ON THE DEGENERACY OF INTEGRAL POINTS AND ENTIRE
CURVES IN THE COMPLEMENT OF NEF EFFECTIVE
DIVISORS

GORDON HEIER AND AARON LEVIN

ABSTRACT. As a consequence of the divisorial case of our recently established
generalization of Schmidt’s subspace theorem, we prove a degeneracy theorem
for integral points on the complement of a union of nef effective divisors. A
novel aspect of our result is the attainment of a strong degeneracy conclusion
(arithmetic quasi-hyperbolicity) under weak positivity assumptions on the di-
visors. The proof hinges on applying our recent theorem with a well-situated
ample divisor realizing a certain lexicographical minimax. We also explore the
connections with earlier work by other authors and make a conjecture regard-
ing bounds for the numbers of divisors necessary, including consideration of
the question of arithmetic hyperbolicity. Under the standard correspondence
between statements in Diophantine approximation and Nevanlinna theory, one
obtains analogous degeneration statements for entire curves.

1. INTRODUCTION

Siegel’s theorem on integral points on affine curves asserts that an affine curve
C over a number field k has only finitely many integral points if C' has at least
3 points at infinity (over k). This statement implies the more usual version of
Siegel’s theorem which requires the condition at infinity only if C is rational (e.g.,
see [BG06L Remark 7.3.10]). A new line of results opened up when Corvaja and
Zannier [CZ02] gave a novel proof of Siegel’s theorem using Schmidt’s subspace the-
orem from Diophantine approximation. Following subsequent work of Corvaja and
Zannier [CZ04D], the second author proved the following generalization of Siegel’s
theorem to surfaces.

Theorem 1.1 ([Lev09, Theorem 11.5A]). Let X be a non-singular projective sur-
face defined over a number field k. Let Dq,...,D, be effective ample divisors on
X, defined over k, in general position and let D =>"7 | D;.

(a) If ¢ > 4 then X \ D is arithmetically quasi-hyperbolic.
(b) If ¢ > 5 then X \ D is arithmetically hyperbolic.

The conclusion of arithmetic quasi-hyperbolicity means roughly that S-integral
points on X \ D are contained (up to finitely many points) in a proper closed subset
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Z C X which is geometric, that is, independent of the number field and set of places
S. More formally, given a variety V' = X \ D defined over a number field k, we
say that V' is arithmetically quasi-hyperbolic if there exists a proper closed subset
Z C X such that for every number field ¥’ D k, every finite set of places S of &’
containing the archimedean places, and every set R of (k’-rational) (D, S)-integral
points on X, the set R\ Z is finite. We say that X \ D is arithmetically hyperbolic
if all sets of (D, S)-integral points on X are finite (i.e., one may take Z = () in
the definition of quasi-hyperbolicity). We refer the reader to [Voj87, Ch. 1, &4]
for the notion of (D, S)-integral sets of points. If X is a projective variety of
dimension n, we say that effective (possibly reducible) Cartier divisors Dy, ..., D,
on X are in general position if for any subset I C {1,...,q} with |[I| < n+ 1 we
have codim N;e; Supp D; > |I], where Supp D; denotes the support of D; and we
use the convention that dim () = —1.

In general, a conjecture of the second author [Lev09, Conjecture 5.4A] (slightly
modified) states:

Conjecture 1.2. Let X be a projective variety, defined over a number field k, of
dimension n. Let Dq,..., D, be effective ample Cartier divisors on X, defined over
k, in general position, and let D = >"7 | D;.

(a) If g > n+2, then X \ D is arithmetically quasi-hyperbolic.
(b) If ¢ > 2n 4 1, then X \ D is arithmetically hyperbolic.

It was also observed in [Lev09] that when X is non-singular and D has normal
crossings, part @ of the conjecture follows from (Bombieri-Lang-)Vojta’s conjec-
ture on the quasi-hyperbolicity of varieties of log general type and Mori theory
[Mor82, Lemma 1.7].

Shortly after work of Corvaja, Levin, and Zannier [CLZ09], Autissier proved the
following result towards Conjecture |1.2{[al):

Theorem 1.3 ([Autlll Théoreéme 1.3, Remarque 2.3]). Let X be a Cohen-Macaulay
projective variety, defined over a number field k, of dimension n > 2. Let
Dy, ...,Dq be effective ample Cartier divisors on X, defined over k, in general

position and let D =>! | D;. If
q = 2n,

then X \ D is arithmetically quasi-hyperbolic.

