

Hydrothermal solubility of TbPO_4 , HoPO_4 , TmPO_4 , and LuPO_4 xenotime endmembers at pH of 2 and temperatures between 100 and 250 °C

Alexander P. Gysi^{a,b,c,*}, Christopher Van Hoozen^c, Daniel Harlov^{d,e,f}

^a*New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA*

^b*Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA*

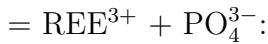
^c*Center for Mineral Resources Science, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA*

^d*GeoforschungsZentrum, Telegrafenberg, D-14473 Potsdam, Germany*

^e*Department of Geology, University of Johannesburg P.O. Box 524, Auckland Park, 2006*

^f*State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China*

Abstract


Rare earth element (REE) phosphates such as xenotime (YPO_4) are important hosts to the heavy (H)REE in natural systems. Xenotime is commonly associated with hydrothermal alteration and mineral replacement reactions and its composition may yield important clues about the mineralization processes from aqueous fluids in REE mineral deposits. Robust underlying thermodynamic data for the REE phosphate endmembers and aqueous species are required to simulate the stability of xenotime and the mobility of REE in natural hydrothermal fluids. In this study, the solubility of synthetic TbPO_4 , HoPO_4 , TmPO_4 , and LuPO_4 endmembers has been measured in aqueous solutions between 100 and 250 °C at saturated water vapor pressure. The

*Corresponding author

Email address: Alexander.Gysi@nmt.edu (Alexander P. Gysi)

solubility products (K_{s0}) determined in the experiments were compared to values retrieved from a combination of calorimetric data for the REE phosphates and thermodynamic properties of the aqueous REE species at elevated temperatures. The solubility of xenotime is retrograde and generally higher in the experiments than predicted by different sources of thermodynamic data. To resolve these discrepancies, the solubility data were used to optimize the thermodynamic properties of the REE phosphate endmembers and REE aqueous species. These optimizations permit retrieving a set of provisional standard Gibbs energy of formation for REE^{3+} and REEOH^{2+} at elevated temperature and were used to derive the following updated K_{s0} values (uncertainty of ± 0.2 at the 95% confidence) for the reaction $\text{REEPO}_4(\text{s})$

t (°C)	$\log K_{s0}(\text{TbPO}_4)$	$\log K_{s0}(\text{HoPO}_4)$	$\log K_{s0}(\text{TmPO}_4)$	$\log K_{s0}$ (LuPO_4)
100	-27.3	-27.7	-27.9	-28.1
150	-28.8	-29.2	-29.5	-29.6
200	-30.6	-30.9	-31.2	-31.4
250	-32.7	-32.9	-33.3	-33.4

The updated thermodynamic data generated from the solubility experiments have a significant impact on simulated xenotime compositions and predicted mobility of REE in crustal fluids. Future efforts are necessary to better constrain the properties of REE hydroxyl species at elevated temperature and possible non-ideal solid solution behavior for REE with ionic sizes significantly different from Y^{3+} .

Keywords: Solubility experiments, rare earth elements (REE), xenotime, critical minerals, thermodynamics

¹ **1. Introduction**

² Xenotime (YPO_4) is an accessory mineral that has been used together
³ with monazite (CePO_4) as a U–Pb geochronometer and geothermometer
⁴ to unravel the evolution of igneous, metamorphic and sedimentary rocks in
⁵ different geologic settings (Gratz and Heinrich, 1997, 1998; Heinrich et al.,
⁶ 1997; Andrehs and Heinrich, 1998; Poitrasson et al., 2002; Hetherington et al.,
⁷ 2008). For example, hydrothermal xenotime overgrowths on detrital zircon
⁸ grains were used to constrain the diagenetic evolution of the Archean Wit-
⁹ watersrand Supergroup of South Africa (England et al., 2002). In situ U–Pb
¹⁰ dating of monazite and xenotime inclusions in 4.25–3.35 Ga detrital zircon
¹¹ from Jack Hills in Australia was used to reconstruct the post-depositional
¹² metasomatic and metamorphic history of Hadean age zircon at temperatures
¹³ between 350 and 475 °C (Rasmussen et al., 2011). In the Browns Range
¹⁴ in Australia, xenotime was found to have formed at temperatures between
¹⁵ 100 and 120 °C in hydrothermal veins within a sedimentary basin (Cook
¹⁶ et al., 2013; Richter et al., 2018). In iron-oxide-apatite (IOA) deposits, hy-
¹⁷ drothermal xenotime and monazite commonly grow from fluorapatite during
¹⁸ metasomatism such as observed in the Pea Ridge deposit in Missouri (Harlov
¹⁹ et al., 2016). Therefore, the chemistry of xenotime has potential for tracing
²⁰ hydrothermal processes in these different geologic environments over a wide
²¹ range of temperatures.

²² Only a few hydrothermal solubility experiments have been undertaken
²³ that permit deriving the solubility products (K_{s0}) for a few xenotime end-
²⁴ members. The solubility of YPO_4 was measured at $\text{pH} \leq 2$ and at 23 and
²⁵ 50 °C in the study by Cetiner et al. (2005), and the solubility of YPO_4 ,

26 DyPO₄, ErPO₄, and YbPO₄ was measured at pH of 2 between 100 and
27 250 °C in the study by Gysi et al. (2015). Both of these studies indicate
28 that the REE phosphates with the xenotime structure have very low and
29 retrograde solubilities between 25 – 250 °C. Gysi et al. (2015) reports total
30 dissolved Y concentrations of 1×10^{-7} to 1×10^{-8} m between 100 – 250 °C,
31 whereas Cetiner et al. (2005) reports Y concentrations of 1×10^{-4} to 1×10^{-6}
32 m between 23 – 50 °C. Comparison to other xenotime solubility experiments
33 is difficult because previous work focused mostly on close to ambient tem-
34 perature solubility measurements of hydrated REE phosphates (Jonasson
35 et al., 1985; Byrne and Kim, 1993; Liu and Byrne, 1997; Gausse et al., 2016).
36 These hydrated phases have higher reported solubilities than either monazite
37 or xenotime, and are metastable phosphates at <100 °C (Du Fou de Ker-
38 daniel et al., 2007; Gysi et al., 2015; Gausse et al., 2016; Arinicheva et al.,
39 2018; Gysi et al., 2018). Other experiment were carried out at pressures
40 (≥ 0.5 GPa) and temperatures relevant to high-grade metamorphism (Trop-
41 per et al., 2011, 2013; Tanis et al., 2012; Zhou et al., 2016; Mair et al., 2017)
42 at which the determination of solubility products is challenging.

43 Louvel et al. (2015) studied the solubility of YbPO₄ and speciation of
44 Yb up to 400 °C and 50 MPa in 0.35 – 0.75 m HCl-bearing solutions using
45 *in situ* X-ray absorption measurements. Their study reports a retrograde
46 YbPO₄ solubility between 25 – 400 °C and Yb concentrations ranging from
47 1×10^{-3} to 1×10^{-4} m controlled by the formation of the hydrated REE³⁺
48 ion and chloro-aqua complexes at acidic pH values (Louvel et al., 2015).
49 In the xenotime solubility study by Gysi et al. (2015), lower Yb concen-
50 trations of 1×10^{-7} to 1×10^{-10} m are reported between 100 – 250 °C at a

51 pH of 2 in $\text{HClO}_4\text{-H}_3\text{PO}_4$ based aqueous solutions. In the presence of Cl^- ,
52 the REE solubility is expected to be controlled by REE chloride complexes
53 (Migdisov et al., 2016), whereas the REE^{3+} ion is generally the dominant
54 aqueous REE species in perchlorate based (ClO_4^-) acidic experimental so-
55 lutions (Gysi et al., 2015; Van Hoozen et al., 2020). Several hydrothermal
56 monazite solubility experiments also indicate that REE hydroxyl complexes
57 may contribute to the measured REE solubility in acidic aqueous solutions
58 (Pourtier et al., 2010; Gysi et al., 2018; Van Hoozen et al., 2020). How-
59 ever, the thermodynamic properties of REE hydroxyl complexes are not well
60 known above 100 °C (Migdisov et al., 2016) and speciation calculations rely
61 on theoretical extrapolations such as those by Haas et al. (1995).

62 Here we present hydrothermal experiments between 100 and 250 °C at sat-
63 urated water vapor pressure and measured the solubility of synthetic TbPO_4 ,
64 HoPO_4 , TmPO_4 , and LuPO_4 endmembers in perchloric acid based aqueous
65 solutions. These solubility data are compared to available thermodynamic
66 data for the HREE phosphate endmembers and aqueous REE species. This
67 study permits critically assessing the cause of observed discrepancies between
68 the solubility measurements and a combination of thermodynamic data from
69 minerals and aqueous species from different sources.

70 **2. Methods**

71 *2.1. Experimental*

72 The hydrothermal solubility experiments were carried out using a simi-
73 lar method as previously developed for the other REE phosphate endmem-
74 bers (Gysi et al., 2015, 2018). Pure mm-sized euhedral crystals of TbPO_4 ,

75 HoPO₄, TmPO₄, and LuPO₄ with the tetragonal xenotime structure were
76 synthesized using the Na₂CO₃/MoO₃ flux method of Cherniak et al. (2004).
77 Scanning electron microscopy images (Electronic Annex) show the morphol-
78 ogy of unreacted and reacted crystal surfaces. The recourse to mm-sized
79 synthetic xenotime crystals and the limitation of experiments to tempera-
80 tures ≥ 100 °C enables overcoming issues associated with the precipitation
81 of metastable hydrated REE phosphates at lower temperatures (Gausse et al.,
82 2016; Arinicheva et al., 2018; Gysi et al., 2018) and the highly variable equi-
83 libriation times of synthetic REE phosphate powders (Liu and Byrne, 1997).

84 Each of these synthetic crystals was mounted in a titanium sample holder
85 (Ti-foil with 99.7 % purity; Alfa Aesar) and placed in separate 45 ml teflon-
86 lined stainless-steel autoclaves (Parr 4744), which were then filled with 25
87 ml of the starting aqueous solutions to cover the sample holders. The ex-
88 perimental starting solutions were prepared using trace metal grade (Fischer
89 Scientific) perchloric acid (HClO₄) and milli-Q water (18 MΩ·s). A pH of
90 2.00 ± 0.02 was measured at ambient temperature (22 ± 2 °C). These pH
91 measurements were used to determine the perchloric acid concentration in
92 the starting solutions. This pH was selected to increase sufficiently the sol-
93 ubility of the REE phosphates and HClO₄ was used to avoid complexation
94 from any additional ligands with REE³⁺ (Migdisov et al., 2016), therefore
95 constraining the major species to REE³⁺ and REEOH²⁺ depending on the
96 temperature of the experiment (Gysi et al., 2018). These solutions were
97 subsequently spiked with ~ 100 μ l of a P-stock solution prepared from trace
98 element grade (Fischer Scientific) phosphoric (H₃PO₄) acid. The headspace
99 of each of the autoclaves containing the crystals and the starting solutions

100 were purged with dry nitrogen, then sealed and the autoclaves placed in a
101 muffle furnace (Cole-Parmer, EW-33858-70) at 100, 150, 200, and 250 °C for
102 up to 16 days. Kinetic experiments were also conducted after different time
103 intervals to verify approach to equilibrium. Temperature was recorded at
104 the center of the furnace using an Omega® temperature logger with K-type
105 thermocouples to ensure temperature was maintained within 0.5 °C.

106 At the end of each experiment, the autoclaves were quenched in a cold
107 water bath for less than 20 minutes. The autoclaves were then opened and
108 the reacted solutions pipetted out and diluted 1/6 with a 2 % nitric (HNO₃)
109 acid blank matrix solution for the analysis of the P and REE concentrations
110 using solution inductively coupled plasma mass spectrometry (ICP-MS). The
111 sample holders were then removed, and the autoclave walls were washed. In-
112 between experiments, a sulfuric acid wash was used to rinse the walls of the
113 teflon liner of the autoclaves and the solutions further diluted with milliQ
114 water for REE analysis using ICP-MS. None of these solutions showed any
115 evidence for the formation of potential precipitates upon quenching of the
116 experiments. These tests are also consistent with the absence of any other
117 secondary phases on the reacted crystal surfaces (Electronic Annex). This
118 behavior is expected since equilibrium was approached from undersaturation
119 with very low REE concentrations in the reacted aqueous solutions (Table
120 A.1). In between experimental runs, the teflon liners and sample holders were
121 washed and soaked in concentrated sulfuric acid, followed by a day soaking
122 in milli-Q water and rinsing.

123 *2.2. Analytical*

124 The pH of the starting experimental solutions was measured at room
125 temperature using a Metrohm 913 pH meter (precision of ± 0.003 pH units
126 and resolution of 0.001 pH units) and a combined pH electrode (60260010
127 unitrode, Metrohm) with integrated Pt1000 temperature sensor. The elec-
128 trode was calibrated using commercial buffer solutions from Fisher Scientific
129 (pH of 2, 4, and 7; accuracy of ± 0.01); pH-temperature compensated reading
130 for the buffer solutions are considered by the built-in temperature sensor of
131 the electrode to measure deviations from 25 °C. The ionic strengths of the
132 experimental starting solutions (0.01 m) and the buffer solutions used for
133 pH calibration (0.05 m) are relatively dilute; minor deviations are expected
134 in the measured pH as a result of variations in liquid junction potentials.
135 The estimated accuracy of pH measurements for the perchloric acid buffered
136 starting experimental solutions is within ± 0.03 pH units.

137 The quenched experimental solutions were analyzed for REE and P using
138 a Perkin Elmer NexION 300Q quadrupole ICP-MS. Samples and standards
139 were diluted using a 2 % HNO₃ blank matrix and spiked with In (SCP
140 Science, NIST traceable) as an internal standard for drift corrections. Cal-
141ibrations of ICP-MS analyses were carried out using a multi-element REE
142 standard and two single REE standards (La and Ce; SCP Science, NIST
143 traceable) for interference corrections due to oxide formation (Aries et al.,
144 2000). Analyzed samples were blank-subtracted after drift correction. Phos-
145 phorus displays interference with nitrogen (¹⁴N¹⁶OH and ¹⁵N¹⁶O) from the
146 2 % HNO₃ blank matrix resulting in high background counts. Since the
147 experimental starting solutions were spiked with P, the diluted quenched ex-

148 experimental solutions had concentrations well above the background of the
149 blank (Table A.1), i.e. counts were 2–3 higher than the blank.

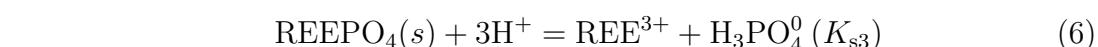
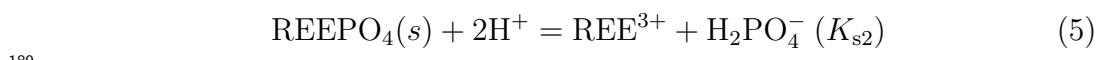
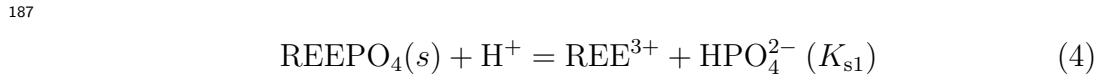
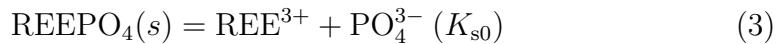
150 The analytical precision based on duplicate ICP-MS runs of standards
151 was $\leq 3\%$ for P and $\leq 1.5\%$ for Tb, Ho, Tm, and Lu. The limit of detection
152 (LOD) was determined by multiple measurements of the blank using the 3σ
153 (standard deviation of the mean) values. The determined LOD values were
154 10 ppb for P, and between 10 and 100 ppt for the REE.

