
Community Cleanup: Incentivizing Network

Hygiene via Distributed Attack Reporting

Yu Liu, Craig A. Shue

Worcester Polytechnic Institute

{yliu25, cshue}@wpi.edu

Abstract—Residential networks are difficult to secure
due to resource constraints and lack of local security
expertise. These networks primarily use consumer-grade
routers that lack meaningful security mechanisms, provid-
ing a safe-haven for adversaries to launch attacks, includ-
ing damaging distributed denial-of-service (DDoS) attacks.
Prior efforts have suggested outsourcing residential net-
work security to experts, but motivating user adoption has
been a challenge. This work explores combining residential
SDN techniques with prior work on collaborative DDoS
reporting to identify residential network compromises. This
combination provides incentives for end-users to deploy the
technique, including rapid notification of compromises on
their own devices and reduced upstream bandwidth con-
sumption, while incurring minimal performance overheads.

Keywords-Software-defined networking, residential net-
work security, distributed denial-of-service attacks.

I. INTRODUCTION

Modern residential network security faces multiple

challenges: a lack of security expertise in each home,

a rising number of consumer-grade Internet of Things

(IoT) devices, and capacity improvements that make res-

idential networks ripe for attack. Internet-connected em-

bedded devices pose a unique challenge since they may

be deployed for long periods but without maintenance

from either the end-user or manufacturers. Attackers

have recognized the potential of these devices, including

in the Mirai botnet that launched distributed denial-of-

service attacks in excess of 1 Tbps [1].

Residential networks typically lack dedicated secu-

rity hardware. Instead, they typically leverage network

address translation (NAT), which has the side-effect of

blocking in-bound connections by default, as a security

measure [2]. However, NAT was not designed for se-

curity and has substantial limitations when used in this

fashion [3]. Further, attackers are well aware of NAT

implementations and design their attacks to circumvent

them [4].

The presence of vast swaths of insecure networks

makes the Internet, as a whole, less secure. Mobile

devices may be compromised on residential networks

and later physically move into corporate networks where

the contamination spreads [5]. Insecure networks also

offer opportunities for adversaries to anonymize their

traffic and attack with impunity.

Although distributed denial-of-service (DDoS) attacks

are a challenge for residential networks, they also rep-

resent an opportunity to inform home users that their

security has been breached. Typically, residential users

are unaware when their devices are compromised. Own-

ers of devices participating in the Mirai botnet had no

way of knowing their systems were attacking others

on the Internet. If informed of a compromised device,

many owners would remediate the issue to avoid nega-

tive consequences for themselves and others. In DDoS

attacks, a victim learns the IP addresses of a large set

of attacking hosts, which are typically compromised

machines organized in a botnet. If victims could easily

report these attacks, the device owners could learn about

the compromise and remediate the devices, lessening the

flood and preventing the devices from being involved in

future attacks.

To address these problems, the research community

has explored ways to connect experts with home net-

works. Feamster [6] recommends outsourcing all secu-

rity and network management to experts. With Project

BISmark [7], a remote service provider is able to period-

ically measure network performance across a collection

of residential networks. Taylor et al. [8] found that cloud-

based software-defined network controllers would have

acceptable latency for the vast majority of residential

networks in the United States even when deploying fine-

grained flow control. This suggests external providers

could feasibly manage network access control for resi-

dential networks.

In their Active Internet Traffic Filtering (AITF)

work [9], Argyraki and Cheriton proposed a cooperative

filtering scheme in which victims could issue filtering

requests to Internet Service Providers (ISPs) close to

attacking hosts, preventing unwanted traffic from saturat-

ing bottleneck network links. A significant challenge for

the AITF work was a lack of incentives for deployers:

the filtering ISPs would have to modify their routing

infrastructure to support AITF, but those ISPs did not

directly receive benefits in return.

In this work, we explore opportunities to provide all

deployers with incentives to participate. We combine

fine-grained SDN access control with AITF’s cooper-

ative traffic filtering techniques. We explore a system

where SDN controllers from different service providers,

which can either be hosted by ISP or third party, could

automatically discover each other, report attacks, and

cooperate on network filtering. In doing so, we make

the following contributions:

• Exploration of Incentives: We examine how each

of the stakeholders in the system benefit from this

approach. These stakeholders include the owners

of compromised devices, the attacked victims, and

SDN service providers for both the attackers and

victims (Section IV).