Towards Conjecture [1.2{(b]), we have:
Theorem 1.4. Under the hypotheses of Conjecture[1.2, if n > 2 and
q> 20
then X \ D is arithmetically hyperbolic.
This was proved in [Lev09, Theorem 9.11A] assuming the inequality q > 2n? +
1. The slight improvement given here comes from applying the same proof as in

[Lev09], but with an improved estimate of Autissier [Aut09, Lemme 4.2, Corollaire
4.3].

It is essential in Theorem that the divisors satisfy ampleness or some other
positivity condition of similar strength. Indeed, if X contains a Zariski dense set
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of D-integral points, then by blowing up points in D, one obtains a variety X
and a divisor D on X with an arbitrarily large number of components and X \
D = X \ D (and hence there will be a Zariski dense set of D-integral points on
X ). Thus, without a positivity assumption of some sort, there is no inequality on
the number of components ¢ sufficient to guarantee Zariski non-density of integral
points. However, as is well known, each time we blow up the variety X the rank of
the Picard group increases by one. Taking into account the rank of the subgroup

in Pic X generated by Dq,...,D,, Vojta proved:

Theorem 1.5 ([Voj87, Theorem 2.4.1]). Let X be a projective variety, defined over
a number field k, of dimension n. Let D = Y]_| D; be a sum of distinct prime
Cartier divisors on X defined over k. Let r be the rank of the subgroup in Pic X
generated by Dy, ...,Dq. If

g>n+r+1,
then all sets of (D, S)-integral points on X are not Zariski dense.

More generally, as an application of results on integral points on semiabelian
varieties, Vojta proved a result depending on the rank in the Néron-Severi group
NS X.

Theorem 1.6 ([Voj96l Corollary 0.3]). Let X be a projective variety, defined over
a number field k, of dimension n. Let D = ! | D; be a sum of distinct prime
Cartier divisors on X defined over k. Let r be the rank of the subgroup in NS X
generated by Dy, ..., Dy. If

g>n+7r—h(X,0x)+1,

then all sets of (D, S)-integral points on X are not Zariski dense.

In both Theorems and it is easy to see (e.g., from Examples and |4.2))
that the conclusions cannot be strengthened to quasi-hyperbolicity statements.

Under a combined ampleness and general position assumption, Noguchi and
Winkelmann proved a finiteness statement.

Theorem 1.7 ([NWI4] Theorem 9.7.6]). Let X be a projective variety, defined over
a number field k, of dimension n. Let D = "% | D; be a sum of ample effective
Cartier divisors in general position on X defined over k. Let r be the rank of the
subgroup in NS X generated by D1,...,Dy. If

q>2n+r,
then X \ D is arithmetically hyperbolic.

It should be pointed out that we have stated the above three theorems in terms
of ranks associated to the given divisors Dy, ..., Dy, while these results are mostly
stated in the literature in terms of absolute invariants (e.g., the Picard number)
which are independent of the given divisors.

In this note, we initiate the study of arithmetic (quasi-)hyperbolicity in the
context of nef divisors. From one point of view, our main result is in the vein
of Theorems [I.BHI.7 with the rank replaced by an appropriate analogous quantity
involving the number of generators of the cone in the real Néron-Severi vector space
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generated by the divisors D;. From another point of view, as discussed below, the
main result goes towards a version of Conjecture for nef divisors. We now state
the main result, yielding (quasi-)hyperbolicity statements under weak positivity

assumptions on the divisors. We use = to denote numerical equivalence of integral
as well as Q- and R-divisors (see [Laz04, Ch. 1.3]).

Theorem 1.8. Let X be a projective variety, defined over a number field k, of
dimension n. Let Fn,...,E,. be nef Cartier divisors on X with 22:1 E; ample.

Let Dy, ..., D, be non-zero effective (possibly reducible) Cartier divisors in general
position on X and let D ="!_| D;. Suppose that D; = 25:1 a;;E;,1=1,...,q,
where the coefficients a; ; are non-negative real numbers. Let P; = (@ig,---yair) €

R", i=1,...,q. Assume that for any proper subset T of the set of standard basis
vectors {e1,...,e.} CR", at most (#T) L%J of the vectors P, ..., P, are supported
onT.

(a) If
g>r(n+1)+1, r=1,2,
—1)(r—2
0> ()4 LU0 r>3,
then X \ D is arithmetically quasi-hyperbolic.
(b) If
q > 2nr + 12

then X \ D is arithmetically hyperbolic.

Let C be the convex cone generated by the numerical equivalence classes of
Ey, ..., E, in the real Néron-Severi vector space. Then the classes of the divisors
D; lie in C, and the condition that Z;:l E; is ample is equivalent to the convex
cone C containing an ample class. The condition involving the supports of the
vectors P; in terms the standard basis of R" ensures that the classes of the divisors
D; are sufficiently “spread out” in the cone C. Some such condition is necessary to
avoid counterexamples such as Example [1.2]in Section @ where all of the numerical
equivalence classes of the divisors are multiples of some non-ample class.