155 *2.3. Aqueous speciation calculations*

156 Aqueous speciation and ion activities were calculated using the GEMS
157 code package version 3.5 (Kulik et al., 2013) combined with the TSolmod li-
158 brary containing the relevant activity models and equations-of-state (Wagner
159 et al., 2012). The thermodynamic properties of the aqueous species were re-
160 tried at temperature and pressure of interest using the Helgeson-Kirkham-
161 Flowers (HKF) equation-of-state (Helgeson et al., 1981; Shock and Helgeson,
162 1988; Tanger and Helgeson, 1988; Shock et al., 1992). These data for aque-
163 ous species are collectively referred here to "Supcrt92" from the slop98.dat
164 database originally implemented in the SUPCRT92 computer code by John-
165 son et al. (1992). The properties of water were calculated from the IAPS-84
166 equation-of-state (Kestin et al., 1984). The thermodynamic data and aque-
167 ous species considered in the speciation calculations are listed in Table 1.

168 The activities of the aqueous species of interest were determined at the
169 experimental temperatures and pressures from the measured REE and P
170 concentrations of the quenched experimental solutions (Table A.1). The
171 activity coefficients (γ_i) of charged aqueous species were calculated using the
172 extended Debye-Hückel equation (Robinson and Stokes, 1968):

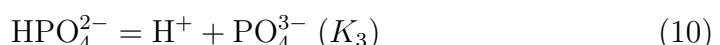
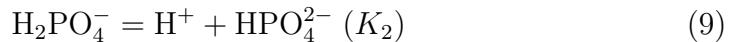
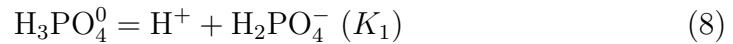
$$\log \gamma_i = -\frac{Az_i^2}{1 + \dot{a}_i B} + \Gamma_\gamma + b_\gamma I \quad (1)$$





¹⁷³ and the ionic strength (I) is given by,

$$I = 1/2 \sum m_i z_i^2 \quad (2)$$

¹⁷⁴ A and B are the Debye-Hückel parameters (Helgeson et al., 1981); Γ_γ
¹⁷⁵ is a mole fraction to molality conversion factor; b_γ is the extended term
¹⁷⁶ parameter, which has a value of 0.21 for $\text{HClO}_4/\text{NaClO}_4$ aqueous solutions up
¹⁷⁷ to 250 °C (Migdisov and Williams-Jones, 2007); \dot{a}_i is the ion size parameter
¹⁷⁸ taken from Migdisov and Williams-Jones (2007) for ClO_4^- (4.5 Å) and from
¹⁷⁹ Kielland (1937) for other charged ions; m_i is the molal concentration and
¹⁸⁰ z_i the charge of the i th aqueous species. The γ_i of neutral species was set
¹⁸¹ to unity, and the γ_i of water was calculated from the osmotic coefficient
¹⁸² (Helgeson et al., 1981).

¹⁸³ *2.4. Derivation of solubility products (K_{s0})*




¹⁸⁴ The equilibrium constants for the dissolution of REE phosphates in aque-
¹⁸⁵ ous solutions as a function of pH are described by the following sets of reac-
¹⁸⁶ tions:

190 At a pH of 2, the dominant phosphate species in the experiments were
 191 H_3PO_4^0 and to a lesser extent H_2PO_4^- (Appendix A.1). The solubility product
 192 (K_{s0}) can then be determined from calculated ion activities and Reaction (6),

$$K_{s3} = \frac{a_{\text{REE}^{3+}} \cdot a_{\text{H}_3\text{PO}_4^0}}{(a_{\text{H}^+})^3} \quad (7)$$

193 combined with the deprotonation constants of phosphoric acid,

196 where K_1 , K_2 , and K_3 are the first, second, and third deprotonation
 197 constants of phosphoric acid. The equilibrium constant of Reaction 3 can
 198 then be calculated by combining the deprotonation constants of phosphoric
 199 acid with Equation 7,

$$K_{s0} = K_{s3} \cdot K_1 \cdot K_2 \cdot K_3 \quad (11)$$

200 which relates to the calculated activities of REE^{3+} and PO_4^{3-} in Table
 201 A.1 according to,

$$K_{s0} = a_{\text{REE}^{3+}} \cdot a_{\text{PO}_4^{3-}} \quad (12)$$

203 **3. Experimental results**

204 *3.1. Kinetic experiments*

205 A series of kinetic experiments were carried out for a duration of 4 to 14
 206 days to determine approach to equilibrium between the reacted REE phos-

207 phate crystals and the aqueous solutions according to Reaction 10. The
208 activities a_i of REE^{3+} and H_3PO_4^0 were calculated from the measured P and
209 REE concentrations (Table A.1). The reaction quotient (Q_{s3}) could then be
210 retrieved for the dissolution reaction of xenotime at the experimental condi-
211 tions,

$$Q_{s3} = \frac{a_{\text{REE}^{3+}} \cdot a_{\text{H}_3\text{PO}_4^0}}{(a_{\text{H}^+})^3} \quad (13)$$

212 Results from the kinetic experiments are shown in Figure 1 for HoPO_4
213 at 100 °C. The experiments were observed to approach, within experimental
214 uncertainty¹, nearly constant Q_{s3} values ranging between -7.0 and -6.5 after
215 about 7 days of reaction. These results indicate that the synthetic REE
216 phosphate crystals approached equilibrium with the aqueous solutions upon
217 dissolution and with increased reaction time. This is further reflected by the
218 reproducibility of Q_{s0} values determined for duplicate experiments after 14
219 days of reaction (Table A.1). Similar conclusions were drawn in the xenotime
220 solubility study by Gysi et al. (2015), where steady-state REE concentrations
221 were reached after 10 days of reaction at 100 °C and after only 5 days at 150
222 °C.

223 *3.2. Solubility products (K_{s0})*

¹The uncertainty is defined here as the standard deviation (1σ) of the mean $\log Q_{s3}$ value determined between 7 and 14 days of reaction. The 1σ values are found to be in line with uncertainties observed in previous REE phosphate endmember solubility studies (Gysi et al., 2015, 2018).

224 Based on the kinetic experiments, the solubility products (K_{s0}) were eval-
 225 uated in the present study for experiments carried out between 14 to 16 days
 226 to ensure approach to equilibrium. The retrieved mean K_{s0} values and their
 227 associated uncertainties are listed in Table 2 for experiments carried out be-
 228 tween 100 and 250 °C. Figure 2 shows that the REE phosphate solubility is
 229 retrograde with temperature, decreasing by several orders-of-magnitude from
 230 100 to 250 °C. Further, the relationship between $\log K_{s0}$ values and $1/T$ does
 231 not vary linearly, which indicates that the enthalpy of reaction for each of
 232 the REE phosphate endmembers varies with temperature. Replicate $\log K_{s0}$
 233 values (2 to 5 repeated experiments) yield mean calculated 1σ values of: 0.22
 234 ± 0.09 (95 % confidence) for TbPO_4 ; 0.10 ± 0.06 for HoPO_4 ; 0.17 ± 0.02 for
 235 TmPO_4 ; 0.25 ± 0.06 for LuPO_4 . These values indicate that the experiments
 236 are generally reproducible to within 0.25 $\log K_{s0}$ units.

237 *3.3. Experimental fits and extrapolations to reference temperature ($T_r = 298.15$
 238 K) and pressure ($P_r = 1$ bar)*

239 The empirical solubility data can be fit to the following equation:

$$\log K_{s0} = A + B \times T + \frac{C}{T} + D \log T \quad (14)$$

240 where T is the temperature in Kelvin, and $A - D$ are the fitted coef-
 241 ficients. Four isotherms allow fitting the experimental data to three coeffi-
 242 cients, which yield regression coefficients (R^2) between 0.962 and 0.993 for
 243 the different REE phosphate endmembers (Table 3, Fit1).

244 A three coefficients fit allows further deriving enthalpy and entropy val-
 245 ues at reference conditions.² We employed the method of Gysi et al. (2015,

²In principle, it is possible to derive a heat capacity function (ΔC_P^0) but fitting four

246 2018) to extrapolate the empirical fits to a reference temperature of 298.15
247 K and a pressure of 1 bar (Fig. 3). This method uses available calorimetric
248 data from the REE phosphates to constrain either of the fitted coefficients
249 A or C in Equation 14. Coefficient A can be related to the standard entropy
250 of reaction ($\Delta_r S_{T_r}^0$) and coefficient C to the standard enthalpy of reaction
251 ($\Delta_r H_{T_r, P_r}^0$) for the dissolution of the REE phosphate endmembers. Appendix
252 B shows the thermodynamic relations between the standard enthalpy and en-
253 tropy of reaction and the fitted coefficients from the solubility experiments.
254 In turn, if the standard thermodynamic properties of the aqueous species are
255 fixed, then the absolute standard entropy ($S_{T_r}^0$) or the standard enthalpy of
256 formation from the elements ($\Delta_f H_{T_r}^0$) can be retrieved for the REE phos-
257 phates from the regressed coefficients of the solubility data. Table 4 lists
258 available standard thermodynamic properties of TbPO_4 , HoPO_4 , TmPO_4 ,
259 and LuPO_4 . The standard enthalpy of formation was measured for all four
260 REE phosphate endmembers using oxide-melt solution calorimetry (Ushakov
261 et al., 2001); the standard absolute entropy was determined for LuPO_4 by
262 adiabatic calorimetry (Gavrichev et al., 2006) and from *ab initio* calculations
263 for the other endmembers (Ji et al., 2017).

264 Results from the regressions of the experimental solubility data are listed
265 in Table 3. The constrained fits where $\Delta_f H_{T_r, P_r}^0$ of the REE phosphate
266 endmembers was fixed and $S_{T_r}^0$ calculated (Table 3, Fit 2), yield entropy
267 values ranging between 108.6 and 151.1 $\text{J mol}^{-1}\text{K}^{-1}$. These entropy values
268 are within those listed in Navrotsky et al. (2015) of 117.2 and 142.3 ± 12.6

269 experimental isotherms allows deriving only two parameters (a_0 and a_1), which reduces
270 the heat capacity function to $\Delta C_P^0 = a_0 + a_1 T$ (Appendix B).

269 $\text{J mol}^{-1}\text{K}^{-1}$ but are mostly higher than predicted by *ab initio* calculations
270 from Ji et al. (2017). The calculated entropy value of $151.1 \text{ J mol}^{-1} \text{ K}^{-1}$ for
271 LuPO_4 is also higher in comparison to the calorimetric study by Gavrichev
272 et al. (2006) whom reported an entropy value of $99.7 \text{ J mol}^{-1} \text{ K}^{-1}$.

273 The constrained fits where $S_{T_r}^0$ of the REE phosphate endmembers was
274 fixed and $\Delta_f H_{T_r, P_r}^0$ calculated (Table 3, Fit 3), yield standard enthalpy of for-
275 mation values ranging between -1963.7 and $-1975.5 \text{ kJ mol}^{-1}$. The calculated
276 enthalpies of TbPO_4 and HoPO_4 differ by 3.9 to 4.9 kJ mol^{-1} in comparison
277 to those reported in the calorimetric study by Ushakov et al. (2001) and
278 their experimental uncertainties. In contrast, the calculated enthalpy values
279 of TmPO_4 and LuPO_4 differ by 7.0 to 17.3 kJ mol^{-1} in comparison to the
280 values reported by Ushakov et al. (2001).

281 4. Discussion

282 4.1. Comparison to previous REE phosphate solubility studies

283 The xenotime solubility constants measured in our study are the first
284 available experimental solubility data for the TbPO_4 , HoPO_4 , TmPO_4 and
285 LuPO_4 endmembers between 100 and $250 \text{ }^\circ\text{C}$. The only other available data
286 available were measured at $<100 \text{ }^\circ\text{C}$ for the hydrated REE phosphates, which
287 include rhabdophane ($\text{REEPO}_4 \cdot 0.667\text{H}_2\text{O}$; REE = La – Dy) and churchite
288 ($\text{REEPO}_4 \cdot 2\text{H}_2\text{O}$; REE = Gd – Lu and Y). These phases are monoclinic
289 and contain water in their crystal structures (Mesbah et al., 2017; Ochiai
290 and Utsunomiya, 2017; Subramani et al., 2019). Several studies have also
291 shown that the hydrated REE phosphates are metastable phases that control
292 solubility at $<100 \text{ }^\circ\text{C}$ (Gausse et al., 2016; Arinicheva et al., 2018; Shelyug

293 et al., 2018; Subramani et al., 2019). Comparison of the fitted solubility data
294 of xenotime with the hydrated REE phosphates indicates that the latter
295 generally have higher measured solubilities (Fig. 3). Similar observations
296 were made in our previous solubility experiments, with both, xenotime-type
297 (Gysi et al., 2015) and monazite-type endmembers (Gysi et al., 2018).

298 Another comparison can be made by calculating the $\log K_{s0}$ values re-
299 sulting from a combination of thermodynamic properties of REE phosphates
300 (Table 4) and the thermodynamic properties of aqueous PO_4^{3-} and REE^{3+}
301 species from Supcrt92 (Shock and Helgeson, 1988; Shock et al., 1997). Figure
302 3 shows that the predicted solubilities generally show significant discrepancies
303 in comparison to our experimental solubility data, especially for the TbPO_4
304 and LuPO_4 endmembers. Previous solubility studies for the other monazite
305 and xenotime endmembers (Gysi et al., 2015, 2018) indicate that these dis-
306 crepancies result from an incompatibility between the measured calorimetric
307 data of the minerals combined with the thermodynamic properties of aqueous
308 species from the Supcrt92 dataset.

309 *4.2. Reconciling calorimetric data of REE phosphates and thermodynamic
310 properties of aqueous REE species with the solubility data*

311 Two different optimization techniques are further evaluated here: i) one
312 focusing on the optimization of thermodynamic data for the REE phosphates
313 similar to the approach by Gysi et al. (2015) for the xenotime solubility; ii)
314 the other one focusing on the optimization of the enthalpy of the aqueous
315 REE species similar to the approach by Gysi et al. (2018) for the monazite
316 solubility.

317 4.2.1. *Solubility predictions using the optimized enthalpy of the REE phos-*
318 *phates and available data for aqueous REE species*

319 Adjusting the standard enthalpy of formation for the REE phosphates
320 (Table 3; Fit3) does not allow reconciling the thermodynamic data avail-
321 able in the literature with the measured solubility data. Figure 3 shows
322 the predicted $\log K_{s0}$ values as a function of temperature using the adjusted
323 REE phosphate enthalpies combined with the aqueous species from Supcrt92
324 (Supcrt92+ ΔH_f^0 mineral optimized). The poor agreement between the pre-
325 dicted $\log K_{s0}$ and the experimental solubility data indicates a need to revise
326 the thermodynamic data for the aqueous REE species. A similar observa-
327 tion was made by Gysi et al. (2018) for the solubility products of CePO₄,
328 SmPO₄, and GdPO₄. In contrast, optimizations of enthalpies for YPO₄,
329 DyPO₄, ErPO₄, and YPO₄ allowed reconciling the thermodynamic data with
330 the solubility data in the study by Gysi et al. (2015). For accurate solubility
331 calculations, we therefore recommend to use the $\log K_{s0}$ coefficients derived
332 from Fit3 (Table 3) in combination with Equation 14 between 25 – 250 °C
333 for TbPO₄, HoPO₄, TmPO₄, and LuPO₄ rather than the optimized mineral
334 enthalpy values.

