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Abstract

We prove that there are ≫ X
1
30 / logX imaginary quadratic num-

ber fields with an ideal class group of 3-rank at least 5 and discrim-
inant bounded in absolute value by X. This improves on an earlier
result of Craig, who proved the infinitude of imaginary quadratic
fields with an ideal class group of 3-rank at least 4. The proofs rely
on constructions of Mestre for j-invariant 0 elliptic curves of large
Mordell-Weil rank, and a method of the first author and Gillibert
for constructing torsion in ideal class groups of number fields from
rational torsion in Jacobians of curves. We also consider analogous
questions concerning rational 3-torsion in hyperelliptic Jacobians.
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1 Introduction

We study the problem of constructing and counting quadratic number fields

with large 3-rank (i.e., with an ideal class group of large 3-rank). Our main

result is the following:

Theorem 1.1. There exist ≫ X
1
30/ logX imaginary (resp. real) quadratic

number fields k with |Disc(k)| < X and

rk3Cl(k) ≥ 5

(resp. rk3Cl(k) ≥ 4).

In particular, we produce infinitely many imaginary quadratic fields with

a class group of 3-rank at least r = 5, improving on the best previous result,

due to Craig [10], who in 1977 proved the same statement but with r = 4. In

the real quadratic case, we obtain a quantitative version of a result of Diaz

y Diaz [13], who combined Craig’s work with Scholz’s reflection principle

[30] to prove an analogous result giving the infinitude of real quadratic fields

with 3-rank at least 4. For smaller 3-ranks, our method also produces new

enumerative results (see Corollary 6.2 and the subsequent discussion).

Further families of quadratic fields with a given lower bound for the 3-

rank have been investigated previously by a number of authors (e.g., [9],

[12], [22]). Examples of imaginary quadratic fields with 3-rank 6 were given

by Quer [28], and tables of quadratic fields with large 3-rank have been

previously computed [2, 12, 14, 24]. In particular, the smallest imaginary

quadratic field with an ideal class group of 3-rank 5 (discovered by Quer)

is known from work of Belabas [2].

Our approach to Theorem 1.1 is based on the well-known idea of using

j-invariant 0 elliptic curves over Q of large Mordell-Weil rank to construct

quadratic fields with large 3-rank. There is an extensive literature detailing

(and exploiting) the connection between the 3-rank of the Selmer group

attached to 3-isogenies between such curves and the 3-ranks of associated

quadratic fields (e.g., [1, 7, 8, 11, 28, 29, 33]). We use a geometric mani-

festation of this concept, combined with a method of the first author and

Gillibert [17], and take advantage of the following chain of constructions,

previously exploited in [18]:

(1.1)

Elliptic curve E of large rank over Q(t)
p-descent

−−−−−−→ p-torsion in associated Picard group

Gillibert-Levin

−−−−−−→ p-torsion in ideal class groups.
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Using the multiplication-by-p map on E, this diagram was used in [18]

to produce number fields of degree p2 − 1 having an ideal class group with

a large p-torsion subgroup. In particular, taking p = 2, in [18] it was proven

that there are infinitely many cubic number fields whose ideal class group

contains a subgroup isomorphic to (Z/2Z)11 (see also earlier work of Kulka-

rni [23]).

We apply these ideas to j-invariant 0 elliptic curves over Q(t) of the form

E : y2 = x3 + f(t),

E ′ : y2 = x3 − 27f(t),

and use the 3-isogeny over Q(t) given by

λ : E ′ → E(1.2)

(x, y) ↦→
(
x3 − 108f(t)

9x2
,
(x3 + 216f(t))y

27x3

)
.

When f is a nonconstant square-free polynomial of degree d, d ̸≡ 2, 4

(mod 6), a descent argument yields a homomorphism

E(Q(t))/λE ′(Q(t)) ↪→ Jac(C)[3](Q),(1.3)

where Jac(C)[3](Q) is the rational 3-torsion subgroup in the Jacobian of

the hyperelliptic curve over Q given by the affine equation

C : y2 = f(t).

Explicitly, the homomorphism (1.3) is induced by the map

E(Q(t)) → Jac(C)[3](Q),

(x0(t), y0(t)) ↦→
1

3
div(y − y0(t)),(1.4)

where div(y − y0(t)) denotes the principal divisor on C associated to the

rational function y − y0(t). In general, when f is not square-free or d ≡
2, 4 (mod 6), one obtains similar homomorphisms to a suitably generalized

Picard group (see [16] and [18]). Thus, we have described the first part of

(1.1) in the present context.

Next we use the idea, going back to [17], that rational p-torsion in the

Jacobian of a hyperelliptic curve gives rise to p-torsion in ideal class groups

of quadratic number fields. The following quantitative version of this idea

was proven in [17], explaining the application of the second map in (1.1):
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Theorem 1.2. Let C be a smooth projective hyperelliptic curve over Q
with a rational Weierstrass point, and let m > 1 be an integer. Let g denote

the genus of C. Then there exist ≫ X
1

2g+1/ logX imaginary (resp. real)

quadratic number fields k with |Disc(k)| < X and

rkm Cl(k) ≥ rkm Jac(C)(Q)tors

(resp. rkm Cl(k) ≥ rkm Jac(C)(Q)tors − 1).

