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1. Introduction.

1.1. Motivation. Many finite spaces can be endowed with meaningful metrics. For undi-
rected graphs, the geodesic (shortest-path), commute time (effective resistance), and diffusion
distance [28, 16, 15] metrics are widely applied [16, 31, 2]. The first two can be naively
generalized to directed graphs by summing shortest/average walk length in each direction,
whereas the third is specifically undirected. We know of only one graph metric specifically
designed for directed graphs, namely, the generalized effective resistance distance developed
in [54, 55]. Overlaying a metric onto a directed structure is a challenge since, by definition,
the metric is symmetric.

A related problem is finding metrics on the state space of a finite-state, discrete-time
Markov chain. In this case, there is also limited prior work, consisting of mean commute
time [42, 7, 11] and a constant-curvature metric [52].

Metrics fit into the broader category of dissimilarity measures, with the decision whether
to impose all metric axioms being application dependent. When a metric is used, this
additional structure can enable various algorithmic accelerations, improved guarantees, and
useful inductive biases [19, 36, 23, 4, 41]. Furthermore, the metric structure is a key ingredient
in proofs of convergence, consistency, and stability. While mostly settled for undirected
graphs [38, 45, 46, 48, 49], the development of such theories for directed graphs (digraphs) and
Markov chains is an open research problem. The first positive result for digraphs appeared
recently [56].

In the present work, we introduce and analyze a new metric for digraphs and Markov chains
based on the hitting probability from one node to another, by which we mean the probability
that a random walker starting at one node will reach the other node before returning to its
starting node. By correctly combining these probabilities with the invariant distribution of an
irreducible Markov chain, a metric can be constructed. This metric differs from other metrics
by being insensitive to walk length, thus measuring information that is, in a sense, orthogonal
to commute time, as illustrated in examples. In the special case of undirected graphs and
with the scale parameter \beta = 1 (defined below), the hitting probabilities metric is actually the
logarithm of effective resistance/commute time (plus a constant), a striking fact proven in [18,
section 1.3.4]. For other values of the scale parameter, the hitting probabilities metric is a new
addition to the limited catalogue of undirected graph metrics. We illustrate the utility of our
metric in several examples, both analytical and numerical, related to graph symmetrization,
clustering, structure detection, data exploration, and geometry detection.

1.2. Our contributions. Let (Xt)t\geq 0 be a discrete-time Markov chain on the state space
[n] = \{ 1, . . . , n\} with initial distribution \lambda and irreducible transition matrix P , i.e.,

P(X0 = i) = \lambda i and P(Xt+1 = j | Xt = i) = Pi,j .

We emphasize that X is not required to be aperiodic.
Let \phi \in R

n
+ be the invariant distribution for P , i.e., P T\phi = \phi . The hitting time (starting

from a random state distributed like \lambda ) for a state i \in [n] is the random variable given by

\tau i := inf\{ t \geq 1: Xt = i\} .D
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HITTING PROBABILITY METRIC 469

For i, j \in [n], let us define

(1.1) Qi,j := Pi[\tau j < \tau i] ,

which denotes the probability that starting from site i (i.e., the subscript on Pi is used to
indicate that \lambda = \delta i) the hitting time of j is less than the time it takes to return to i. We
emphasize that we consider \tau j < \tau i here for a single walk and take the probability of such
an event over all walks starting at i when computing Qi,j . An expression for the hitting
probability matrix, Q, in terms of the transition matrix will be given in (3.1); see section 3 on
computational methods.

Lemma 1.1. The following relationship holds1 for i \not = j:

(1.2) Qi,j\phi i = Qj,i\phi j .

The weighting by the invariant measure is motivated by connections between the invariant
measure and random walks as found in [37, section 1.7]. A proof of Lemma 1.1 is given in
section 2.

Remark 1.2. Lemma 1.1 implies that, with appropriate choice of Qii,
1
nQ is a reversible

Markov chain with invariant distribution \phi .

We define the normalized hitting probabilities matrix, A(hp,\beta ) \in R
n\times n, by

(1.3) A
(hp,\beta )
i,j :=

\left\{ 

 

 

 

 

\phi \beta 
i

\phi 1 - \beta 
j

Qi,j , i \not = j,

1, i = j,

where \beta \in [1/2,\infty ). In contexts where the choice of \beta is not important, we simply write
A(hp) = A(hp,\beta ). Two useful choices for \beta are 1 and 1/2. The Qi,j matrix has recently been
shown to play a key role in determining the error of a family of stratified Markov chain Monte
Carlo methods [17, 47].

From Lemma 1.1, we immediately have the following corollary.

Corollary 1.3. The matrix A(hp,\beta ) defined in (1.3) is symmetric. In particular,

(1.4) A
(hp,1/2)
i,j =

\sqrt{} 

Qi,jQj,i.