335 4.2.2. *Thermodynamic optimization of REE³⁺ and REEOH²⁺ for improved*
336 *modeling*

337 The thermodynamic data and HKF parameters for the REE hydroxyl
338 species were taken in the present study from the estimates of Haas et al.
339 (1995). The two major REE aqueous species considered to be stable at
340 the experimental conditions are REE³⁺ and REEOH²⁺ (Appendix A.1), and
341 therefore, revision of the thermodynamic properties of these two species may

342 be necessary.

343 At the present time, the only high temperature potentiometric measure-
344 ments of the first REE hydrolysis constants were undertaken for NdOH^{2+} at
345 250 and 290 °C by Wood et al. (2002), which seem to be more negative than
346 those predicted by Haas et al. (1995). In contrast, the study of Pourtier et al.
347 (2010) determined the solubility of NdPO_4 from 300 to 800 °C and 2 kbar,
348 and concluded that at 300 °C the Nd(OH)^{2+} species needs to have a stronger
349 contribution over the Nd^{3+} species in the low pH range. These observa-
350 tions agree better with the predictions of Haas et al. (1995). According to
351 Migdisov et al. (2016), the calculated activities of REE aqueous species using
352 the data from Haas et al. (1995) may result in a significant overestimation
353 of the stability of REE hydroxyl over the REE^{3+} complexes. Nonetheless,
354 findings from hydrothermal REE phosphate solubility experiments indicate
355 that REE hydroxyl complexes may contribute to measured REE phosphate
356 solubilities at low pH and with increased temperature (Pourtier et al. (2010);
357 Gysi et al. (2018); see also Table A.1). The impact of these observed differ-
358 ences on the calculated activities of Tb^{3+} , Ho^{3+} , Tm^{3+} , and Lu^{3+} are difficult
359 to evaluate because the thermodynamic properties of REE hydroxyl species
360 have not yet been determined experimentally above 100 °C.

361 To address this issue, a thermodynamic optimization approach can be
362 used to fit the experimental solubility data and retrieve provisional thermo-
363 dynamic properties for the REE aqueous species. The global optimization
364 algorithm GEMSFITS (Miron et al., 2015) was used in the present study
365 to evaluate whether the solubility data can be reconciled with the stan-
366 dard Gibbs energies of reaction resulting from a combination of the ther-

367 modynamic data for aqueous species and the calorimetric data of the REE
368 phosphates. This program is combined with the GEMS3K numerical kernel
369 for Gibbs energy minimization (Kulik et al., 2013), and permits adjusting
370 the standard Gibbs energy of formation of selected REE aqueous species at
371 298.15 K and 1 bar while recalculating their activities and speciation in the
372 experiments. The optimization task is similar to that used in the monazite
373 solubility study by Gysi et al. (2018), and aims at minimizing the residu-
374 als between the calculated dissolved REE and P concentrations in solution
375 and the measured values of the experiments assuming equilibrium with the
376 respective xenotime endmember compositions. This optimization technique
377 permits retrieving revised values for the standard Gibbs energy of formation
378 ($\Delta_f G_{Tr,Pr}^0$) of the aqueous REE species predominant at the experimental
379 conditions. Both REE^{3+} and REEOH^{2+} , can be evaluated using this opti-
380 mization method due to the increased dominance of the REE hydroxyl species
381 with temperature (Table A.1).

382 Discrepancies observed between the calorimetric data from the REE phos-
383 phates (Table 4) and the aqueous REE species from the Supcrt92 dataset
384 (Table 1) can be resolved by either adjusting the standard molal Gibbs en-
385 ergy of REE^{3+} and REEOH^{2+} (Mode I) or by adjusting the standard Gibbs
386 energy of $\text{REEPO}_4(\text{s})$ and REEOH^{2+} (Mode II) during the optimization.³
387 The $\Delta_f G_{Tr,Pr}^0$ values generated using this method should be viewed as pro-
388 visional and a matter of convenience for thermodynamic modeling because
389 revising the HKF correlation parameters would require new high tempera-

³The covariance of fitted parameters can be determined in GEMSFITS through re-
peated Monte Carlo simulations (Miron et al., 2015).

ture empirical data for the aqueous REE species. In addition, this method allows maintaining internal consistency with the association constants reported in Haas et al. (1995) for other REE hydroxyl complexes that cannot be evaluated at the experimental conditions (Table 5 footnote).

The optimized standard Gibbs energies for the different aqueous species and REE phosphates are listed in Table 5. Figure 4 compares the solubility calculations using the optimized aqueous species versus using the REE species from the Supcrt92 dataset. Adjusting the standard Gibbs energy of formation of both, REE^{3+} and REEOH^{2+} (Mode I), yields in most cases the lowest residuals between the experimental and calculated REE solubilities. The parameter optimizations further show that the Tb, Ho, and Tm aqueous species need the largest standard Gibbs energy adjustments, whereas Lu requires the least adjustment. From these optimized thermodynamic properties, the solubility products were re-evaluated with updated $\log K_{s0}$ values listed in Table 6. Figure 5 compares the optimized $\log K_{s0}$ values of the different xenotime endmembers. These new values show a systematic decrease in the solubility of the REE phosphates in the order $\text{Tb} > \text{Ho} > \text{Tm} > \text{Lu}$.

The available standard thermodynamic properties of REE aqueous species (Table 1) can be combined with the provisional revised $\Delta_f G_{Tr,Pr}^0$ values listed in Table 5 for improved thermodynamic modeling of the REE phosphate solubilities. However, it is recommended to use adjustments from optimization Mode II if internal consistency needs to be maintained with previously measured properties of aqueous REE chlorides, fluorides and other complexes (Migdisov et al., 2009, 2016) because most of these experimental data rely on the properties of REE^{3+} from the Supcrt92 dataset. Further evaluation of

415 the accuracy of these optimized values can be made once high temperature
416 experimental data become available for REE hydroxyl species.

417 **5. Implications for predicting the solubility of xenotime in hy-
418 drothermal fluids**

419 *5.1. Numerical modeling of xenotime-fluid REE partitioning*

420 Here we demonstrate an application of the optimized thermodynamic
421 data from the solubility experiments for simulating the partitioning of REE
422 between an ideal xenotime solid solution and an acidic hydrothermal fluid
423 (pH of 2) reacted with 1 g leucogranite per kg H₂O. This model permits sim-
424 ulating the REE composition of xenotime in a hydrothermal quartz-topaz
425 vein with a NaCl-HCl-H₂O fluid saturated with fluorapatite from 100 to 300
426 °C. The initial REE concentrations of the aqueous fluid was set to chondritic
427 values (McDonough and Sun, 1995) to approximate relative abundances ob-
428 served in crustal rocks: Y (1.57 ppm) > Dy (246 ppb), Er (160 ppb), Yb
429 (161 ppb) > Ho (54.6 ppb), Tb (36.1 ppb), Tm (24.7 ppb), Lu (24.6 ppb).

430 Geochemical modeling was carried out using the GEMS code package
431 (Kulik et al., 2013) and the MINES thermodynamic database (Gysi, 2017).
432 Thermodynamic data of aqueous REE chloride complexes were taken from
433 the experiments of Migdisov et al. (2009) and *ab initio* calculations of Guan
434 et al. (2020) for Y chloride species; REE³⁺ and REE hydroxyl complexes
435 were taken from the Supcrt92 database (Haas et al., 1995) and using the
436 optimized values from the solubility experiments (Table 5).

437 Two ideal xenotime solid solutions were set up comprising all the heavy
438 REE xenotime endmembers (i.e., TbPO₄ to LuPO₄) to evaluate the impact of

439 the optimized thermodynamic data for xenotime retrieved from the solubility
440 experiments. The first xenotime solid solution utilized the newly optimized
441 dataset from the present study (Table 5) combined with the data for YPO_4 ,
442 ErPO_4 , DyPO_4 and YbPO_4 from Gysi et al. (2015). The second solid solution
443 utilized the previously available calorimetric data of xenotime (Table 4).

444 The simulation results are depicted in Figure 6 for predicted REE parti-
445 tion coefficients ($D_{\text{REE, xnt-fluid}}$) and mole fraction REE in xenotime at tem-
446 peratures between 100 and 300 °C at saturated water vapor pressure. The
447 partition coefficients were calculated according to:

$$D_{\text{REE, xnt-fluid}} = \frac{X_{\text{REE, xnt}}}{(m_{\text{REE}}/m_{\text{tot,REE}})} \quad (15)$$

448 where $X_{\text{REE,xnt}}$ represents the calculated mole fraction REE in xenotime;
449 m_{REE} is the molality (mol/kg) REE in the aqueous fluid; $m_{\text{tot,REE}}$ is the total
450 dissolved REE molality in the aqueous fluid.

451 The REE partition coefficients calculated from the optimized thermo-
452 dynamic data differ significantly from those predicted using the Supcrt92
453 dataset combined with the calorimetric data of the REE phosphates (Fig.
454 6). The optimized simulations indicate that the heavy REE with higher
455 atomic numbers and lower ionic radii (Tm, Yb, and Lu) are less soluble than
456 the other REE (Er, Dy, Ho, and Tb) and therefore more likely to be enriched
457 in the xenotime solid solution relative to the aqueous fluid (Fig. 6a). An
458 opposite trend is observed in the non-optimized simulations (Fig. 6b) as
459 illustrated by the behavior of Lu and Yb that are more soluble in the aque-
460 ous fluid in comparison to most other heavy REE up to 300 °C (Fig. 6b).
461 This trend is inconsistent with the measured REE phosphate solubility data

462 (Fig. 5), and therefore using the optimized thermodynamic data derived in
463 this study improves the model considerably. In contrast to the calculated
464 partition coefficients, the simulated mole fractions of REE in xenotime are
465 similar in both models (Figs. 6b,d) because the input REE concentrations
466 of the model significantly controls the simulated mineral composition at su-
467 persaturation.

468 Although these simulations depict a simplified scenario, it has to be con-
469 sidered that the variations observed in natural solid solutions and REE aque-
470 ous species are controlled by several competing mechanisms. These include
471 the solubility of the REE phosphates as a function of temperature, the rela-
472 tive abundance of available REE in the source rock or fluid, and the stability
473 of different REE aqueous species as a function of temperature and pH. Figure
474 7 shows the aqueous species expected to control the solubility of REE in the
475 aqueous fluid between 100 and 300 °C and pH of 2. The REE^{3+} ion is pre-
476 dominant for most heavy REE, particularly Lu^{3+} , Tm^{3+} , and Y^{3+} , whereas
477 REE chloride species (i.e., REECl^{2+}) predominate above 250 °C for heavy
478 REE with larger ionic radii, including Tb and Ho. These simulations indi-
479 cate that using the provisional optimized thermodynamic data from Table 5
480 will not affect aqueous speciation in an acidic saline fluid because the REE
481 hydroxyl complexes are not predominant at these conditions. Nevertheless,
482 the REE hydroxyl species are expected to become significant in more alkaline
483 aqueous fluids, such as those predicted to be in equilibrium with a calcite
484 vein (Perry and Gysi (2018)).

485 For comparison, we also show the simulated Y chloride species using the
486 recent data of Guan et al. (2020) derived from *ab initio* molecular dynamic

487 simulations (Fig. 7c). The predicted aqueous Y chloride species that pre-
488 dominate between 250 and 300 °C include YCl_2^+ , YCl_3^0 , and YCl_4^- . It is
489 possible that the Y chloride species derived from molecular dynamic simu-
490 lations overestimate the coordination of Y-Cl at lower temperatures (Guan
491 et al., 2020). This could potentially explain why the REECl^{2+} species is not
492 predominant over other Y chloride species in comparison to the other REE
493 in the simulated temperature range. Consideration of the Y chloride species
494 in test simulations led to an overestimation in the Y solubility and a drastic
495 shift in all calculated REE partition coefficients above 250 °C.

496 *5.2. Compositions of hydrothermal xenotime in natural systems*

497 In natural systems, xenotime has been observed to be associated with
498 hydrothermal alteration textures, and in some cases, records relatively low
499 formation temperatures. Hydrothermal xenotime has been reported from
500 hydrothermal alteration zones in carbonatite and alkaline complexes which
501 host potential REE deposits such as Bear Lodge in Wyoming (Andersen
502 et al., 2016, 2017, 2019) and Lofdal in Namibia (Wall et al., 2008; Bodeving
503 et al., 2017). In the Pea Ridge iron-oxide-apatite (IOA) – REE deposit,
504 Missouri, for example, metasomatic replacement of apatite and associated
505 reactions led to the formation of xenotime at temperatures between 100 and
506 400 °C (Harlov et al., 2016; Hofstra et al., 2016; Mercer et al., 2020). Both
507 xenotime and monazite, have also been reported to record hydrothermal evo-
508 lution during tectonic events in metasomatised Precambrian metasedimen-
509 tary rocks and ore deposits of Australia at temperatures generally < 400 °C
510 (Rasmussen et al., 2007, 2011; Zi et al., 2015; McNaughton and Rasmussen,
511 2018). Fluid inclusions from the sediment-hosted xenotime REE deposit in

512 the Browns Range (Australia) further record temperatures as low as 100 –
513 120 °C (Richter et al., 2018).

514 Figure 8 shows a compilation of the range of REE abundances observed in
515 natural xenotime associated with the REE mineral deposits described above.
516 The chondrite normalized REE profiles indicate significant variations in the
517 heavier REE including Er, Tm, Yb, and Lu. Comparison of these variations
518 to the numerical simulations indicates that temperature and the relative sol-
519 ubility of the different REE phosphate endmembers play a significant role in
520 partitioning of REE during the formation of xenotime from a hydrothermal
521 fluid. Xenotime exhibits lower Er, Tm, Yb, and Lu values in the simulations
522 performed at 300 °C than at 100 °C. Although the simulations do not aim
523 to simulate the exact formation conditions of the natural REE deposits, it
524 is interesting to note that the xenotime from IOA deposit in Pea Ridge is
525 generally enriched the heavier REE in comparison to xenotime formed in the
526 carbonatites which are depleted in them. This example shows one applica-
527 tion of the optimized thermodynamic data for simulating the composition
528 of xenotime but additional parameters can be tested including fluid chem-
529 istry, source of REE abundance, salinity, and pH. It is also interesting to
530 note that the chondrite normalized REE profiles of the simulated xenotime
531 compositions are within the range of those observed from the natural data.
532 This indicates that the precipitation of xenotime in the model led to an en-
533 richment of the initial chondritic REE values of the fluid by several orders of
534 magnitude.

