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Abstract

We prove that there are > X 5 /log X imaginary quadratic num-
ber fields with an ideal class group of 3-rank at least 5 and discrim-
inant bounded in absolute value by X. This improves on an earlier
result of Craig, who proved the infinitude of imaginary quadratic
fields with an ideal class group of 3-rank at least 4. The proofs rely
on constructions of Mestre for j-invariant 0 elliptic curves of large
Mordell-Weil rank, and a method of the first author and Gillibert
for constructing torsion in ideal class groups of number fields from
rational torsion in Jacobians of curves. We also consider analogous
questions concerning rational 3-torsion in hyperelliptic Jacobians.
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1 Introduction

We study the problem of constructing and counting quadratic number fields
with large 3-rank (i.e., with an ideal class group of large 3-rank). Our main

result is the following:

Theorem 1.1. There exist > X3 /log X imaginary (resp. real) quadratic
number fields k with | Disc(k)| < X and

rky CI(k) > 5
(resp. rks Cl(k) > 4).

In particular, we produce infinitely many imaginary quadratic fields with
a class group of 3-rank at least » = 5, improving on the best previous result,
due to Craig [I0], who in 1977 proved the same statement but with r = 4. In
the real quadratic case, we obtain a quantitative version of a result of Diaz
y Diaz [I3], who combined Craig’s work with Scholz’s reflection principle
[30] to prove an analogous result giving the infinitude of real quadratic fields
with 3-rank at least 4. For smaller 3-ranks, our method also produces new
enumerative results (see Corollary and the subsequent discussion).

Further families of quadratic fields with a given lower bound for the 3-
rank have been investigated previously by a number of authors (e.g., [9],
[12], [22]). Examples of imaginary quadratic fields with 3-rank 6 were given
by Quer [2§], and tables of quadratic fields with large 3-rank have been
previously computed [2, 12, [14, 24]. In particular, the smallest imaginary
quadratic field with an ideal class group of 3-rank 5 (discovered by Quer)
is known from work of Belabas [2].

Our approach to Theorem is based on the well-known idea of using
j-invariant 0 elliptic curves over QQ of large Mordell-Weil rank to construct
quadratic fields with large 3-rank. There is an extensive literature detailing
(and exploiting) the connection between the 3-rank of the Selmer group
attached to 3-isogenies between such curves and the 3-ranks of associated
quadratic fields (e.g., [1, [7, B, 1T, 28] 29, B3]). We use a geometric mani-
festation of this concept, combined with a method of the first author and
Gillibert [17], and take advantage of the following chain of constructions,
previously exploited in [I§]:

(1.1)
p-descent

Elliptic curve E of large rank over Q(f) ———— p-torsion in associated Picard group

Gillibert-Levin
—— p-torsion in ideal class groups.
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Using the multiplication-by-p map on E, this diagram was used in [18]
to produce number fields of degree p? — 1 having an ideal class group with
a large p-torsion subgroup. In particular, taking p = 2, in [I§] it was proven
that there are infinitely many cubic number fields whose ideal class group
contains a subgroup isomorphic to (Z/27)! (see also earlier work of Kulka-
rni [23]).

We apply these ideas to j-invariant 0 elliptic curves over Q(¢) of the form

By =+ f(0),
By =2 - 27f(t),

and use the 3-isogeny over Q(t) given by

(1.2) A:E S E

(2.1 (x —91;)28f(t)7 ( +2271x6;‘(t))y>.

When f is a nonconstant square-free polynomial of degree d, d # 2,4

(mod 6), a descent argument yields a homomorphism

(1.3) E(Q(1))/AE'(Q(t)) = Jac(C)[3)(Q),

where Jac(C)[3](Q) is the rational 3-torsion subgroup in the Jacobian of
the hyperelliptic curve over Q given by the affine equation

C:y* = f(t).
Explicitly, the homomorphism ([1.3) is induced by the map

E(Q(t)) — Jac(C)[3](Q),

(1.4 (10(0) 5(6) = 5 divly = 1o(0))

where div(y — yo(t)) denotes the principal divisor on C' associated to the
rational function y — yo(t). In general, when f is not square-free or d =
2,4 (mod 6), one obtains similar homomorphisms to a suitably generalized
Picard group (see [16] and [I8]). Thus, we have described the first part of
in the present context.