Proof. We observe

A
(hp,\beta )
i,j =

\phi \beta 
i

\phi 1 - \beta 
j

Qi,j =
\phi \beta  - 1
i

\phi 1 - \beta 
j

\phi iQi,j

=
\phi \beta  - 1
i

\phi 1 - \beta 
j

\phi jQj,i =
\phi \beta 
j

\phi 1 - \beta 
i

Qj,i = A
(hp,\beta )
j,i .

Hence, A(hp,\beta ) is symmetric.

To prove (1.4), we observe that (A
(hp,1/2)
i,j )

2
= \phi i

\phi j
Q2

i,j = Qi,jQj,i by (1.2).

1Lemma 1.1 was previously (and independently) proven in [10], in the context of Markov chain perturbation
theory applied to the internet. It was possibly known even earlier.D
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In some applications, information about relatedness of vertices in a graph will be most
immediately encoded in the form of a nonstochastic adjacency matrix A. In this case the
input adjacency matrix can be transformed into a stochastic matrix P either by a similarity
transformation involving the dominant right eigenvector of A or by normalization of the rows
of A so that they sum to 1. The resulting stochastic matrix P can then be used as in (1.3) to
construct A(hp,\beta ), itself a symmetric adjacency matrix on the vertices of the network. In this
article we do not address the relative merits of methods to transform an adjacency matrix into
a stochastic matrix. We use row normalization unless otherwise stated.

Given an irreducible stochastic matrix P , we can thus define a distance d\beta : [n]\times [n] \rightarrow R,
which we refer to as the hitting probability metric, by

(1.5) d\beta (i, j) =  - log
\Bigl( 

A
(hp,\beta )
i,j

\Bigr) 

.

Theorem 1.4. The hitting probability metric, d\beta : [n]\times [n] \rightarrow R, defined in (1.5) is a metric
for \beta \in (1/2, 1]. For \beta = 1/2, d\beta is a pseudometric,2and there exists a quotient graph on which
the distance function becomes a metric.

In Theorem 2.15, we show that there exists a quotient graph on which d1/2 is a metric and
which preserves many of the metric properties of the original graph.3 The key observation for
the d1/2 pseudometric is that in order for two vertices to be distance 0 from each other, the
probability of hitting the other vertex before returning must be 1 for both. Hence we provide
(in subsections 2.3 and 2.4) a means of effectively collapsing these vertices to a single vertex,
carefully preserving the overall probabilities relative to the remaining vertices.

Remark 1.5. In light of Lemma 1.1 and Theorem 1.4, A(hp) has two interpretations, first
as a symmetrization of A and second as a weighted similarity graph corresponding to d,
since A(i, j) = e - d(i,j). The practice of associating a finite (subset of a) metric space with a
similarity graph in this way is widespread, especially in the manifold learning and graph-based
machine-learning communities.4 Thus, in our experiments, we favored the use of A(hp) for
certain applications where it seemed more natural.

Finally, we show how advances from [47] enable us to compute the distance matrix in O(n3)
operations, allowing us to scale up to \approx 38M edges in examples on a Lenovo ThinkStation
P410 desktop with Xeon E5–1620V4 3.5 GHz CPU and 16 GB RAM using MATLAB R2019a
Update 4 (9.6.0.1150989) 64-bit (glnxa64). We also provide various synthetic examples to
help develop an intuition for the metric and its differences from other measures. We conclude
with an example using New York City taxi data to illustrate how our metric can aid in data
exploration.

1.3. Relationship to other notions of similarity and metrics. In this section, we dis-
cuss some related notions of similarity and metrics on finite state spaces with asymmetric

2Recall that a pseudometric on [n] is a nonnegative real function f : [n]× [n] → R\geq 0 satisfying d(i, i) = 0,
symmetry d(i, j) = d(j, i), and the triangle inequality d(i, j) ≤ d(i, k) + d(k, j). A pseudometric is a metric if
we can identify indiscernible values, i.e., d(i, j) = 0 ⇐⇒ i = j.

3While the usual pseudometric quotienting procedure could apply here, there is no guarantee that there
would be a corresponding subgraph, which is why Theorem 2.15 is needed.

4[57] cites [25, 44] as this similarity function’s first use specifically for graph-based clustering.D
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(directional) relationships. Our focus is on symmetric notions of dissimilarity, with an emphasis
on metrics. While, in some applications, asymmetric similarity scores may be the right choice
(see, e.g., Tversky’s seminal work on features of similarity [50]), we restrict our scope to sym-
metric notions. We do, however, wish to mention directed metrics (also called quasi-metrics),
which are a natural analogue to metric spaces for relaxations of digraph cut problems [6].

From [7, 27, 42], we know that commute time is a metric on ergodic Markov chains.
In [11, 54, 55], generalizations of effective resistance are developed for ergodic Markov chains
and directed graphs. Commute-time- and resistance-based metrics are popular and more
robust than shortest-path distances, although they are not informative in certain large-graph
limits [53]. In subsection 4.2.1, we compare the effective resistance of [54, 55] to the hitting
probability metric on a particular example.