• Architecture Design and Implementation: We

provide an overview of how the approach works,

a protocol that allows the SDN controllers and

consumer-grade residential routers to identify and

verify each other, and implement a distributed at-

tack reporting system (Sections III and V).

• Security and Performance Evaluation: We eval-

uate the approach’s reporting from a security per-

spective and analyze the performance at each device

(Section VI). We find that the approach can report

and verify a compromised host within seconds

and introduces few performance overheads in the

controllers and routers.

II. BACKGROUND AND RELATED WORK

In this section, we provide background and discus-

sion on distributed denial-of-service (DDoS) attacks,

software-defined networking (SDN), and efforts to pro-

tect residential networks.

A. Distributed Denial-of-Service (DDoS) Attacks

DDoS attacks, in which attackers exhaust a victim’s

resources through a large volume of requests, are a com-

mon and on-going phenomenon [10]. Botnets of compro-

mised machines can be large, encompassing millions of

machines [11]. A recent botnet, Mirai, is designed to run

on compromised Internet of Things (IoT) devices [1] and

continues to evolve [10].

The research community has explored methods to

detect and mitigate DDoS attacks. Prior detection efforts

have included statistical and mathematical methods to

distinguish DDoS traffic from benign traffic [12]–[14],

an analysis of network distance between the destination

and origin [15], the application of deep learning [16],

and even entropy comparisons of flows [17]. Some

approaches have looked at ISP-wide data to detect

botnets [18], though botnets typically operate globally

across ISPs [19].

Once an attack is detected, defenders can try to

mitigate it. Some endpoint filtering approaches have used

IP history and reputation to determine malicious and

legitimate senders [20], [21]. However, with IP rotation

and sharing in DHCP and NAT environments, IP history

and reputation may have limited value. Other endpoint

solutions include the work by Buragohain et al. [22],

which performs flow-modeling on a SDN controller, and

the work by Rebecchi et al. [23], which performs stateful

anomaly detection on traffic at a router. A common

limitation for these approaches is that filtering at the

endpoint, or at network devices in the same LAN as

the endpoint, is ineffective when the saturated bottleneck

network link is between the LAN and its ISP. Such “last

mile” bottleneck links are common on the Internet.

Other approaches have sought to employ packet filter-

ing before the traffic reaches the victim’s bottleneck link.

Weniger et al. [24] propose a “moving target” mecha-

nism in which ISP customers have multiple addresses

and can unsubscribe from an address upon detecting an

attack. This allows the upstream ISP to filter traffic to

an unsubscribed address. Mahajan et al. [25] propose a

method to send filtering requests to upstream routers.

Likewise, in their work on AITF, Argyraki et al. [9]

designed a filtering protocol for routers at both the vic-

tim and attacker networks to cooperatively filter traffic.

These approaches have powerful filtering capabilities,

but they require cooperation from a set of ISP routers,

ideally some at high-traffic peering points. The reliance

on ISP cooperation and lack of incentives for ISPs to

deploy this approach have resulted in little adoption of

these techniques. In this work, we shift the filtering load

to SDN controllers operated by any service providers

who have incentives to report and filter malicious traffic.

B. OpenFlow and Software-Defined Networking

The software-defined networking (SDN) paradigm

separates control decisions from data plane processing,

allowing a remote control system to manage the rules

cached in network switches and routers. The Open-

Flow [26] protocol allows routers and switches to elevate

packets that do not match any locally cached rules

to an OpenFlow controller. The controller can respond

by providing new rules and instructions on how to

handle each packet. Unlike the routers and switches,

the controller has visibility across the network and runs

on standard computer hardware, allowing it to perform

more sophisticated traffic analysis. The flow rules can

specify each criteria for the fields in common layer 2, 3,

and 4 network headers along with an associated action.

These fields can be wildcarded or require specified

values for matching purposes. A flow rule is considered

“fine-grained” if it fully specifies a flow consisting of

the source and destination IP addresses, the transport

layer protocol, and the source and destination transport

layer ports. With careful caching strategies, OpenFlow

controllers can gain visibility into network traffic while

limiting overheads with rule caching so that traffic is

processed quickly.

A significant amount of SDN research has focused on

data center or enterprise networks. However, residential

networks typically have different characteristics, includ-

ing network throughput, asymmetries between upload

and download bandwidth, and management practices.