Next we use the idea, going back to [I7], that rational p-torsion in the
Jacobian of a hyperelliptic curve gives rise to p-torsion in ideal class groups
of quadratic number fields. The following quantitative version of this idea
was proven in [I7], explaining the application of the second map in (1.1):
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Theorem 1.2. Let C' be a smooth projective hyperelliptic curve over Q
with a rational Weierstrass point, and let m > 1 be an integer. Let g denote
the genus of C. Then there exist > Xﬁ/logX imaginary (resp. real)
quadratic number fields k with | Disc(k)| < X and

l"km Cl(k) 2 rkm JaC(O) (Q)tors
(resp. tk,, Cl(k) > rk,, Jac(C)(Q)tors — 1).

Combining the above ideas gives a method for using j-invariant 0 elliptic
curves of large Q(t)-rank to produce infinitely many quadratic fields with
an ideal class group of large 3-rank.

We now discuss our practical implementation of the above ideas to ob-
tain infinitely many imaginary quadratic fields with a class group of 3-rank
at least 5. To begin, we use a method of Mestre [26] (see also [32, §11])
to construct a nontrivial j-invariant 0 elliptic curve E over Q(t) with 6
explicitly given points P, ..., Ps € E(Q(t)) which are independent in the
Mordell-Weil group. The elliptic curve E satisfies the hypotheses giving rise
to (f is squarefree and 6|deg f in our case), and thus we can use the
explicit map to compute the image of Py,. .., Fs in Jac(C)[3](Q). Us-
ing Magma[[[4], we verify that P, ..., Ps yield divisor classes [D1],..., D]
in Jac(C)(Q) which generate a subgroup isomorphic to (Z/3Z) P Since this
computation in Jac(C) is direct and independent of the above theoretical
considerations (except for knowledge of the map ), we do not discuss
or develop the material behind the homomorphism further.

Thus, we obtain a hyperelliptic curve C over Q with rks Jac(C)(Q)ors >
5. Unfortunately, the curve C' obtained does not posses a rational Weier-
strass point, and we cannot apply Theorem Instead, we use a result
inspired by the method developed in [I8] (precisely to avoid this difficulty),
which relied on finding elliptic curves E over Q(¢) that do not have “uni-
versal bad reduction” (see [I8]) at any rational prime p. In this direction,
our primary tool for proving Theorem is the following result.

Theorem 1.3. Let f € Q[t] be a squarefree nonconstant polynomial of
degree d with 6|d. Let E be the elliptic curve over Q(t) defined by

E:Y?= X+ f(t).

'Magma programs verifying the claimed calculations are available at
http://users.math.msu.edu/users/adlevin/Magma.html.

2This is perhaps a bit surprising; naively, one might expect roughly half the points
to remain independent in E(Q(¢))/AE'(Q(t)) over Z/37Z, and we have no theoretical
explanation for this advantageous situation.
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Let C be the (smooth projective) hyperelliptic curve over Q defined by y* =
f(t). Let

r=rks E(Q(¢))/AE'(Q(t)) = ks im(E£(Q(¢)) — Jac(C)[3](Q))
be the 3-rank of the image of the map . In addition, suppose that

1. For every odd prime p, there exists t, € Q such that

3| ord, f(t,).

2. There exists ty € Q such that Q(\/f(t2)) is a quadratic extension of

Q and the prime 2 does not split in this extension.

Then there exist > Xé/ log X imaginary (resp. real) quadratic number fields
k with | Disc(k)| < X and

I'kg Cl(/{?) >r — (5,
(resp. tky Cl(k) > r —1),

where 6 = 0 if f takes negative values on R and § =1 otherwise.

An outline of the paper is as follows. After recalling some basic notation
and definitions, in Section [2] we give (a slight variation on) the method of the
first author and Gillibert [17] for constructing and counting number fields
with an ideal class group of large p-rank. Next, we give two results describing
how specializations of Q(¢)-points on j-invariant 0 elliptic curves produce
ideals which are almost perfect cubes. In Section [4] we prove Theorem [I.3]
which will be combined with constructions of Mestre (Section |5, and Section
@ in the guise of 3-torsion in hyperelliptic Jacobians) to finish the proof of
the main theorem (Theorem in the final section.

Where possible, we have preferred to give reasonably elementary and
self-contained proofs, both to increase the accessibility of the results, and
to maintain the spirit of the origins of the work as an undergraduate research

project.
2 Hilbert’s Irreducibility Theorem, torsion

subgroups of Jacobians, and ideal class groups

We first fix some notation. Throughout, we let k be a number field and
we let Disc(k) be the (absolute) discriminant of k. Let S be a finite set of
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places of k containing the archimedean places. We let Sg, denote the subset
of finite (nonarchimedean) places in S. We let Oy ¢ denote the ring of S-
integers of k and let O ¢ be the group of S-units. If L is a finite extension
of k, we let St be the set of places of L lying above places of S, and we use
Or,s or Op g, to denote the ring of Sp-integers in L. For a place v of k we
let ||, denote a corresponding absolute value (the specific choice will not be
important). For a prime p of O we let ord, denote the associated discrete
valuation. We let Cl(k) and Cl(Oy.s) denote the ideal class group of Oy and
Oy, respectively. For an abelian group A we let rk A denote the free rank
of A, and if p is a prime and A is finite, we let 1k, A be the dimension of
A/pA over Z/pZ. We let H(«) denote the absolute multiplicative height of
an algebraic number «. If @« = p/q € Q is written in reduced form, then
H(p/q) = max{log |p[,log|q|}.