In [52], a metric is developed on Markov chains. This metric gives the chain constant
curvature in an appropriate generalized sense. Distance in this metric is then related to the
distinguishability after one step of random walks beginning at the two distinct nodes. The
metric is constructed jointly with the curvature using a fixed point argument. It is expected
to be useful in proving, for example, concentration inequalities for Markov chains.

Notions of diffusion distance to a set B on undirected graphs have been explored recently
for the connection Laplacian [45] and for the graph Laplacian [9]. The notion of distance
is determined by taking \ell steps using the random walk generated by the symmetric graph
adjacency matrix A with degree matrix D, i.e., it counts the number of walks of length 2\ell from
i to j. Diffusion distances from a vertex i to a subgraph B in [9] is defined as the smallest
number of steps for all random walks started at i to reach B. The work [45] established that
diffusion distances converge to geodesic distances in the high density limit of random graphs
on manifolds, and [9] explored how eigenvectors relate to this notion of distance. Directed
graphs have been represented as magnetic connection Laplacians on undirected graphs through
a notion of polarization (see [20]), after which a version of diffusion distance can be applied.

A variety of methods exist in machine learning to compute “graph representations,” which
are learned embeddings of nodes, subgraphs, or entire (possibly directed) graphs into Euclidean
space so that they can be fed into standard machine learning tools [24]. These can be seen
as imposing a metric on directed graphs, with the main drawbacks relative to the hitting
probability metric being model complexity, difficulty of interpretation, and difficulty of analysis.

In [33], existing symmetrization techniques for directed graphs are surveyed. In partic-
ular, we mention [43, 58, 29, 8]. In each of these articles, clustering, community detection,
and/or semi-supervised learning techniques are considered on directed graphs using various
symmetrizations, such as that of Fan Chung (e.g., [43]) or using commute times similar to those
in the effective resistance metric (e.g., [8]). Our results use A(hp) as a symmetrization, and we
will see that this enables us to perform the tasks just mentioned, although with different and
sometimes more helpful results.

In [21], the metric of [55, 54] is used as the basis for a digraph symmetrization technique.
It is guaranteed to preserve effective resistances, possibly relying on negative entries. Rigorous
applications to directed cut and graph sparsification are given.

Outline. We prove Lemma 1.1, Corollary 1.3, and Theorem 1.4 in section 2. In section 3,
we describe computational methods to compute the normalized hitting probabilities matrix,
A(hp,\beta ). In section 4, we give some examples of the computed metric. We conclude in section 5.
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2. Proofs and discussion of structural properties.

2.1. Structure of the normalized hitting probabilities matrix.

Proof of Lemma 1.1. The probability that Xt starts from i and hits j at least k + 1 times
before returning to i can be expressed as

Pi[\tau j < \tau i]Pj [\tau j < \tau i]
k .

We let V j
i be the number of times Xt hits j before returning to i, V j

i =
\sum \tau i

t=1 1Xt=j . Then, we
have

Pi[\tau j < \tau i]Pj [\tau j < \tau i]
k = Pi[V

j
i \geq k + 1] .

Now observe that
\infty 
\sum 

k=0

Pi[\tau j < \tau i]Pj [\tau j < \tau i]
k =

\infty 
\sum 

k=0

Pi[V
j
i \geq k + 1] =

\infty 
\sum 

k=0

Ei

\Bigl[ 

1
V j
i \geq k+1

\Bigr] 

(2.1)

= Ei

\Biggl[ 

\infty 
\sum 

k=0

1
V j
i \geq k+1

\Biggr] 

= Ei

\Biggl[ 

\infty 
\sum 

k=0

k1
V j
i =k

\Biggr] 

=

\infty 
\sum 

k=0

kP[V j
i = k]

= Ei[V
j
i ] .(2.2)

The expectation in (2.2) is known to satisfy

(2.3) Ei[V
j
i ] =

\phi j

\phi i
,

which is proved in, for example, [37, Theorem 1.7.6].
However, we recognize the expression (2.1) as a geometric series and hence have

\infty 
\sum 

k=0

Pi[\tau j < \tau i]Pj [\tau j < \tau i]
k = Pi[\tau j < \tau i](1 - Pj [\tau j < \tau i])

 - 1

= Pi[\tau j < \tau i]Pj [\tau i < \tau j ]
 - 1 = Qi,jQ

 - 1
j,i .

Combining this with (2.3) we arrive at Qi,jQ
 - 1
j,i =

\phi j

\phi i
.

To prove Theorem 1.4, we will need one more lemma.

Lemma 2.1. The following inequality holds:

(2.4) Qi,j \geq Qi,kQk,j .