While each residential network tends to be fairly small,

they play an important role on the Internet. Recent

surveys have shown that around 89% of households have

multiple computers at home and around 82% of US

households have Internet connections [27]. Around 76%

percent of US home networks use a wireless router [28]

to share network resources. These networks provide

connectivity to a range of Internet-enabled devices, with

some predictions of over 442 million connected home

devices by 2020 in the United States alone [28]. Internet

of Things devices represent a unique concern because of

their long deployment periods and the fact that they may

not be updated and patched as frequently as traditional

computers, tablets, or smartphones.

In a 2010 position paper, Feamster [6] proposed

outsourcing residential security management to services

operating in cloud infrastructure. Subsequent work ex-

plored the feasibility of doing so. Taylor et al. [8] found

that 90% of residential networks in the United States

were within a 50 millisecond round-trip of a public

cloud data center. Those results suggest that cloud-based

service providers could operate SDN controllers that

monitor network flows while causing little delay. Other

work examined the potential for ISP-hosted SDN con-

trollers [18] since they would introduce lower latency.

However, the reliance upon ISP cooperation has limited

the deployment of these proposed approaches.

In this work, we explore an approach that could

operate on an SDN controller in either public cloud

data centers or in ISP-provided data centers. This grants

independence from specific ISPs while still leveraging

close network proximity, where available.

III. ARCHITECTURE AND DESIGN

We now describe the architecture and components we

will use to combine SDN techniques with distributed

attack reporting. We describe the incentives for this

approach in Section IV and describe the implementation

details of this design in Section V.

In Figure 1, we show an example network configura-

tion. In this diagram, we have an attack target, which we

call the “victim host,” that is is connected via a router

to the Internet. The victim router can be a commodity

consumer-grade wireless router, such as the variety used

in 76% of households [28]. The router is configured

to run Open vSwitch [29], a popular OpenFlow agent

implementation. It communicates with an OpenFlow

controller, labeled the “victim controller,” which is run

by a security service provider. The victim controller

could run in a public cloud data center, ISP-hosted

data center, or other location. In our model, we assume

that the controller is not in the same LAN with the

victim host or router. The victim router and controller

are connected to the Internet via ISPs, which we merge

together in a simple box labeled “Internet.” We depict the

bottleneck bandwidth link as being between the victim

router and its ISP, since this is the common “last mile”

link that constrains throughput.

Since network attacks are illegal in many jurisdictions,

the actual perpetrator of a DDoS attack will often use

compromised systems to actually send the attack traffic

to the victim. We call the compromised device a “pawn”

to indicate that it is working for an attacker (though the

device owner is unaware that this is occurring). In our

example network, we show a pawn host connected to

its own router, which connects with its own controller.

The pawn could share an ISP with the victim or use

an ISP that is distant in the topology. Multiple pawns

could be working in concert as part of a botnet. We

consider the pawn to be fully controlled by the attacker.

However, the pawn’s router and pawn’s controller are

managed by a security service provider that works for a

legitimate device owner who does not realize the device

has been compromised. Accordingly, the pawn’s router

and controller may curtail the pawn’s activities upon

receiving evidence of a compromise.

In the event of an attack, the victim’s controller will

initiate communication with the pawn’s controller to

request filtering of the traffic. The two controllers may

filter the traffic with an OpenFlow flow modification

(FlowMod) message that indicates that packets match-

ing the unwanted flow’s IP addresses and ports should

be discarded. The mechanisms to discover and verify

the responsible controllers will be described later in this

section.

A. Threat Model

The defender’s goal is to report and stop unwanted

traffic as quickly as possible. We assume the defender

has an existing technique to determine which traffic

is unwanted. The victim can request filtering from the

victim router–explicitly or via continual connection re-

set messages–trusting the security service provider and

considering the victim router and victim controller to be

a trusted computing base (TCB).

The owner of the compromised device likewise trusts

the security service provider operating the pawn router

and pawn controller and considers them in a TCB.

The pawn’s owner wants to know if the pawn is ever

compromised and to prevent it from engaging in attacks.

request and then attempts to contact the controller asso-

ciated with the pawn. It does so by sending a packet

to the pawn’s public IP address using another pre-

defined, globally-known port value for filtering requests.

The victim controller supplies all the information it

received from the victim router and generates its own

value, DST_COOKIE, that will serve as a nonce and

authenticator for the pawn controller. It then sends the

request to the pawn router.