In view of Theorem and the results of Section [3] it seems reasonable to
conjecture the following analogue of Conjecture

Conjecture 1.9. Assume the hypotheses of Theorem [T.§
(a) If
gzr(n+1)+1,

then X \ D is arithmetically quasi-hyperbolic.
(b) If

q>2nr+1,
then X \ D is arithmetically hyperbolic.

We show in Example in Section Y| that the inequality in part (]E[) of the
conjecture is best possible. We are not sure if the inequality in part (a) of the



DEGENERACY OF INTEGRALS POINTS 5

conjecture is best possible; however, in Examplewe show that in general r(n+1)
cannot be replaced by anything better than r(n — r + 2).

Observe that Theorem [1.8|a)) proves Conjecture @ when r» < 3. Note that
in Theorem [I.§|(a)), despite the identity (3 — 1)(3 —2)/2 = 1, we have grouped the
case r = 3 together with the general case as the general method of proof starts
to apply from r = 3 onwards, with the cases r = 1,2 being easy specializations
of the general argument. In general, we may view Theorem as approximating
Conjecture [1.9] with the inequalities involving an “error term” depending only on
r. For arbitrary r, we suspect that Lemma in the next section holds true with a
stronger conclusion (namely, n;(Q, Py, ..., P;) > [Z] for j =1,...,r) which would
yield Conjecture @ However, proving such improved inequalities seems to be
a surprisingly difficult combinatorial problem.

When r is large compared to the dimension n, we are able to obtain the following
better bound.

Theorem 1.10. Assume the hypotheses of Theorem and that n > 2.

(a) If X is Cohen-Macaulay and q¢ > 2nr, then X \ D is arithmetically quasi-
hyperbolic.
(b) If ¢ > 2n%r, then X \ D is arithmetically hyperbolic.

In Section 3, we will derive Theorem [1.8{|b) and Theorem from Theorem
Theorem and Theorem The majority of the paper is devoted to
the proof of Theorem [1.8fla)), which may be regarded as the primary new result.
Theorem @ does not seem to naively follow from previous results (and the
method of Section , and in fact in certain cases gives a non-trivial improvement
to Autissier’s Theorem For instance, when r» < 4, Theorem implies
Conjecture when each ample divisor D; splits as a sum of r non-zero effective
nef divisors which satisfy, in totality, the hypotheses of Theorem (and when r >
5, Theorem [I.8|(a) implies, under similar hypotheses, arithmetic quasi-hyperbolicity
on the complement of ¢ > n+ 1+ (r — 2)/2 ample effective divisors). We discuss a
further application of Theorem in Example

The proof of Theorem [1.8ffa]) is based on the following result from our recent
work [HLI17].

Theorem 1.11. Let X be a projective variety of dimension n defined over a number
field k. Let S be a finite set of places of k. Let D1,..., D, be effective Cartier
divisors on X, defined over k, and in general position. Let A be an ample Cartier
divisor on X, and € > 0. Let ¢; be rational numbers such that A — ¢;D; is a
nef Q-divisor for all i. Then there exists a proper Zariski closed subset Z C X,
independent of k and S, such that for all but finitely many points P € X (k) \ Z,

> cimp, s(P) < (n+ 1+ e)ha(P).

Here, mp s(P) = > ,csAp,»(P) is a sum of local height functions Ap ,, as-
sociated to the divisor D and place v in S, and h4 is a global (absolute) height
associated to A.



6 GORDON HEIER AND AARON LEVIN

Theorem [I.11| may be viewed as a generalization of work of Evertse and Ferretti
[EF08] and Corvaja and Zannier [CZ04a], which dealt with the case when the
divisors A, D1, ..., Dq have a common multiple up to linear equivalence (or work
of the second author [Levl4] when the divisors have a common multiple up to
numerical equivalence). More generally, building on the work of Evertse and Ferretti
[EF08], Corvaja and Zannier [CZ04a], McKinnon and Roth [MR15] and others, a
version of Theorem was proved in [HL17] for closed subchemes (in place of
divisors) and with the constants ¢; replaced by suitably-defined Seshadri constants.
The fact that Z can be chosen independently of k and S in Theorem (and its
generalizations) relies on Vojta’s result [Voj89] on the exceptional set in Schmidt’s
subspace theorem, and that the proof of Theorem [L.11] ultimately relies on an
application of Schmidt’s theorem.