Proof. Consider the corresponding auxiliary Markov process restricted to nodes i, j, and
k with 3 \times 3 transition matrix F , the elements of which we denote by, e.g., Fi,j = Pi[\tau j <
min\{ \tau i, \tau k\} ] and Fi,i = Pi[\tau i < min\{ \tau j , \tau k\} ]. That is, Fi,j gives the probability of a random
walker starting at i eventually reaching j before either reaching k or returning to i, while Fi,i

gives the probability of a random walker starting at i returning to i before reaching either j or
k. Since Fi,i + Fi,j + Fi,k = 1, we have

Qi,j = Fi,j +
Fi,kFk,j

1 - Fk,k
, Qi,k = Fi,k +

Fi,jFj,k

1 - Fj,j
, Qk,j = Fk,j +

Fk,iFi,j

1 - Fi,i
.
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Hence, we observe

Qi,kQk,j =

\biggl( 

Fi,k +
Fi,jFj,k

1 - Fjj

\biggr) \biggl( 

Fk,j +
Fk,iFi,j

1 - Fii

\biggr) 

= Fi,kFk,j + Fi,j

\biggl( 

Fj,kFk,j

1 - Fjj
+

Fi,kFk,i

1 - Fii
+

Fj,kFk,iFi,j

(1 - Fii)(1 - Fjj)

\biggr) 

.

Using
Fj,k

1 - Fj,j
=

Fj,k

Fj,i + Fj,k
< 1 ,

we then observe

Qi,kQk,j \leq Fi,kFk,j + Fi,j

\biggl( 

Fk,j +
Fi,kFk,i

1 - Fii
+

Fk,iFi,j

1 - Fii

\biggr) 

= Fi,kFk,j + Fi,j

\biggl( 

Fk,j + Fk,i
Fi,k + Fi,j

1 - Fii

\biggr) 

= Fi,kFk,j + Fi,j (Fk,j + Fk,i)

=

\biggl( 

Fi,kFk,j

1 - Fk,k
+ Fi,j

\biggr) 

(1 - Fk,k)

= Qi,j(1 - Fk,k) \leq Qi,j .

2.2. Hitting probability metric. In this section we establish Theorem 1.4. In particular,
we explore the notion that, much like effective resistance, the normalized hitting probabilities
matrix provides a natural notion of distance on the digraph (or between states of a Markov
chain).

To begin, we recall the definition of d\beta from (1.5) and note that we have already established
the symmetry d\beta (i, j) = d\beta (j, i) for all i, j. As seen from the statement of Theorem 1.4, we will
observe that the triangle inequality holds for all \beta \geq 1/2 and that positivity holds for all \beta > 1/2.
In the case \beta = 1/2, d1/2 gives a pseudometric structure, as there can indeed exist structures in
a directed graph or Markov chain on which d1/2(i, j) = 0 and i \not = j. As an example, consider
the nodes on a cycle with in-degree and out-degree 1. (See section 4.)

When d1/2(i, j) = 0 there are specific structures that restrict all random walks leaving i so
that they must hit j before returning to i. We show in Theorem 2.15 that for any graph, there
exists a canonical quotient graph on which d1/2 is indeed a metric that is closely related to d1/2

on the original graph. Let us now proceed to the proofs.

Proof of Theorem 1.4. First, we show positivity for i \not = j. Note that d\beta (i, j) > 0 if and

only if A
(hp,\beta )
i,j < 1. Consider the converse:

1 \leq A
(hp,\beta )
i,j =

\phi \beta 
i

\phi 1 - \beta 
j

Qi,j =
\phi \beta 
j

\phi 1 - \beta 
i

Qj,i ,

that is,

\phi 1 - \beta 
j

\phi \beta 
i

\leq Qi,j and
\phi 1 - \beta 
i

\phi \beta 
j

\leq Qj,i .D
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Then if \beta > 1/2, we have

1 \geq Qi,jQj,i \geq \phi 1 - 2\beta 
j \phi 1 - 2\beta 

i > 1 ,

a contradiction. For \beta = 1/2, the last inequality above becomes an equality, so the corresponding
argument by contradiction requires only that A(hp,1/2) \leq 1 and thus d1/2(i, j) \geq 0.

Symmetry follows from Corollary 1.3, and d\beta (i, i) = 0 is immediate, so all that remains is
the triangle inequality.

To prove the triangle inequality, we observe for i \not = j \not = k that

d\beta (i, j) =  - log
\Bigl( 

A
(hp,\beta )
i,j

\Bigr) 

=  - \beta log \phi i  - (\beta  - 1) log \phi j  - logQi,j

= d\beta (i, k) + d\beta (k, j) + (2\beta  - 1) log \phi k + [logQi,k + logQk,j  - logQi,j ] ,(2.5)

which, applying Lemma 2.1, proves that the triangle inequality holds for all \beta \geq 1/2.

We observe that the 2\beta  - 1 coefficient of log \phi k in (2.5) vanishes when \beta = 1/2; hence the
triangle inequality is as tight as possible (since Qi,kQk,j/Qi,j = 1, e.g., for a directed cycle

graph). From the above argument, we can see that the only obstruction to d
1
2 being a metric

is if there is a pair i, j such that

A(hp,1/2) =

\sqrt{} 

\phi j

\phi i
Qj,i =

\sqrt{} 

\phi i

\phi j
Qi,j = 1 .