We will use the following version of Hilbert’s Irreducibility Theorem,
combined with an enumerative result of Dvornicich and Zannier [I5], in a
form proved by Bilu and Gillibert [3, Th. 3.1].

Theorem 2.1 (Bilu-Gillibert). Let k be a number field of degree ¢ over Q.
Let C be a curve over k and ¢ : C — P! a morphism (over k) of degree d.
Let S be a finite set of places of k, € > 0, and U a thin subset of k [3, §3.1].

Consider the points P € C(k) satisfying

o(P) € k\NU,
|6(P)]w < €, Yo € S,
H(¢(P)) < B.

Then among the number fields k(P), where P satisfies the conditions above,
there are > B*/log B distinct fields of degree d over k.

Our main tool for constructing and enumerating fields with large ideal
class groups is the following result based on [17]. We give a self-contained

proof for the convenience of the reader.

Theorem 2.2. Let C be a nonsingular projective curve over Q. Let ¢ €
Q(C) be a nonconstant rational function on C with deg¢ = d > 1 and let p
be a prime number. Let 1y, ... 1, € Q(C) be nonconstant rational functions
on C whose images in Q(C)*/(Q(C)*)P generate a subgroup isomorphic to
(Z/pZ)". Let Sy and S be finite sets of places of Q and assume that S
contains the archimedean place. Suppose that there exists € > 0 and rational
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numbers a, € Q, v € Sy, such that for all points P € C(Q) satisfying

(2.1) o(P) € Q,
(2.2) 6(P) — ay|y <€, Vv €S,

we have the equality of fractional Ogp),s-ideals

bi(P)Og(p).s = ap;
Jor some fractional Og(p) s-ideal apy, j=1,..., r. Consider the set Ty of
points P € C(Q) satisfying (2.1), [2.2), and
H(¢(P)) < B.

Then there are > B/log B distinct number fields Q(P), P € Tg, satisfying

tk, CQ(P)) > 1 + #Sn — tk O} p) 5-

Proof. Let T C C(Q) consist of the set of points P € C(Q) satisfying (2.1))
and (2.2). By Kummer theory, the assumptions on 1, ...,1, imply the
equality

QUO) (¢, /) s QO =7

Then to the field extension Q(C) (%, c W) of Q(C), we can associate
a (unique up to isomorphism) nonsingular projective curve C over Q and
a morphism 7 : C — C with degm = p’. Let T = =~ (T) ¢ C(Q) and
Tp =7 YTp). Let

L=Q(&Gn) (/4] q € San) = Q(Gn)(Vu | ue Ofg),

where (, is a primitive pNth root of unity and N = lem{n € N | ¢(n) < d}
(so that L contains a pth root of every root of unity in every number field
of degree < d). Let Q € T, P = 7(Q), and k = Q(P). Assume additionally
that P isn’t a pole of any ¢;, i =1,...,7r.

Lemma 2.3. If L and Q(Q) are linearly disjoint, then
[Q(Q) : Q] < dpt» MW Frk O s =#5n

Proof. Since L and Q(Q) are linearly disjoint, [Q(Q) : Q] = [L(Q) : L], and
it suffices to compute a bound for the latter degree. Since deg¢p = d, we
have [L(P) : L] < d and it suffices to show that

[L<Q) : L(P)] < prkp Cl(k)""rkoz,s_#sﬁn.
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From the construction of 7,

(2.3) L(Q) = L(P) ({/5r(P)..... 3/n(P))

Let t = rk, C1(Oy s) < rk, Cl(k) and let by, ..., b; be Oy g-ideals whose ideal
classes generate the p-torsion subgroup of Cl(Oy ). Then b? = 5,04 s for
some f3; € k,i=1,...,t. Since [k : Q] < d and k and L are linearly disjoint,
the only roots of unity in k are 1. Let t' = 1k O ¢ and let uy, ..., uy, and
—1 be generators for O} 5. Let

M:“{/E,...,{/E,W,..,W,@),
Mzk(ﬂ{/@@ﬁ)

for some choice of the pth roots (which we now fix). For every q € Sg,, q €
O;.5> and so for some choice of n, € {0,1}, (=1)"q is in the multiplicative
group generated by wuq,...,uy. It follows that for some choice of the pth
roots, k({/(—1)"q | ¢ € Sga) C L(P) N M’ and since k and L are linearly
disjoint,

[L(P)N M : k] > [k(3/(=1)raq | ¢ € Spn) : k] = [Q(/(—1)"aq | ¢ € Sw) : Q] = p#5in.