Combining the above ideas gives a method for using j-invariant 0 elliptic

curves of large Q(t)-rank to produce infinitely many quadratic fields with

an ideal class group of large 3-rank.

We now discuss our practical implementation of the above ideas to ob-

tain infinitely many imaginary quadratic fields with a class group of 3-rank

at least 5. To begin, we use a method of Mestre [26] (see also [32, §11])
to construct a nontrivial j-invariant 0 elliptic curve E over Q(t) with 6

explicitly given points P1, . . . , P6 ∈ E(Q(t)) which are independent in the

Mordell-Weil group. The elliptic curve E satisfies the hypotheses giving rise

to (1.3) (f is squarefree and 6| deg f in our case), and thus we can use the

explicit map (1.4) to compute the image of P1, . . . , P6 in Jac(C)[3](Q). Us-

ing Magma1[4], we verify that P1, . . . , P6 yield divisor classes [D1], . . . , [D6]

in Jac(C)(Q) which generate a subgroup isomorphic to (Z/3Z)5.2 Since this
computation in Jac(C) is direct and independent of the above theoretical

considerations (except for knowledge of the map (1.4)), we do not discuss

or develop the material behind the homomorphism (1.3) further.

Thus, we obtain a hyperelliptic curve C over Q with rk3 Jac(C)(Q)tors ≥
5. Unfortunately, the curve C obtained does not posses a rational Weier-

strass point, and we cannot apply Theorem 1.2. Instead, we use a result

inspired by the method developed in [18] (precisely to avoid this difficulty),

which relied on finding elliptic curves E over Q(t) that do not have “uni-

versal bad reduction” (see [18]) at any rational prime p. In this direction,

our primary tool for proving Theorem 1.1 is the following result.

Theorem 1.3. Let f ∈ Q[t] be a squarefree nonconstant polynomial of

degree d with 6|d. Let E be the elliptic curve over Q(t) defined by

E : Y 2 = X3 + f(t).

1Magma programs verifying the claimed calculations are available at
http://users.math.msu.edu/users/adlevin/Magma.html.

2This is perhaps a bit surprising; näıvely, one might expect roughly half the points
to remain independent in E(Q(t))/λE′(Q(t)) over Z/3Z, and we have no theoretical
explanation for this advantageous situation.
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Let C be the (smooth projective) hyperelliptic curve over Q defined by y2 =

f(t). Let

r = rk3E(Q(t))/λE ′(Q(t)) = rk3 im(E(Q(t)) → Jac(C)[3](Q))

be the 3-rank of the image of the map (1.4). In addition, suppose that

1. For every odd prime p, there exists tp ∈ Q such that

3| ordp f(tp).

2. There exists t2 ∈ Q such that Q(
√
f(t2)) is a quadratic extension of

Q and the prime 2 does not split in this extension.

Then there exist ≫ X
1
d/ logX imaginary (resp. real) quadratic number fields

k with |Disc(k)| < X and

rk3Cl(k) ≥ r − δ,

(resp. rk3Cl(k) ≥ r − 1),

where δ = 0 if f takes negative values on R and δ = 1 otherwise.

An outline of the paper is as follows. After recalling some basic notation

and definitions, in Section 2 we give (a slight variation on) the method of the

first author and Gillibert [17] for constructing and counting number fields

with an ideal class group of large p-rank. Next, we give two results describing

how specializations of Q(t)-points on j-invariant 0 elliptic curves produce

ideals which are almost perfect cubes. In Section 4 we prove Theorem 1.3,

which will be combined with constructions of Mestre (Section 5, and Section

6 in the guise of 3-torsion in hyperelliptic Jacobians) to finish the proof of

the main theorem (Theorem 1.1) in the final section.

Where possible, we have preferred to give reasonably elementary and

self-contained proofs, both to increase the accessibility of the results, and

to maintain the spirit of the origins of the work as an undergraduate research

project.

2 Hilbert’s Irreducibility Theorem, torsion

subgroups of Jacobians, and ideal class groups

We first fix some notation. Throughout, we let k be a number field and

we let Disc(k) be the (absolute) discriminant of k. Let S be a finite set of
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places of k containing the archimedean places. We let Sfin denote the subset

of finite (nonarchimedean) places in S. We let Ok,S denote the ring of S-

integers of k and let O∗
k,S be the group of S-units. If L is a finite extension

of k, we let SL be the set of places of L lying above places of S, and we use

OL,S or OL,SL
to denote the ring of SL-integers in L. For a place v of k we

let | · |v denote a corresponding absolute value (the specific choice will not be

important). For a prime p of Ok we let ordp denote the associated discrete

valuation. We let Cl(k) and Cl(Ok,S) denote the ideal class group of Ok and

Ok,S, respectively. For an abelian group A we let rkA denote the free rank

of A, and if p is a prime and A is finite, we let rkpA be the dimension of

A/pA over Z/pZ. We let H(α) denote the absolute multiplicative height of

an algebraic number α. If α = p/q ∈ Q is written in reduced form, then

H(p/q) = max{log |p|, log |q|}.
We will use the following version of Hilbert’s Irreducibility Theorem,

combined with an enumerative result of Dvornicich and Zannier [15], in a

form proved by Bilu and Gillibert [3, Th. 3.1].