In this case,

Qj,i =

\sqrt{} 

\phi i

\phi j
and Qi,j =

\sqrt{} 

\phi j

\phi i
.

Thus, Qi,jQj,i = 1, which, as they are both probabilities, means in fact Qi,j = Qj,i = 1. Hence,
also \phi i = \phi j .

Observation 2.2. The condition \phi i = \phi j is not an extra restriction beyond Qi,j = Qj,i = 1:
if Qi,j = Qj,i = 1, then a random walker must visit i every time it visits j (and vice versa),
and hence the invariant probabilities of sites i and j must be equivalent.

2.3. Structure theory of digraphs where d
1/2 is not a metric. In this subsection, we

investigate the structure of graphs where d1/2 is not a metric, which we refer to as (d1/2-)
degenerate. This is useful for understanding our metric embedding and is foundational
for subsection 2.4, where we derive the quotienting procedure to repair graph degeneracies. In
this section, we first give a general construction to produce degenerate graphs and show that
all degenerate graphs can be constructed in this way. Next, we give a general decomposition of
degenerate graphs into equivalence classes and their segments.

2.3.1. A general construction for degenerate graphs. A simple example of a graph with
Qi,j = Qj,i = 1 is a closed, directed cycle. However, we also have the following much more
general construction: Take any two directed acyclic graphs, G1 and G2. Connect all the leaves
(sinks/nodes of out-degree zero) of G1 to i and all the leaves of G2 to j. Connect j to all
the roots (sources/nodes of in-degree 0) of G1 and i to all the roots of G2. Possibly add
edges between i and j. Then, for each node k except i and j, replace it with an arbitraryD
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strongly connected graph Hk (corresponding to an irreducible Markov chain), replacing each
edge to (from) k with at least one edge to (from) a node in Hk. The resulting graph is strongly
connected and has i and j only reachable through each other.

In fact, all graphs with Qi,j = Qj,i = 1 can be constructed this way. To see this, note that
i and j must have positive in- and out-degree by strong connectedness. Let Ci be those nodes
reachable from i without passing through j, and define Cj similarly. Consider the following
claim.

Claim 2.3. Ci \cup Cj \cup \{ i, j\} includes all nodes of the graph, and Ci \cap Cj is empty.

Proof. For the first part, consider a fixed node k which is not i or j, together with a
shortest path Cik from i to k. If Cik does not pass through j, then k \in Ci; otherwise, k is
reachable from j without passing through i since Cik is a shortest path.

For the second part, assume otherwise; that is, pick k \in Ci \cap Cj . Then there exist (1) a
path Cik from i to k not passing through j, (2) a path Cjk from j to k not passing through i,
and (3) a path Ckj from k to j (by strong connectedness). Assume without loss of generality
(WLOG) that Ckj passes through j only at the end. Ckj cannot pass through i since otherwise
Cik + Ckj contains a walk from i to i without passing through j, violating Qi,j = 1. But then
Cjk + Ckj would be a walk from j to j that does not pass through i, contradicting Qj,i = 1.

Since Ci and Cj can only be connected through i and j, removing i and j disconnects
these two sets. Now consider the subgraphs induced by Ci and Cj , respectively. As can be
done with any directed graph, we reduce each of these subgraphs to their quotients under
the mutual reachability equivalence relation, yielding a pair of directed acyclic graphs. The
next subsection generalizes this decomposition to account for all nodes for which d1/2 vanishes
rather than a single pair.

2.3.2. Decomposition into equivalence classes and segments. Consider an equivalence

class \alpha = \{ a1, a2, . . . , aK\} of nodes under the equivalence relation i \sim j \leftrightarrow d
1/2
i,j = 0. We refer

to a node in a nonsingleton equivalence class as (d1/2-) degenerate. A graph is d1/2-degenerate
if it has a degenerate node.

Definition 2.4. \bullet A walk is a sequence of nodes \{ i1, i2, . . . , iK\} such that Pik,ik+1
> 0 for

1 \leq k < K.
\bullet A walk is closed if iK = i1.
\bullet A closed walk is a commute from i1 if ik \not = i1, for 1 < k < K.
\bullet A walk is a path if ik \not = ik\prime when k\prime \not = k. A commute is a cycle if it is a path when the last
element is removed.

Lemma 2.5. A commute from ak \in \alpha must include each of the other members of \alpha exactly
once in an order that depends only on the graph.