Therefore,
L(P)M : L(P)| = [L(P)M': L(P)] < (M’ L(P) 1 20 = 2T 0
' ' - ' [L(P)N M’ : K
< pt-‘rt/—#Sﬁn < prkp Cl(k)-}—rko;s—#Sﬁn.
Then from (2.3) it suffices to show that
wl(P)EM, ?::1,...77'.
By hypothesis,
Vi(P)Os = af
for some fractional Oy g-ideal a;, ¢ = 1,...,7. Since af is principal, by

definition of the b; we can write

t
NG,
j=1

for some integers b; and some element o € k. Therefore, raising both sides
to the pth power, we find that

Vi(P)Ok,s = (apH5>0k,s,
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and
i(P) = ua? Hﬁ?
j=1

. . t Ci .
* co J .
for some unit u € Oj 5. Since u = (—1)° ] |j:1 u;" for some integers c;, we

find that ¢/+¢;(P) € M,i=1,...,r, as desired. O

Let ) = ponm: C — P! and let U = Uy U U,, where

U1 ={¥(Q) | Q € CQ),¥(Q) € Q,[QQ) : Q] < deg v},
Q),

Uy, = {¥(Q) | Q € C(Q),¥(Q) € Q,Q(Q) is not linearly disjoint from L}.
As in [3 p. 947], U is a thin subset of Q. Let a € Q be such that
(2.4) la — ay), < % Vo € Sp.

Let ¢ = ¢—a. Then ¢(P) € Q if and only if ¢'(P) € Q, and in this case, for
v € Sy, |¢'(P)|, < § implies that [¢(P) — a,|, < e. We now apply Theorem
to ¢, k = Q, U, and 5. Since ¢ and ¢’ differ by an automorphism of
P!, H(¢(P)) and H(¢/'(P)) differ by a bounded function. It follows from
the above that there exist > B/log B distinct number fields Q(P), where
P € T, such that if Q € T, 7(Q) = P, then
Q) : 1] = [Q(Q) : Q] = deg ) = (degm)(deg d) = dp"
On the other hand, by Lemma [2.3] for such points
Q(Q): Q] < dprkp CUQP)) 41k OF ) s—#Sfin

Combining these two statements yields the desired result.
O

3 Points on j-invariant 0 elliptic curves over
Q(t) and cubes of ideals

In this section, we consider an elliptic curve E over k(t) defined by an

equation of the form
Y2=X%4+ f(b).

Under certain conditions on f, we first show that if (Xo(¢), Yo(t)) € E(k(t))
is a rational point on E, then for all values of t € k, the algebraic number
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V f(t) = Yy(t) is almost a perfect cube in k(y/f(t)). This is immediate from

Weil’s “theorem of decomposition” [3], 2.7.15], as from preceding discussions
the principal divisor associated to /f(t)—Yy(t) (viewed as a function on the
appropriate hyperelliptic curve) is divisible by 3 in the group of divisors.
We give an elementary proof, which also has the advantage of explicitly
bounding the deviation from being a cube (i.e., the set S in Theorem
below is explicitly constructed in the proof; alternatively, and in a more
general setting, admissible choices of S are studied in [I7, Section 2.4] and
related to the primes of bad reduction of the related hyperelliptic curve

y* = [f(1).
Theorem 3.1. Let k be a number field. Let f € k[t] be a nonconstant

squarefree polynomial such that either deg f is odd or 6|deg f. Let E be the
elliptic curve over k(t) defined by

E:Y? =X+ f(t).

Let (Xo(t),Yo(t)) € E(k(t)). For eacht € k, lety, = \/ f(t), for some choice
of the square root. Then there exists a finite set of places S of k, containing
the archimedean places, such that for all t € k, we have an equality of

fractional Oy,),s-ideals
(Y — Yo(t)) Okiyy,s =
for some fractional Oy, s-tdeal a;.

Proof. We may write

Xolt) = 20 vift) = 70

for some polynomials a(t),b(t),d(t) € k[t] such that a(t)b(t) and d(t) are

coprime polynomials. Since f(t) is squarefree, it is also clear that a(t), b(t),

and f(t) are pairwise coprime. Thus, there exist polynomials g(t), h(t) € klt]
such that

(3.1) alt)g(t) + F(OR(E) = 1.