Theorem 2.1 (Bilu-Gillibert). Let k be a number field of degree ℓ over Q.

Let C be a curve over k and φ : C → P1 a morphism (over k) of degree d.

Let S be a finite set of places of k, ϵ > 0, and f a thin subset of k [3, §3.1].
Consider the points P ∈ C(k̄) satisfying

φ(P ) ∈ k rf,
|φ(P )|v < ϵ, ∀v ∈ S,

H(φ(P )) ≤ B.

Then among the number fields k(P ), where P satisfies the conditions above,

there are ≫ Bℓ/ logB distinct fields of degree d over k.

Our main tool for constructing and enumerating fields with large ideal

class groups is the following result based on [17]. We give a self-contained

proof for the convenience of the reader.

Theorem 2.2. Let C be a nonsingular projective curve over Q. Let φ ∈
Q(C) be a nonconstant rational function on C with deg φ = d > 1 and let p

be a prime number. Let ψ1, . . . , ψr ∈ Q(C) be nonconstant rational functions

on C whose images in Q(C)∗/(Q(C)∗)p generate a subgroup isomorphic to

(Z/pZ)r. Let S0 and S be finite sets of places of Q and assume that S

contains the archimedean place. Suppose that there exists ϵ > 0 and rational
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numbers av ∈ Q, v ∈ S0, such that for all points P ∈ C(Q) satisfying

φ(P ) ∈ Q,(2.1)

|φ(P )− av|v < ϵ, ∀v ∈ S0,(2.2)

we have the equality of fractional OQ(P ),S-ideals

ψj(P )OQ(P ),S = apP,j,

for some fractional OQ(P ),S-ideal aP,j, j=1,. . . , r. Consider the set TB of

points P ∈ C(Q) satisfying (2.1), (2.2), and

H(φ(P )) ≤ B.

Then there are ≫ B/ logB distinct number fields Q(P ), P ∈ TB, satisfying

[Q(P ) : Q] = d,

rkpCl(Q(P )) ≥ r +#Sfin − rkO∗
Q(P ),S.

Proof. Let T ⊂ C(Q) consist of the set of points P ∈ C(Q) satisfying (2.1)

and (2.2). By Kummer theory, the assumptions on ψ1, . . . , ψr imply the

equality

[Q(C)
(

p
√
ψ1, . . . ,

p
√
ψr

)
: Q(C)] = pr.

Then to the field extension Q(C)
(

p
√
ψ1, . . . ,

p
√
ψr

)
of Q(C), we can associate

a (unique up to isomorphism) nonsingular projective curve C̃ over Q and

a morphism π : C̃ → C with deg π = pr. Let T̃ = π−1(T ) ⊂ C̃(Q) and

T̃B = π−1(TB). Let

L = Q(ζpN)( p
√
q | q ∈ Sfin) = Q(ζpN)(

p
√
u | u ∈ O∗

Q,S),

where ζpN is a primitive pNth root of unity and N = lcm{n ∈ N | φ(n) ≤ d}
(so that L contains a pth root of every root of unity in every number field

of degree ≤ d). Let Q ∈ T̃ , P = π(Q), and k = Q(P ). Assume additionally

that P isn’t a pole of any ψi, i = 1, . . . , r.

Lemma 2.3. If L and Q(Q) are linearly disjoint, then

[Q(Q) : Q] ≤ dprkp Cl(k)+rkO∗
k,S−#Sfin .

Proof. Since L and Q(Q) are linearly disjoint, [Q(Q) : Q] = [L(Q) : L], and

it suffices to compute a bound for the latter degree. Since deg φ = d, we

have [L(P ) : L] ≤ d and it suffices to show that

[L(Q) : L(P )] ≤ prkp Cl(k)+rkO∗
k,S−#Sfin .
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From the construction of π,

L(Q) = L(P )
(

p
√
ψ1(P ), . . . ,

p
√
ψr(P )

)
.(2.3)

Let t = rkpCl(Ok,S) ≤ rkpCl(k) and let b1, . . . , bt be Ok,S-ideals whose ideal

classes generate the p-torsion subgroup of Cl(Ok,S). Then bpi = βiOk,S for

some βi ∈ k, i = 1, . . . , t. Since [k : Q] ≤ d and k and L are linearly disjoint,

the only roots of unity in k are ±1. Let t′ = rkO∗
k,S and let u1, . . . , ut′ , and

−1 be generators for O∗
k,S. Let

M = k
(

p
√
β1, . . . ,

p
√
βt, p

√
u1, . . . , p

√
ut′ , ζ2p

)
,

M ′ = k
(

p
√
β1, . . . ,

p
√
βt, p

√
u1, . . . , p

√
ut′
)
,

for some choice of the pth roots (which we now fix). For every q ∈ Sfin, q ∈
O∗

k,S, and so for some choice of nq ∈ {0, 1}, (−1)nqq is in the multiplicative

group generated by u1, . . . , ut′ . It follows that for some choice of the pth

roots, k( p
√

(−1)nqq | q ∈ Sfin) ⊂ L(P ) ∩M ′ and since k and L are linearly

disjoint,

[L(P ) ∩M ′ : k] ≥ [k( p
√
(−1)nqq | q ∈ Sfin) : k] = [Q( p

√
(−1)nqq | q ∈ Sfin) : Q] = p#Sfin .