Proof. The proof is in three assertions. We assume WLOG that commutes are from a1.
First, each ak is visited. This is the same as claiming that Qa1,ak = 1, which was shown in the
proof of Theorem 1.4. Second, each ak is visited at most once, since Qak,a1 = 1. Lastly, each
ak is visited in a fixed order: Let J1 and J2 be commutes from a1 that visit, respectively, a2
before a3 and vice versa. Then let J \prime 

1 and J \prime 
2 be the subwalks from a1 to a2 and from a2 to a1

in J1 and J2, respectively. The concatenation of J \prime 
1 and J \prime 

2 is thus a commute from a1 that
does not visit a3, a contradiction.
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In the rest of subsection 2.3, we assume that equivalence classes under \sim are sorted so that
they must be visited in the order by commutes from their first element. Similarly, if the K
elements of an equivalence class are numbered a1, . . . , aK , we naturally identify ax = axmodK .

Lemma 2.6. Given an equivalence class \alpha under \sim , for each j \in G - \alpha there is a unique k
such that all walks J containing j with \alpha \cap J \not = ∅ include either ak - 1 before j or ak after j.

Proof. It is enough to consider paths. Suppose J1 and J2 are two paths from j which
reach ak and ak\prime , respectively, before reaching any other elements of \alpha , with k \not = k\prime . By strong
connectivity, we can select a shortest path from ak to j to extend J1 to a cycle from j, which
we call J3. That is, if we select a shortest (in number of distinct steps) path, \gamma , from ak to j,
then J1 \cup \gamma = J3 is the required extension of J1.

Now, J3 can be cyclically reordered to be a commute from ak. Thus, J3 includes ak\prime , and
since \gamma was shortest possible, it includes ak\prime exactly once. Let J4 \subset J3 be the subwalk from
ak\prime to j. Then concatenating J4 and J2 gives a commute from ak\prime that does not include ak, a
contradiction. Thus, j has a unique successor ak in \alpha .

The conclusion that there is a unique predecessor of j in \alpha follows by reversing the direction
of all edges and reapplying the above argument. It must be ak - 1 since ak is the first member
of the equivalence class encountered in any commute from j.

Definition 2.7. We will here refer to the equivalence classes on G - \alpha induced by Lemma 2.6
as (\alpha -) segments of G.5

Lemma 2.8. Given distinct equivalence classes \alpha and \beta under \sim , every element of \alpha must
lie within a single segment induced by \beta .

Proof. Let \alpha = \{ a1, a2, . . . , aK\alpha \} and \beta = \{ b1, b2, . . . , bK\beta 
\} . Suppose, by way of contradic-

tion, that a1 lies between bk1 and bk1+1 and a2 lies between bk2 and bk2+1 for k1 \not = k2. By
strong connectedness, there exists a (shortest) path from bk1 to a1 to bk1+1. If bk1+1 and bk2
are distinct nodes, there also exists a shortest path from bk1+1 to bk2 . Since Qbk2 ,a2

< 1, there
exists a shortest path from bk2 to bk2+1 not passing though a2. Finally, if bk2+1 and bk1 are
distinct nodes, there exists a shortest path from bk2+1 to bk1 . Concatenating all these paths
gives a commute from a1 to itself not passing though a2, a contradiction.

The foregoing lemmata show that the nontrivial equivalence classes in a d1/2-degenerate
digraph induce a structure of equivalence cycles and their segments, with distinct equivalence
cycles restricted to lie within the segments of each other. This has potential application in
segmentation of directed graphs and will be an important technical tool in the proofs in the
next subsection.

2.4. Quotients of d
1/2-degenerate Markov chains. Next, we develop a way to transform

a Markov chain X for which d1/2 is not a metric into a quotient Markov chain X \prime , for which
d1/2 is a metric.

5Alternatively, we could define segments more generally with respect to any node set α. Then the segment
corresponding to i ∈ α is the set of nodes reachable from i without passing through any other elements of α.
From this perspective, the absolute segments described later are simply the intersection of the segments with
respect to all the equivalence classes.D
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Remark 2.9. In subsection 2.4, we identify singleton classes with their member. Addition-
ally, we append a prime to any symbol when it is meant to refer to X \prime rather than X.

The quotient graph is given by the following construction, which has appeared in [35] as
well as in [32, 34, 5] and possibly other places.

Definition 2.10. Given a Markov chain X and an equivalence relation on the states of
X, the quotient Markov chain has one state for each equivalence class, and the transition
probabilities are given by

P \prime 
U,V =

1

\phi U

\sum 

i\in U

\phi iPi,V =
1

\phi U

\sum 

i\in U

\sum 

j\in V

\phi iPi,j ,

where \phi U =
\sum 

i\in U \phi i.

The map that sends X to X \prime is denoted \iota . It can be shown [35] that the invariant measure
on X \prime evaluated at state U is \phi \prime 

U = \phi U . Furthermore, P carries information about the
equilibration rate in ergodic chains [34, 32, 5], although we do not use this fact in this paper.
When applying Definition 2.10 to \sim , the definition reduces to

P \prime 
U,V =

1

| U | 

\sum 

i\in U

\sum 

j\in V

Pi,j ,

since \phi is constant within equivalence classes (see proof of Theorem 1.4).