The pawn router listens for filtering requests on the

well-known request port. If it sees requests to its own

IP address (if the router uses NAT) or to IPs associated

with its own hosts (when NAT is not in use), it extracts

the packet and determines whether it is a valid filtering

request. It examines the packet to determine the flow that

should be filtered and the associated SRC_COOKIE. If it

finds the extracted cookie in its database, and the cookie

is associated with the indicated flow values, it knows

the filtering request is valid and sends it on to the pawn

controller. If there is a mismatch in cookie value and

flow, or if either of the fields is invalid, the router simply

drops the filter request packet.

Upon receiving the filter request packet from the

pawn router, the pawn controller also verifies the

SRC_COOKIE and flow details match. If so, it sends an

OpenFlow FlowMod to the pawn router that discards

any subsequent packets in the flow. It then uses the

victim controller’s IP address, which is the source of

the request, to send an acknowledgement of the filtering

request. By including the DST_COOKIE that the victim

controller supplied, the pawn controller confirms its

agency for the pawn. When the victim controller receives

this acknowledgment, it can verify the DST_COOKIE

and know that the pawn controller has received the report

and may start filtering the traffic.

IV. EXPLORATION OF INCENTIVES

While residential users care and are willing to make

sacrifices to improve their computer security [30], [31],

they need tangible benefits to encourage their use of

security technology. For security service providers to

help these residential users, they need a way to prove

their value to these end users to justify their service

charges. In this section, we explore the incentives for

both these stakeholders.

A. Incentives for Residential Users

Home users want to have confidence that they can trust

their computing devices (i.e., they are not compromised).

With our approach, any victim under attack has an au-

tomated way to report the incident. This allows security

service providers to link attack reports and inform device

owners of any allegations. In essence, this model crowd-

sources attack intelligence and can quickly notify device

owners about problems.

Home users also want high bandwidth network con-

nections so they spend less time waiting for online

services. When a device is compromised and participates

in a DDoS attack, it uses upstream bandwidth, which

tends to be more limited for residential users [32].

With filtering requests from victims, the attacker’s router

blocks the traffic from compromised systems locally, pre-

venting the attacks from consuming upstream capacity

between the user’s router and ISP.

While it may also appear that a victim of a DDoS

attack would gain all the benefits of remote filtering

(a goal of the original AITF paper), that outcome is

spoiled by any pawns that do not deploy the technique.

Unfortunately, perfect deployment may be elusive on

the Internet. Instead, the costs of a DDoS attack will

become higher for adversaries as adoption expands,

since more bots will be blocked by source filtering

and the unfiltered bots will command a price premium.

Over time, organizations may begin prioritizing traffic

for hosts that operate in compliant networks, further

incentivizing adoption. This may affect the economics

of DDoS attacks as a whole, but are unlikely to yield

tangible benefits for the victim of any given attack.

B. Incentives for Security Service Providers

Service providers need ways to provide evidence that

their services are worthwhile to customers. With dis-

tributed attack intelligence, they can show customers the

number of remote parties each device interacted with and

the number of parties that deploy the technique. They

can report problems and track the number of reported

issues. By showing users they are collecting reports, they

assure users that compromises are likely to be identified

quickly.

If a device does become compromised and the service

provider must filter its flows, the service provider can

provide meaningful feedback about who is reporting

the attack, the device involved, and the number of

complaints. End-users may have difficulty understanding

the technical details of a compromise or network attack,

but quantified data about the number and variety of

reports may be more intuitive and compelling. Service

providers can then provide guidance on remediation

and an analysis on whether other devices may have

likewise been compromised. Further, service providers

can use attack reports to identify the command-and-

control infrastructure of botnets by analyzing traffic that

precedes an attack and to perform detailed analysis on

traffic when reports are received.

V. IMPLEMENTATION

To explore the distributed reporting approach, we

create an implementation on consumer-grade residential

network routers. We flash three TP-Link Archer C7

Pawn
controller

ISP Router
(ISP/Internet)

Pawn
Machine

LAN PORTS

OVS Agent

Libpcap
Module

WAN
Port

1

2
4 5

6

7

8

3

9

Attack traffic

Fig. 3. This figure shows the interactions between pawn host and the
OpenFlow router and controller. The process begins with the attack
traffic from the pawn (line 1) which the pawn OVS router elevates to
the pawn controller (lines 2, 3, 4). The pawn controller then generates
a SRC_COOKIE and sends it back to the OVS router (lines 5 and 6).
The OVS agent then transmits the packet to the victim (line 7), which
is intercepted by a libpcap agent that stores the cookie value before
sending it onward to the victim (lines 8 and 9).

