note that all received information from users and the TA is

D Y4sl

Table 1: Summary of notations.

Symbol Description

n Number of cells

YV ={UJvi} Set of all cells

p(vi) Probability of cell v; becoming alerted
Cj Encrypted location of user j

TK; Token j

M; Message of user j

RL Depth of prefix tree (reference length)
ri ith internal node of tree

Pois(A) Poisson distribution; occurrence rate A
> Identifier symbol alphabet

Y Euler-Mascheroni constant

o) Golden ratio

ali: j] Returns elements i to j — 1 of array a
X1X2...X] Concatenation of symbols x; to x;

encrypted in the matching process, and the search happens over
encrypted data only.

Revisiting the example in Fig. 1, the outcome of matching
between token *00 and user B’s ciphertext corresponding to index
000 is positive (all the non-star bits match); however, the matching
outcome between *00 and 110 (user A) is negative as the second
bits do not match. From the mathematical derivation of HVE (2.1),
the HVE system’s computation complexity is proportional to the
number of non-star bits in the tokens. Therefore, a good grid
encoding reduces the overall number of non-star bits in tokens
to minimize the HVE computational overhead.

2.3 Motivation and Scope

While prior work made important steps toward secure and scal-
able location-based alert systems, important performance issues
still need to be addressed. The pioneering work in [14] was the
first to use searchable HVE encryption in the context of locations,
but assumed that all data domain regions are equally likely to be
part of an alert zone. Later in [23], it was shown that if there are
significant differences in likelihood of distinct regions to be part
of an alert zone, then performance can be significantly boosted.
However, both [14] and [23] use fixed-length encoding, i.e., the
same number of bits are used to represent each cell. Hence, their
performance overhead depends entirely on their ability to aggre-
gate search tokens. When alert zones consist of a relatively large
number of co-located alert cells, fixed-length encoding methods
are able to perform effectively binary minimization of identifiers,
and reduce overhead. This may be sufficient in some scenarios
such as an active shooter, or a gas leak, where there is an epicen-
ter of the event, and a range around the epicenter (often circular)
within which users must be alerted. The range can be large, for
instance in the order of hundreds of meters.

However, in other applications, alert zones may be compact
and sparse. For instance, consider the case of contact tracing —
an important task in controlling pandemics, such as COVID-19.
In this case, there will be a number of distinct alert zones, corre-
sponding to the set of locations visited by a COVID-19 patient.
For each individual site, the range of the query is relatively small,
for instance, several meters around the patient location for direct
spread. Or, in the case of surface spread or aerosol transmission,
the query may be restricted to a room, or a store, which may be
in the order of 10 — 20 meters in size. There are insufficient cells
in the alert zones to allow for effective token aggregation with
fixed encoding, and the performance obtained may be poor.

Our goal is to address this latter case, and we do so by using a
novel variable-length encoding approach. In this case, it is impor-
tant to use fewer representation bits for high-probability regions.
While our advantage is greatest for small, sparse alert zones,
we show in our empirical evaluation in Section 7 that variable-
length encoding can outperform fixed-length approaches for a
wide choice of alert zone sizes, and mixed-size workloads.

Normalizing the cell probability values over the domain space
reveals how likely a cell is to be alerted compared to others. A
typical stochastic distribution used to model sporadic events is
Poisson distribution, characterized as follows.

TuEOREM 1. If a random variable Y represents the number of
alert cells on the grid, then, it approximately follows Poisson distri-
bution (Pois(A)) with the occurrence rate of one (A = 1).

ProOOF. An alert zone event on the map is a subset of cells
1, , 02, ..., Un, Where n is a large value and each probability p(v;)
is relatively small. Moreover, the events are either independent
or weakly dependent of each other. Let

Y= Zn: I(v;)
i=1

count how many of the cells are alerted, in which I is an indicator
random variable having a value of one when the cell is alerted and
zero otherwise. Based on the Poisson distribution, the random
variable Y can be approximated with rate A = X7, p(v;) = 1.
Therefore, the probability of having k alert cells is given by

®)

e—l

kU)

O

p(Y=k) =

One can see from the Poisson distribution that the likelihood
of having a large number of alert cells is low. The maximum
probability corresponds to having only a single alert cell in a
zone, and then it drops significantly. This motivates our technique
for dealing effectively with cases where alert zones are compact.

3 LOCATION-BASED ALERTS WITH
VARIABLE-LENGTH ENCODING

In Section 3.1 we provide an overview of Huffman codes; Sec-
tion 3.2 presents the proposed location encoding scheme; Sec-
tion 3.3 introduces the token minimization process.

3.1 Prefix and Huffman Codes

Generally, any uniquely-decodable representation used to trans-
mit information is a prefix code, i.e., it follows the prefix property,
which requires that no whole code can be part of any other code.
For example, [000, 001, 01, 10, 11] is a prefix code as no code starts
with any other code in the set. A well-known theorem based on
Kraft inequality [10] states that any prefix over an alphabet of
size two with string lengths of /1 to [, must satisfy the inequality

21
27—150,
=1 2"

©)

and conversely, given a set of string lengths that satisfies the Kraft
inequality, there exists a prefix code with these string lengths.
Let the tuple = (p1, p2, ..., pn) defined over space partitioning
<V indicate the likelihood of cells vy, - - - v, becoming alert cells.
Furthermore, suppose that the function f(Iy, Iz, ..., I) returns the
average symbol length with no minimization, and fas(I1, I, ..., I)

NLQ

returns the average reduction in number of bits in the mini-
mization process. Given the tuple of cells and probabilities, the
objective of a minimal encoding is to generate a prefix code
C(P) = (c1,c¢2, ...,cn) as follows:

minimize L(C(P)) = Z p(v;) X length(c;)
i=1

subjectto L(C(P)) < L(7 (P)) for any code 7 (P)

Note that fas, which indicates the amount of minimization,
is not necessarily a function. For example, a previously used
minimization approach based on Karnaugh maps [14] does not
always result in a unique output. The NP-hardness of the above
problem based on fixed-length codes is shown in [23].