535 Future models may consider that xenotime most likely forms a non-ideal
536 solid solution, especially for the incorporation of REE whose ionic radii are

537 significantly different from Y^{3+} . To our knowledge, solid solution proper-
538 ties have not yet been determined experimentally for YPO_4 and other REE
539 phosphates with the xenotime structure. In binary monazite solid solutions,
540 excess enthalpy of mixing has been determined by high temperature solution
541 calorimetry, which suggests non-ideal mixing behavior in the monazite struc-
542 ture (Popa et al., 2007; Neumeier et al., 2017). Structural and spectroscopic
543 measurements have further detected significant excess molar volumes in La-
544 Eu and La-Gd monazite solid solutions (Geisler et al., 2016), whereas for
545 La-Pr monazite solid solutions no significant excess properties were detected
546 (Hirsch et al., 2017). These observations are supported by *ab initio* calcu-
547 lations and indicate that the volume mismatch between REE with different
548 ionic sizes results in increased non-ideal mixing behavior (Li et al., 2014). A
549 similar behavior is likely to be expected for binary xenotime solid solutions
550 and this needs to be accounted for in more realistic numerical models.

551 6. Conclusions

552 We have measured the solubility of synthetic $TbPO_4$, $HoPO_4$, $TmPO_4$,
553 and $LuPO_4$ endmembers in aqueous solutions at temperatures from 100 to
554 250 °C at saturated water vapor pressure. The REE phosphates with the
555 xenotime structure display a retrograde solubility and extrapolation to ref-
556 erence temperature and pressure yields lower solubilities than measured for
557 the hydrated REE phosphates (i.e., rhabdophane and churchite).

558 Combining calorimetric data of the REE phosphates with the thermo-
559 dynamic properties of aqueous species from the Supcrt92 dataset (Shock
560 and Helgeson, 1988; Haas et al., 1995; Shock et al., 1997) yields solubilities

561 lower than those observed in the experiments (Fig. 4). Using data from the
562 solubility experiments, the compatibility of these different datasets can be
563 optimized by: (i) adjusting the standard enthalpy of formation of the solid
564 endmembers (Gysi et al., 2015), or (ii) adjusting the standard Gibbs energy
565 of the aqueous REE species (Gysi et al., 2018). Here we recommend a set
566 of provisional revised standard Gibbs energies of aqueous REE species and
567 enthalpies for REE phosphates listed in Table 5 and the updated solubility
568 products listed in Table 6. These optimizations indicate the need of future
569 experimental measurements to accurately determine the speciation of REE
570 hydroxyl complexes as a function of pH and temperature especially in alka-
571 line systems where these complexes may become dominant. Together with
572 the data presented in the study of Gysi et al. (2015), our work completes
573 the xenotime endmember solubility series between 100 and 250 °C and pro-
574 vides a solid framework for future improvement in our understanding of REE
575 solubility in natural hydrothermal systems.

576 *Acknowledgments*

577 This project was supported by the National Science Foundation to APG
578 (NSF grant EAR-2032761). We would like to thank K. Challis and J. Ranville
579 from the Colorado School of Mines for assistance on the ICP-MS instrument,
580 and N. Iverson from the New Mexico Institute of Mining and Technology
581 for help with scanning electron microscope imaging. We are grateful for the
582 constructive comments by Marion Louvel and two anonymous reviewers, and
583 would like to thank Editor M.E. Böttcher for handling this manuscript.

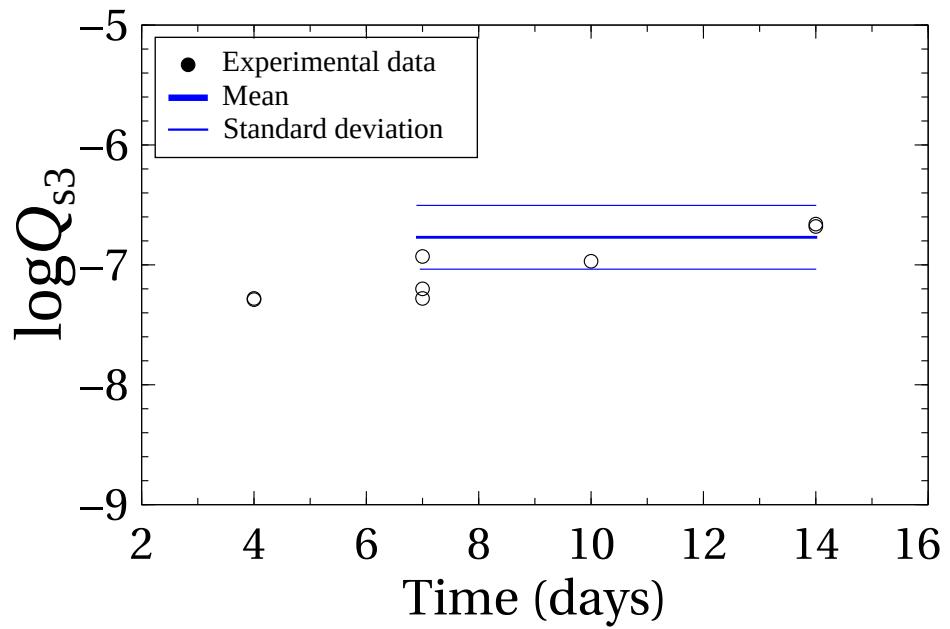


Figure 1: Kinetic experiments at 100 °C and saturated water vapor pressure showing the logarithm of the reaction quotient (Q_{s3}) for the solubility of HoPO_4 as a function of reaction time. The lines show the mean and standard deviation of the experimental data suggesting approach to a steady-state after 7 days of reaction.

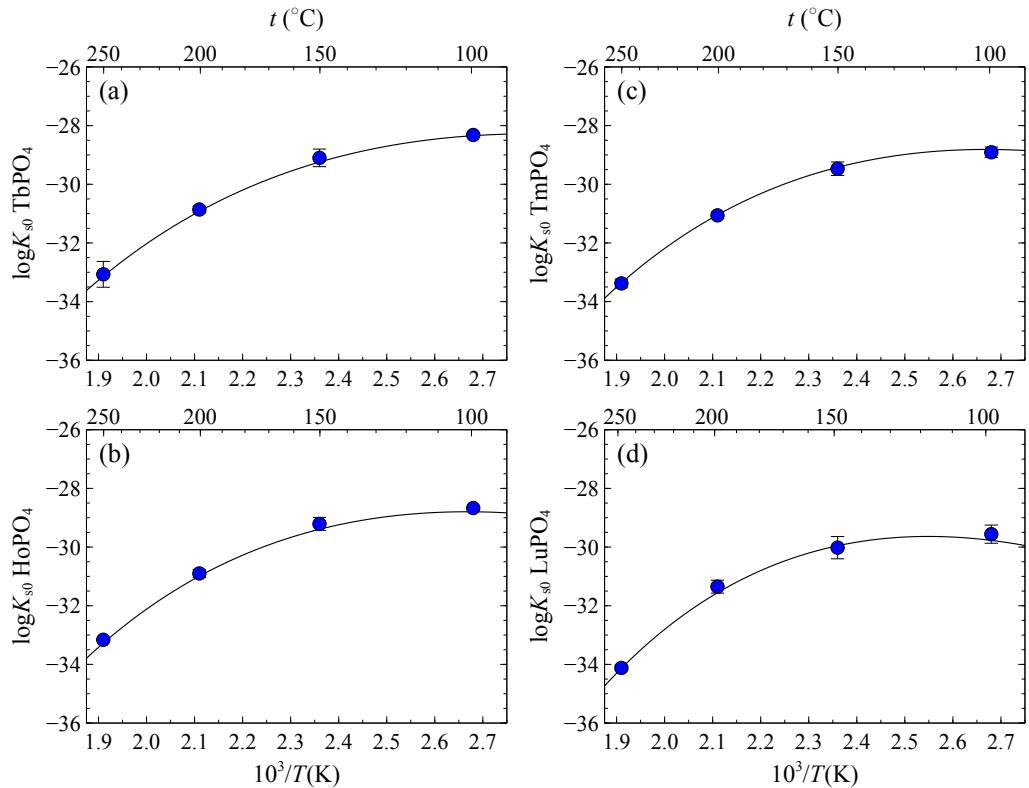


Figure 2: Logarithm of solubility products (K_{s0}) of REE phosphates vs. the inverse of temperature ($1/T$ in K $^{-1}$) calculated from the experimental data collected between 100 and 250 °C and saturated water vapor pressure. The experimental data (symbols) and regressions from Fit1 (curves) are reported in Tables 2 and 3. The error bars or symbol sizes represent the 1σ from 2 to 5 repeated experiments.

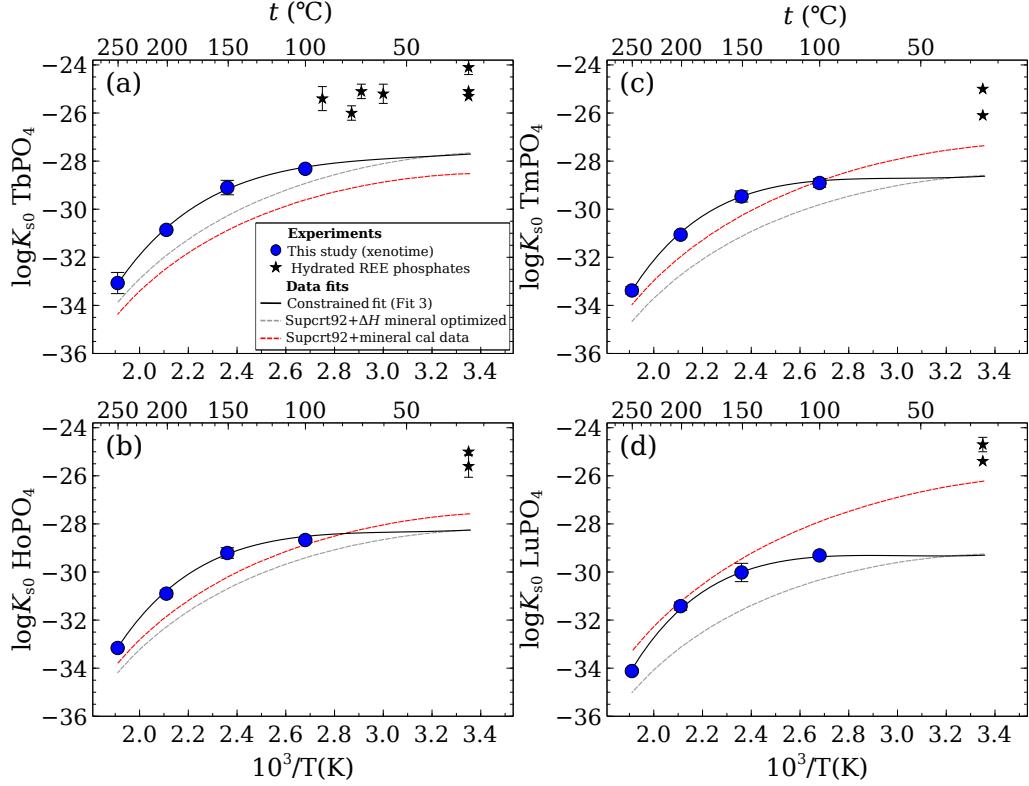


Figure 3: Logarithm of solubility products (K_{s0}) of xenotime endmembers vs. the inverse of temperature ($1/T$ in K) calculated from the experimental data collected between 100 and 250 °C. The xenotime solubility data and regressions from Fit3 are reported in Tables 2 and 3. Supcrt92+mineral cal data: calculated K_{s0} values retrieved by combining the calorimetric data of REE phosphates listed in Table 4 and the thermodynamic properties of aqueous species for REE^{3+} and PO_4^{3-} from the Supcrt92 database (Shock and Helgeson, 1988; Shock et al., 1997). Supcrt92+ $\Delta_f H^0$ mineral optimized: recalculated K_{s0} values using the standard enthalpies derived from Fit 3 in Table 3 for each REE phosphate. For comparison, solubility data for the metastable and hydrated REE phosphates are shown < 100 °C (Firsching and Brune, 1991; Liu and Byrne, 1997; Gausse et al., 2016). The error bars (or symbol sizes) represent the standard deviation (1σ) from 2 to 5 repeated experiments.

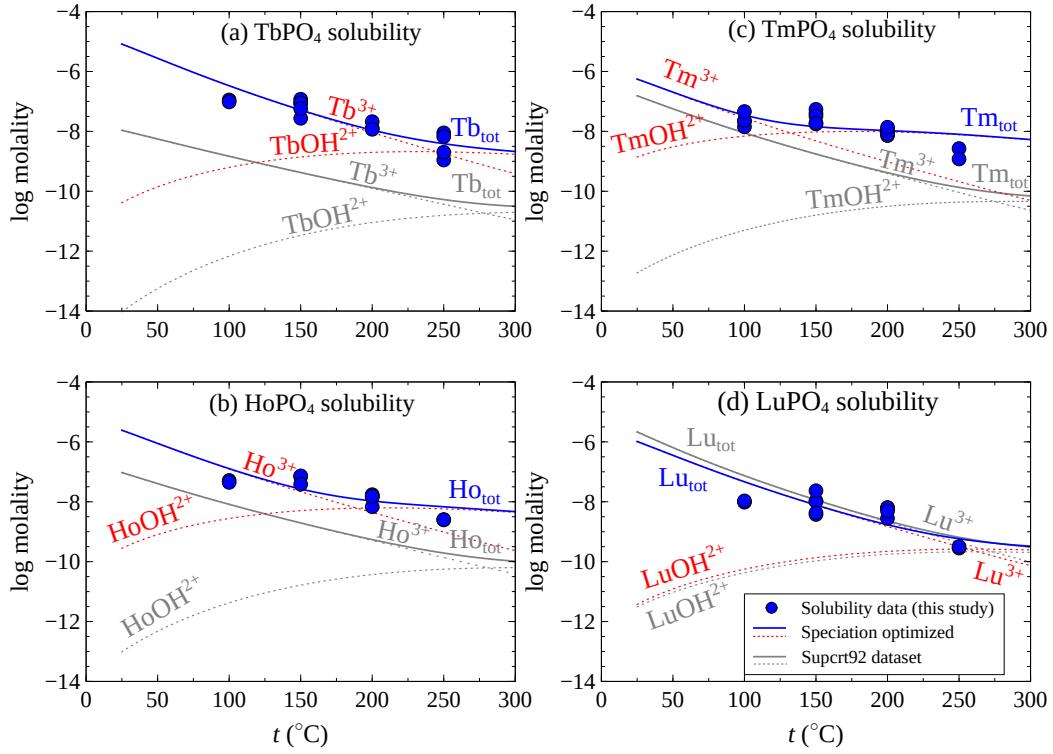


Figure 4: Comparison between experimental data and calculated solubilities of (a) TbPO_4 , (b) HoPO_4 , (c) TmPO_4 , and (d) LuPO_4 as a function of temperature showing the total dissolved REE molalities (solid lines) and predominant REE aqueous species (dashed lines). The optimized standard Gibbs energy of formation values for aqueous REE species were taken from Table 5 and are compared to calculations using the standard thermodynamic properties from the Supcrt92 dataset (Shock and Helgeson, 1988; Haas et al., 1995; Shock et al., 1997).

Figure 5: Comparison of the optimized solubility products ($\log K_{s0}$) of TbPO_4 (Mode I-II), HoPO_4 (Mode I-II), TmPO_4 (Mode II), and LuPO_4 (Mode I-II) as a function of temperature. Thermodynamic data for optimized aqueous REE species were taken from Table 5 and used to re-evaluate calculated REE^{3+} activities listed in Table A.1.