The proof of Theorem proceeds through Theorem and takes advan-
tage of the freedom in choosing the ample divisor A in Theorem [1.11}] Roughly
speaking, the idea of the proof of Theorem is to choose an ample divisor A
in Theorem [I.T1] whose image in the relevant convex cone C is centrally located
relative to the classes of Dy,..., Dy in C. In practice, we achieve this by choosing
an A which achieves a certain lexicographical minimax.

Under the standard correspondence between statements in Diophantine approx-
imation and Nevanlinna theory, there exist analogous degeneration statements for
entire curves in Nevanlinna theory. This line of reasoning is by now well known
and we omit the details.

2. PROOF OF THEOREM |1.§](al)

The proof of Theorem [1.8{(a)) is based on the following proposition.

Proposition 2.1. Let X be a projective variety of dimension n defined over a num-
ber field k. Let Eq,..., E,. be nef Cartier divisors on X with Z;Zl E; ample. Let

D, ..., D, be non-zero effective (possibly reducible) Cartier divisors in general posi-
tion on X. Suppose that D; = 22:1 a;jEj, i =1,...,q, where the coefficients a; ;
are non-negative real numbers. Let P; = (a;1,...,a;,) € R", i=1,...,q. Assume

that for any proper subset T of the set of standard basis vectors {e1,...,e,} CR",
at most (#T) HJ of the vectors P, ..., Py are supported on T. If

T

g>r(n+1)+1, r=1,2,
—1)(r—2
0z (4 T2 r>s,
then there exist an ample divisor A and positive rational constants ci, ..., cq,0 such

that for alli=1,...,q:
A —¢;D; is Q-nef

and

q
ZciDi —(n+1+9)A is Q-nef.
i=1

Assuming Proposition the proof of Theorem @ proceeds as follows.
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Proof of Theorem[1.§(a). Let A, c1,...,cq, and § be as in the conclusion of Propo-
sition Let € < § be a positive rational number. First, note that

q q
d eDi—(n+1+6A=) ¢;Di—(n+1+8)A+(5—e)A
i=1 i=1
is an ample Q-divisor, as it is the sum of a nef Q-divisor (by Proposition and an
ample Q-divisor. Now, since A — ¢; D; is Q-nef for all : = 1,...,q, by Proposition
we may apply Theorem to conclude that there exists a proper Zariski
closed subset Z C X, independent of k and S, such that for all P € X (k) \ Z,

q
> eimp, s(P) < (n+ 1+ e)ha(P).
i=1
Furthermore, if R C X (k) is a set of (D, S)-integral points on X, then for P € R\ Z,
q a
> emp, s(P) = cihp,(P)+0(1) < (n+ 1+ e)ha(P) + O(1).
i=1 i=1

Since Y7 | ¢;D; — (n+ 1+ ¢€)A is Q-ample, by Northcott’s theorem the inequality
Y1 ¢ihp,(P) < (n+1+€)ha(P)+O(1) has only finitely many solutions P € X (k).
It follows that R\ Z is finite. O

It remains to prove Proposition [2.1l To this end, we establish the following
lemma. Note that we naturally interpret division of a positive number by zero as
(positive) infinity.

Lemma 2.2. Let P, = (a;1,...,a;,) € RT\ {0}, i = 1,...,q, be vectors with
non-negative coordinates. Let ej, j = 1,...,r, be the standard coordinate vectors.
Suppose that for any proper subset T C {ey,...,e.} of cardinality t, at most t HJ
of the vectors P; are supported on T. For Q = (b1,...,b.) € R" with positive
coordinates, define

. ) b b, .
nj(Q,Pl,...,Pq):#{ze{1,...,q}|lm1n 2L }7 j=1,...,m

=1,...,m Q41 Qq,j
Assume additionally that for all i #i',5 # j', we have
(1) A, 5Qq j1 — Qg 5/ Ayt 5 7& 0,

unless both terms on the left are 0. Then there exists Q = (by,...,b.) € Q" with
positive coordinates such that

qg r—1 .
nj(QaPh"'?Pq)Z*_ s j:l’__.7r7
r 2
and
1 . aij " bl ai]‘ " ’
(2) —min —* | <— < (2max—= ) , foralll,l,
2 any bi Qi 5

where the minimum and mazimum are taken over all i,j,1',j' such that a; ja; j #
0.

Proof. To a point @ = (by,...,b.) € R” with positive coordinates, we associate
the point n(Q) = (n1,...,n,) € N7, where n; = n;(Q) = n;(Q, P1,..., Fy), j =
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1,...,r. Let A C R" be the subset of @ = (b1,...,b,) with positive coordinates
such that

(a) The non-zero coordinates of the vector (a;1/b1,...,ai,/b,) are distinct for
any fixed i =1,...,q.
(b) The ratios of all distinct non-zero coordinates of (a;1/b1,...,a;,/by) (over

all 7) are distinct.