Therefore,

[L(P )M : L(P )] = [L(P )M ′ : L(P )] ≤ [M ′ : L(P ) ∩M ′] =
[M ′ : k]

[L(P ) ∩M ′ : k]

≤ pt+t′−#Sfin ≤ prkp Cl(k)+rkO∗
k,S−#Sfin .

Then from (2.3) it suffices to show that

p
√
ψi(P ) ∈M, i = 1, . . . , r.

By hypothesis,

ψi(P )Ok,S = api

for some fractional Ok,S-ideal ai, i = 1, . . . , r. Since api is principal, by

definition of the bj we can write

ai = (α)
t∏

j=1

b
bj
j

for some integers bj and some element α ∈ k. Therefore, raising both sides

to the pth power, we find that

ψi(P )Ok,S =

(
αp

t∏
j=1

β
bj
j

)
Ok,S,
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and

ψi(P ) = uαp

t∏
j=1

β
bj
j

for some unit u ∈ O∗
k,S. Since u = (−1)c0

∏t′

j=1 u
cj
j for some integers cj, we

find that p
√
ψi(P ) ∈M , i = 1, . . . , r, as desired.

Let ψ = φ ◦ π : C̃ → P1 and let f = f1 ∪ f2, where

f1 = {ψ(Q) | Q ∈ C̃(Q), ψ(Q) ∈ Q, [Q(Q) : Q] < degψ},
f2 = {ψ(Q) | Q ∈ C̃(Q), ψ(Q) ∈ Q,Q(Q) is not linearly disjoint from L}.

As in [3, p. 947], f is a thin subset of Q. Let a ∈ Q be such that

|a− av|v <
ϵ

2
, ∀v ∈ S0.(2.4)

Let φ′ = φ−a. Then φ(P ) ∈ Q if and only if φ′(P ) ∈ Q, and in this case, for

v ∈ S0, |φ′(P )|v < ϵ
2
implies that |φ(P )− av|v < ϵ. We now apply Theorem

2.1 to φ′, k = Q, f, and ϵ
2
. Since φ and φ′ differ by an automorphism of

P1, H(φ(P )) and H(φ′(P )) differ by a bounded function. It follows from

the above that there exist ≫ B/ logB distinct number fields Q(P ), where

P ∈ TB, such that if Q ∈ T̃B, π(Q) = P , then

[L(Q) : L] = [Q(Q) : Q] = degψ = (deg π)(deg φ) = dpr.

On the other hand, by Lemma 2.3, for such points

[Q(Q) : Q] ≤ dprkp Cl(Q(P ))+rkO∗
Q(P ),S

−#Sfin .

Combining these two statements yields the desired result.

3 Points on j-invariant 0 elliptic curves over

Q(t) and cubes of ideals

In this section, we consider an elliptic curve E over k(t) defined by an

equation of the form

Y 2 = X3 + f(t).

Under certain conditions on f , we first show that if (X0(t), Y0(t)) ∈ E(k(t))

is a rational point on E, then for all values of t ∈ k, the algebraic number
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√
f(t)−Y0(t) is almost a perfect cube in k(

√
f(t)). This is immediate from

Weil’s “theorem of decomposition” [3, 2.7.15], as from preceding discussions

the principal divisor associated to
√
f(t)−Y0(t) (viewed as a function on the

appropriate hyperelliptic curve) is divisible by 3 in the group of divisors.

We give an elementary proof, which also has the advantage of explicitly

bounding the deviation from being a cube (i.e., the set S in Theorem 3.1

below is explicitly constructed in the proof; alternatively, and in a more

general setting, admissible choices of S are studied in [17, Section 2.4] and

related to the primes of bad reduction of the related hyperelliptic curve

y2 = f(t)).

Theorem 3.1. Let k be a number field. Let f ∈ k[t] be a nonconstant

squarefree polynomial such that either deg f is odd or 6| deg f . Let E be the

elliptic curve over k(t) defined by

E : Y 2 = X3 + f(t).

Let (X0(t), Y0(t)) ∈ E(k(t)). For each t ∈ k, let yt =
√
f(t), for some choice

of the square root. Then there exists a finite set of places S of k, containing

the archimedean places, such that for all t ∈ k, we have an equality of

fractional Ok(yt),S-ideals

(yt − Y0(t))Ok(yt),S = a3t ,

for some fractional Ok(yt),S-ideal at.