Lemma 2.11 (quotienting one class at a time). Let \sim induce the nonsingleton classes
\{ \alpha 1, \alpha 2, . . . , \alpha L\} . For a node set S, let \sim S be the relation with nonsingleton class S, keeping
all other nodes in individual (singleton) classes. One can then produce a graph with the same
nodes as P \prime by performing a series of quotienting operations P \rightarrow 

\sim \alpha 1

P1 \rightarrow 
\sim \alpha 2

\cdot \cdot \cdot \rightarrow 
\sim \alpha L

PL. Then

PL = P \prime , after identifying nested classes with the nodes in them, e.g., \{ \{ a\} , \{ b\} \} \rightarrow \{ a, b\} .

Proof. The proof is by induction on L. If L = 1, the result is vacuously true. So assume
the result is true for graphs having L nonsingleton equivalence classes, and we proceed to
establish the result for L+ 1 nonsingleton classes. Let G have classes \{ \alpha 1, . . . , \alpha L+1\} under
\sim . Then we apply \sim \alpha 1 to get P1 and then use the inductive assumption to conclude that
PL+1 = P \prime 

1. So we need to prove that P \prime 
1 = P \prime . We have

P \prime 
1\alpha ,\beta =

\left\{ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P\alpha ,\beta , \alpha \not = \alpha 1, \beta \not = \alpha 1,
\sum 

j\in \beta P1\alpha 1,j , \alpha = \alpha 1, \beta \not = \alpha 1,

1
| \alpha | 

\sum 

i\in \alpha P1i,\alpha 1
, \alpha \not = \alpha 1, \beta = \alpha 1,

P1\alpha 1,\alpha 1
, \alpha = \alpha 1 = \beta ,

where we have implicitly used the fact that \phi P1 has the form given in Lemma 2.11. Expanding
further givesD
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P \prime 
1\alpha ,\beta =

\left\{ 

 

 

 

 

 

 

 

 

 

 

P\alpha ,\beta , \alpha \not = \alpha 1, \beta \not = \alpha 1,
\sum 

j\in \beta 
1

| \alpha 1| 

\sum 

i\in \alpha 1
Pi,j , \alpha = \alpha 1, \beta \not = \alpha 1,

1
| \alpha | 

\sum 

i\in \alpha 

\sum 

j\in \alpha 1
Pi,j , \alpha \not = \alpha 1, \beta = \alpha 1,

1
| \alpha 1| 

\sum 

i\in \alpha 1,j\in \alpha 1
Pi,j , \alpha = \alpha 1 = \beta .

Rearranging sums gives

P \prime 
1\alpha ,\beta =

1

| \alpha | 

\sum 

i\in \alpha ,j\in \beta 

Pi,j = P\alpha ,\beta ,

as expected.

Lemma 2.12. Collapsing a single equivalence class \alpha respects Q in the following sense. Let
i and j be two nonequivalent nodes.
\bullet If i and j lie in the same \alpha -segment, then Qi,j = Q\prime 

i,j.

\bullet If i and j lie in different \alpha -segments, then 1
2Qi,j < Q\prime 

i,j < Qi,j.
\bullet If i \in \alpha , then Qi,j = | \alpha | Q\prime 

\alpha ,j.
\bullet If j \in \alpha , then Qi,j = Q\prime 

i,\alpha .

Proof. Let \alpha = \{ a1, . . . , aK\} , where K = | \alpha | . It is clear that Qi,j is unaffected by taking
quotients if i and j lie in the same \alpha -segment or if j \in \alpha .

For i = ak \in \alpha , we know that Qak,j = Qa\ell ,j for all \ell , so WLOG assume that j lies in the
segment between ak and ak+1. Now, let us denote by Qi1,i2,i3 the probability of a random
walker starting at i1 and reaching i2 before reaching i3 (in particular, Qi,j = Qi,j,i). Then,

Q\prime 
\alpha ,j = P \prime 

\alpha ,j +
\sum 

i\prime \not =j,\alpha 

P \prime 
\alpha ,i\prime Q

\prime 
i\prime ,j,\alpha =

1

K
Pi,j +

1

K

K
\sum 

\ell =1

\sum 

i\prime \not =j,i\prime /\in \alpha 

Pa\ell ,i\prime Qi\prime ,j,\alpha 

=
1

K
Pi,j +

1

K

\sum 

i\prime \not =j,i\prime /\in \alpha 

Pak,i\prime Qi\prime ,j,\alpha =
1

K
Pi,j +

1

K

\sum 

i\prime \not =j,i

Pi,i\prime Qi\prime ,j,i =
1

K
Qi,j .

Finally let i and j be such that any path from i to j must pass through a1, . . . , ak before
encountering j. Then the following reasoning applies. Let a = a1, b = aK , x = Qa,b,j and
y = Qb,i,a. Then we have

Qi,j = Qi,a,iQa,j,i ,

Qa,j,i = (1 - x) + xQb,j,i ,

Qb,j,i = (1 - y)Qa,j,i .

Solving for Qi,j yields

Qi,j = Qi,a
1 - x

1 - x+ xy
.