WAN
Port

Libpcap
Module

NAT Check

IPTABLES

LAN PORTS

2

RST Check

3

4

ISP Router
(ISP/Internet)

Victim
controller

6

1

78

9

10

11

5

12

Victim

Attack traffic
Rejection packets
Filter request
Controller requests

Fig. 4. The pawn’s transmission is forwarded to the victim router
(lines 1 and 2). On the victim router, a libpcap agent extracts and
stores the SRC_COOKIE locally before they are processed by the
router’s NAT and firewall components. If the packet is sent to a port
without a NAT mapping, the router issues a filter request to the victim
controller (lines 4, 5, 6, 7). If a NAT entry exists, the router sends
the packets to the victim (line 10). If the destination issues a large
number of resets (line 11), the router likewise requests a filter request
(lines 12, 6, 7). When processing a filter request, the controller inserts
a DST_COOKIE and reports the attack to the pawn controller (lines 8
and 9).

v2.0 routers with the OpenWrt [33] firmware, which

is a popular open source router operating system. We

configure two of the three router to run the Open vSwitch

(OVS) OpenFlow agent. We host the pawn controller

and victim controller in VMs on a laptop running OS X.

That laptop has four cores and 16GBytes RAM. Each

controller runs POX [34], a Python-based OpenFlow

controller and stores records using a MySQL database.

To model an upstream ISP router, we place the router

that is not running OVS in the center of the network to

link the other two via LAN ports. We further connect

the laptop running the controller VMs to a LAN port on

LAN PORTS

ISP Router
(ISP/Internet)

Pawn
controller

Victim
controller

1

WAN
Port

Libpcap
Module

2

3

4 5
7

OVS Agent

Pawn
Machine

8

6

9

10

Attack traffic
Controller request

Attacker controller confirmation
Attacker controller pushes flow mod

Fig. 5. The victim router’s attack report (line 1) is sent to the pawn
router’s libpcap module (line 2). That module extracts and verifies
the SRC_COOKIE in the request and compares it to the supplied flow
information. If the request is valid, the router sends the request to the
pawn controller (lines 3 and 4). The pawn controller again verifies the
SRC_COOKIE and flow information. If valid, the controller records
the report and pushes a FlowMod to the pawn router to filter the flow
(lines 5 and 6). Meanwhile, it sends an acknowledgment to the victim
controller (lines 7 and 8). Subsequent packets to the victim from the
pawn are thus dropped due to the new rule (lines 9 and 10).

the ISP router. This upstream ISP router is configured

so that each physical LAN port is on a separate VLAN

and we use the tc command to constrain the downsteam

bandwidth to 5Mbps to allow attack modeling without

any testing hardware being a limiting factor. We manu-

ally configure the IP addresses, subnets, and routes on

the routers and configure IP aliases on the pawn host

to enable a single system to simulate multiple attacking

hosts.

One of the two remaining TP-Link routers is desig-

nated as the pawn’s router and the other is designated as

the victim’s router. The pawn’s router elevates new flows

to the pawn controller to obtain the SRC_COOKIE as

described in Section III-B. Upon receiving a response,

the pawn router stores the SRC_COOKIE locally in

memory and then sends the packet on to the victim

(Steps 2-6 in Figure 3).

The victim router is configured to examine incoming

packets for IP options that could be associated with a

SRC_COOKIE. Using the libpcap library, the router

identifies cookies and associates them with flow data,

including the source IP address, the transport layer pro-

tocol, and the transport layer source port. To test our sys-

tem, we implemented an anomaly detection program that

runs on the victim router. The program monitors packets

to identify any indications the traffic is unwanted, such

as ICMP errors or TCP reset packets, and filters the flow

when a threshold is reached (e.g., 20 rejections/second in

our experiments). Prior work analyzing TCP reset rates

by Arlitt et al. [35] and Bilal et al. [36] shows some

variation in reset rates based on client activity, but a

high volume of resets when bandwidth is saturated is a

potential attack indicator.

While the victim router’s downstream bandwidth may

be saturated during a DDoS attack, the victim router

can control the upstream channel and prioritize attack

reports over any other messages. Accordingly, the victim

router can locally filter the unwanted flow and send

a request to the victim controller to filter the traffic

at the source, if possible. To do so, the victim router

supplies the controller with the SRC_COOKIE that it

previously logged, if any, along with details about the

flow, including addresses, ports, transport protocol.