Proof. We may write

X0(t) =
a(t)

d(t)2
, Y0(t) =

b(t)

d(t)3
,

for some polynomials a(t), b(t), d(t) ∈ k[t] such that a(t)b(t) and d(t) are

coprime polynomials. Since f(t) is squarefree, it is also clear that a(t), b(t),

and f(t) are pairwise coprime. Thus, there exist polynomials g(t), h(t) ∈ k[t]

such that

a(t)g(t) + f(t)h(t) = 1.(3.1)

Let S be a finite set of places of k containing the archimedean places such

that a, b, d, f, g, h ∈ Ok,S[t], 2 ∈ O∗
k,S, and the leading coefficients of a, b, d,

and f are S-units.

Let t ∈ k and let p be a prime of Ok(yt) not lying above a prime of S.

Then we need to show that 3| ordp(yt − Y0(t)). Since 3| ordp(X0(t)
3) and

−X0(t)
3 = f(t)− Y0(t)

2 = (yt − Y0(t))(yt + Y0(t)),
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we find that

3| ordp((yt − Y0(t))(yt + Y0(t)) = ordp(yt − Y0(t)) + ordp(yt + Y0(t)).

From this equality, it clearly suffices to prove that

3|min{ordp(yt − Y0(t)), ordp(yt + Y0(t))}.

By hypothesis, 2 ∈ O∗
k,S and so ordp(2) = 0. Then it is elementary that

min{ordp(yt − Y0(t)), ordp(yt + Y0(t))} = min{ordp yt, ordp Y0(t)}.

Moreover,

min{ordp yt, ordp Y0(t)} =
1

2
min{ordp y

2
t , ordp Y0(t)

2}

=
1

2
min{ordp f(t), ordp(X0(t)

3 + f(t))}

=
1

2
min{ordp f(t), ordpX0(t)

3}

=
1

2
min{ordp f(t), 3 ordpX0(t)}.

Hence it suffices to prove that

3|min{ordp f(t), 3 ordpX0(t)}.(3.2)

This clearly holds when ordp f(t) ≥ 3 ordpX0(t), and so we now assume

that

ordp f(t) < 3 ordpX0(t).(3.3)

We consider three cases depending on ordp t and deg f .

Case 1: ordp t ≥ 0.

Since a, d, f, g, h ∈ Ok,S[t], the quantities ordp a(t), ordp d(t), ordp f(t),

ordp g(t), ordp h(t) are all nonnegative. It follows from (3.3) that

ordpX0(t) > 0,

and as X0(t) =
a(t)
d(t)2

, we also have

ordp a(t) = ordpX0(t) + 2 ordp d(t) ≥ ordpX0(t) > 0.

Since

ordp(a(t)g(t) + f(t)h(t)) = ordp 1 = 0,

we must have ordp f(t) = 0, proving (3.2).
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Case 2: ordp t < 0 and 3| deg f.
Since f ∈ Ok,S[t] and the leading coefficient of f is an S-unit, ordp t < 0

implies that

ordp f(t) = (deg f) ordp t.

By hypothesis 3| deg f and so 3| ordp f(t) as desired.

Case 3: ordp t < 0 and 2, 3 - deg f .
The divisibility assumptions on deg f imply that deg fd6 ̸= deg b2 and

deg fd6 ̸= deg a3. Since b2 = a3 + fd6, it follows that

deg a3 = deg b2 > deg fd6.

Hence

3 deg a = 2deg b > deg f + 6deg d.

Since a, d, f ∈ Ok,S[t], the leading coefficients of a, d, f are S-units, and

ordp t < 0, we have the identities

ordp a(t) = (deg a) ordp t,

ordp d(t) = (deg d) ordp t,

ordp f(t) = (deg f) ordp t.

Hence,

3 ordpX0(t) = (3 deg a− 6 deg d) ordp t < (deg f) ordp t = ordp f(t),

contradicting (3.3).

Thus, in all cases we have proven (3.2).

The next result gives a way to handle the odd primes in S in Theorem

3.1. The hypothesis (3.4) below is closely related to the condition from [18]

that E doesn’t have “universal bad reduction” at p (if p doesn’t lie above

2 or 3, then in our case E doesn’t have universal bad reduction at p if and

only if there exists tp ∈ k such that 6| ordp f(tp)).

Theorem 3.2. Let k be a number field. Let f ∈ k[t] be a nonconstant

polynomial. Let E be the elliptic curve over k(t) defined by

E : Y 2 = X3 + f(t).

Let (X0(t), Y0(t)) ∈ E(k(t)). For each t ∈ k, let yt =
√
f(t), for some choice

of the square root. Let p be a prime of Ok not lying above 2. Suppose that

there exists tp ∈ k such that

3| ordp f(tp).(3.4)
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Then there exists ϵp > 0 such that if t ∈ k and |t − tp|p < ϵp, then for any

prime q of k(yt) lying above p, we have

3| ordq(yt − Y0(t)).

Proof. By continuity, for all t ∈ k sufficiently p-adically close to tp, we have

ordp f(t) = ordp f(tp) and 3| ordp f(t) (and 3| ordq f(t) for any prime q of

k(yt) lying above p). Since p does not lie above 2, the result follows from the

equivalence with the condition (3.2) used in the proof of Theorem 3.1.