The most well-known prefix code is the Huffman encoding,
widely used in communication systems as it results in optimal
decodable average code length. The main idea behind Huffman
codes is that more common symbols are represented with fewer
bits compared with the less common symbols. In grid encoding,
it is desirable to encode symbols that have higher probabilities
of being in alert zones with fewer bits than the less likely ones.
Given the tuple of cells and probabilities, the objective of Huffman
encoding is to generate a prefix code that minimizes the average
length of codewords:

Flyl,) = fu(ly, I,

n
1
subject to Z P 1<0 (6)

i=1

;>0, Vi=1,.,n

v ln)

minimize

Prefix Trees. An intuitive way to discover whether the prefix
property holds for a code is to draw its associated binary tree,
called prefix tree. The prefix tree is constructed by assigning an
empty character to the root and descending through the tree. At
each branching point, we either choose to go left by adding a
zero character or move to the right child by adding a character
’1’ to the root string. We call the tree’s depth reference length (RL).
This number also indicates the maximum length of a prefix code.
Moreover, the subtree roots are referred to as interior nodes of the
prefix tree, and the leaf nodes are the prefix codes. Fig. 4b, shows
a prefix tree with an RL of three. As an example, the prefix code
’001° is generated by traversing nodes r4, r9, and ry.

3.2 Proposed Coding Scheme

The focus of prior work on secure alert zones [14, 23] has been on
fixed-length codes. Such codes are indeed a special case of prefix
codes, in which the tree is balanced, and no assigned code can
start with another. Next, we show how variable-length codes can
be used in conjunction with HVE. An overview of the proposed
approach is presented in Fig. 3. Based on a given prefix code, the
TA generates grid indexes where each index is a unique identifier
of a cell in the grid. In addition to grid indexes, a coding tree
is generated for the purpose of token minimization. Given the
set of indexes associated with the alert cells, the TA applies the
proposed minimization algorithm and transmits the encrypted
tokens to the SP. Fig. 4 serves as a running example.

Our approach consists of four steps:

I Generation of Probabilities: Our coding scheme relies on a set
of probabilities for each cell of the location domain to be part of
an alert zone. This step is a prerequisite to our approach, and thus
performed independently of the encoding. Such probabilities are
application dependent, and can be generated based on a trained

Prefix Code
i Coding Scheme i I
‘J {} i Assign to
Generate Generate Grid Cells
Coding Tree Grid Indices v
~

Deterministic Alert Cell Indices

Minimization | ¥

4

Encryption

~

Tokens

‘VV

Figure 3: Overview of HVE with variable-length codes.

machine learning model. In the example of Fig. 4a, we have five
cells V = (v1, vz, v3v4, vs5) with alert probabilities of

P=(p(01)=0.1, p(02)=0.2, p(03)=0.5, p(04)=0.4, p(05)=0.6).

For grids entailing a high correlation between alert probabili-
ties of cells, the setting in [23] or deep learning models such as [2]
can be used to find the stationary distribution of probabilities,
leading to a more accurate probabilistic model.

I Prefix tree : An arbitrary prefix code defined over alphabet
> = {0,1} can be represented by a binary tree with the prefix
codes located on the leaves of the tree. We are not just interested
in the generated prefix codes, but also in the codes associated
with the internal nodes of the tree. Therefore, internal nodes are
also stored as well as the generated prefix codes.

The topology of the tree is stored by recording five attributes
of each node: left child (leftChild), right child (rightChild), parent
node (parentNode), weight, and the associated code. The weight
of a node represents its frequency. The leaf nodes have a fre-
quency equal to their probability, and the weight of a parent
node is found by the addition of its immediate children’s weights
(i.e., Huffman mechanism). The prefix tree is not used directly in
the prefix coding scheme, but two sets of codes are generated
based on the prefix tree; one is used for identifying grid cells
referred to as cell indexes, and another is used by the TA to per-
form token minimization. Once the base codes are assigned for
each node of the tree, two sets of padding are conducted, one
for indexes assigned to the cells, and one used as a guideline for
the token generation. The padding leads to a length of RL (i.e.,
equal length) for all codewords and indexes. Recall that equal
ciphertext lengths is a requirement for security. However, the
variable-length codes affect the ciphetexts and token contents
in a way that allows fast processing. Furthermore, the padding
prevents an adversary from distinguishing among ciphertexts.

1. Grid indexes: the prefix codes (leaves on the prefix tree)
are padded from the right-hand side with zeros if they have a
length less than RL. In our example, the generated prefix codes
are {01 : 001,02 : 000,03 : 10,04 : 01,05 : 11} which are trans-
formed to {v1 : 001,02 : 000,03 : 100,04 : 010,05 : 110} after
padding with zeros. We refer to zero-padded prefix codes as in-
dexes. Once codes are created, they are assigned to corresponding
cells identified by their probabilities. The assigned indexes to the
sample grid are shown in Fig 4c. These are the indexes utilized
by users to identify the cell they are enclosed by.

Y4

Algorithm 1 Coding Scheme
Input: Root; V;

1: //Root traversal to generate codes

2: function TRAVERSE(Root)

3 if Root has no children then

4 return True

5 else

6 RootleftChild = Root.code + 0’
7 Root.rightChild = Root.code +°1’
8 Traverse(leftChild)

9 Traverse(rightChild)

: Traverse (Root)
: //Generate indexes assigned to cells
: RL « depth of tree

14: for all leaf nodes do
15: index = node.code
16: while len(node.code) < RL do

index = index +' 0’
Assign index to v; that has p(v;) = node.weight

: //Generate coding tree
: for all nodes do
while len(node.code) < RL do
node.code = node.code +
. //codingTree is the set of all nodes, alternatively Root can be
returned
: return codingTree

IV. Coding tree: the coding tree is used by the trusted authority
to generate tokens. The coding tree is constructed by adding star
bits on the right side of the prefix codes as well as the internal
nodes on the prefix tree if they have a length less than RL. The
padding for the sample grid is shown in Fig. 4d. The codes on
the coding tree are referred to as codewords.

Algorithm 1 formally presents how indexes and the coding tree
are generated for a given prefix tree. The inputs to the algorithm
are the tree root, grid cells, and their probabilities. The tree root
is sufficient for reconstructing the tree as children and parents
are presumed to be recorded. The algorithm traverses through
nodes to generate the prefix tree. Next, indexes of the grid are
generated and assigned to the grid cells, and finally, the coding
tree is completed and returned as the output of the algorithm.