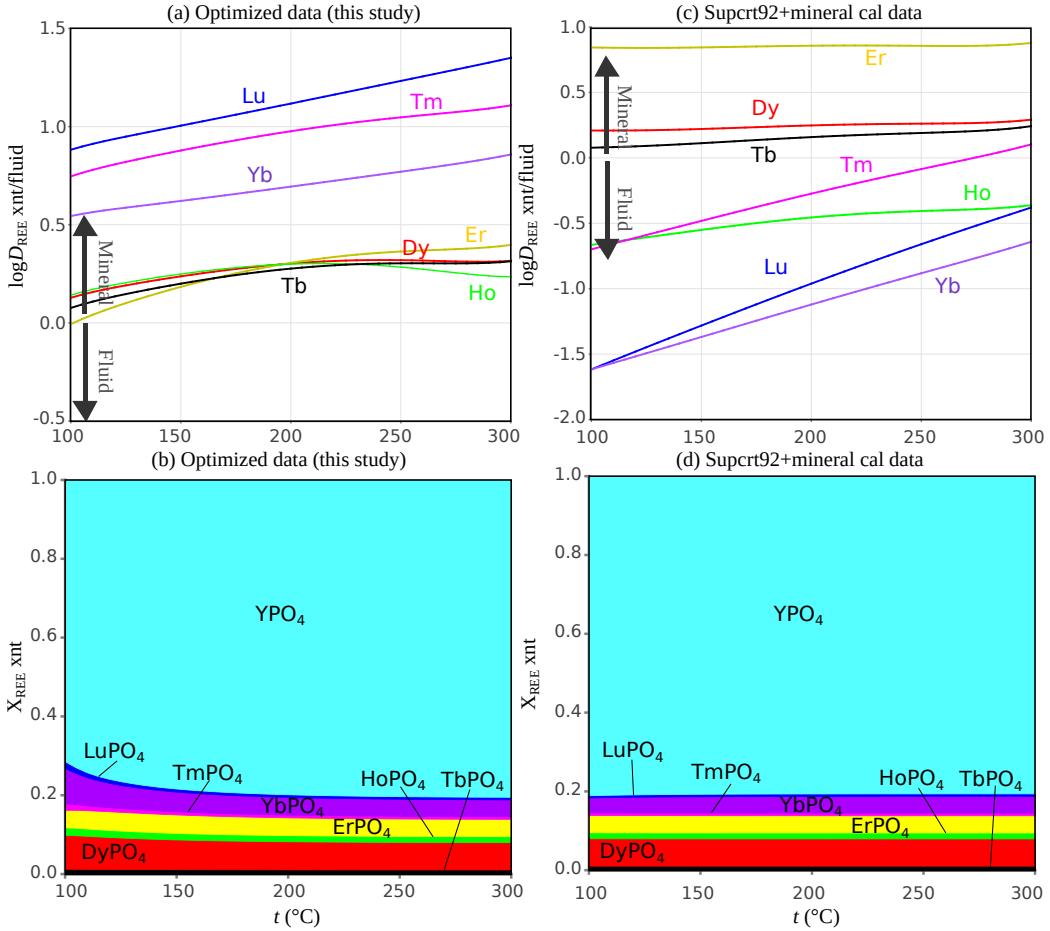


Figure 6: Simulated REE partition coefficients (D_{REE}) and mole fraction REE in xenotime (X_{REE}) for an ideal xenotime solid solution in equilibrium with 1000 g of an acidic saline hydrothermal fluid cooled from 300 to 100 °C at saturated water vapor pressure. The initial fluid (pH of 2, 0.05 m HCl, 10 wt.% NaCl, 50 ppm P) had REE concentrations using chondritic abundances (McDonough and Sun, 1995) and was reacted with 1 g of leucogranite (35 wt.% quartz, 29 wt.% albite, 17 wt.% microcline, and 19 wt.% muscovite). (a,b) Simulations using the optimized thermodynamic data from the solubility experiments (Table 5 and Gysi et al. (2015)). (c,d) Simulations using the Supcrt92 dataset for aqueous species (Shock and Helgeson, 1988; Haas et al., 1995; Shock et al., 1997) combined with calorimetric data for minerals (Table 4 and Gysi et al. (2015)).

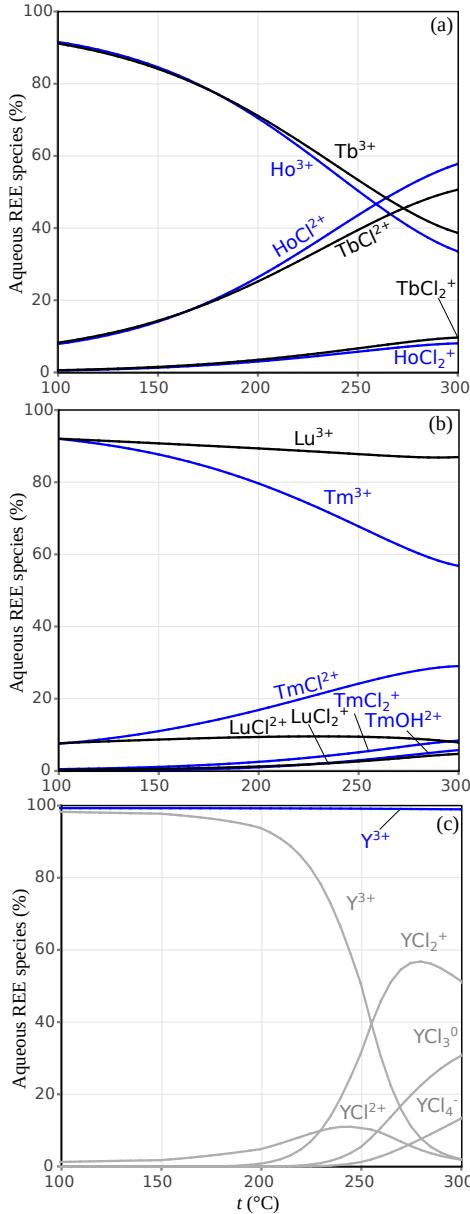


Figure 7: Simulated abundance (in %) of REE aqueous species at a pH of 2 for an ideal xenotime solid solution in equilibrium with 1000 g of an acidic saline hydrothermal fluid cooled from 300 to 100 $^{\circ}\text{C}$ at saturated water vapor pressure. The model corresponds to the simulations using the optimized thermodynamic data from this study (Fig. 6a,b). Gray lines in (c) show simulations that include the Y chloride species derived from Guan et al. (2020).

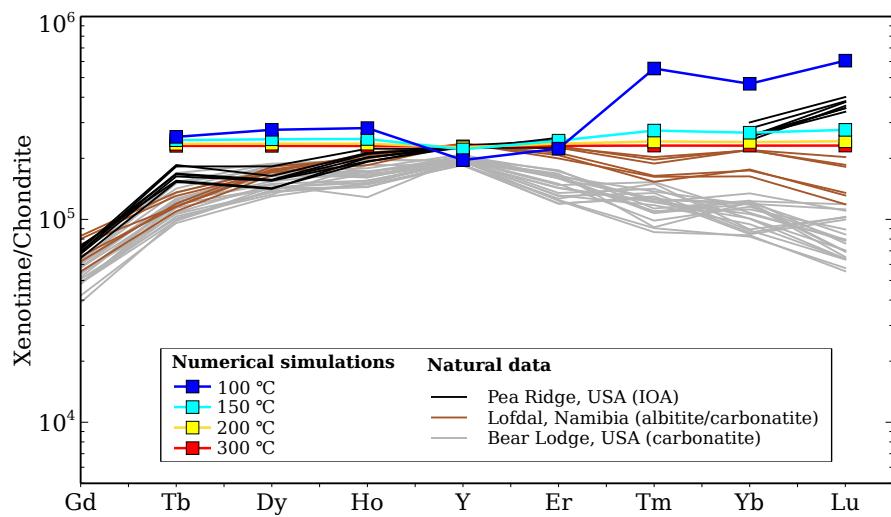


Figure 8: Chondrite normalized (McDonough and Sun, 1995) REE profiles in natural xenotime compared to simulated compositions between 100 and 300 °C at saturated water vapor pressure. Natural data: Pea Ridge iron-oxide-apatite (IOA)–REE deposit, Missouri, USA (Harlov et al., 2016); Lofdal carbonatite/albitite, Namibia (Wall et al., 2008); Bear Lodge carbonatite/alkaline complex, Wyoming, USA (Andersen et al., 2016).

Table 1: Sources of thermodynamic data from the Supcrt92 dataset considered in the aqueous speciation calculations.

Species	Ref.
<i>REE-species (Tb, Ho, Tm, and Lu)</i>	
REE ³⁺	1, 2
REE(OH) ₃ ⁰ , REE(OH) ₂ ⁺ , REE(OH) ⁺² , REE(OH) ₄ ⁻	3
<i>Major P-species</i>	
H ₃ PO ₄ ⁰	4
H ₂ PO ₄ ⁻ , HPO ₄ ²⁻ , PO ₄ ³⁻	1, 2
<i>Minor P-species</i>	
H ₂ P ₂ O ₇ ²⁻ , H ₃ P ₂ O ₇ ⁻ , H ₄ P ₂ O ₇ ⁰ , HP ₂ O ₇ ³⁻ , P ₂ O ₇ ⁴⁻	1, 2
<i>Other species</i>	
OH ⁻ , H ⁺	1, 2
ClO ₄ ⁻	1, 2

References: ¹ Shock et al. (1997); ² Shock and Helgeson (1988); ³ Haas et al. (1995); ⁴ Shock et al. (1989)

Table 2: Values of the logarithm of the solubility product (K_{s0}) of REE phosphates determined experimentally at temperature (t) and saturated water vapor pressure.

t (°C)	$\log K_{s0}$ TbPO ₄	σ	$\log K_{s0}$ HoPO ₄	σ	$\log K_{s0}$ TmPO ₄	σ	$\log K_{s0}$ LuPO ₄	σ
100	-28.32	0.05	-28.67	0.01	-28.91	0.18	-29.31	0.10
150	-29.10	0.30	-29.21	0.22	-29.47	0.23	-30.02	0.38
200	-30.86	0.11	-30.90	0.14	-31.06	0.11	-31.42	0.17
250	-33.07	0.44	-33.16	0.01	-33.38	0.15	-34.12	0.09

The standard deviation of the mean (σ) was calculated based on 2 to 5 repeated experiments (Table A.1).

Table 3: Regressed coefficients ($A - D$, Equation 14) for the temperature dependence (in Kelvin) of the solubility product ($\log K_{s0}$) of REE phosphates determined from the experimental values listed in Table 2. Fit 2 and Fit 3 list the calculated standard enthalpy of formation ($\Delta_f H^0$) and entropy (S^0) values; fixed values were taken from the data listed in Table 4.

	A	B	C	D	R^2	$\log K_{s0,T_r,P_r}$	$\Delta_f H_{T_r,P_r}^0$	$S_{T_r}^0$
						kJ mol $^{-1}$	J mol $^{-1}$ K $^{-1}$	
<i>Fit 1: unconstrained</i>								
$\log K_{s0}$ (TbPO $_4$)	36.80	-0.0913		-1.158×10^4	-	0.965	-	-
$\log K_{s0}$ (HoPO $_4$)	50.27	-0.1056		-1.475×10^4	-	0.993	-	-
$\log K_{s0}$ (TmPO $_4$)	51.35	-0.1071		-1.503×10^4	-	0.988	-	-
$\log K_{s0}$ (LuPO $_4$)	77.03	-0.1361		-2.086×10^4	-	0.962	-	-
<i>Fit 2: $\Delta_f H^0$ fixed, S^0 calculated</i>								
$\log K_{s0}$ (TbPO $_4$)	-1138	-3.134×10^{-1}		3.022×10^4	4.456×10^2	0.978	-27.8	-1968.6
$\log K_{s0}$ (HoPO $_4$)	-1532	-3.955×10^{-1}		4.286×10^4	5.973×10^2	0.990	-28.3	-1971.6
$\log K_{s0}$ (TmPO $_4$)	-1781	-4.478×10^{-1}		5.087×10^4	6.932×10^2	0.987	-28.6	-1964.7
$\log K_{s0}$ (LuPO $_4$)	-2007	-4.962×10^{-1}		5.820×10^4	7.803×10^2	0.983	-29.0	-1955.4
<i>Fit 3: $\Delta_f H^0$ calculated, S^0 fixed</i>								
$\log K_{s0}$ (TbPO $_4$)	-1212	-3.271×10^{-1}		3.287×10^{-1}	4.736×10^2	0.978	-27.7	-1963.7
$\log K_{s0}$ (HoPO $_4$)	-1483	-3.867×10^{-1}		4.105×10^4	5.789×10^2	0.991	-28.3	-1975.5
$\log K_{s0}$ (TmPO $_4$)	-1684	-4.299×10^{-1}		4.734×10^4	6.564×10^2	0.988	-28.7	-1971.7
$\log K_{s0}$ (LuPO $_4$)	-1756	-4.498×10^{-1}		4.914×10^4	6.855×10^2	0.982	-29.3	-1972.7
								99.7

Table 4: Standard thermodynamic properties of REE phosphates retrieved from calorimetric and *ab initio* studies at reference temperature (T_r) and pressure (P_r) of 298.15 K and 1 bar. The heat capacity function is described by $C_{P,T}=a+bT+c/T^2$ with coefficients fitted in this study and C_{P,T_r} calculated from the fits.

	$\Delta_f H_{T_r, P_r}^0$ kJ mol ⁻¹	$S_{T_r}^0$ J mol ⁻¹ K ⁻¹	V_m cm ³ mol ⁻¹	C_{P,T_r} J mol ⁻¹ K ⁻¹	a	b	c
TbPO ₄	-1968.6 ¹ ±4.6	123.1 ³	43.9 ²	105.3 ⁷	116.4	0.0455	-2.19×10 ⁶
HoPO ₄	-1971.6 ¹ ±3.4	123.8 ³	42.9 ²	102.1 ⁴	124.4	0.0266	-2.69×10 ⁶
TmPO ₄	-1964.7 ¹ ±4.7	120.5 ³	42.0 ²	99.7 ⁸	128.8	0.0190	-3.09×10 ⁶
LuPO ₄	-1955.4 ¹ ±4.2	99.7 ⁵ ±0.3	41.2 ²	99.7 ^{5,6}	130.7	0.0185	-3.33×10 ⁶

References: ¹Ushakov et al. (2001), oxide-melt solution calorimetry; ²Ni et al. (1995),

x-ray diffraction; ³Ji et al. (2017), *ab initio* calculations; ⁴Tyurin et al. (2020), adiabatic and differential scanning calorimetry; ⁵Gavrichev et al. (2006), adiabatic calorimetry;

⁶Nikiforova et al. (2012), drop calorimetry; ⁷Gavrichev et al. (2013), adiabatic calorimetry;

⁸This study, estimated by interpolation of C_P function of TbPO₄, HoPO₄, and LuPO₄, and the ionic radii of REE³⁺ in 8-fold coordination (Shannon, 1976).

Table 5: Provisional revised values of the standard molal Gibbs energy of aqueous REE species from Supcr92 optimized using GEMSFITS. Optimizations include Mode I (REE³⁺ and REEOH²⁺) and Mode II (REEOH²⁺ and REEPo₄(s)).