4 Proof of Theorem 1.3

We now have all of the tools to prove Theorem 1.3.

Proof of Theorem 1.3. Let Pi = (Xi(t), Yi(t)) ∈ E(Q(t)), i = 1, . . . , r, be

points whose images by the map (1.4) generate a subgroup isomorphic to

(Z/3Z)r in Jac(C)[3](Q). Let S0 consist of the prime 2 and the (finite)

union of the set of places of Q given by Theorem 3.1 (with k = Q) ap-

plied to P1, . . . , Pr. By hypothesis, for each odd prime p ∈ S0, there exists

tp ∈ Q such that 3| ordp f(tp). For each such p and tp, let ϵp > 0 be as in

Theorem 3.2. By hypothesis, there exists t2 ∈ Q such that Q(
√
f(t2)) is a

quadratic extension of Q and the prime 2 does not split in this extension.

Then for some sufficiently small ϵ2 > 0, by Krasner’s lemma (or elemen-

tary arguments in this specific case) if |t − t2|2 < ϵ2 then Q(
√
f(t)) is a

quadratic extension of Q and the prime 2 does not split in this extension.

Let t∞ ∈ Q and ϵ∞ > 0 be such that f(t) is negative (resp. positive) if

|t − t∞| < ϵ∞. Let ϵ = minp∈S0 ϵp. Let S = {2,∞}. Consider the ratio-

nal functions ψi = y − Yi(t) ∈ Q(t, y) = Q(C), i = 1, . . . , r. By Theorem

3.1 and Theorem 3.2, if P ∈ C(Q), t = t(P ) ∈ Q and |t − tp|p < ϵ for

all p ∈ S0, then ψi(P ) =
√
f(t) − Yi(t) generates the cube of a fractional

ideal outside 2, i.e., ψi(P )OQ(P ),S = a3P,i for some fractional OQ(P ),S-ideal

aP,i, i = 1, . . . , r. Furthermore, from our assumptions at p = 2,∞, Q(P )

is an imaginary (resp. real) quadratic field in which 2 does not split. Note

also that if t ∈ Q and H(t) < B, then the discriminant of Q(
√
f(t)) is

≪ Bd (we use here that d is even). By our hypotheses and the form of

the map (1.3), the functions ψ1, . . . , ψr generate a subgroup isomorphic to

(Z/3Z)r in Q(C)∗/(Q(C)∗)3. Let φ = t, a rational function of degree 2 on C.

Combining all of the above, Theorem 2.2 gives that there are ≫ X
1
d/ logX

distinct imaginary (resp. real) quadratic number fields k with |Disc(k)| < X
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satisfying

rk3Cl(Q(P )) ≥ r +#Sfin − rkO∗
Q(P ),S.

Since S = {2,∞}, #Sfin = 1, and since there is a single prime lying above

2 in OQ(P ), we have rkO∗
Q(P ),S = 1 (resp. rkO∗

Q(P ),S = 2). This gives the

desired result when f takes both negative and positive values on R. Other-

wise, we obtain the appropriate result for either real or imaginary quadratic

fields, and the full theorem follows from Scholz’s reflection principle [30]: if

d is a positive integer, then rk3Cl(
√
−3d)− rk3Cl(

√
d) ∈ {0, 1}.

5 Mestre’s construction of a j-invariant 0 el-

liptic curve over Q(t, u) of rank at least 6

We recall a construction of Mestre [26, 27] which yields a j-invariant 0

elliptic curve over Q(t, u) of rank at least 6 (and after a specialization, a

j-invariant 0 elliptic curve over Q(t) of rank at least 7).

Let K be a field of characteristic 0 and let x1, . . . , x5 ∈ K. Let

x6 = −(x1 + · · ·+ x5),

p(X) = (X − x1) · · · (X − x6)

= X6 + a4X
4 + a3X

3 + a2X
2 + a1X + a0,

and

g(X) = X2 + a4/3.

Then

g(X)3 − p(X) = −a3X3 +

(
a24
3

− a2

)
X2 − a1X +

(a4
3

)3
− a0,

and the cubic curve C : Y 3 = g(X)3 − p(X) will generically be a genus 1

curve of j-invariant 0 possessing the six K-rational points Pi = (xi, g(xi)),

i = 1, . . . , 6. To obtain a further point when K = Q(t, u), Mestre shows
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that if

x1 =
1− u3

4u
+ t,

x2 =
1− u3

4u
− t,

x3 = −u
3 + 3

4u
+ t,

x4 =
u6 − 6u3 − 3

4(u4 − u)
− t,

x5 =
u9 − u6 + 15u3 + 1

4(u7 − u)
+ t,

x6 = −(x1 + · · ·+ x5) =
u6 + 8u3 − 1

4(u4 + u)
− t,

then a3 = −1. Then since the leading coefficient of g(X)3 − p(X) is a per-

fect cube, the curve C has a 7th rational point P7 at infinity. Setting, say,

P7 as the origin, one easily finds (by a specialization and explicit computa-

tion) that the other 6 points are independent in the Mordell-Weil group of

the resulting elliptic curve over Q(t, u). Mestre goes further and uses this

construction to find an elliptic curve of rank at least 7 over Q(t). How-

ever, putting the curve in Weierstrass form, the extra point constructed has

the same y-coordinate as a previous point, and so the new point does not

produce any extra 3-torsion (via the map (1.3)).