Then A is clearly an open subset of R". By condition , A is non-empty.
The condition @ ensures that for Q) € A, every point P; contributes to a unique
n;(Q, P1,. .., P,). In particular, for Q € A, Z;Zl n;(Q,Pr,...,P;) =q.

We consider N” with the usual lexicographical ordering. Let @ € A be such that
it realizes the lexicographical minimax

min max{c(n(P)): o € S},

PecA
where S, is the symmetric group on r letters. After permuting the coordinates, we
can assume without loss of generality that n(Q) = (n1,...,n,) satisfies n; > ny >
e 2 Ny

We claim that n; —n;41 € {0,1} for 1 < j < r — 1. Suppose otherwise, and
let jo be the smallest index such that n;, —nj,4+1 > 2. We consider the family of
points

Qx = (Ab1,..., Abjo, bjo41, -5 br) = (baa,. ., bay), A>L

By assumption, there are at most jo |2| vectors P; supported on ey, ..., ej,.
Since Zi"zl n; > jo L%J, this implies that for some A > 1, n(Q,) # n(Q). Condition
@ implies that there is a minimal such value A > 1. From the form of @), and
condition (]ED, for this value of A there is a unique j; < jg, j2 > Jjo, and ¢ such that

bxa _ Abs, by,

I=1,....,r a;; Qg 5, Qg 5,

Then for sufficiently small € > 0, Qxte € A, nj, (Qrte) = 15, (Q) — 1, njy (Qrte) =
My (Q)+17 and nj(Q)\—i-e) = n](Q) ifj ¢ {jlaj2}' Since Njy —MNjy 2 Njo —Njoy1 = 2,
this implies that

max{o(n(Qxye)) : 0 € Sy} <n(Q),

contradicting the definition of @) and proving the claim.

Now, we note that n; —nj;q € {0,1} for 1 < j <r — 1 implies the inequalities

i

rir—1

rn, < q= an <rn,+ %
Jj=1
The last inequality implies

q r—1

> > ... > > = — .
(n1_n2_ _)Th_r 9

Due to the condition (a) imposed on the set A, it is clear that we may replace @
by a sufficiently close point with rational coefficients and maintain the above chain
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of inequalities. Lemma [2.2]is now proven except for the bounds (2). By symmetry,

it suffices to prove that we can choose @ = (by,...,b,) satisfying
b a - \"
< (2 max ”) for all 1,1,
bl/ ai’ﬂ"
where the maximum is over all ¢, j,4’, j/ such that a; ja, j» # 0. Let Q = (b1,...,b;)

be one choice of @ satisfying the lemma except for possibly the inequality . For
simplicity, after reindexing, we may assume that 0 < b; < by < ... < b,.. Suppose
that for some index I,

bt | g o B
bl ai/’j/

Let A be a rational number satisfying
@i, b @i j
L max — < X\ < 24 max 2L < 1,
bl+1 At 51 I+1 Qg g1
and let
Q = by,...,0.) = (by,..., by, Nbjr1, Abja, ..., Aby).
Note that Q' again has positive rational coordinates. We claim that

TLj(Q,Pl,...,Pq) STL]‘(Q,,Pl,...,Pq), j: ].,...,’I".

Let j € {1,...,r} and i € {1,...,q} be such that

. bm bj
min _— = .
m=L,...,7 Qj m Qi j

In particular, a; ; # 0. Suppose first that j <!. For m >[4 1 we have

% = )\b—m > max Gy
v b; ai j
For m <[ we have
b,  bm
b;» N )
It follows that
min i = Y = b,

m=Leot Gim - Qg Qi

Suppose now that j >+ 1. Let m <. If a;,, # 0, then

L?m < 1 min g < dism
)
by 2 @ij Qi

contradicting the choice of ¢ and j. Therefore a;,,, = 0. If m > [+ 1 then

b b
b;- b; '
It follows that
/ B ,
J i
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Therefore
/ q r—1 .
TLj(Q,Pl,...,Pq)an(Q,Pl,...,P)Z; 2 s jzl,...77'7
and replacing @ by Q’, we now have the inequality
byt <2m e
l ai’yj’

Repeating this argument finitely many times, we find a suitable Q = (b1,...,b,)

with positive rational coordinates such that for ([ =1,...,r —1,
b1 <om Y ’
I i
which implies . O