Species	$\Delta_f G_{298.15K,1bar}^0$		$\Delta_f G_{298.15K,1bar}^0$		σ	$\Delta_f G_{298.15K,1bar}^0$	
	(Supcr 92)	(Mode I)	(Mode I)	(Mode II)		J mol ⁻¹	J mol ⁻¹
	J mol ⁻¹	J mol ⁻¹	J mol ⁻¹	J mol ⁻¹	J mol ⁻¹	J mol ⁻¹	J mol ⁻¹
Tb ³⁺	-667,348	-684,086	834	Opt	-	-	-
TbOH ²⁺	-859,812	-880,897	6,442	Opt	-864,158	4,551	Opt
TbO ⁺	-812,114	-833,199	-	C ^a	-816,469	-	C ^a
TbO ⁻	-946,421	-967,506	-	C ^b	-950,767	-	C ^b
TbO ₂ H ⁰	-998,721	-1,019,806	-	C ^c	-1,003,067	-	C ^c
TbPO ₄ (s)	-1,848,897	-	-	F	-1,832,162	965	Opt
Ho ³⁺	-675,298	-683,662	1,007	Opt	-	-	F
HoOH ²⁺	-868,180	-888,220	1,612	Opt	-871,180	4,368	Opt
HoO ⁺	-820,901	-840,941	-	C ^a	-823,901	-	C ^a
HoO ⁻	-958,554	-978,594	-	C ^b	-961,554	-	C ^b
HoO ₂ H ⁰	-1,009,599	-1,029,640	-	C ^c	-1,012,599	-	C ^c

HoPO ₄ (s)	-1,851,486	-	-	F	-1,840,522	359	Opt
Tm ³⁺	-669,022	-672,494	1,447	Opt	-	-	F
TmOH ²⁺	-862,322	-884,708	883	Opt	-872,603	3,039	Opt
TmO ⁺	-815,462	-837,848	-	C ^a	-825,743	-	C ^a
TmO ₂ ⁻	-956,881	-979,267	-	C ^b	-967,162	-	C ^b
TmO ₂ H ⁰	-1,005,415	-1,027,801	-	C ^c	-1,015,696	-	C ^c
TmPO ₄	-1,843,986	-	-	F	-1837596	713	Opt
Lu ³⁺	-666,930	-665,402	1,154	Opt	-	-	F
LuOH ²⁺	-860,649	-861,414	4,883	Opt	-856,478	1,178	Opt
LuO ⁺	-816,717	-817,482	-	C ^a	-812,546	-	C ^a
LuO ₂ ⁻	-958,973	-959,738	-	C ^b	-954802	-	C ^b
LuO ₂ H ⁰	-1,004,997	-1,005,762	-	C ^c	-1,000,826	-	C ^c
LuPO ₄ (s)	-1,835,369	-	-	F	-1,836,509	384	Opt

584 Opt: Optimized; C: Constrained; F: Fixed. The convention used in Super92 allows conversion to the hydrated species:

585 REEO⁺ + H₂O = REE(OH)²⁺, REEO₂⁻ + 2H₂O = REE(OH)₄⁻, REEO₂H⁰ + H₂O = REE(OH)₃⁰. Association constants

586 were constrained by Haas et al. (1995) according to: ^aREEOH²⁺ = H⁺ + REEO⁺; ^bREEOH²⁺ + H₂O = 3H⁺ + REEO₂⁻;

587 ^cREEOH²⁺ + H₂O = 2H⁺ + REEO₂H⁰. The standard deviation (σ) was calculated from 100 Monte Carlo simulations.

Table 6: Updated values of the REE phosphate solubility products ($\log K_{s0}$) using the optimized thermodynamic data from Table 5 and recalculated from the experimental data.

The uncertainties represent the overall reproducibility of the experimental method.

t (°C)	$\log K_{s0}(\text{TbPO}_4)$	$\log K_{s0}(\text{HoPO}_4)$	$\log K_{s0}(\text{TmPO}_4)$	$\log K_{s0}$ (LuPO_4)
100	-27.3 \pm 0.25	-27.7 \pm 0.25	-27.9 \pm 0.25	-28.1 \pm 0.25
150	-28.8 \pm 0.25	-29.2 \pm 0.25	-29.5 \pm 0.25	-29.6 \pm 0.25
200	-30.6 \pm 0.25	-30.9 \pm 0.25	-31.2 \pm 0.25	-31.4 \pm 0.25
250	-32.7 \pm 0.25	-32.9 \pm 0.25	-33.3 \pm 0.25	-33.4 \pm 0.25

⁵⁸⁸ Appendix A.

Table A.1: Composition of quenched experimental solutions (mol/kg) from solubility experiments performed at temperatures between 100 and 250 °C at saturated water vapor pressure. Also listed are the calculated logarithms from the reaction quotient (Q_{s0}) and activities (a_i) of aqueous species calculated using the thermodynamic data listed in Table 1.

Type	t	Time	pH_T	$\log Q_{s0}$	$m_{\text{ClO}_4^-}$	m_{P}	m_{REE}	$\log a_{\text{REE}^{3+}}$	$\log a_{\text{REEOH}^{2+}}$	$\log a_{\text{H}_3\text{PO}_4}$	$\log a_{\text{H}_2\text{PO}_4^-}$	$\log a_{\text{HPO}_4^{2-}}$	$\log a_{\text{PO}_4^{3-}}$
			(°C)	(days)									
TbPO ₄	100	14	2.02	-28.29	1.07×10^{-2}	4.96×10^{-5}	1.12×10^{-7}	-7.42	-10.48	-4.92	-5.49	-10.77	-20.87
	100	14	2.02	-28.35	1.07×10^{-2}	4.99×10^{-5}	9.63×10^{-8}	-7.49	-10.55	-4.92	-5.49	-10.76	-20.86
	150	16	2.01	-28.83	1.09×10^{-2}	7.60×10^{-5}	1.18×10^{-7}	-7.47	-9.27	-4.68	-5.58	-11.09	-21.35
	150	16	2.01	-28.95	1.09×10^{-2}	7.76×10^{-5}	8.65×10^{-8}	-7.61	-9.40	-4.67	-5.57	-11.09	-21.34
	150	16	2.01	-28.94	1.09×10^{-2}	7.67×10^{-5}	8.98×10^{-8}	-7.59	-9.39	-4.67	-5.58	-11.09	-21.35
	150	14	2.01	-29.56	1.09×10^{-2}	5.99×10^{-5}	2.73×10^{-8}	-8.11	-9.90	-4.78	-5.68	-11.20	-21.46
	150	14	2.01	-29.21	1.09×10^{-2}	6.57×10^{-5}	5.71×10^{-8}	-7.79	-9.59	-4.74	-5.64	-11.16	-21.42
	200	14	2.02	-30.86	1.09×10^{-2}	7.70×10^{-5}	1.26×10^{-8}	-8.56	-9.35	-4.64	-5.90	-11.74	-22.30
	200	14	2.03	-30.74	1.07×10^{-2}	5.56×10^{-5}	2.11×10^{-8}	-8.33	-9.11	-4.78	-6.03	-11.86	-22.41
	200	14	2.03	-30.97	1.07×10^{-2}	5.93×10^{-5}	1.17×10^{-8}	-8.59	-9.37	-4.76	-6.00	-11.84	-22.38
	250	14	2.03	-32.66	1.09×10^{-2}	5.67×10^{-5}	8.91×10^{-9}	-8.96	-8.91	-4.76	-6.42	-12.71	-23.70
	250	14	2.03	-32.74	1.09×10^{-2}	6.26×10^{-5}	6.69×10^{-9}	-9.08	-9.04	-4.71	-6.38	-12.67	-23.66
	250	14	2.03	-33.58	1.09×10^{-2}	5.49×10^{-5}	1.10×10^{-9}	-9.86	-9.82	-4.77	-6.44	-12.72	-23.72
	250	14	2.03	-33.29	1.09×10^{-2}	5.89×10^{-5}	2.02×10^{-9}	-9.60	-9.56	-4.74	-6.41	-12.69	-23.69

Type	t	Time	pH_T	$\log Q_{\text{so}}$	$m_{\text{ClO}_4^-}$	m_{P}	m_{REE}	$\log a_{\text{REE}^{3+}}$	$\log a_{\text{REEOH}^{2+}}$	$\log a_{\text{H}_3\text{PO}_4^-}$	$\log a_{\text{H}_2\text{PO}_4^-}$	$\log a_{\text{HPO}_4^{2-}}$	$\log a_{\text{PO}_4^{3-}}$
HoPO ₄	100	4	2.01	-29.29	1.09×10^{-2}	5.02×10^{-5}	1.18×10^{-8}	-8.40	-11.43	-4.91	-5.50	-10.78	-20.89
	100	4	2.01	-29.30	1.09×10^{-2}	5.68×10^{-5}	1.03×10^{-8}	-8.46	-11.49	-4.86	-5.44	-10.72	-20.84
	100	7	2.02	-29.29	1.07×10^{-2}	6.04×10^{-5}	9.26×10^{-9}	-8.51	-11.52	-4.83	-5.41	-10.68	-20.78
	100	7	2.02	-29.21	1.07×10^{-2}	6.21×10^{-5}	1.08×10^{-8}	-8.44	-11.45	-4.82	-5.40	-10.67	-20.77
	100	7	2.02	-28.94	1.07×10^{-2}	5.28×10^{-5}	2.34×10^{-8}	-8.10	-11.12	-4.89	-5.47	-10.74	-20.84
	100	10	2.01	-28.98	1.09×10^{-2}	1.79×10^{-5}	6.91×10^{-8}	-7.64	-10.66	-5.36	-5.95	-11.23	-21.34
	100	14	2.02	-28.66	1.07×10^{-2}	4.55×10^{-5}	5.16×10^{-8}	-7.76	-10.77	-4.96	-5.53	-10.80	-20.90
	100	14	2.02	-28.68	1.07×10^{-2}	5.06×10^{-5}	4.43×10^{-8}	-7.83	-10.84	-4.91	-5.49	-10.76	-20.86
	150	16	2.01	-29.03	1.09×10^{-2}	8.22×10^{-5}	6.90×10^{-8}	-7.71	-9.48	-4.64	-5.55	-11.06	-21.32
	150	14	2.01	-29.15	1.09×10^{-2}	5.80×10^{-5}	7.33×10^{-8}	-7.68	-9.45	-4.79	-5.70	-11.21	-21.47
	150	14	2.01	-29.45	1.09×10^{-2}	5.59×10^{-5}	3.83×10^{-8}	-7.96	-9.74	-4.81	-5.71	-11.23	-21.49
	200	14	2.02	-30.76	1.09×10^{-2}	7.16×10^{-5}	1.72×10^{-8}	-8.42	-9.22	-4.67	-5.93	-11.77	-22.33
	200	14	2.02	-30.83	1.09×10^{-2}	7.44×10^{-5}	1.40×10^{-8}	-8.51	-9.31	-4.66	-5.91	-11.76	-22.31
	200	14	2.02	-31.14	1.09×10^{-2}	7.46×10^{-5}	6.81×10^{-9}	-8.83	-9.62	-4.66	-5.91	-11.76	-22.31
	200	14	2.03	-30.88	1.07×10^{-2}	5.45×10^{-5}	1.57×10^{-8}	-8.46	-9.24	-4.79	-6.04	-11.87	-22.42
	200	14	2.03	-30.89	1.07×10^{-2}	5.60×10^{-5}	1.51×10^{-8}	-8.48	-9.26	-4.78	-6.02	-11.86	-22.41
	250	14	2.03	-33.16	1.09×10^{-2}	6.37×10^{-5}	2.47×10^{-9}	-9.51	-9.48	-4.71	-6.37	-12.66	-23.65
	250	14	2.03	-33.15	1.09×10^{-2}	6.29×10^{-5}	2.55×10^{-9}	-9.49	-9.47	-4.71	-6.38	-12.66	-23.66

Type	t	Time	pH_T	$\log Q_{\text{so}}$	$m_{\text{ClO}_4^-}$	m_{P}	m_{REE}	$\log a_{\text{REE}^{3+}}$	$\log a_{\text{REEOH}^{2+}}$	$\log a_{\text{H}_3\text{PO}_4^-}$	$\log a_{\text{H}_2\text{PO}_4^-}$	$\log a_{\text{HPO}_4^{2-}}$	$\log a_{\text{PO}_4^{3-}}$
		(°C)	(days)										
TmPO ₄ 100	14	2.02	-28.91	1.07×10^{-2}	6.30×10^{-5}	2.14×10^{-8}	-8.14	-11.12	-4.81	-5.39	-10.66	-20.76	
100	14	2.02	-29.10	1.07×10^{-2}	6.10×10^{-5}	1.41×10^{-8}	-8.32	-11.30	-4.83	-5.41	-10.68	-20.78	
100	14	2.02	-28.97	1.07×10^{-2}	5.09×10^{-5}	2.28×10^{-8}	-8.11	-11.09	-4.91	-5.48	-10.75	-20.86	
100	14	2.02	-28.68	1.07×10^{-2}	4.96×10^{-5}	4.61×10^{-8}	-7.81	-10.79	-4.92	-5.49	-10.77	-20.87	
150	16	2.01	-29.31	1.09×10^{-2}	7.40×10^{-5}	3.98×10^{-8}	-7.94	-9.68	-4.69	-5.59	-11.11	-21.37	
150	16	2.01	-29.17	1.09×10^{-2}	7.48×10^{-5}	5.46×10^{-8}	-7.81	-9.55	-4.68	-5.59	-11.10	-21.36	
150	16	2.01	-29.65	1.09×10^{-2}	7.57×10^{-5}	1.77×10^{-8}	-8.30	-10.03	-4.68	-5.58	-11.10	-21.36	
150	14	2.01	-29.50	1.09×10^{-2}	5.91×10^{-5}	3.25×10^{-8}	-8.03	-9.77	-4.79	-5.69	-11.20	-21.46	
150	14	2.01	-29.72	1.09×10^{-2}	6.12×10^{-5}	1.88×10^{-8}	-8.27	-10.01	-4.77	-5.68	-11.19	-21.45	
200	14	2.02	-31.19	1.09×10^{-2}	5.13×10^{-5}	8.99×10^{-9}	-8.71	-9.45	-4.82	-6.07	-11.92	-22.48	
200	14	2.02	-30.93	1.09×10^{-2}	7.34×10^{-5}	1.12×10^{-8}	-8.61	-9.36	-4.66	-5.92	-11.76	-22.32	
200	14	2.02	-31.11	1.09×10^{-2}	7.67×10^{-5}	7.23×10^{-9}	-8.80	-9.54	-4.64	-5.90	-11.74	-22.30	
200	14	2.03	-31.12	1.07×10^{-2}	6.03×10^{-5}	8.27×10^{-9}	-8.74	-9.47	-4.75	-5.99	-11.83	-22.38	
200	14	2.03	-30.95	1.07×10^{-2}	5.35×10^{-5}	1.38×10^{-8}	-8.52	-9.25	-4.80	-6.04	-11.88	-22.43	
250	14	2.03	-33.28	1.09×10^{-2}	4.74×10^{-5}	2.67×10^{-9}	-9.49	-9.40	-4.84	-6.50	-12.79	-23.78	
250	14	2.03	-33.49	1.09×10^{-2}	6.45×10^{-5}	1.20×10^{-9}	-9.84	-9.75	-4.70	-6.37	-12.65	-23.65	
45													
LuPO ₄ 100	14	2.02	-29.38	1.07×10^{-2}	4.66×10^{-5}	9.66×10^{-9}	-8.49	-11.45	-4.95	-5.52	-10.79	-20.89	
100	14	2.02	-29.24	1.07×10^{-2}	5.86×10^{-5}	1.07×10^{-8}	-8.44	-11.41	-4.85	-5.42	-10.69	-20.79	