Upon receiving a filtering request, the victim con-

troller crafts an UDP packet with the pawn’s IP address

as the destination and a globally-known filter service

port as the destination port. In the UDP packet, the

victim controller provides the pawn’s IP address and port

(which may be empty for ICMP), the victim’s IP address,

the transport layer protocol, and the SRC_COOKIE. The

victim controller also generates and includes a random

nonce value, the DST_COOKIE, that can be used to

acknowledge the filter request. The victim router caches

this information in a local database and then sends the

UDP packet towards the pawn.

The pawn router monitors traffic on its globally-known

filter request port. If it receives a request, it determines

if the contained SRC_COOKIE is valid and matches the

flow, and if so, elevates it to the controller, as shown in

Step 4 in Figure 5. The pawn controller again verifies the

request, and if authentic, sends an OpenFlow FlowMod

message to the pawn router to deny traffic associated

with the flow’s IP addresses, ports, and protocol. The

pawn controller then sends a message to the victim

controller to acknowledge the request, as shown in Steps

7 and 8 in Figure 5. Once the pawn router applies the

FlowMod rule, the attack traffic is filtered in the pawn’s

LAN.

VI. EVALUATION

We evaluate our system from both a security effec-

tiveness and a performance perspective. From a security

standpoint, the approach must rapidly respond to attack

reports in a manner that ensures the reports are authentic.

From a performance perspective, the approach must

minimize overheads and ensure it can scale in the event

of an attack.

A. Security Effectiveness

We begin by examining the size of reporting packets

that are sent from the victim router to the victim con-

troller. Each report is 100 bytes, of which 58 bytes is

the payload of the filtering request. Accordingly, even a

5Mbps upload bandwidth capacity would allow a victim

router to report roughly 6, 250 unique malicious flows

per second. This would allow a victim to identify and

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8

T
ra

ff
ic

 V
o

lu
m

e
 (

M
b

p
s
)

Time Elapsed (s, 0.1s precision)

Pawn Interface on ISP router
Victim Interface on ISP router

Pawn machine output
Victim machine input

Fig. 6. When five pawn systems simultaneously DDoS a victim, the
traffic spikes and saturates the link between the victim router and its
ISP. When pawn routers and controllers respond to source filtering
requests, the attack traffic quickly drops off, despite the continued
transmissions from the pawn host.

report a large number of compromised machines while

a DDoS attack is ongoing.

We next empirically examine the potential attack traf-

fic reduction possible if pawns perform source filtering.

For our pawn host, we use a Thinkpad S3 machine with

4 cores and 8 GBytes RAM. We configure the pawn with

five IP aliases to simulate multiple attackers that must be

filtered individually. On the pawn, we use the hping3

tool to launch a TCP SYN flood attack at the public

IP address of the victim router. Since the victim router

does not run public services, the router OS will send

back a TCP RST packet in response. We use a separate

hping3 process for each IP alias on the pawn and we

set each hping3 process to send 2 Mbps of attack traffic

in order to saturate the bottleneck link between the ISP

router and the victim router.

We monitor the traffic volume at multiple points

between the pawn and the victim router, as represented

by the black dots in Figure 1. These measurement points

include a sample on the pawn’s network interface, the

pawn-connected interface on the ISP router, the victim-

connected interface on the ISP router, and the victim’s

interface.

In Figure 6, we show the results of our filtering

experiments when all five pawns launch an attack si-

multaneously. The pawn traffic starts around the 1.5

second mark, averaging around 10Mbps (represented

by the black line). A queue builds at the pawn router,

leading to bursty results (represented by the blue line).

The ISP router constrains the throughput of the traffic,

which averages around 5 Mbps, as expected (represented

by the green line). The victim router quickly notices

the attack and applies filters locally, preventing the

victim from ever experiencing the full bandwidth of the

attack (represented by the red line). The victim router

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f
U

D
P

 p
a
c
k
e
ts

RTT Between Pawn Host and Victim Router (ms)

Filtering Enabled
Baseline OpenFlow

Fig. 7. The delay between a skeleton OpenFlow implementation and
our distributed reporting averages only 3ms across our 1000 trials. This
overhead is less than 10% of the overhead associated with basic flow
elevation.

elevates the requests to the victim controller, which starts

implementing the filters around 5.5 seconds into the

experiment, resulting in a rapid drop of traffic volume at

the ISP router on both the victim and attacker interfaces,

despite steady out-bound traffic at the pawn host. The

outbound queue causes some residual traffic to be sent

to the victim router around the 6 second mark.