Proof of Proposition[2.1. We take

o1,1(K), ... ,(XLT(H),OZQJ(H)7 o0 (K), . agi(K), ., 0 (K)

to be (discontinuous) functions of x € (0,1] with the following properties. The
function v j(x) is identically equal to 0 if a; ; = 0. If, on the other hand, a; ; # 0,
then v j(x) takes on positive real values such that we have the limits

li i (k) =0.
Jim, o (k)=0
Moreover, the R-divisors B;(x) = a;1(k)E1 + ... + a; (k) E, are such that

Di(k) := D; + By( Zad i=1,...,q,

have rational coefficients a; ;(k) = a; ; + c; j(k) and the vectors

Pi(r) = (a}1(K), ..., a1 . (K)), ..., Py(k) = (ag 1 (K), ..., ag . ())
satisfy the assumptions of Lemma [2.2] Therefore, we can conclude that, for all x,
there exists a vector Q'(k) = (bj(k),...,b.(k)) as in Lemma with respect to
P{(k),...,Pj(x). We normalize the coordinates so that b7 = 1. Then from the
definitions and Lemma [2.2] for a sufficiently small choice of # > 0 (we now fix one
such choice), there exist positive rational constants 71,72, 73, and 4 such that for
all 0 < Kk < R,

1< a5 (0) <72
for all i and j such that a; ;(x) # 0 (or equivalently, a; ; # 0), and
Y3 <bj(k) <ya, J=1,...,7

We now choose a fixed positive rational number § < ﬁ and a fixed 0 < kg =
k(0) < & such that

(3) Mg,ZE —723 Ko)
j=1
is Q-nef. We now set Q' = Q' (ko) = (b}, ..., b)) with b =1 and let
A=VE1+...+VE,
Then A is Q-ample.
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We define positive rational numbers

b, v

. 4 .

¢ = min - J <—, 1=1,...,q.
G=1,...,r am.(no) "

For R-divisors F; and F5, we write F} > Fy if the difference F; — F5 is a nef
R-divisor. Then

A— CiDi > A— CiDKKO)
= > (b — ciaf (ko)) B,
j=1

which implies that A — ¢; D; is a nef Q-divisor for i =1,...,q.

We now deal only with the general case r > 3, as the cases r = 1,2 are easy
specializations of the following argument.

Since
QZr(n—kl)—i—W:m—k#—kl,
we have
O L N A
Therefore,
(4) ’n,j(Q/,Pll(lio),...,Pé(lio)) >n+1, j=1,...,r

as n;(Q', P{(ko), ..., Py(ko)) is an integer. Let j € {1,...,7}. By hypothesis, at
most (r — 1)|2] < g — % of the vectors Py,..., P, lie in Span({e1,...,e.} \ {e;}).
Since ¢ > r(n+ 1), it follows that there are at least [2] > n + 2 points P} (kg) with
aj ;(ko) > 0. Combined with (), this implies that

q r r
¢;Dj(ko) > n+ 1)bE; + (minci) min  a} (ko) | E;
; (ko) g Wi+ (m o 55 (Ro) | B

Jj=1

> (n+1)A+ 7;73 3 E
2 N
j=1

> (n—l—l—i-%%’)A.
Y274

Finally, we find the inequalities

ZCiDi_ (n+1—|—5)A
q q
= Z ¢;Di(ko) — (n+1+425)A+5A — Z ¢; Bi(ko)
i=1 i=1

T q
> <n+1+””3> A—(n+1+20)A+0y3 Y Ej —%ZBAHO)
j=1 Lio
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> <7173 _ 25) A,
Y274

>0
where the last inequality is due to . Therefore,

q
ZCiDi_(n“rl"‘(s)A
=1

is Q-ample and in particular Q-nef. Finally, by rescaling the coefficients b;- appear-
ing in A (and rescaling the ¢; by the same factor), we can assume that A is an
ample divisor (and not just an ample Q-divisor). O

3. PROOF OF THEOREM [1.8|(b) AND THEOREM [1.10

We use the following simple lemma.

Lemma 3.1. Let P, € R"\ {0}, i = 1,...,q, be vectors with non-negative coor-
dinates. Let eq,...,e,. be the standard coordinate vectors. Suppose that for any
proper subset T C {ey,...,e,} of cardinality t, at most t LgJ of the vectors P; are
supported onT'. Then there exist pairwise disjoint subsets I, . .. ’IL%J c{1,...,q}

> P

i€l

of cardinality r such that the vector

has positive coordinates for j =1,..., L%J

Proof. We prove the result by induction on the dimension r. For r = 1 the result
is trivial. Suppose now that » > 2 and the result holds in dimension r — 1. By
dropping some of the P; and replacing ¢ by r | 2], it suffices to prove the case that
q is divisible by 7. Let m : R” — R"~! denote the projection onto the first r — 1
coordinates. By hypothesis, there are at most  vectors P; with 7(FP;) = 0, and
hence at least