Type	t	Time	pH_T	$\log Q_{\text{s0}}$	$m_{\text{ClO}_4^-}$	m_{P}	m_{REE}	$\log a_{\text{REE}^{3+}}$	$\log a_{\text{REEOH}^{2+}}$	$\log a_{\text{H}_3\text{PO}_4^-}$	$\log a_{\text{H}_2\text{PO}_4^-}$	$\log a_{\text{HPO}_4^{2-}}$	$\log a_{\text{PO}_4^{3-}}$
150	16	2.01	-29.89	1.09×10^{-2}	7.59×10^{-5}	1.02×10^{-8}	-8.53	-10.27	-4.68	-5.58	-11.09	-21.35	
150	16	2.01	-29.87	1.09×10^{-2}	7.68×10^{-5}	1.05×10^{-8}	-8.52	-10.26	-4.67	-5.58	-11.09	-21.35	
150	16	2.01	-29.54	1.09×10^{-2}	7.38×10^{-5}	2.34×10^{-8}	-8.18	-9.91	-4.69	-5.59	-11.11	-21.37	
150	14	2.01	-30.42	1.09×10^{-2}	6.07×10^{-5}	3.76×10^{-9}	-8.97	-10.70	-4.78	-5.68	-11.19	-21.45	
150	14	2.01	-30.39	1.09×10^{-2}	5.76×10^{-5}	4.29×10^{-9}	-8.91	-10.65	-4.80	-5.70	-11.21	-21.47	
200	14	2.02	-31.34	1.09×10^{-2}	5.20×10^{-5}	6.17×10^{-9}	-8.87	-9.61	-4.81	-6.07	-11.91	-22.47	
200	14	2.02	-31.31	1.09×10^{-2}	5.40×10^{-5}	6.42×10^{-9}	-8.86	-9.59	-4.80	-6.05	-11.90	-22.45	
200	14	2.03	-31.68	1.07×10^{-2}	4.90×10^{-5}	2.79×10^{-9}	-9.21	-9.94	-4.84	-6.08	-11.92	-22.47	
200	14	2.03	-31.35	1.07×10^{-2}	5.91×10^{-5}	4.92×10^{-9}	-8.97	-9.69	-4.76	-6.00	-11.84	-22.39	
250	14	2.03	-34.18	1.09×10^{-2}	5.62×10^{-5}	2.83×10^{-10}	-10.47	-10.37	-4.76	-6.43	-12.71	-23.71	
250	14	2.03	-34.06	1.09×10^{-2}	6.66×10^{-5}	3.18×10^{-10}	-10.42	-10.32	-4.69	-6.35	-12.64	-23.63	

589 **Appendix B. Thermodynamic relations.**

590 The relations between the solubility product (K_{s0}), the standard enthalpy
 591 of reaction ($\Delta_r H^0$) and isobaric heat capacity (ΔC_P^0) were determined from
 592 van't Hoff's and Kirchhoff's equations,

$$\frac{\delta \ln K_{s0}}{\delta T} = \frac{\Delta_r H_T^0}{RT^2} \quad (B.1)$$

$$\left(\frac{\delta \Delta H^0}{\delta T} \right)_P = \Delta C_P^0 \quad (B.2)$$

593 the symbol R is the ideal gas constant ($J \text{ mol}^{-1} K^{-1}$) and T the temper-
 594 ature in Kelvin (K). The heat capacity (C_P^0 in $J \text{ mol}^{-1} K^{-1}$) is represented
 595 by the Haas and Fisher (1976) equation,

$$\Delta C_P^0 = a_0 + a_1 T + a_2 T^{-2} + a_3 T^{-0.5} + a_4 T^2 \quad (B.3)$$

596 Integration of the C_P equation from the reference temperature T_r to tem-
 597 perature T yields enthalpy,

$$\int_{T_r}^T \Delta C_P^0 dT = \Delta_r H_T^0 - \Delta_r H_{T_r}^0 \quad (B.4)$$

$$\Delta_r H_T^0 = h_{T_r} + a_0 T + \frac{a_1}{2} T^2 - \frac{a_2}{T} + 2a_3 T^{0.5} + \frac{a_4}{3} T^3 \quad (B.5)$$

598 where h_{T_r} is a constant enthalpy term according to,

$$h_{T_r} = \Delta_r H_{T_r}^0 - a_0 T_r - \frac{a_1}{2} T_r^2 + \frac{a_2}{T_r} - 2a_3 T_r^{0.5} - \frac{a_4}{3} T_r^3 \quad (B.6)$$

599 The following integration of the C_P equation allows determining the stan-
 600 dard entropy of reaction ($\Delta_r S^0$),

$$\int_{T_r}^T \frac{\Delta C_P^0}{T} dT = \Delta_r S_T^0 - \Delta_r S_{T_r}^0 \quad (B.7)$$

601 with the definition of a constant entropy term (s_{Tr}) according to,

$$s_{Tr} = \Delta_r S_{T_r}^0 - a_0 \ln T_r - \frac{a_1}{T_r} + \frac{a_2}{2T_r^2} + 2a_3 T_r^{-0.5} - \frac{a_4}{2} T_r^2 \quad (B.8)$$

602 Integration of the Van't Hoff's equation (Eq. B.1) permits relating the
 603 fitted coefficients of Equation 14 ($A - D$) to the standard entropy and en-
 604 thalpy of reaction at reference temperature. For a four parameters equation
 605 ($A_0 - A_3$),

$$\ln K_{s0} = A_0 + A_1 T + A_2/T + A_3 \ln(T) \quad (B.9)$$

606 the following relations can be derived,

$$607 A_0 = A \ln(10) = (s_{Tr} - a_0)/R$$

$$608 A_1 = B \ln(10) = a_1/(2R)$$

$$609 A_2 = C \ln(10) = -h_{T_r}/R$$

$$610 A_3 = D \ln(10) = a_0/R$$

611 **References**

612 Andersen, A.K., Clark, J.G., Larson, P.B., Donovan, J.J., 2017. REE frac-
613 tionation, mineral speciation, and supergene enrichment of the Bear Lodge
614 carbonatites, Wyoming, USA. *Ore Geology Reviews* 89, 780–807.

615 Andersen, A.K., Clark, J.G., Larson, P.B., Neill, O.K., 2016. Mineral chem-
616 istry and petrogenesis of a HFSE(+HREE) occurrence, peripheral to car-
617 bonatites of the Bear Lodge alkaline complex, Wyoming. *American Min-
618 eralogist* 101, 1604–1623.

619 Andersen, A.K., Larson, P.B., Cosca, M.A., 2019. C–O stable isotope geo-
620 chemistry and $40\text{Ar}/39\text{Ar}$ geochronology of the Bear Lodge carbonatite
621 stockwork Wyoming, USA. *Lithos* 324–325, 640–660.

622 Andrehs, G., Heinrich, W., 1998. Experimental determination of REE dis-
623 tributions between monazite and xenotime: potential for temperature-
624 calibrated geochronology. *Chemical Geology* 149, 83–96.

625 Aries, S., Valladon, M., Polv , M., Dupr , B., 2000. A routine method for
626 oxide and hydroxide interference corrections in ICP-MS chemical analysis
627 of environmental and geological samples. *Geostandards Newsletter* 24,
628 19–31.

629 Arinicheva, Y., Gausse, C., Neumeier, S., Brandt, F., Rozov, K., Szenknect,
630 S., Dacheux, N., Bosbach, D., Deissmann, G., 2018. Influence of temper-
631 ature on the dissolution kinetics of synthetic LaPO_4 -monazite in acidic
632 media between 50 and 130 °C. *Journal of Nuclear Materials* 509, 488–495.

633 Bodeving, S., Williams-Jones, A.E., Swinden, S., 2017. Carbonate – silicate
634 melt immiscibility, REE mineralising fluids, and the evolution of the Lofdal
635 Intrusive Suite, Namibia. *Lithos* 268, 383–398.

636 Byrne, R.H., Kim, K.H., 1993. Rare earth precipitation and coprecipitation
637 behavior: The limiting role of PO_4^{3-} on dissolved rare earth concentrations
638 in seawater. *Geochimica et Cosmochimica Acta* 57, 519–526.

639 Cetiner, Z.S., Wood, S.A., Gammons, C.H., 2005. The aqueous geochemistry
640 of rare earth elements. Part XIV. The solubility of rare earth element
641 phosphates from 23 to 150 °C. *Chemical Geology* 217, 147–169.

642 Cherniak, D., Pyle, J., Rakovan, J., 2004. Synthesis of REE and Y phos-
643 phates by Pb-free flux methods and their utilization as standards for elec-
644 tron microprobe analysis and in design of monazite chemical U-Th-Pb
645 dating protocol. *American Mineralogist* 89, 1533–1539.

646 Cook, N.J., Ciobanu, C.L., O’Rielly, D., Wilson, R., Das, K., Wade, B., 2013.
647 Mineral chemistry of Rare Earth Element (REE) mineralization, Browns
648 Ranges, Western Australia. *Lithos* 172-173, 192–213.

649 Du Fou de Kerdaniel, E., Clavier, N., Dacheux, N., Terra, O., Podor, R.,
650 2007. Actinide solubility-controlling phases during the dissolution of phos-
651 phate ceramics. *Journal of Nuclear Materials* 362, 451–458.

652 England, G.L., Rasmussen, B., McNaughton, N.J., Fletcher, I.R., Groves,
653 D.I., Krapez, B., 2002. SHRIMP U–Pb ages of diagenetic and hydrother-
654 mal xenotime from the Archaean Witwatersrand Supergroup of South
655 Africa. *Terra Nova* 13, 360–367.

656 Firsching, F., Brune, S., 1991. Solubility products of the trivalent rare-earth
657 phosphates. *Journal of Chemical and Engineering Data* 36, 93–95.

658 Gausse, C., Szenknect, S., Qin, D.W., Mesbah, A., Clavier, N., Neumeier,
659 S., Bosbach, D., Dacheux, N., 2016. Determination of the solubility of
660 rhabdophanes $\text{LnPO}_4 \cdot 0.667\text{H}_2\text{O}$ ($\text{Ln} = \text{La to Dy}$). *European Journal of*
661 *Inorganic Chemistry* 2016, 4615–4630.

662 Gavrichev, K., Ryumin, M., Khoroshilov, A., Nikiforova, G., Tyurin, A.,
663 Gurevich, V., Starykh, R., 2013. Thermodynamic properties and phase
664 transitions of tetragonal modification of terbium orthophosphate. *Vestnik*
665 *(Herald) of St. Petersburg State University* 4, 186–197 (in Russian).

666 Gavrichev, K., Smirnova, N., Gurevich, V., Danilov, V., Tyurin, A., Ryumin,
667 M., Komissarova, L., 2006. Heat capacity and thermodynamic functions
668 of LuPO_4 in the range 0–320 K. *Thermochimica Acta* 448, 63–65.

669 Geisler, T., Popa, K., Konings, R.J.M., 2016. Evidence for lattice strain
670 and non-ideal behavior in the $(\text{La}_{1-x}\text{Eu}_x)\text{PO}_4$ solid solution from X-ray
671 diffraction and vibrational spectroscopy. *Frontiers in Earth Science* 4, 1–
672 12.

673 Gratz, R., Heinrich, W., 1997. Monazite-xenotime thermobarometry: Ex-
674 perimental calibration of the miscibility gap in the binary system CePO_4 -
675 YPO_4 . *American Mineralogist* 82, 772–780.

676 Gratz, R., Heinrich, W., 1998. Monazite-xenotime thermobarometry. III. Ex-
677 perimental calibration of the partitioning of gadolinium between monazite
678 and xenotime. *European Journal of Mineralogy* 10, 579–588.

679 Guan, Q., Mei, Y., Etschmann, B., Testemale, D., Louvel, M., Brugger, J.,
680 2020. Yttrium complexation and hydration in chloride-rich hydrothermal
681 fluids: A combined ab initio molecular dynamics and in situ X-ray absorp-
682 tion spectroscopy study. *Geochimica et Cosmochimica Acta* 281, 168–189.

683 Gysi, A.P., 2017. Numerical simulations of CO₂ sequestration in basaltic
684 rock formations: Challenges for optimizing mineral-fluid reactions. *Pure
685 and Applied Chemistry* 89, 581–596.

686 Gysi, A.P., Harlov, D., Miron, G.D., 2018. The solubility of monazite
687 (CePO₄), SmPO₄, and GdPO₄ in aqueous solutions from 100 to 250 °C.
688 *Geochimica et Cosmochimica Acta* 242, 143–164.

689 Gysi, A.P., Williams-Jones, A.E., 2013. Hydrothermal mobilization of
690 pegmatite-hosted REE and Zr at Strange Lake Canada: A reaction path
691 model. *Geochimica et Cosmochimica Acta* 122, 324–352.

692 Gysi, A.P., Williams-Jones, A.E., Harlov, D.E., 2015. The solubility of
693 xenotime-(Y) and other HREE phosphates (DyPO₄, ErPO₄ and YbPO₄
694 in aqueous solutions from 100 to 250 °C and p_{sat} . *Chemical Geology* 401,
695 83–95.

696 Haas, J.L., Fisher, J.R., 1976. Simultaneous evaluation and correlation of
697 thermodynamic data. *Am. J. Sci.* 276, 525–545.

698 Haas, J.R., Shock, E.L., Sassani, D.C., 1995. Rare earth elements in hy-
699 drothermal systems: Estimates of standard partial molal thermodynamic
700 properties of aqueous complexes of the rare earth elements at high pres-
701 sures and temperatures. *Geochimica et Cosmochimica Acta* 59, 4329–4350.

702 Harlov, D.E., Meighan, C.J., Kerr, I.D., Samson, I.M., 2016. Mineralogy,
703 chemistry, and fluid-aided evolution of the Pea Ridge Fe Oxide-(Y + REE)
704 deposit, Southeast Missouri, USA. *Economic Geology* 111, 1963–1984.

705 Heinrich, W., Andrehs, G., Franz, G., 1997. Monazite–xenotime miscibility
706 gap thermometry. I. An empirical calibration. *Journal of Metamorphic
707 Geology* 15, 3–16.

708 Helgeson, H.C., Kirkham, D.H., Flowers, G.C., 1981. Theoretical prediction
709 of the thermodynamic behavior of aqueous electrolytes by high pressures
710 and temperatures: IV. Calculation of activity coefficients osmotic coeffi-
711 cients, and apparent molal and standard and relative partial molal prop-
712 erties to 600 °C and 5kb. *American Journal of Science* 281, 1249–1516.

713 Hetherington, C., Jercinovic, M., Williams, M., Mahan, K., 2008. Under-
714 standing geologic processes with xenotime: Composition, chronology, and
715 a protocol for electron probe microanalysis. *Chemical Geology* 254, 133–
716 147.

717 Hirsch, A., Kegler, P., Alencar, I., Ruiz-Fuertes, J., Shelyug, A., Peters, L.,
718 Schreinemachers, C., Neumann, A., Neumeier, S., Liermann, H.P., Navrot-
719 sky, A., Roth, G., 2017. Structural, vibrational, and thermochemical prop-
720 erties of the monazite-type solid solution $\text{La}_{1-x}\text{Pr}_x\text{PO}_4$. *Journal of Solid
721 State Chemistry* 245, 82–88.