B. Performance evaluation

We measure the overhead introduced by our system

from different viewpoints. We first measure how much

overhead is introduced by inserting cookies into the first

packet of each flow. On the pawn machine, we create a

UDP client program that sends UDP packets with dif-

ferent source ports to ensure that each packet represents

a new flow that is elevated by the router’s OVS agent

to the pawn’s controller. We implement a UDP server at

the victim router to echo back each requested packet. We

then measure the round trip time (RTT) of 1,000 UDP

packets when both the pawn router and pawn controller

are processing packets. We configure the controller to

create PacketOut messages immediately upon receiv-

ing a packet without any packet processing. Accordingly,

the RTT includes the bidirectional propagation time plus

two packet elevations to the attacker controller since

both the outbound packet and its reply are elevated to

the controller. In Figure 7, the RTT is represented by

the green line. We see that 90% of packets have an

RTT of less than 60 milliseconds. We compare this with

the OVS router and OpenFlow running our distributed

reporting approach, depicted by the blue line in Figure 7.

These results show minor differences between the two

OpenFlow implementations, with the version running

our code taking approximately 3 milliseconds longer

than a skeleton OpenFlow elevation. While OpenFlow

naturally introduces delays with reactive flow elevation,

the delays are only on the first packet in a flow and

can be accommodated in production environments. The

small differences in RTT introduced by our approach are

dwarfed by the base OpenFlow delay and are unlikely

to be apparent to an end-user.

VII. CONCLUSION

This work introduced a distributed reporting approach

that allows third-party service providers to detect and

filter DDoS traffic for residential users. This model

incentivizes each stakeholder in the system: residential

users save bandwidth when under attack and learn about

compromised systems quickly, while security service

providers respond rapidly to events and provide notifica-

tion to residential customers. With incremental deploy-

ment and immediate incentives, collaborative filtering

can motivate users to adopt a platform for security

providers to host residential SDN security applications.

ACKNOWLEDGEMENTS

This material is based upon work supported by the

National Science Foundation under Grant No. 1651540.

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi,
M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, M. Damian,
C. Seaman, N. Sullivan, K. Tomas, and Y. Zhou, “Understanding
the mirai botnet,” in USENIX Security Symposium (USENIX

Security), 2017, pp. 1093–1110.

[2] K. Egevang and P. Francis, “The IP network address translator
(NAT),” RFC 1631, May, Tech. Rep., 1994.

[3] F. lab, “The myth of network address translation as se-
curity,” https://www.f5.com/services/resources/white-papers/the-
myth-of-network-address-translation-as-security, 2016.

[4] S. Stamm, Z. Ramzan, and M. Jakobsson, “Drive-by pharming,”
in International Conference on Information and Communications

Security. Springer, 2007, pp. 495–506.

[5] S. Zanero, “Wireless malware propagation: A reality check,”
IEEE Security & Privacy, vol. 7, no. 5, pp. 70–74, 2009.

[6] N. Feamster, “Outsourcing home network security,” in ACM

SIGCOMM Workshop on Home Networks. ACM, 2010, pp.
37–42.

[7] S. Grover, M. S. Park, S. Sundaresan, S. Burnett, H. Kim,
B. Ravi, and N. Feamster, “Peeking behind the NAT: an empirical
study of home networks,” in Internet Measurement Conference.
ACM, 2013, pp. 377–390.

[8] C. R. Taylor, T. Guo, C. A. Shue, and M. E. Najd, “On the
feasibility of cloud-based SDN controllers for residential net-
works,” in IEEE Conference on Network Function Virtualization

and Software Defined Networks (NFV-SDN). IEEE, 2017, pp.
1–6.

[9] K. J. Argyraki and D. R. Cheriton, “Active Internet traffic
filtering: Real-time response to Denial-of-Service attacks.” in
USENIX Annual Technical Conference, vol. 38, 2005.

[10] L. Qihoo 360 Technology Co., “Insight into global DDoS threat
landscape,” https://ddosmon.net/insight/, 2019.

[11] W. Chang, A. Mohaisen, A. Wang, and S. Chen, “Measuring
botnets in the wild: Some new trends,” in ACM Symposium on

Information, Computer and Communications Security. ACM,
2015, pp. 645–650.

[12] S. Jin and D. S. Yeung, “A covariance analysis model for DDoS
attack detection,” IEEE International Conference on Communi-

cations, vol. 4, pp. 1882–1886, 2004.

[13] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred,
“Statistical approaches to DDoS attack detection and response,”
in DARPA Information Survivability Conference and Exposition,
vol. 1. IEEE, 2003, pp. 303–314.