Algorithm 2 presents how the Huffman tree is generated. The
algorithm starts by creating a node (leaf node) for each cell of
the grid, sorting them in ascending order based on their weights,
and placing them in a priority queue. Recall that the weights of
the leaf nodes are the probability of cells becoming alerted. Next,
while the length of the queue is greater than one, the algorithm
extracts two nodes with the minimum weights and creates a new
internal node (newNode) with a weight equal to the addition
of two extracted nodes. The new node is assigned as the parent
of extracted nodes, and the extracted nodes are assigned as left
and right children of the parent node. The new node’s weight
is inserted in the queue, and the process continues until only
a single weight remains in the queue. The last node is the root
of the tree and the output of the algorithm. The root node is
used as input to Algorithm 1 to generate the coding tree and grid

Algorithm 2 Huffman Tree
Input: V; P

1: //Generate tree nodes

2: forv; € V do

3: Create a newNode(leftChild=None, rightChild = None,
4 parent = None, weight = p(v;), code =)
5: Insert nodes into priority queue Q

6: while len(Q)>1 do

7: Sort Q in ascending order of weights

8 (node1, nodey) « Extract first two nodes in Q

9 Create a newNode(leftChild= node, rightChild = nodey,

parent = None,
11: weight = ny.weight + na.weight, code =)
12: ny.parent, np.parent= newNode
13: Insert newNode into Q
14: //The last nodes in Q is the tree root

: return root

indexes. The algorithm is executed with the time complexity of
O(n(log, n)).

The following steps illustrate the generation of Huffman tree
for the example presented in Fig. 4.

1. One node is generated for each cell (v1, vy, v3, v4, v5) and
their probabilities are inserted in a priority queue

Q=(p(v1)=0.2, p(v2)=0.1, p(v3)=0.5, p(v4)=0.4, p(v5)=0.6).
2. The queue is sorted in an ascending order:
0=(p(v2)=0.1, p(v1)=0.2, p(v4)=0.4, p(v3)=0.5, p(v5)=0.6)

3. The two nodes with the minimum weights (v; and vy) are
extracted from the queue and a new parent node r; is generated
with the weight of p(v2) + p(v1) = 0.3 and inserted into the
queue:

Qz(p(r1)=0~3s P(U4)=0~4s P(US)=O«Ss p(05)=06)

4. Similarly ry, r3, and r4 are generated as

Q=(p(r2)=0.7, p(v3)=0.5, p(v5)=0.6),
0=(p(r2)=0.7, p(r3)=1.1),
Q=(p(r4)=18).

Another prefix tree evaluated in the experiments is called
balanced tree. This prefix tree is used as a baseline to understand
the improvement made by the Huffman tree. The balanced tree is
a complete binary tree constructed in logz (n) steps. Given a tuple
of probabilities corresponding to grid cells, they are sorted in
ascending order and placed in a priority queue, ie., Q. In the jth
step, nodes Q[2i] and Q[2i+1] are paired fori = 0,1, ..., n/2/ | -1,
and each pair is replaced with a parent node in the queue. The
weight of a parent is the addition of its immediate children’s
weights. The final remaining node in the queue is the tree’s root.

3.3 Token Generation and Minimization

Prior work [14, 23] showed how the process of token generation
for an alert zone can considerably improve the computation over-
head, if the process of token aggregation is performed. Specifically,
the binary codes corresponding to different regions of an alert
zone can be aggregated to yield tokens with few non-star symbols,
which in turn reduces the HVE overhead. Binary minimization on
fixed-length codes is used for this purpose. For instance, suppose
that the alert zone contains cells 0000, 0010, 0110, 0100,. Instead
of separately encrypting the cell indexes and generating four

7N

Vg
vz N
plvs)=0.6

p(v73)=0.

vy
p(v,)=0.1

vy

vy p(vy)=0.4

p(v;)=0.2
(a) Sample grid.
Tar T
1.8
_'__.__,__-—-'—""-'—-\
5 0" o T
0.7 1.1
/\ /‘\
rat 9007 | [vy 017 |[var “107|[wg: <117
0.3 p(vy)=0.4]| p(v3)=0.5|| p(v5)=0.6
vy: “0007) [vy: “0017
plv2)=0.1|| p(v,)=0.2

(b) Coding tree generated based on Huffman encoding.

(c) Assigned grid indexes.

Ty SRR
1.8
-__,__-—'_'-_'—-H-—'_‘—--_‘_h
rpr COFE” ra: S1EET
0.7 1.1
/\ T
T1: “00%7| [vg: “01%7[15: “10%7[vg: “11%7
0.3 p(vy)=0.4|| plvs)=0.5|| pvs)=0.6
p(v;)=0.1|| p(v,)=0.2
(d) Coding tree.

Figure 4: Sample variable-length coding scheme

tokens, the TA uses binary minimization to generate a single
token 0 * %0, and the cost is reduced from twelve HVE operations
to two. Binary minimization works when there are many cells
in the alert zone, and when the placement of these cells permits
code minimization. This approach is suitable when the number
of alert cells is significant; however, in practice, alert zones may
have cell configurations that do not permit efficient aggregation.
We propose a different token generation approach, where
instead of performing binary minimization on fixed-length codes,
we control the configuration of tokens based on the assignment
of variable-length codes to cells. Algorithm 3 summarizes this
process. Inputs to the algorithm are a set of alert cells and the
coding tree. In the initialization phase, the algorithm defines:

e adictionary of parent nodes (parentDict) with the number
of leaf nodes in the corresponding subtree. This is done by
traversing through children of parent nodes and counting
the number of leaves located in that subtree. For the sample
example, we have the dictionary as

[00s : 2, O 23, Tsx 1 2, sk : 5]

e a list of leaf nodes denoted by leaves, ordered as they
appear on the tree while traversing; no two edges of the
tree cross path. Such a list for the sample tree is:

[v2 : 000,01 : 001,04 : 01%,03 : 10%, v5 : 11%].

The algorithm continues by converting alert cell indexes to
codewords on the tree and recoding their associated codeword
and the corresponding index in leaves. By default, the mapping
process splits codewords into clusters that are located consec-
utively in leaves. It is important to note that mapping of alert
cell indexes to codewords is unique, as demonstrated in Theo-
rem 2. The theorem proves a bijective mapping between grid
indexes and coding tree codewords. For instance, if the alert
cells are [001, 100, 110], then the mapping would result in leaves
[001, 10+, 11#] for the sample example. Next, the minimization
process based on the coding scheme is conducted. The minimiza-
tion’s main idea is to find the common subtree roots that have
maximum depths and use them as tokens. All leaves under a com-
mon subtree root must be alerted; otherwise, if a user is located
in such a leaf node it will be falsely notified to be in an alert zone.