S B (Gl
r T

vectors P; such that m(P;) # 0. Similarly, taking ¢ = r — 1, there are at most ¢’
vectors P; whose last coordinate is 0 (and necessarily m(P;) # 0 for such P;). Then

after reindexing, we can assume that 7(P;) # 0,7 =1,...,¢ , and that Py11,..., P,

have positive rth coordinate. Since % = 4 as well, we can apply the inductive

hypothesis to w(P1),...,m(Py) € R"~1\ {0}. It follows that there exist disjoint
subsets I7,...,I' , C{l,...,¢'} of cardinality r — 1 such that
=
>_w(P)
i€}
q/

has positive coordinates in R"~! for j = 1,..., =4 Let I; = I; U{q +j},

r—1
j=1,...,4. Then
>

i€,
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has positive coordinates for j =1,..., % as desired. ([

Lemma has the following consequence in the context of Theorem [1.8

Proposition 3.2. Let X be a projective variety. Let Er, ..., E, be nef Cartier
divisors on X with Z;zl E; ample. Let D1,...,Dy be non-zero effective (possi-
bly reducible) Cartier divisors in general position on X, and suppose that D; =
Z;Zl a;;E;, 1 =1,...,q, where the coefficients a; ; are non-negative real numbers.
Let P, = (a;j1,...,6ir) € R, i =1,...,q. Assume that for any proper subset
T of the set of standard basis vectors {e1,...,e.} C R", at most (#T) L%J of the

vectors Py, ..., P, are supported on T. Then there exist ¢ = L%J ample effective
divisors Ay, ..., Ay in general position on X with support contained in the support
of 211 Di.

Proof. Let I,..., Iy C{l,...,q} beasin Lemma (with respect to Pi,...,Py)
and let

Ay, = ZDi’ m=1,...,q.

i€lm
Since the divisors Dy,..., D, are in general position on X and the sets I, are
pairwise disjoint, it is elementary that the divisors A;,..., Ay are in general po-
sition on X. Moreover, since Z;:l E; is ample, E,..., E, are nef divisors, and
by construction, A,, is numerically equivalent to a positive linear combination of
Ey, ..., E,, it follows that each divisor A,, is ample. O

Theorem is now an immediate consequence of the preceding proposition
combined appropriately with Theorem [I.7] as the rank of the subgroup in NS X
generated by Dy, ..., Dy is no greater than the number of nef divisors F1,..., E,
in the assumptions of Theorem Moreover, Theorem [1.10[ is now an immedi-
ate consequence of Theorem [I.3] and Theorem [I.4 Here, we use the fact that if
X \ E is arithmetically (quasi-)hyperbolic and Supp E C Supp D, then X \ D is
arithmetically (quasi-)hyperbolic.

4. EXAMPLES

We first give two examples showing that in Vojta’s Theorems and the
conclusions cannot, in general, be strengthened to quasi-hyperbolicity statements.
In the first example the divisors D; are ample, but not in general position, and in
the second example the divisors D; are in general position, but are not ample.

Example 4.1. Let X = P2 and let D be a sum of at least 4 lines passing through a
fixed point P € P?(k). Theorems and imply that any set of (D, S)-integral
points is not Zariski dense in P? (in fact, by Siegel’s theorem, this already holds
when D consists of the sum of just 3 lines passing through P € P?(k), as in this
case P2\ D = Al x (P! \ {0,1,00})). On the other hand, it is easy to see that
any line L through P not contained in the support of D contains an infinite set
of (D, S)-integral points (for some k and S). Thus, X \ D is not arithmetically
quasi-hyperbolic.
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Example 4.2. Let X = P! x P! and let D be a sum of at least 5 fibers of the
first natural projection. Theorems and imply that any set of (D, S)-integral
points is not Zariski dense in P* x P! (again, 3 fibers are actually sufficient from
an S-unit equation argument). On the other hand, it is easy to see that any fiber
of the first projection (not contained in the support of D) contains an infinite set
of (D, S)-integral points (for some k and S). Then X \ D is not arithmetically
quasi-hyperbolic.

Next we give a sample application of Theorem @ which does not seem to
follow naively from other previous results.