6 3-torsion in hyperelliptic Jacobians

Let p be an odd prime. As a function field analogue of constructing quadratic

fields with an ideal class group of large p-rank, it is an interesting prob-

lem in its own right to construct hyperelliptic curves C over Q such that

rkp Jac(C)[p](Q) is large. For a given p-rank, it is further interesting to min-

imize the genus of the curve C involved, both for intrinsic reasons and for

applications to the enumerative problem of counting quadratic fields with

interesting ideal class groups. Since Q doesn’t contain a primitive pth root

of unity, a well-known argument using the Weil pairing gives the bound (for

any smooth projective curve C)

rkp Jac(C)[p](Q) ≤ g(C),

where g(C) denotes the genus of C.

We now restrict to the case p = 3. Using the constructions of the previous

section we prove the following result.
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Theorem 6.1. There exists a hyperelliptic curve C : y2 = f(t) over Q of

genus g, deg f = d, and rk3 Jac(C)[3](Q) ≥ r for the following values of r,

d, and g = g(C):

r d g

1 3 1

2 5 2

3 9 4

4 10 4

5 30 14

Explicitly, the last three entries are realized by the hyperelliptic curves

Cr : y
2 = fr(t), r = 3, 4, 5,

with generators for Jac(C)[3](Q) given by the classes of

Dr,i =

{
1
3
div(y − yr,i(t)), if r = 3, 5

1
3
div(y − yr,i(t))− 1

3
div(y − yr,5(t)), if r = 4

for i = 1, . . . , r, where

f3(t) =t
9 + 2973t6 − 369249t3 + 11764900

y3,1(t) =t
6 − 106t3 + 3430

y3,2(t) =
1

64
t6 +

269

4
t3 + 3430

y3,3(t) =t
6 + 36t5 + 486t4 + 3350t3 + 13914t2 + 33264t+ 40474

f4(t) =127358629188153017343112694654244t
10 − 14476726558441542259500980593582900t

9

+ 767540949843094964859507359162484321t
8 − 23227949011157855871750302161149318060t

7

+ 486933739385947419621206507920009537350t
6 − 8471956828413213486742748322179256745500t

5

+ 139665528153448288531118705650287136663899t
4 − 1509800364506319291441531124462079071041720t

3

+ 14597743197263467927181474503046907251979462t
2 − 135004259433655686521826532061360904927910680t

+ 543592155691663960065241800360826161610140961

y4,1(t) =11285328049647162t
5 − 612703879315493343t

4
+ 11259180860536474740t

3
+ 124175441794992816207t

2

− 2894185136924624900028t + 23315023973129417008893

y4,2(t) =11285328049647162t
5 − 637837872300913137t

4
+ 15898504501345253760t

3 − 133140352448943347487t
2

+ 2895345088136314829232t − 23315023973129417008893

y4,3(t) =11285328049647162t
5 − 641395912765696179t

4
+ 15779426445792454284t

3 − 132367737077167916373t
2

+ 2891689893601551455028t − 23295069079544963156463

y4,4(t) =11285328049647162t
5 − 787772412770249571t

4
+ 14665379977955069244t

3 − 219254957235699134757t
2

+ 2621647313739427449588t − 35358708563462647994607

y4,5(t) =11285328049647162t
5
+ 2985212511317920527t

4
+ 74598289369102611840t

3
+ 1831498005344531215377t

2

+ 17007935571912588694272t + 183122730884960782522323
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and

f5(t) =f4(t
3),

y5,i(t) =y4,i(t
3), i = 1, . . . , 5.

We note that, in terms of the genus, the results for r = 1, 2, 4 are sharp.

We do not know if there exists a hyperelliptic curve with (r, g) = (3, 3).

However, it was shown in [21] that there exist (non-hyperelliptic) curves C

of genus 3 with rk3 Jac(C)[3](Q) = 3.

Combined with Theorem 1.2, the result for r = 3 immediately gives:

Corollary 6.2. There exist ≫ X
1
9/ logX imaginary quadratic number fields

k with |Disc(k)| < X and

rk3Cl(k) ≥ 3.

With further work (as in the next section) the result for r = 4 should also

lead to new enumerative results, although we did not pursue this. For smaller

3-rank, the best enumerative results for ideal class groups of quadratic fields

are due to Heath-Brown [20, 19] (rank 1, i.e., class number divisible by

3) and Luca and Pacelli [25] (rank 2), with many earlier results by other

authors (e.g., [5], [6], [31]).