Continuing with the example and alert cells [001, 10, 11x], the
algorithm generates two clusters [10%, 11x] and [001], and aims
to identify the common subtree roots with the maximum depths
in each cluster. This is done heuristically in lines 23- 37. Suppose
that a cluster’s length is L, the common left-hand side code in all
L codewords is calculated and padded with **’ bits to ensure that
the codeword length is RL. If the common codeword exists in
the dictionary and the number of its children is L, the codeword
is chosen as representative of its descendent leaves; otherwise,
L is decremented by one, and now the first L — 1 members are
checked to see if there exists a common root associated with them.
The process continues until the first subtree root is found. For
the remaining codewords in the cluster, the algorithm is applied
again until all tokens representing codewords in the cluster are
selected. A similar approach is repeated for all clusters.

THEOREM 2. There exists a bijective function between grid in-
dexes and the leaf nodes of the coding tree.

Proor. We start by proving that for each index on the grid
there exists a unique leaf node (codeword) on the tree. Let x1x2...x]
denote an arbitrary index on the map. There exists at least one
leaf on the tree with the codeword y1y2...yr, * ...* such that
X1X2..Xr; = Y1Y2.--Yr,» as indexes have been generated from leaf
nodes of the prefix tree. Suppose that there exist at least two leaf
nodes with the codewords y1yz2...yy, * ...* and z1z2...z2 * ...* cor-
responding to the index X1x2...x]. Hence, we have the following
relationship between the index and codewords on the tree.

7
®)

Without loss of generality, assume that rp > rq. Hence, equa-
tions 7 and 8 result in

X1X2Xry = Y1Yz--Yry

X1X2..Xr, = Z122..-Zr,

Y1Y2---Yr, = 212221,)

However, this contradicts the prefix property of the codes. Hence,
there is a unique leaf node corresponding to each cell index. As

71

Algorithm 3 Deterministic Minimization

Input: alertCells; codingTree;
1: parentDict = {}
2. for node € codingTree do
3: parentDict[node.code] = # descendent leaves

4: indexHolder, codewordHolder = []

s: leaves « list of leaf codewords

6: for i € alertCells do

7 memCodeword < Map i to a codeword in leaves

8 codewordHolder = codewordHolder U{memCodeword}
9 memIndex < index of memCodeword in leaves
indexHolder = indexHolder U{memIndex}

. // Generate a two dimensional list of clusters

12: Clusters, ¢ =[]

13: ¢ = ¢ U codewordHolder[0]

14: fori € [1: len(codewordHolder)] do

15: if indexHolder|[i] = indexHolder[i — 1] + 1 then
16: ¢ =c U codewordHolder|i]

17: else

18: clusters = clusters Uc

19: c=1{]

20: ¢ =c U codewordHolder|i]

21: tokens =[]

22: RL « depth of tree

23: for cluster € clusters do

24: L = len(cluster)

25: while L > 1 do

26: code « common bits in cluster[1 : L]

27: if len(code) < RL then

28: Pad with RL — len(code) star bits

29: if code € parentDict & parentDict[code] = L then
30: tokens = tokens U code

31 cluster = cluster[L : len(cluster)]

32: L = len(cluster)

33: else

34: L=L-1

35: if L =1 then

36: tokens = tokens U cluster|[L]

37: cluster = cluster[L : len(cluster)]
38: return tokens

there are an equal number of indexes and codewords, there exists
a bijective mapping between indexes and codewords. O

4 EXTENSION TO NON-BINARY CODES

So far, we considered the alphabet of HVE operations to be limited
to 3 = {0, 1} and the extended alphabet as 3. = SU{x}. Thisisan
intuitive way of looking at indexes as they are a series of zeros and
ones. However, by extending the alphabet to = = {0, 1,..., B—1}
for an arbitrary integer B € {2,...,n — 1}, we could obtain more
compact representations. The special character is also added as
3 = 2U{*}. We re-visit the operations from the previous section
for the extended alphabet with B symbols.

1. Prefix tree: We incorporate an extension of Huffman coding
referred to as B-ary Huffman to generate the prefix tree. The
main idea is to group B least probable symbols (instead of 2) at
each substitution stage of the algorithm. The construction of the
prefix tree for our running example grid is shown in Fig. 6a in
which a 3-ary or Huffman code is used. Initially, the algorithm

P

~T1]l0]00]

e

[slefa]=fe]=] [+]

@

Figure 5: Expansion process.
starts by combining nodes vy, v1, and v, as they correspond to a
group of three nodes with the minimum total weight, generating
the node r;. Next, the nodes ry, v3, and v5 are combined, and the
root node ry is generated. The weights and other characteristics
of the nodes are stored and calculated in the same way as the
binary Huffman tree. The codes associated with the tree are
generated by assigning an empty character to the root node and
then traversing the tree. At each branching node, when following
the ith child edge, character i — 1 is added to the root string. As
an example, prefix code ’02’ is generated by adding character '0’
at r1, and character ’2’ by moving to node v4. As in the case of
the binary case, we are interested in codes assigned to internal
nodes as well as the prefix codes generated at the leaves.

2. Coding tree: The generation of the coding tree requires an
additional step compared to the binary Huffman tree. In the first
step, codes are padded with star characters until they reach the
same length as the RL. The padded prefix tree for our running
example is shown in Fig. 6b. Next, we expand each character
to an array of B bits. The character i € X is converted to B bits
with the (i+1)-th bit set to 1 and star bits otherwise. The only
exception is the star character, which will be mapped to a string
of length B with all bits set to ™’. As an example, the expansion
of 2% is shown in Fig. 5a.

Each original character essentially works as a placeholder for
the expanded representation. The final coding tree generated for
our example is shown in Fig. 6c.

3. Indexes: We generate indexes by padding the leaves in the
prefix tree by zeros, and then expanding the codes. An interesting
case occurs that gives the TA the opportunity to increase the
grid’s granularity further if desired. Consider the prefix code
’2’, which will be zero-padded to generate *20’. The expansion
process requires two steps: (i) zeros generated by the padding
process are mapped to B bits; (ii) each character i € 3 is expanded
to B bits with the (i+1)-th bit set to 1, and star bits otherwise. The
expansion of "20’ is demonstrated in Fig. 5b.

The additional star bits in the index are converted to zeros.
The advantage of the approach is revealed when we increase
the granularity of a grid cell in a later stage in time. This can
be done by exploiting the star bits generated in the last step
without violating the structure of the grid or the coding tree.
Consider the index ’20’ corresponding to cell v5 one more time.
This string was first converted to "**1000” and then to *001000’.