722 Hofstra, A.H., Meighan, C.J., Song, X., Samson, I., Marsh, E.E., Lowers,
723 H.A., Emsbo, P., Hunt, A.G., 2016. Mineral thermometry and fluid in-
724 clusion studies of the Pea Ridge iron oxide-apatite-rare earth element de-

725 posit, Mesoproterozoic St. Francois Mountains Terrane, Southeast Mis-
726 souri, USA. *Economic Geology* 111, 1985–2016.

727 Ji, Y., Beridze, G., Bosbach, D., Kowalski, P.M., 2017. Heat capacities
728 of xenotime-type ceramics: An accurate ab initio prediction. *Journal of*
729 *Nuclear Materials* 494, 172–181.

730 Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92: A software
731 package for calculating the standard molal thermodynamic properties of
732 minerals gases, aqueous species, and reactions from 1 to 5000 bar and 0 to
733 1000 °C. *Computers & Geosciences* 18, 899–947.

734 Jonasson, R.G., Bancroft, G.M., Nesbitt, H.W., 1985. Solubilities of some
735 hydrous REE phosphates with implications for diagenesis and sea water
736 concentrations. *Geochimica et Cosmochimica Acta* 49, 2133–2139.

737 Kestin, J., Sengers, J., Kamgar-Parsi, B., Levelt Sengers, J., 1984. Ther-
738 mophysical properties of fluid H₂O. *Journal of Physical and Chemical*
739 *Reference data* 13, 175–183.

740 Kielland, J., 1937. Individual activity coefficients of ions in aqueous solutions.
741 *Journal of the American Chemical Society* 59, 1675–1678.

742 Kulik, D.A., Wagner, T., Dmytrieva, S.V., Kosakowski, G., Hingerl, F.F.,
743 Chudnenko, K.V., Berner, U.R., 2013. GEM-Selektor geochemical model-
744 ing package: Revised algorithm and GEMS3K numerical kernel for coupled
745 simulation codes. *Computational Geosciences* 17, 1–24.

746 Li, Y., Kowalski, P.M., Blanca-Romero, A., Vinograd, V., Bosbach, D., 2014.

747 Ab initio calculation of excess properties of $\text{La}_{1-x}(\text{Ln,An})_x\text{PO}_4$ solid solu-
748 tions. *Journal of Solid State Chemistry* 220, 137–141.

749 Liu, X., Byrne, R.H., 1997. Rare earth and yttrium phosphate solubilities in
750 aqueous solution. *Geochimica et Cosmochimica Acta* 61, 1625–1633.

751 Louvel, M., Bordage, A., Testemale, D., Zhou, L., Mavrogenes, J., 2015.
752 Hydrothermal controls on the genesis of REE deposits: Insights from an
753 in situ XAS study of Yb solubility and speciation in high temperature
754 fluids. *Chemical Geology* 417, 228–237.

755 Mair, P., Tropper, P., Harlov, D.E., Manning, C.E., 2017. The solubility of
756 CePO_4 monazite and YPO_4 xenotime in $\text{KCl-H}_2\text{O}$ fluids at 800 °C and 1.0
757 GPa: Implications for REE transport in high-grade crustal fluids. *Ameri-*
758 *can Mineralogist* 102, 2457–2466.

759 McDonough, W.F., Sun, S., 1995. The composition of the Earth. *Chemical*
760 *Geology* 120, 223–253.

761 McNaughton, N.J., Rasmussen, B., 2018. Geochemical characterisation of
762 xenotime formation environments using U–Th. *Chemical Geology* 484,
763 109–119.

764 Mercer, C.N., Watts, K.E., Gross, J., 2020. Apatite trace element geochem-
765 istry and cathodoluminescent textures – A comparison between regional
766 magmatism and the Pea Ridge IOAREE and Boss IOCG deposits, south-
767 eastern Missouri iron metallogenic province, USA. *Ore Geology Reviews*
768 116, 1–22.

769 Mesbah, A., Clavier, N., Elkaim, E., Szenknect, S., Dacheux, N., 2017. In
770 pursuit of the rhabdophane crystal structure: From the hydrated mono-
771 clinic $\text{LnPO}_4 \cdot 0.667\text{H}_2\text{O}$ to the hexagonal LnPO_4 (Ln = Nd, Sm, Gd, Eu
772 and Dy). *Journal of Solid State Chemistry* 249, 221–227.

773 Migdisov, A.A., Guo, X., Nisbet, H., Xu, H., Williams-Jones, A.E., 2019.
774 Fractionation of REE, U, and Th in natural ore-forming hydrothermal sys-
775 tems: Thermodynamic modeling. *Journal of Chemical Thermodynamics*
776 128, 305–319.

777 Migdisov, A.A., Williams-Jones, A.E., 2007. An experimental study of the
778 solubility and speciation of neodymium (III) fluoride in F-bearing aqueous
779 solutions. *Geochimica et Cosmochimica Acta* 71, 3056–3069.

780 Migdisov, A.A., Williams-Jones, A.E., 2014. Hydrothermal transport and
781 deposition of the rare earth elements by fluorine-bearing aqueous liquids.
782 *Mineralium Deposita* 49, 987–997.

783 Migdisov, A.A., Williams-Jones, A.E., Brugger, J., Caporuscio, F.A., 2016.
784 Hydrothermal transport deposition, and fractionation of the REE: Exper-
785 imental data and thermodynamic calculations. *Chemical Geology* 439,
786 13–42.

787 Migdisov, A.A., Williams-Jones, A.E., Wagner, T., 2009. An experimental
788 study of the solubility and speciation of the Rare Earth Elements (III) in
789 fluoride- and chloride-bearing aqueous solutions at temperatures up to 300
790 °C. *Geochimica et Cosmochimica Acta* 73, 7087–7109.

791 Miron, G.D., Kulik, D.A., Dmytrieva, S.V., Wagner, T., 2015. GEMSFITS:
792 Code package for optimization of geochemical model parameters and in-
793 verse modeling. *Applied Geochemistry* 55, 28–45.

794 Navrotsky, A., Lee, W., Mielewczik-Gryn, A., Ushakov, S.V., Anderko, A.,
795 Wu, H., Riman, R.E., 2015. Thermodynamics of solid phases containing
796 rare earth oxides. *Journal of Chemical Thermodynamics* 88, 126–141.

797 Neumeier, S., Kegler, P., Arinicheva, Y., Shelyug, A., Kowalski, P.M.,
798 Schreinemachers, C., Navrotsky, A., Bosbach, D., 2017. Thermochem-
799 istry of $\text{La}_{1-x}\text{Ln}_x\text{PO}_4$ -monazites (Ln = Gd, Eu). *Journal of Chemical*
800 *Thermodynamics* 105, 396–403.

801 Ni, Y., Hughes, J.M., Mariano, A.N., 1995. Crystal chemistry of the monazite
802 and xenotime structures. *American Mineralogist* 80, 21–26.

803 Nikiforova, G., Ryumin, M., Gavrichev, K., Gurevich, V., 2012. High-
804 temperature thermodynamic properties of LuPO_4 . *Inorganic Materials*
805 48, 841–844.

806 Ochiai, A., Utsunomiya, S., 2017. Crystal chemistry and stability of hydrated
807 rare-earth phosphates formed at room temperature. *Minerals* 7, 1–22.

808 Perry, E.P., Gysi, A.P., 2018. Rare earth elements in mineral deposits: Spe-
809 ciation in hydrothermal fluids and partitioning in calcite. *Geofluids* 2018,
810 1–19.

811 Poitrasson, F., Hanchar, J.M., Schaltegger, U., 2002. The current state and
812 future of accessory mineral research. *Chemical geology* 191, 3–24.

813 Popa, K., Konings, R., Geisler, T., 2007. High-temperature calorimetry of
814 $(La_{1-x}Ln_x)PO_4$ solid solutions. *Journal of Chemical Thermodynamics* 39,
815 236–239.

816 Pourtier, E., Devidal, J.L., Gibert, F., 2010. Solubility measurements of syn-
817 thetic neodymium monazite as a function of temperature at 2 kbars, and
818 aqueous neodymium speciation in equilibrium with monazite. *Geochimica
819 et Cosmochimica Acta* 74, 1872–1891.

820 Rasmussen, B., Fletcher, I.R., Muhling, J.R., Gregory, C.J., Wilde, S.A.,
821 2011. Metamorphic replacement of mineral inclusions in detrital zircon
822 from Jack Hills, Australia: Implications for the Hadean Earth. *Geology*
823 39, 1143–1146.

824 Rasmussen, B., Fletcher, I.R., Muhling, J.R., Thorne, W.S., Broadbent,
825 G.C., 2007. Prolonged history of episodic fluid flow in giant hematite
826 ore bodies: Evidence from in situ U–Pb geochronology of hydrothermal
827 xenotime. *Earth and Planetary Science Letters* 258, 249–259.

828 Richter, L., Diamond, L.W., Atanasova, P., Banks, D.A., Gutzmer, J., 2018.
829 Hydrothermal formation of heavy rare earth element (HREE)–xenotime
830 deposits at 100 °C in a sedimentary basin. *Geology* 46, 263–266.

831 Robinson, R.A., Stokes, R.M., 1968. *Electrolyte solutions*. Butterworths,
832 London .

833 Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of
834 interatomic distances in halides and chalcogenides. *Acta Crystallographica
835 A* 32, 751–767.

836 Shelyug, A., Mesbah, A., Szenknect, S., Clavier, N., Dacheux, N., Navrotsky,
837 A., 2018. Thermodynamics and stability of rhabdophanes, hydrated rare
838 earth phosphates $\text{REPO}_4 \cdot n \text{ H}_2\text{O}$. *Frontiers in Chemistry* 6, 1–11.

839 Shock, E., Sassani, D., Willis, M., Sverjensky, D., 1997. Inorganic species in
840 geologic fluids: correlations among standard molal thermodynamic proper-
841 ties of aqueous ions and hydroxide complexes. *Geochimica et Cosmochim-
842 ica* 61, 907–950.

843 Shock, E.L., Helgeson, H.C., 1988. Calculation of the thermodynamic and
844 transport properties of aqueous species at high pressures and temperatures:
845 Correlation algorithms for ionic species and equation of state predictions
846 to 5 kb and 1000 °C. *Geochimica et Cosmochimica Acta* 52, 2009–2036.

847 Shock, E.L., Helgeson, H.C., Sverjensky, D.A., 1989. Calculation of the ther-
848 modynamic and transport properties of aqueous species at high pressures
849 and temperatures: Standard partial molal properties of inorganic neutral
850 species. *Geochimica et Cosmochimica Acta* 53, 2157–2183.

851 Shock, E.L., Oelkers, E.H., Johnson, J.W., Sverjensky, D.A., Helgeson, H.C.,
852 1992. Calculation of the thermodynamic properties of aqueous species at
853 high pressures and temperatures. Effective electrostatic radii dissociation
854 constants and standard partial molal properties to 1000 °C and 5 kbar.
855 *Journal of the Chemical Society, Faraday Transactions* 88, 803–826.

856 Subramani, T., Rafiuddin, M.R., Shelyug, A., Ushakov, S., Mesbah, A.,
857 Clavier, N., Qin, D., Szenknect, S., Elkaim, E., Dacheux, N., Navrot-
858 sky, A., 2019. Synthesis, crystal structure, and enthalpies of formation of

859 churchite-type $\text{REPO}_4 \cdot 2\text{H}_2\text{O}$ (RE = Gd to Lu) Materials. *Crystal Growth*
860 and *Design* 19, 4641–4649.

861 Tanger, J.C., Helgeson, H.C., 1988. Calculation of the thermodynamic and
862 transport properties of aqueous species at high pressures and temperatures:
863 Revised equations of state for the standard partial molal properties of ions
864 and electrolytes. *American Journal of Science* 288, 19–98.

865 Tanis, E.A., Simon, A., Tschauner, O., Chow, P., Xiao, Y., Shen, G., Han-
866 char, J.M., Frank, M., 2012. Solubility of xenotime in a 2 M HCl aqueous
867 fluid from 1.2 to 2.6 GPa and 300 to 500 °C. *American Mineralogist* 97,
868 1708–1713.

869 Tropper, P., Manning, C.E., Harlov, D.E., 2011. Solubility of CePO_4 mon-
870 azite and YPO_4 xenotime in H_2O and $\text{H}_2\text{O}-\text{NaCl}$ at 800 °C and 1GPa:
871 Implications for REE and Y transport during high-grade metamorphism.
872 *Chemical Geology* 282, 58–66.

873 Tropper, P., Manning, C.E., Harlov, D.E., 2013. Experimental determina-
874 tion of CePO_4 and YPO_4 solubilities in $\text{H}_2\text{O}-\text{NaF}$ at 800 °C and 1 GPa:
875 Implications for rare earth element transport in high-grade metamorphic
876 fluids. *Geofluids* 13, 372–380.

877 Tyurin, A., Ryumin, M., Khoroshilov, A., Gurevich, V., Gavrichev, K., 2020.
878 Thermodynamic functions of holmium orthophosphate HoPO_4 in the range
879 9–1370 K. *Thermochimica Acta* 683, 1–6.

880 Ushakov, S.V., Helean, K.B., Navrotsky, A., Boatner, L.A., 2001. Thermo-

881 chemistry of rare-earth orthophosphates. *Journal of Materials Research*
882 16, 2623–2633.

883 Van Hoozen, C.J., Gysi, A.P., Harlow, D.E., 2020. The solubility of monazite
884 (LaPO_4 , PrPO_4 , NdPO_4 , and EuPO_4) endmembers in aqueous solutions
885 from 100 to 250 °C. *Geochimica et Cosmochimica Acta* 280, 302–316.

886 Wagner, T., Kulik, D.A., Hingerl, F.F., Dmytrieva, S.V., 2012. GEM-
887 Selektor geochemical modeling package: TSolMod library and data inter-
888 face for multicomponent phase models. *Canadian Mineralogist* 50, 1173–
889 1195.

890 Wall, F., Niku-Paavola, V., Storey, C., Müller, A., Jeffries, T., 2008.
891 Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: Unusually low
892 LREE:HREE ratio in carbonatite, and the first dating of xenotime over-
893 growths on zircon. *Canadian Mineralogist* 46, 861–877.

894 Wood, S.A., Palmer, D.A., Wesolowski, D.J., Bénézeth, P., 2002. The aque-
895 ous geochemistry of the rare earth elements and yttrium. Part XI. The
896 solubility of $\text{Nd}(\text{OH})_3$ and hydrolysis of Nd^{3+} from 30 to 290 °C at sat-
897 urated water vapor pressure with in-situ pH_m measurement. *Geochemical*
898 *Society Special Publication* 7, 229–256.

899 Zhou, L., Mavrogenes, J., Spandler, C., Li, H., 2016. A synthetic fluid
900 inclusion study of the solubility of monazite-(La) and xenotime-(Y) in in
901 $\text{H}_2\text{O-Na-K-Cl-F-CO}_2$ fluids at 800 °C and 0.5 GPa. *Chemical Geology* 442,
902 121–129.

903 Zi, J.W., Rasmussen, B., Muhling, J.R., Fletcher, I.R., Thorne, A.M., John-
904 son, S.P., Cutten, H.N., Dunkley, D.J., Korhonen, F.J., 2015. In situ
905 U–Pb geochronology of xenotime and monazite from the Abra polymetal-
906 lic deposit in the Capricorn Orogen, Australia: Dating hydrothermal min-
907 eralization and fluid flow in a long-lived crustal structure. *Precambrian*
908 *Research* 260, 91–112.