Example 4.3. Let X be a non-singular projective variety of dimension n, defined
over a number field &k, with nef effective divisors Fq, F», E3 on X such that E; +
E, + Ej3 is ample, but E; + E; is not ample, or even big, for all 4,5 € {1,2,3} (for
instance, one could take A an ample effective divisor on a non-singular projective
Y,let X =Y3 andlet E; = 7} A, i = 1,2,3, where ; is the ith natural projection
map m; : X = Y). Let D, ;1 be an effective divisor numerically equivalent to
some positive (rational) linear combination ai gkl + b By for 1 <i < j <3,
1 <k < n+2. Suppose that the 3n+6 effective divisors D; ; ;, are in general position
on X and let D =3, . D; ;i Then by Theorem @, X \ D is arithmetically
quasi-hyperbolic.

It does not seem straightforward to deduce this consequence, in general, from
earlier results without using arguments similar to the present ones. For instance,
with Autissier’s Theorem in mind, there is not a way to generate more than
%n + 3 ample effective divisors in general position from the D; ;; (assuming they
are irreducible) nor (in view of [Lev14l Th. 3.2]) a way to generate n+2 numerically
equivalent ample effective divisors in general position from the D, ;j (for general
choices of a; ;, and b; j ). We emphasize that the arithmetic quasi-hyperbolicity
of X'\ D is the key aspect here (Zariski non-density of integral points follows easily
from, say, Vojta’s Theorem [1.6]).

The above example can be naturally extended to the case of arbitrary r > 3
and thus shows that our result is genuinely new. On the other hand, with some
additional considerations in the spirit of Lemma the cases r = 1,2 of Theorem
[L.8|fa) may be reduced to [Levi4, Th. 3.2]).

The last two examples concern the sharpness of Conjecture [1.9

Example 4.4. Let r and n be positive integers with r < n, and let Y7,...,Y,._1
be codimension 2 linear spaces in P defined over a number field k£ and in general
position (i.e., all intersections among them have the expected dimension). Let
m : Xpr — P" be the blowup along Vi U---UY,_y. Let Hyj,...,Hp_ry2;,
Jj =1,...,r be hyperplanes over k passing through Y; for j = 1,...,r — 1 (with
no such condition when j = r) and let H; ; be the strict transform of H; ; in X, .,
i=1,...,n—7r+2,5=1,...,7. We additionally choose the hyperplanes H; ; so
that the divisors Hl’j are in general position on X, , and let D, , = Z” Hz’j We
prove by induction on r that X, , \ D, is not arithmetically quasi-hyperbolic. If
r = 1then X,, , = P" and D is a sum of n+1 hyperplanes in general position. It is
well-known that in this case for any appropriate finite set of places S with |S| > 1
there is a Zariski-dense set of (D, ,, S)-integral points on X, ,.
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If r > 1, let H be a hyperplane containing Y,_1, distinct from any hyperplane
H;j, and let H' be its strict transform in X, , (note that H' N H;, ;, =0, i =
1,...,n—r+2). For a general choice of H (subject to the condition that it contains
Y,_1), H' \ D, , is isomorphic to a variety of the form X,,_1,_1\ Dy_1,-1 (for a
suitable choice of parameters). Then by induction, H' \ D,, , is not arithmetically
quasi-hyperbolic. As the union of such H’ is Zariski dense in X,,, we find that
Xn,r \ Dy, is not arithmetically quasi-hyperbolic. Finally, we note that D,, , is a
sum of r(n — r 4+ 2) divisors which are easily checked to satisfy the hypotheses of
Theorem (with the choice E; = Hj ;, j = 1,...,7). Thus, in Conjecture ,
if r < n then for the conclusion to hold it is necessary at least that ¢ > r(n—r+2)+1.

Example 4.5. Let T = {Py,..., P;,Q, R} be a set of distinct collinear points in
P (k) lying on a line L. Let Hy, ..., Hap(s41) be hyperplanes over k& in P™ such
that each H; contains exactly one point in 7', the intersection of any n + 1 of the
hyperplanes is contained in T', and

3(2n)

ﬂ HZ:{PJ}, j:L...,S,
i=(j—1)(2n)+1

(2s+1)n

ﬂ H; ={Q},

i=(2s)n+1
(2s+2)n

(\ Hi={R}

i=(2s+1)n+1

Let # : X — P™ be the blowup at the s points Pi,..., Ps and let D; be the
strict transform of H; in X, i = 1,...,2n(s + 1). Let r = s+ 1. Then the
divisors D1, ..., Do, are easily seen to satisfy the hypotheses of Theorem
where FE; = Da;,, i = 1,...,7. Let L’ denote the strict transform of L. Then L’
intersects D = 3277 D, only in the points 7~ (Q) and 7' (R), and so X \ D admits
a non-constant morphism from G,,. It follows that X \ D is not arithmetically
hyperbolic and that the inequality in Conjecture is sharp (if true).
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