(b)

TN

T2

Ty
1.8

Suppose, later on, the TA decides to increase the granularity of
us to four cells. This can simply be done by using four indexes
’001000°,°011000’, °101000’, ’111000” generated based on star bits
with all of them lying under character ’2’. The coding tree is
also updated accordingly via placeholders for the character ’2’
without violating the tree’s prefix property.

5 ENCRYPTION OVERHEAD

Employing variable-length codes into HVE can significantly im-
prove the computation complexity at the SP, but there is a a trade-
off with respect to increased encryption time. When variable-
length encoding is used, all ciphertexts submitted by the mobile
users to the SP must have the maximum length of any existing
code. Otherwise, the length of the ciphertext would enable the
SP to pinpoint the location of the submitting user to one of the
cells that are assigned a code with bit length equal to the one
submitted. To thwart such attacks, all codes are padded before en-
cryption to the maximum possible length, i.e. RL. In this section,
we analyze this additional encryption overhead, and we show
that it is not significant, especially compared to the savings at the
SP. Furthermore, the additional computational load is spread over
the user population, since each user encrypts its own location
independently, and no bottleneck is created (as opposed to the
alert matching overhead which is centrally incurred at the SP).
In our analysis, we make use of the following result:

THEOREM 3. The depth of a B-ary Huffman tree (RL) with n
n—1
1.

B-1

leaves is less than or equal to [

Proor. The theorem can be proved by counting the number
of internal nodes in a B-ary Huffman tree. Consider a tree with
n leaves generated by the Huffman mechanism. At every run of
the algorithm, B less likely remaining nodes in the priority queue
are combined, and a new internal node is inserted. Suppose that
the Huffman mechanism is conducted x times over the priority
queue until a single node, i.e. root node, is left in the queue. The
maximum value of integer x can be derived as:

-1
max {n—-x(B-1) > 1} »x= |_n__| (10)
x B-1
Therefore, the maximum possible depth of a B-ary Huffman tree
. .n-—-1
. o
is [o l'l

Let Lg denote the difference between the RL of an encoding
grid with n cells generated by Huffman coding and fixed-length
codes. We start by deriving an upper bound for Lg when X, =
{0,1} U {x}, and then extend the upper bound for an arbitrary
size alphabet. Without loss of generality, consider that RL in the
binary Huffman tree is [;,. The minimum possible value for I, is

1.8 Ty FRE AR
1.8
FTI T AT T . ek « SIEY || gpp- BEDED //T\\
L L v3: “1 vy 2 Ft 0¥ V3 5 H AR S BEET T
05 . 3)=0.5|| p(r5)=0.6 i 1 va: 1 vEs "o
0.7 p(r3)=0.5|| p(vs)=0.6 0.7 p(vs) p(vs) 0.7 p(vs)=0.5 p(vg)=0.6
5yr <007 | [wy1 <017 [02" v,r 2007 |[7y “017 | [vp: “02 ‘ vyr 13 1#x | [pgr 1RERLE vy: LFF RE]
p(v2)=0.1|| p(r1)=0.2| [p(v4)=0.4 p(r;)=0.1]| p(v,)=0.2|| p(v,)=0.4 p(v5)=0.1 p(v)=0.2 p(r,)=0.4
(a) Ternary Huffman coding tree. (b) Placeholders. (c) Coding tree.

Figure 6: Sample coding tree for extended framework.

nr7o

18

16 --G--FExperimental
14 | —B— Upper Bound
12
£ 10
R g
6 277 TTe--6--0--0
4 e
2
0
1 100 10,000

Grid Size (log)
Figure 7: Upper bound of L for Binary Huffman codes.
[log, n]. Based on Theorem 3, Lg can be written as:

Lg(B=2,n) =Ilp—[log,n] < [ZT:]—I'logz n] = n—1-[log, n]

(11)

A tighter upper-bound for RL in a binary Huffman tree can be

derived based on the following theorem proven in [6] (we omit
the proof for brevity):

THEOREM 4. Let p,, and I, denote the minimum probability and
its corresponding length existing on the Huffman tree. Then,

1
In < logy— 12
n 9 on (12)
where ¢ denotes the golden ratio, i.e., ¢ = (1+5)/2.
Therefore, a tighter upper-bound for Lg can be written as
1
Lg(B=2,n) < log¢p— - [log, n] (13)
n

The numerical and analytical values of Lg are verified! for
binary Huffman coding in Fig. 7.

Now let us extend the approach for B-ary Huffman codes
generated with the alphabet 3. = {0, 1,..., B— 1} U {*}. Based
on information theory, the minimum length of RL corresponding
to fixed-length codes is derived as [logg n]. Therefore, the upper-
bound for Lg can be computed as:

Li(B,1) = Bl ~ Mlogg n]) < B[51~ lloggnl) ~ (14)

n—1

15
3.1 (15)
The multiplier B is required to map the alphabet to 0s and 1s,
used in the encryption.

1 -1 O O
E[Lg(n)] Sm(; = +Zzz—22ll'login]) (16)

The first and second summation in the upper-bound of E[Lg (n)]
can be further simplified as

< B(+1—[loggnl)

n

Z—i(i"__ll) =(n-1) x (n—1+2ﬁ) (17)
i=2 i=2
~ (n—l)x(n—2+ln(n—1)+ﬁ +7)
(18)
and,
Zi _ n? +2n -1 (19)

1Grid probabilities are generated with the parameters of sigmoid function set to
a =0.95 and b = 20. Please refer to Section 6 for details.

nr7

where y ~ 0.577 is the Euler-Mascheroni constant. The approx-
imation for the nth Harmonic can be derived by its asymptotic
expansion in the Hurwitz zeta function [8].

6 SECURITY DISCUSSION

Our proposed technique uses as building block HVE primitives
as introduced in [5], and hence inherits the security properties
of HVE, namely IND-CCA under the bilinear Diffie-Hellman
assumption. In terms of ciphertext processing semantics, the
security achieved by our technique is similar to existing work
in the area of secure computation, namely the only leakage that
occurs as part of ciphertext matching is the evaluation outcome.
Specifically, the SP learns only whether the user is included in
the alert zone (which is a necessary condition for correctness),
and no other information. The SP does not learn where exactly
the user is located within the alert zone, if the match is successful;
conversely, if the match is not successful, the SP learns only that
the user is not inside the alert zone, but cannot further narrow
down the user within the data domain.

Furthermore, our technique is guided by statistical information
that is derived solely from public data. Namely, the heuristic on
how to encode cells does not use any user location data, but
strictly likelihood scores that are assigned to grid cells, based
on public knowledge regarding the alert zone properties, such as
site popularity, etc. No private information regarding any system
user is included in the encoding process (not even aggregate data,
such as user distribution, etc).