Let S be a finite set of places of k containing the archimedean places such
that a,b,d, f,g,h € Ors[t], 2 € O} g, and the leading coefficients of a, b, d,
and f are S-units.

Let ¢ € k and let p be a prime of Oy,,) not lying above a prime of S.
Then we need to show that 3] ord,(y; — Yo(¢)). Since 3| ord,(Xo(¢)?) and

—Xo(t)* = f(t) = Yo(t)* = (e — Yo(t)) (ye + Yo(2)),
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we find that
3| ordy((y: — Yo(t))(ye + Yo(t)) = ordy(ye — Yo(t)) + ordy (g + Yo(1)).
From this equality, it clearly suffices to prove that
3| min{ord, (y: — Yo(t)), ordy(y: + Yo(2))}-
By hypothesis, 2 € O g and so ord,(2) = 0. Then it is elementary that
minfordy (g — Yo(£)), ordy (3 + Yo(t))} = minford, g, ordy Yo ()}
Moreover,
min{ordy i, ord, Yo(1)} = 5 min{ord, o7, ordy ¥o(1)*)
= & minford, (1), ordy (Xo(t)? + £(1))}
= & minford, £(t), ord, Xo(1)"}
_ % min{ord, £(£), 3ordy Xo(1)}.
Hence it suffices to prove that
(3.2) 3| min{ord, f(t), 3 ord, Xo(t)}.

This clearly holds when ord, f(t) > 3ord, Xo(t), and so we now assume
that

(3.3) ord, f(t) < 3ord, Xo(?).

We consider three cases depending on ord, ¢t and deg f.

Case 1: ord, t > 0.

Since a,d, f,g9,h € Oy[t], the quantities ord, a(t), ord, d(t), ord, f(t),
ord, g(t), ord, h(t) are all nonnegative. It follows from that

ord, Xo(t) > 0,
and as Xy(t) = %, we also have
ord, a(t) = ord, Xo(t) + 2ord, d(t) > ord, Xo(t) > 0.

Since

ordy(a(t)g(t) + f(t)h(t)) = ordy 1 = 0,
we must have ord, f(t) = 0, proving (3.2).
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Case 2: ord, t < 0 and 3| deg f.
Since f € Oy s[t] and the leading coefficient of f is an S-unit, ord, ¢ < 0
implies that

ord, f(t) = (deg f) ord, t.

By hypothesis 3| deg f and so 3| ord, f(t) as desired.

Case 3: ord,t < 0 and 2,3 { deg f.

The divisibility assumptions on deg f imply that deg fd® # deg? and
deg fdb # dega®. Since b? = a® + fdb, it follows that

dega® = degb* > deg fd°.
Hence
3dega =2degb > deg f + 6degd.
Since a,d, f € Oyglt], the leading coefficients of a,d, f are S-units, and
ord, t < 0, we have the identities
ordy a(t) = (dega) ordy ¢,
ord, d(t) = (degd) ord, t,
ord, f(t) = (deg f) ord, t.

Hence,
3ord, Xo(t) = (3dega — 6degd)ord, t < (deg f)ord, t = ord, f(t),
contradicting ({3.3]).

Thus, in all cases we have proven (3.2]). [

The next result gives a way to handle the odd primes in S in Theorem
3.1l The hypothesis below is closely related to the condition from [18§]
that £ doesn’t have “universal bad reduction” at p (if p doesn’t lie above
2 or 3, then in our case E doesn’t have universal bad reduction at p if and
only if there exists t, € k such that 6|ord, f(¢,)).

Theorem 3.2. Let k be a number field. Let f € k[t] be a nonconstant
polynomial. Let E be the elliptic curve over k(t) defined by

E:Y?=X3+f(t).

Let (Xo(t),Yo(t)) € E(k(t)). For eacht € k, let y, = +/ f(t), for some choice
of the square root. Let p be a prime of Ok not lying above 2. Suppose that
there exists t, € k such that

(3.4) 3| ordy f(t).
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Then there exists €, > 0 such that if t € k and |t — t,|, < €,, then for any
prime q of k(y;) lying above p, we have

3| ordy(y: — Yo(t)).