Proof of Theorem 6.1. The first two entries in the table are well-known. For

any value of a ∈ Q \ {0, 1
27
}, the elliptic curve y2 = t3 + (t + a)2/4 has the

3-torsion point (0, a/2). For any value of a, b ∈ Q, a2 − 4b2 ̸= 0, b ̸= 0, the

genus two curve Ca,b : y2 = t6 + at3 + b2 satisfies rk3 Jac(Ca,b)[3](Q) = 2,

with generators for Jac(Ca,b)[3](Q) given by the classes of 1
3
div(y − t3 ± b)

(more generally, see [17, Lemma 3.3]). For appropriate choices of a and b,

Ca,b possesses a rational Weierstrass point, and hence also admits a quintic

Weierstrass model over Q.

In the case r = 3, we consider Mestre’s construction in Section 5 with

the parameters

(x1, x2, x3, x4, x5, x6) = (2, 3,−5, 0, t,−t).

This yields a genus one curve Y 3 = r(X) over Q(t) with (at least) 6 Q(t)-

rational points (xi, g(xi)), i = 1, . . . , 6. Choosing, say, the first point as the

origin, one finds the elliptic curve

Ẽ3 : y
2 = x3 + f3(t

2)
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and 5 points P̃1, . . . , P̃5 ∈ Ẽ3(Q(t)) (the curve Ẽ3 also appears in [32]).

The points P̃1, P̃2, P̃3, P̃4+ P̃5 ∈ Ẽ3(Q(t)) have coordinates that are rational

functions in t2, and thus we find 4 corresponding points, call them P1, . . . , P4,

on the elliptic curve

E3 : y
2 = x3 + f3(t).

Let y3,i(t) = y(Pi) ∈ Q(t) be the y-coordinates of the 4 points. Abusing no-

tation, we also view y3,i(t) ∈ Q(C3) = Q(t, y) and consider the rational func-

tion y − y3,i(t) on the hyperelliptic curve C3. By explicit computation, one

verifies that div(y−y3,i(t)) = 3D3,i for some divisor D3,i on C3, i = 1, . . . , 4.

Thus, the divisors D3,i yield 3-torsion classes [D3,i] ∈ Jac(C3)[3](Q), i =

1, . . . , 4. By explicit computation (with Magma), one finds that [D3,1], [D3,2],

and [D3,3] are independent (over Z/3Z), while [D3,1]+· · ·+[D3,4] = 0. There-

fore rk3 Jac(C3)[3](Q) ≥ 3, giving the 3rd entry in the table.

Finally, we describe the (related) constructions for r = 4, 5. The con-

struction from Section 5 yields an elliptic curve over Q(t, u) with 6 Q(t, u)-

points that are independent in the Mordell-Weil group. Specializing to u = 2

and rescaling t (to simplify the resulting polynomials) we find the elliptic

curve

E4 : y
2 = x3 + f4(t),

with six corresponding points P1, . . . , P6 ∈ E4(Q(t)) (the sixth point turns

out not to give new torsion). We set y4,i(t) = y(Pi) ∈ Q(t) , i = 1, . . . , 5,

and view yi(t) ∈ Q(C4) = Q(t, y). Define the divisors

D4,i =
1

3
div(y − y4,i(t))−

1

3
div(y − y4,5(t)), i = 1, . . . , 4

on C4. Using Magma, one verifies that the divisor classes [D4,1], . . . , [D4,4]

are independent over Z/3Z. Therefore rk3 Jac(C4)[3](Q) ≥ 4. Finally, with

f5(t) =f4(t
3),

y5,i(t) =y4,i(t
3), i = 1, . . . , 5

D5,i =
1

3
div(y − y5,i(t)), i = 1, . . . , 5,

a calculation in Magma with [D5,1], . . . , [D5,5] shows that rk3 Jac(C5)[3](Q) ≥
5.
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7 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on Theorem 1.3 and a slight modification

of the construction from last section when r = 5 (so that the hypotheses of

Theorem 1.3 are appropriately satisfied).

Proof of Theorem 1.1. We use Mestre’s construction from Section 5, with

an appropriately chosen specialization so that (1) and (2) of Theorem 1.3

hold and f takes negative values on R. For this purpose, letting u = −9
5

and replacing t by t3 in the constructions of Section 5, we find an elliptic

curve

E : y2 = x3 + f(t),

with f ∈ Z[t], deg f = 30, and six points P1, . . . , P6 ∈ E(Q(t)). Let yi(t) =

y(Pi) ∈ Q(t) , i = 1, . . . , 6. Let C be the hyperelliptic curve y2 = f(t)

and view yi(t) ∈ Q(C) = Q(t, y). Using Magma, one verifies that div(y −
yi(t)) = 3Di for some divisor Di on C, i = 1, . . . , 6, and that [D1], . . . , [D5]

generate a subgroup (Z/3Z)5 in Jac(C)(Q). Moreover, the leading coefficient

of f is positive, f(0) is negative, 2 and 5 are the only prime factors of

gcd(f(0), f(1)), ord2(f(0)) = 3 and ord5(f(0)) = 12. Then (1) of Theorem

1.3 holds (for some choice of tp ∈ {0, 1} for every odd prime p), and (2)

holds as 2 ramifies in Q(
√
f(0)). Since deg f = d = 30 and f takes negative

values on R, the conclusion of Theorem 1.3 gives the desired statement.
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