Finally, the encryption strength achieved by HVE depends on
the underlying bilinear pairing curve used [5]. Modern elliptic-
curve pairing-based cryptography can easily provide 128-bit se-
curity, which is on par with commercial database applications
such as banking, or heathcare data security standards.

7 EXPERIMENTAL EVALUATION

We conduct our experiments on a 3.40GHz core-i7 Intel proces-
sor with 8GB RAM running 64-bit Windows 7 OS. The code is
implemented in Python. We evaluate our methods on both real
and synthetic datasets, as follows:

o Chicago Crime Dataset. This dataset is provided by the
Chicago Police Department’s CLEAR (Citizen Law En-
forcement Analysis and Reporting) system [1]. The dataset
consists of reported incidents of crime that occurred in
the city of Chicago in 2015. We consider four categories of
crime: homicide, sexual assault, sex offense, and kidnap-
ping. Fig. 8 shows data statistics. A 32 X 32 grid is overlaid
on top of the dataset, and a logistic regression model is
trained with the crime data from January to November
2015, and tested on the December data. The accuracy of
the model is 92.9% and the generated likelihood scores
based on the model are used as input to our techniques.

o Synthetic data. We generate the likelihood of grid cells to
be part of an alert zone using a sigmoid activation function
SX=x)=1/(1+ exp'b(x'“)), where a and b are param-
eters controlling the function shape. For each data point
(i.e., cell) x, a uniformly random number between zero and
one is generated, i.e., x € X ~ uniform(0,1). Then, the
number is fed into the sigmoid activation function. The
output is a value between zero and one indicating the like-
lihood of the cell to be inside an alert zone. The sigmoid
function is a frequent model used in machine learning, and

B CRIMINAL SEXUAL ASSAULT
s HOMICIDE

. KIDNAPPING

EEm SEX OFFENSE

80

Mumber of Incidents

H N Mmoo’ I B Rm e g oM N
=T

Month (Jan -Dec)

Figure 8: Chicago crime dataset statistics.

-<--Huffman —5—SGO - x -Balanced Tree
350

-<--Huffman —5—SGO - % -Balanced Tree

15
e T ., 300
o 10 e 5 250
S = =}
= SR =
g s 9 £ 200
£ <150
z =
g 0 =m oot z 100
& 100 g0 300 50
s 5 g i
10 0 100 200 300
Radius (m) Radius (m)

() (b)

Figure 9: Evaluation on Chicago crime dataset.
we choose it because we expect that, in practice, the prob-

ability of individual cells becoming part of an alert zone
can be computed using such a model built on a regions’
map of features (e.g., type of terrain, building designation,
etc.). Parameter a of the sigmoid controls the inflection
point of the curve, whereas b controls the gradient.

We compare our proposed variable-length encoding scheme
with the state-of-the-art fixed-length approach scaled gray opti-
mizer (SGO) from [23], which uses graph embedding to reflect
cell probabilities in the way cell codes are chosen. We also con-
sider as a second benchmark an approach that uses balanced
trees, as opposed to Huffman trees.

We use as performance metric the number of HVE bilinear
map pairing operations incurred by each technique (which are
the most expensive component of the overhead). We present both
absolute counts, as well the percentage of improvement compared
to the original fixed-length encoding HVE approach introduced
in [14] (which assumes all cells are equally likely to be alerted).

7.1 Evaluation on Real Dataset

Fig. 9 shows the performance results obtained on the real dataset.
The x-axis in each graph indicates the size of the alert zone
(expressed as radius). For low radii values, the SGO algorithm fails
to provide significant improvement, due to the fact that the binary
minimization process used by fixed-length encoding approaches
is unable to aggregate tokens. In contrast, the proposed variable-
length technique using Huffman encoding is able to provide gains
of up to 15% compared to the baseline. In practice, we expect
alert zones to be relatively compact compared to the data domain,
hence this case is frequently occurring in practice. Furthermore,
the results show the superiority of the Huffman code compared to
generic variable-length encodings, as the balanced-tree approach
benchmark does not produce any improvement.

As the size of alert zone increases, SGO improves, whereas
the gain of Huffman encoding decreases. This is expected, since
with very large alert zones, it is easy to aggregate tokens, by
grouping together cells with low Hamming distance between
their codes. However, such an improvement can only be reached
when the alert zones are very large, which is not a realistic sce-
nario in practice. In general, the size of alert zones is expected

OYTA

to be small, and their distribution in the data domain sparse,
which would further diminish the potential of SGO (and other
binary minimization approaches) to produce performance gains,
as aggregation requires clustered cells with similar binary codes.

7.2 Evaluation on Synthetic Dataset

Performance evaluation results for synthetic data are summarized
in Fig. 10. We use two inflection points for the sigmoid function
a = 0.90,0.99, as well as three gradient values b = 10, b = 100
and b = 200. A similar trend to the real dataset is observed. The
Huffman tree approach achieves significantly better performance
when the alert zones are compact, which is the expected case in
practice.

Two other trends can be observed with respect to the param-
eters of the sigmoid function. First, a higher inflection point
setting results in a more skewed distribution probability on the
grid, and leads to a higher performance gain for Huffman en-
coding compared to competitor approaches. The performance
gain can be as high as 50%. This is a positive aspect, since in real
life one expects alert cell probabilities to be quite skewed, where
more popular areas are visited by more individuals, hence there is
more potential for alert events (e.g., public-safety alerts, or visits
of a COVID-infected patient to points of interest). Second, an
increase in the gradient of initial probabilities (b) also improves
the performance gain of Huffman encoding.

We also conducted an experiment under mixed-workload con-
ditions. We consider several mixes between short-radius (20 me-
ters) and long-radius (300 meters) alert zones: W1 (90% short-10%
long); W2 (75% short-25% long); W3 (25% short-75% long); and
W4 (10% short-90% long). Results are summarized in Fig. 11. Our
proposed technique outperforms SGO for all considered cases.
For mostly-compact alert zones (W1), the improvement is much
higher than that of SGO, with absolute values of up to 40%.