Proof. By continuity, for all ¢ € k sufficiently p-adically close to t,, we have
ord, f(t) = ord, f(t,) and 3|ord, f(t) (and 3|ord, f(t) for any prime q of
k(y¢) lying above p). Since p does not lie above 2, the result follows from the
equivalence with the condition used in the proof of Theorem . O

4 Proof of Theorem 1.3

We now have all of the tools to prove Theorem [1.3]

Proof of Theorem[1.3. Let P, = (X;(t),Yi(t)) € E(Q(t)), i = 1,...,r, be
points whose images by the map generate a subgroup isomorphic to
(Z/3Z)" in Jac(C)[3](Q). Let Sy consist of the prime 2 and the (finite)
union of the set of places of Q given by Theorem (with £ = Q) ap-
plied to P, ..., P.. By hypothesis, for each odd prime p € Sy, there exists
t, € Q such that 3|ord, f(t,). For each such p and t,, let ¢, > 0 be as in
Theorem . By hypothesis, there exists t5 € Q such that Q(y/f(t2)) is a
quadratic extension of Q and the prime 2 does not split in this extension.
Then for some sufficiently small €5 > 0, by Krasner’s lemma (or elemen-
tary arguments in this specific case) if |t — ta]a < €g then Q(1/f(t)) is a
quadratic extension of Q and the prime 2 does not split in this extension.
Let too € Q and €5 > 0 be such that f(¢) is negative (resp. positive) if
|t — teo] < €xo. Let € = minyeg, €,. Let S = {2,00}. Consider the ratio-
nal functions ¢; = y — Y;(t) € Q(t,y) = Q(C), i = 1,...,r. By Theorem
and Theorem if P e CQ),t=tP)ecQand|t—t,, < e for
all p € Sy, then ¢;(P) = \/f(t) — Yi(t) generates the cube of a fractional
ideal outside 2, i.e., ¥;(P)Ogq(p),s = a},; for some fractional Og(p) s-ideal
ap;, ¢ = 1,...,r. Furthermore, from our assumptions at p = 2,00, Q(P)
is an imaginary (resp. real) quadratic field in which 2 does not split. Note
also that if t € Q and H(t) < B, then the discriminant of Q(\/f(¢)) is
< B? (we use here that d is even). By our hypotheses and the form of
the map , the functions 1, ..., 4, generate a subgroup isomorphic to
(Z/37)" in Q(C)*/(Q(C)*)?. Let ¢ = t, a rational function of degree 2 on C.
Combining all of the above, Theorem gives that there are > X i /log X
distinct imaginary (resp. real) quadratic number fields k with | Disc(k)| < X
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satisfying
rks CL(Q(P)) > 7 + #Sin — tk Ogypy -

Since S = {2,00}, #S, = 1, and since there is a single prime lying above
2 in Og(p), we have tk Ofyp) g = 1 (resp. rk Obpys = 2). This gives the
desired result when f takes both negative and positive values on R. Other-
wise, we obtain the appropriate result for either real or imaginary quadratic
fields, and the full theorem follows from Scholz’s reflection principle [30]: if
d is a positive integer, then rks Cl(v/—3d) — rks C1(v/d) € {0,1}. O

5 Mestre’s construction of a j-invariant 0 el-
liptic curve over Q(¢,u) of rank at least 6

We recall a construction of Mestre [26, 27] which yields a j-invariant 0
elliptic curve over Q(¢,u) of rank at least 6 (and after a specialization, a

j-invariant 0 elliptic curve over Q(t) of rank at least 7).

Let K be a field of characteristic 0 and let x1,...,z5 € K. Let

xg = —(x1+ -+ x5),
p(X) = (X —m21) -+ (X — x)
= X%+ ay X + a3 X3 + 4. X? + a1 X + ao,

and
g(X) = X? +a4/3.

Then

2

a as\3
g(X)* = p(X) = —aX° + (§ - ) X ax + (4)

and the cubic curve C' : Y3 = g(X)? — p(X) will generically be a genus 1
curve of j-invariant 0 possessing the six K-rational points P; = (x;, g(x;)),
i = 1,...,6. To obtain a further point when K = Q(¢,u), Mestre shows
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that if

T —1_ug+t
= T )
T _1—u3_t
™ )
x{:_u3+3+t
3 1w )

_u®—6u® -3
u—m—t,

u? —u® 4+ 150 + 1
Ts = Lo — ) +1t,

u® 4+ 8ud —1

T = —lmt e bws) = Sy

then az3 = —1. Then since the leading coefficient of g(X)? — p(X) is a per-
fect cube, the curve C' has a 7Tth rational point P; at infinity. Setting, say,
P; as the origin, one easily finds (by a specialization and explicit computa-
tion) that the other 6 points are independent in the Mordell-Weil group of
the resulting elliptic curve over Q(¢,u). Mestre goes further and uses this
construction to find an elliptic curve of rank at least 7 over Q(¢). How-
ever, putting the curve in Weierstrass form, the extra point constructed has
the same y-coordinate as a previous point, and so the new point does not
produce any extra 3-torsion (via the map )