[14] S. M. T. Nezhad, M. Nazari, and E. A. Gharavol, “A novel
DoS and DDoS attacks detection algorithm using ARIMA time
series model and chaotic system in computer networks,” IEEE

Communications Letters, vol. 20, no. 4, pp. 700–703, 2016.

[15] S. Yu, W. Zhou, and R. Doss, “Information theory based detec-
tion against network behavior mimicking DDoS attacks,” IEEE

Communications Letters, vol. 12, no. 4, pp. 318–321, 2008.

[16] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based
DDoS detection system in software-defined networking (SDN),”
arXiv preprint arXiv:1611.07400, 2016.

[17] J. David and C. Thomas, “DDoS attack detection using fast
entropy approach on flow-based network traffic,” Procedia Com-

puter Science, vol. 50, pp. 30–36, 2015.

[18] O. Haq, Z. Abaid, N. Bhatti, Z. Ahmed, and A. Syed, “SDN-
inspired, real-time botnet detection and flow-blocking at ISP and
enterprise-level,” IEEE International Conference on Communica-

tions (ICC), pp. 5278–5283, 2015.

[19] A. Wang, W. Chang, S. Chen, and A. Mohaisen, “Delving into
Internet DDoS attacks by botnets: characterization and analysis,”
IEEE/ACM Transactions on Networking (TON), vol. 26, no. 6,
pp. 2843–2855, 2018.

[20] T. Peng, C. Leckie, and K. Ramamohanarao, “Protection from
distributed denial of service attacks using history-based IP fil-
tering,” in IEEE International Conference on Communications,

2003., vol. 1, 2003, pp. 482–486.

[21] R. Pandrangi, “IP prioritization and scoring system for DDoS
detection and mitigation,” Jan. 13 2015, uS Patent 8,935,785.

[22] C. Buragohain and N. Medhi, “Flowtrapp: An SDN based archi-
tecture for DDoS attack detection and mitigation in data centers,”
in International Conference on Signal Processing and Integrated

Networks (SPIN). IEEE, 2016, pp. 519–524.

[23] F. Rebecchi, J. Boite, P.-A. Nardin, M. Bouet, and V. Conan,
“Traffic monitoring and DDoS detection using stateful SDN,” in
IEEE Conference on Network Softwarization (NetSoft). IEEE,
2017, pp. 1–2.

[24] K. Weniger, J. Bachmann, and R. Hakenbert, “Method for
mitigating denial of service attacks against a home,” Dec. 10
2009, uS Patent App. 12/514,999.

[25] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker, “Controlling high bandwidth aggregates in the
network,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 3, pp. 62–73, 2002.

[26] Wikipedia, “Openflow,” https://en.wikipedia.org/wiki/OpenFlow,
2019.

[27] C. Ryan, “Computer and Internet use in the United States: 2016,”
https://www.census.gov/content/dam/Census/library/publications/
2018/acs/ACS-39.pdf, 2018.

[28] P. Associates, “76% of North American broadband households
use Wi-Fi as their primary connection technology,” https://www.
parksassociates.com/blog/article/pr-01242018, 2018.

[29] L. F. C. Projects, “Open vSwitch,” https://www.openvswitch.org,
2016.

[30] R. Merchant, “New study from dashlane reveals extremes people
will go to for online protection, shortcomings of steps they take
to secure themselves,” 2016, https://blog.dashlane.com/study-
reveals-extremes-people-go-online-protection/.

[31] O. Kulyk, S. Neumann, J. Budurushi, and M. Volkamer, “Noth-
ing comes for free: How much usability can you sacrifice for
security?” IEEE Security & Privacy, 2017.

[32] N. George, “Upload vs. download speed: what’s the dif-
ference?” https://www.allconnect.com/blog/difference-between-
download-upload-internet-speeds/, 2019.

[33] O. Project, “OpenWrt wireless freedom,” https://openwrt.org,
2019.

[34] MurphyMc, “The POX network software platform,” https://
github.com/noxrepo/pox, 2017.

[35] M. Arlitt and C. Williamson, “An analysis of TCP reset behaviour
on the Internet,” ACM SIGCOMM Computer Communication

Review, vol. 35, no. 1, pp. 37–44, 2005.
[36] A. A. Bilal and Umer, “Study of abnormal TCP/HTTP connec-

tion,” Digitala Vetenskapliga Arkivet, 2011.