On the synthetic data, we are also able to perform more in-
depth tests where we vary the parameter settings of our proposed
approach. In Fig. 12, we vary the grid granularity. The results are
obtained for a = 0.95 and b = 20. The results show that higher
grid granularities lead to higher performance overhead, which
is expected, since more cells need to be encoded and encrypted,
and thus code lengths increase. We also observe an interesting
trend: the improvement for a low number of alert cells decreases
at higher granularity levels. As the number of grid cells grow, and
considering the same sigmoid activation function parameters,
there will be more cells with low probabilities of becoming an
alert cell. Therefore, the Huffman tree tends to have higher depths.
This can be observed more accurately in Fig. 13, where we show
the ratio of average length to the maximum length of the Huffman
tree for various grid sizes. Hence, the improvement achieved by
deterministic minimization lags behind the logic minimization
approach, leading to a smaller improvement percentage.

Finally, we present the run time required to generate indexes
and the coding tree in Fig. 14. Note that, this is a one-time setup
cost, as the process is only run when initializing the system, and
has no effect on run-time performance. In the worst case, the
process takes minutes for larger-granularity grids.

8 RELATED WORK

Location Privacy. Early works on location data privacy piv-
oted around the k-anonymity [25] model. The main idea is to
hide users’ location among at least k-1 other users to protect
user privacy. A preliminary approach to achieve k-anonymity

--¢--Huffman —5—SGO - % - Balanced Tree -G--Huffman —5—SGO - x -Balanced Tree --6--Huffman —5—SGO - x -Balanced Tree --6--Huffman —8—SGO - % -Balanced Tree
15 350 35 350

00— DB g ,, 300 30 oo Gemmn BB g ., 300
g 10) g = £2s0
é 5 SE‘, 200 E.: 20 2200
g &'150 g 18 &'1s0
£ i o) £ 10 o
5 0 » 100 2 100
g E Zs £
E] 50 B 50
2 % 2 0 —
0 5 100 206 =~~~ 390 0
10 0 100 200 300 10 0 100 200 300
) Radius (m) Radius (m) Radius (m) Radius (m)
(a) a=0.9, b=10 (b) a=0.9, b=10 (c) a=0.9, b=100 (d) a=0.9, b=100
--6--Huffman —8—SGO - % - Balanced Tree --¢--Huffman —5— 8GO - x -Balanced Tree ----Huffman —=— 8GO - x -Balanced Tree --¢--Huffman —5—S8GO - x-Balanced Tree
35 350 20 350
3 | e ,, 300 - ,, 300
$as gee il £2s0 g £250
=20 £ 200 g 10 £ 200
245 & 150 £ s 5150
£ & £ 2
g 10 = 100 3 100
£ = s £ T &
E s El 100 ~ 200 300 50
0 s _ 0 -5 R 0
5 100 200 " o 0 100 200 300 10 0 100 200 300
B Radius (m) Radius (m) Radius (m) Radius (m)
(e) a=0.9, b=200 (f) a=0.9, b=200 (g) a=0.99, b-10 (h) a=0.99, b-10
--¢--Huffman —5—SGO - x - Balanced Tree -<--Huffman —S—SGO - > -Balanced Tree --¢--Huffman —5—SGO - » -Balanced Tree --e--Huffman —=—SGO - x -Balanced Tree
50 350 60 350
300
0 " 50 — , 300 -
9 £ 250 £ e R Sas0 e
$” £ 200 £ % gm0 g
E 2 S'150 g 5150
3 10 ?100 : 20 Emn
E‘“ ™ 50 E 10 50 =
0 0 0 o ([EE=B— b
i 10 100 200 390 0 100 200 300
Radius (m) Radius (m) Radius (m) Radius (m)
(i) 2=0.99, b=100 (j) a=0.99, b=100 (k) a=0.99, b=200 (1) 2=0.99, b=200
Figure 10: Performance evaluation on synthetic dataset.
0.7
mHuffman = SGO =Huffman = SGO 0.6 2
30 50 & Peg
g 25 S0 E 0.5 2 <
=20 ped E ’
g 30 3
% 15 % 0.4 ’
2 10 % 20 P
& & ’
g 3 Elo 0.3 @
0 0 0.2
W1 W2 W3 W4 W1 w2 w3 w4 1 100 10000
(a) 2a=0.9, b=100 (b) 2=0.99, b=100 Grid Size (Log Scale)
. . . Figure 13: Average-to-maximum code length ratio.
Figure 11: Mixed workloads, synthetic dataset. S
_»
40 500 -
3 -~ Grid Size = 64 = 100 - - =
IS L 1 = S 4 400 | o Cridsme2ss = -
g “oa e R U
S oo S = 300 g ’
g 5 10%e,_ 15 2 g <
£20 % C 200 < o
£ o 2 o K 20K 40K 60K S(K
5.740 &~ Grid Si \‘19 E 100 E 0.1 ‘
- :‘:i Gr?d Si 2 E "-G‘ H '
60| TR 0 0.01 g
80 0 5 10 15 20 s
Number of Alert Cells Number of Alert Cells 0.001
Grid Size
(a) (b)
Figure 12: Varying grid granularity, synthetic dataset. Figure 14: System Initialization Time
was focused on the generation dummy (fake) locations for data area locations are enclosed by, achieving k-anonymity [13, 17, 20].
points [18]. Unfortunately, dummy generation algorithms are Approaches based on CRs are effective in a single snapshot [17];
shown to be susceptible to inference attacks [22]. however, once users are considered in trajectories, requiring con-
An alternative proposed method to achieve k-anonymity has tinuous queries, privacy concerns are posed on the system by
been focused on the concept of Cloaking Regions (CRs) [15]. inference attacks. Moreover, large CRs are needed in trajectories,
Most approaches in this category take advantage of a trusted significantly reducing the utility of data [9] as well as posing
anonymizer to generate a cluster of k user locations and query the privacy risks due to inference attacks. The authors in [12, 16]

D led=

aim at providing privacy by distinguishing between sensitive and
non-sensitive locations based on user preferences.

Searchable Encryption The main motivation behind search-
able encryption techniques is outsourcing the data management
to a third party, such as cloud providers without the third party
learning about data or queried information by users. The use of a
searchable encryption was initially proposed in [24] for a secure
cryptographic search of keywords. The approach supports com-
parison queries [4] as well as subset queries and conjunctions
of equality [5]. The concept of HVE used in this paper was first
proposed in [5] and later extended in [3]. The authors in [14]
proposed the use of HVE to guarantee user privacy in location-
based alert systems. Despite promising results of the approach,
a major challenge is reducing the computation complexity of
HVE at the server where the matching process is conducted. The
work in [23] represents the current state-of-the art in location-
based alerts with searchable encryption, and it takes into account
probabilities of cells being part of an alert zone. A graph embed-
ding technique is used to assign codes to cells in a manner that
is aware of their likelihood of becoming alerted. The approach
achieves significant improvement in performance compared to
[14]. However, as our experimental evaluation shows, such im-
provements are reached only when a relatively large number of
alert cells are part of an alert zone. For alert zones with few cells,
our approach clearly outperforms that of [23].