6 3-torsion in hyperelliptic Jacobians

Let p be an odd prime. As a function field analogue of constructing quadratic
fields with an ideal class group of large p-rank, it is an interesting prob-
lem in its own right to construct hyperelliptic curves C' over Q such that
rk, Jac(C)[p](Q) is large. For a given p-rank, it is further interesting to min-
imize the genus of the curve C involved, both for intrinsic reasons and for
applications to the enumerative problem of counting quadratic fields with
interesting ideal class groups. Since Q doesn’t contain a primitive pth root
of unity, a well-known argument using the Weil pairing gives the bound (for
any smooth projective curve ()

rky Jac(C)[p(Q) < ¢(C),

where ¢g(C) denotes the genus of C.
We now restrict to the case p = 3. Using the constructions of the previous
section we prove the following result.
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Theorem 6.1. There exists a hyperelliptic curve C : y* = f(t) over Q of
genus g, deg f = d, and rkz Jac(C)[3](Q) > r for the following values of r,
d, and g = g(C):

rid| g
113 1|1
215 | 2
31914
4110 4
5130114

Explicitly, the last three entries are realized by the hyperelliptic curves
C.:y* = f.(t), r=23,4,5,
with generators for Jac(C)[3](Q) given by the classes of

b vy —ye(t), ifr=35
T3 div(y — ye(t) — 3 div(y — (1), ifr=4

fori=1,...,r, where

fa(t) =t° 4+ 2973t° — 369249t + 11764900
ys.1(t) =t° — 106t* + 3430
1 269
t)=—t°+ ="+ 34
y3,2() o1 + 1 + 3430
ys.3(t) =t® + 36> + 486" + 3350t° + 13914¢> + 33264t + 40474

fa(t) =127358629188153017343112694654244¢'0 — 14476726558441542259500980593582900t°

+ 767540949843094964859507359162484321% — 23227949011157855871750302161149318060t"
+ 486933739385947419621206507920009537350t° — 8471956828413213486742748322179256745500t°
+ 139665528153448288531118705650287136663899t% — 1509800364506319291441531124462079071041720¢>
+ 14597743197263467927181474503046907251979462t% — 135004259433655686521826532061360904927910680¢
+ 543592155691663960065241800360826161610140961

ya,1(t) =11285328049647162t° — 612703879315493343¢% + 11259180860536474740t> + 124175441794992816207t2
— 2894185136924624900028t 4 23315023973129417008893

y4,2(t) =11285328049647162t° — 637837872300913137¢ + 15898504501345253760t> — 133140352448943347487t>
+ 2895345088136314829232t — 23315023973129417008893

y4,3(t) =11285328049647162t° — 641395912765696179t + 15779426445792454284t% — 132367737077167916373t>
+ 2891689893601551455028t — 23295069079544963156463

y4,4(t) =11285328049647162t° — 787772412770249571¢% + 14665379977955069244t% — 219254957235699134757t>
+ 2621647313739427449588t — 35358708563462647994607

y4,5(t) =11285328049647162t° + 2085212511317920527¢% + 7459828936910261 1840t3 + 1831498005344531215377¢>
+ 17007935571912588694272t 4+ 183122730884960782522323
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and

f5(t) =fa(t%),
y5,i(t) Iy47i(t3), 1= 1, c. ,5.

We note that, in terms of the genus, the results for r = 1, 2,4 are sharp.
We do not know if there exists a hyperelliptic curve with (r,g) = (3, 3).
However, it was shown in [21] that there exist (non-hyperelliptic) curves C
of genus 3 with rks Jac(C)[3](Q) = 3.

Combined with Theorem [I.2] the result for » = 3 immediately gives:

Corollary 6.2. There exist > X 5 /log X imaginary quadratic number fields
k with | Disc(k)| < X and

rk; Cl(k) > 3.

With further work (as in the next section) the result for r = 4 should also
lead to new enumerative results, although we did not pursue this. For smaller
3-rank, the best enumerative results for ideal class groups of quadratic fields
are due to Heath-Brown [20, 19] (rank 1, i.e., class number divisible by
3) and Luca and Pacelli [25] (rank 2), with many earlier results by other
authors (e.g., [5], [6], [31]).

Proof of Theorem[6.1. The first two entries in the table are well-known. For
any value of a € Q\ {0, 5-}, the elliptic curve y? = 3 + (¢ + a)?/4 has the
3-torsion point (0,a/2). For any value of a,b € Q, a® — 4b*> # 0,b # 0, the
genus two curve C,p 1 y? = 5 4 at® + b* satisfies rks Jac(C,,)[3](Q) = 2,
with generators for Jac(Cyp)[3](Q) given by the classes of 3 div(y — t* £b)
(more generally, see [I7, Lemma 3.3]). For appropriate choices of a and b,
Cap possesses a rational Weierstrass point, and hence also admits a quintic
Weierstrass model over Q.