9 CONCLUSIONS AND FUTURE WORK

We proposed a technique for secure location-based alerts that
uses searchable encryption in conjunction with variable-length
location encoding. Specifically, using Huffman compression codes,
we showed that it is possible to significantly reduce the overhead
of searchable encryption for cases where alert zones are compact
and sparse, which is the case we believe to be most likely in prac-
tice. Extensive analytical and empirical evaluation results prove
that our proposed approach significantly outperforms existing
fixed-length encoding techniques, with only a small overhead in
terms of additional encryption time.

In some cases, our approach may be limited by the lack of a
systematic way of obtaining the probability values for various
data domain regions. While having accurate probabilities is a
plus, we do not require high accuracy in the actual values. In fact,
in our design it is often the relative ordering of the probabilities
that matters, and not necessarily the exact values. In practice,
one can produce a relatively stable and representative ordering of
types of features based on their popularity. Even without precise
probability values, one can still obtain significant gains.

In future work, we plan to investigate more advanced stochas-
tic models that capture correlations between cells in an alert
zone, as well as cases when the alert zone evolution over time
can be estimated by a spread model (e.g., a chemical gas leak).
Significant performance gains can be achieved in such scenarios.
One possibility is to model the space and time based on a Markov
model. For a grid with n cells, the model would consist of 2"
states, each representing a unique subset of grid cells. Next, one
can determine a stationary distribution of probabilities over cells,
and derive the values required to reach equilibrium.

Finally, while our work focuses on location data, our design can
be extended to benefit other types of data as well. Our assumed
semantics for ciphertext processing is that of range queries, and
numerous other data types can benefit from secure range queries.
However, one has to devise specific encodings and optimizations

Dilsl4

for each type of data, as straightforward application of HVE to
generic data types may lead to high performance overhead, as
illustrated in our earlier work [14].

Acknowledgment. This research has been funded in part by
NSF grants IIS-1910950, IIS-1909806 and CNS-2027794, the USC
Integrated Media Systems Center (IMSC), and unrestricted cash
gifts from Google and Microsoft. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
any of the sponsors such as the NSF.

REFERENCES

[1] https://data.cityofchicago.org/public-safety/crimes-2015/vwwp-7yr9.
[2] T. Almanie, R. Mirza, and E. Lor. Crime prediction based on crime types and
using spatial and temporal criminal hotspots. arXiv preprint 1508.02050, 2015.
[3] C.Blundo, V. Iovino, and G. Persiano. Private-key hidden vector encryption
with key confidentiality. In International Conference on Cryptology and Network
Security, pages 259-277. Springer, 2009.
D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In Intl. Conf. on the Theory and Applications
of Cryptographic Techniques, pages 573-592. Springer, 2006.
D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In Theory of Cryptography Conference, pages 535-554. Springer, 2007.
M. Buro. On the maximum length of huffman codes. Information processing
letters, 45(5):219-223, 1993.
R. Chandrasekharam, V. Vinod, and S. Subramanian. Genetic algorithm for
embedding a complete graph in a hypercube with a vlsi application. Micro-
processing and microprogramming, 40(8):537-552, 1994.
C.-P. Chen and J.-X. Cheng. Ramanujan’s asymptotic expansion for the
harmonic numbers. The Ramanujan Journal, 38(1):123-128, 2015.
C.-Y. Chow and M. F. Mokbel. Enabling private continuous queries for revealed
user locations. In Symp. on Spatial and Temporal Databases, page 258, 2007.
T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.
R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmet-
ric encryption: improved definitions and efficient constructions. Journal of
Computer Security, 19(5):895-934, 2011.
M. Damiani, E. Bertino, and C. Silvestri. Probe: an obfuscation system for the
protection of sensitive location information in Ibs. TR2001-145, CERIAS, 2008.
B. Gedik and L. Liu. Location privacy in mobile systems: A personalized
anonymization model. In 25th IEEE International Conference on Distributed
Computing Systems (ICDCS’05), pages 620-629. IEEE, 2005.
G. Ghinita and R. Rughinis. An efficient privacy-preserving system for moni-
toring mobile users: making searchable encryption practical. In Proc. of ACM
Conf. on Data and application security and privacy, pages 321-332. ACM, 2014.
M. Gruteser and D. Grunwald. Anonymous usage of location-based services
through spatial and temporal cloaking. In Proceedings of the Ist international
conference on Mobile systems, applications and services, pages 31-42, 2003.
M. Gruteser and X. Liu. Protecting privacy, in continuous location-tracking
applications. IEEE Security & Privacy, 2(2):28-34, 2004.
P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preventing location-
based identity inference in anonymous spatial queries. IEEE transactions on
knowledge and data engineering, 19(12):1719-1733, 2007.
H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous communication tech-
nique using dummies for location-based services. In ICPS’05. Proceedings.
International Conference on Pervasive Services, 2005., pages 88-97. IEEE, 2005.
S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D. Mukhopadhyay, R. Steinfeld, S.-F.
Sun, D. Liu, and C. Zuo. Result pattern hiding searchable encryption for
conjunctive queries. In Proc. of ACM CCS, pages 745-762, 2018.
M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: Query processing
for location services without compromising privacy. In Proceedings of the 32nd
international conference on Very large data bases, pages 763774, 2006.
K. Nguyen, G. Ghinita, M. Naveed, and C. Shahabi. A privacy-preserving,
accountable and spam-resilient geo-marketplace. In Proc. of ACM SIGSPATIAL,
pages 299-308. ACM, 2019.
S. Shaham, M. Ding, B. Liu, S. Dang, Z. Lin, and J. Li. Privacy preservation in
location-based services: a novel metric and attack model. IEEE Transactions
on Mobile Computing, 2020.
S. Shaham, G. Ghinita, and C. Shahabi. Enhancing the performance of spatial
queries on encrypted data through graph embedding. In IFIP Annual Conference
on Data and Applications Security and Privacy, pages 289-309. Springer, 2020.
D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on
encrypted data. In IEEE Symposium on Security and Privacy, pages 44-55, 2000.
L. Sweeney. k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557—
570, 2002.

=
=

(12]

(13

[14

[16

[17

(18

[19

[21]

(22]

[23

[24]

[25