In the case r = 3, we consider Mestre’s construction in Section |5 with

the parameters
(xla Lo, X3,T4,Ts, xﬁ) = (2a 37 _57 07 ta _t)

This yields a genus one curve Y3 = r(X) over Q(t) with (at least) 6 Q(¢)-
rational points (z;, g(x;)), i = 1,...,6. Choosing, say, the first point as the
origin, one finds the elliptic curve

Eg : ’y2 = $3 + f3(t2)
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and 5 points Pi,...,Ps € F5(Q(t)) (the curve Ej also appears in [32]).
The points Py, Py, Ps, P+ Ps € E3(Q(t)) have coordinates that are rational
functions in 2, and thus we find 4 corresponding points, call them P, ..., P,
on the elliptic curve

E3 : y2 = ZL‘3 + f3<t>.

Let y3,:(t) = y(P;) € Q(t) be the y-coordinates of the 4 points. Abusing no-
tation, we also view y3 ;(t) € Q(C3) = Q(t,y) and consider the rational func-
tion y — ys,:(t) on the hyperelliptic curve Cj. By explicit computation, one
verifies that div(y —ys,(t)) = 3Ds; for some divisor Ds; on Cs, i =1,...,4.
Thus, the divisors Ds; yield 3-torsion classes [Ds;] € Jac(C3)[3](Q), i =
1,...,4. By explicit computation (with Magma), one finds that [Ds ], [Ds 2],
and [Dj3 3] are independent (over Z/3Z), while [Ds 1]+ - -+[Ds 4] = 0. There-
fore rks Jac(C3)[3](Q) > 3, giving the 3rd entry in the table.

Finally, we describe the (related) constructions for » = 4,5. The con-
struction from Section |5 yields an elliptic curve over Q(¢,u) with 6 Q(¢, u)-
points that are independent in the Mordell-Weil group. Specializing to u = 2
and rescaling ¢ (to simplify the resulting polynomials) we find the elliptic

curve
Ey:y’ =2+ fu(t),

with six corresponding points Py, ..., Ps € E4(Q(¢)) (the sixth point turns
out not to give new torsion). We set y4,(t) = y(P;) € Q(t) , i =1,...,5,
and view y;(t) € Q(Cy) = Q(t,y). Define the divisors

1 . 1 . )
Dy; = 3 div(y — ya(t)) — 3 div(y —yas(t)), i=1,...,4

on Cy. Using Magma, one verifies that the divisor classes [Dy1], ..., [Dy]
are independent over Z/3Z. Therefore rks Jac(Cy)[3](Q) > 4. Finally, with

f5(t) =fa(t%),

Ys,i(t) =yai(t?), i=1,...,5
1
D5,i =§div(y—y5,i(t)), 1=1,...,95,

a calculation in Magma with [Ds 1], ..., [Ds 5] shows that rks Jac(C5)[3](Q) >
D. ]
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7 Proof of Theorem 1.1l

The proof of Theorem [I.1]is based on Theorem [I.3]and a slight modification
of the construction from last section when r =5 (so that the hypotheses of
Theorem are appropriately satisfied).

Proof of Theorem[1.1. We use Mestre’s construction from Section [f], with
an appropriately chosen specialization so that and of Theorem
hold and f takes negative values on R. For this purpose, letting u = —%
and replacing ¢ by #3 in the constructions of Section , we find an elliptic

curve
By’ =+ (1),

with f € Z[t], deg f = 30, and six points Py,..., Ps € E(Q(t)). Let y;(t) =
y(P) € Q(t) , i = 1,...,6. Let C be the hyperelliptic curve y* = f(t

and view y;(t) € Q(C) = Q(t,y). Using Magma, one verifies that div(y —
y;(t)) = 3D; for some divisor D; on C, i =1,...,6, and that [D],...,[Ds]
generate a subgroup (Z/ 37)°inJ ac(C)(Q). Moreover, the leading coefficient
of f is positive, f(0) is negative, 2 and 5 are the only prime factors of
ged(£(0), f(1)), orda(f(0)) = 3 and ords(f(0)) = 12. Then (1f) of Theorem
holds (for some choice of ¢, € {0,1} for every odd prime p), and
holds as 2 ramifies in Q(1/f(0)). Since deg f = d = 30 and f takes negative
values on R, the conclusion of Theorem gives the desired statement. [J
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