On the quotiented graph, we also have

Q\prime 
i,j = Qi,aQ

\prime 
\alpha ,j,i, Q\prime 

\alpha ,j,i =
1

2

\bigl[ 

1 - x+ xQ\prime 
\alpha ,j,i

\bigr] 

+
1

2

\bigl[ 

(1 - y)Q\prime 
\alpha ,j,i

\bigr] 

.

Hence, Q\prime 
i,j = Qi,a

1 - x
1 - x+y and thus Q\prime 

i,j < Qi,j .D
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Furthermore, we can bound the ratio

(2.6)
Qi,j

Q\prime 
i,j

=
1

1 - (1 - x)y
1 - x+y

.

Since the function g(x1, x2) =
x1x2
x1+x2

is bounded above by 1
2 on (0, 1)2, (2.6) cannot exceed 2,

which gives the bound. The bound is tight because all values of x and y can be attained when
considering arbitrary weighted graphs. (A graph with only the four nodes a, b, i, j mentioned
in the proof and edges a \rightarrow j, a \rightarrow b, j \rightarrow b, b \rightarrow i, b \rightarrow a, and i \rightarrow a suffices to attain all
possible values of x, y.)

Definition 2.13. An absolute segment is a maximal set of nodes which lie in the same
segment with respect to all nonsingleton equivalence classes.

Lemma 2.14. \iota respects Q in the following sense for nodes i and j in distinct equivalence
classes \alpha and \beta :
\bullet If i and j lie in the same absolute segment, then Qi,j = Q\prime 

i,j.

\bullet Otherwise, 1
2c| \alpha | Qi,j \leq Q\prime 

\alpha ,\beta < Qi,j, where c is the number of equivalence classes with respect

to which i and j lie in different segments. (In particular, c < L.) Equality holds only when
c = 0.

Proof. If i is degenerate, first collapse \alpha , scaling Qi,j by | \alpha | . Next, collapse all other
equivalence classes one at a time, further scaling Qi,j by the appropriate factor in (12 , 1)
whenever i and j lie in different segments with respect to the collapsing class.

From this lemma we immediately get the following theorem.

Theorem 2.15. X \prime is a metric space with metric (d\prime )1/2. In particular, for i \in \alpha and j \in \beta ,
with \alpha \not = \beta ,

\bullet if i and j lie in the same absolute segment, then d
1/2
i,j = (d\prime )

1/2
i,j ;

\bullet otherwise di,j < d\prime \alpha ,\beta \leq di,j +
1
2 log | \alpha | | \beta | + c log 2, where c is the number of equivalence

classes with respect to which i and j lie in different segments. Equality holds only when
c = 0.

Thus, \iota pushes apart the different absolute segments. All other distances are unaffected.

Remark 2.16. \iota is analogous to a rigid motion on each absolute segment, in that none of
the in-absolute-segment distances are distorted.

3. Computational methods. To compute the normalized hitting probabilities matrix and
metric structure on a Markov chain (or network) consisting of n nodes/states with probability
transition matrix P , we require only the computation of the invariant measure and the Q
matrix. The invariant measure can be computed using iterative eigenvector methods, which
need O(m) operations per iteration for m edges.

We briefly recall the work in [47, Theorem 5] that shows the Q matrix can be computed in
O(n3) time. The key idea from [47, Lemma 5] is that one can compute

(3.1) Qi,j(P ) =
eTi (I  - Pj)

 - 1Pjej

eTi (I  - Pj)
 - 1ei

=
M(j) - 1

i,j

M(j) - 1
i,i

,
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where ej \in R
n is the vector with a 1 in the jth entry and zeros elsewhere, Pj = (I  - eje

T
j )P \in 

R
n\times n, and the invertible matrix M(j) = I  - P + eje

T
j P \in R

n\times n. See Theorem 5 of [47] for
full details, but this identity follows from realizing that as defined M(j) is invertible with
inverse

M(j) - 1 =

\biggl( 

(I  - Pj)
 - 1 (I  - Pj)

 - 1Pjej
0 1

\biggr) 

given in block form on the e\bot j , ej basis.

If we then compute M(1) - 1 on the way to obtaining the first column Qi,1 = M(1) - 1
i1 /

M(1) - 1
ii , then M(j) is a rank-2 perturbation of M(1) and we can apply the Sherman–Morrison–

Woodbury identity to compute M(j) - 1. Since we only access 2n  - 2 elements of M(j) - 1,
the full O(n2)-time Sherman–Morrison–Woodbury update is not needed, and we can get the
jth column Qi,j in O(n) computations from M(1) - 1. A MATLAB implementation of this
procedure, along with code for all of the numerical experiments described in the paper, is
available at https://github.com/zboyd2/hitting probabilities metric.

The matrix Q encodes the hitting probabilities of a random walk on the nodes of a graph,
and the order of the method we present here is very well documented in [47]. However,
there are several results that consider the computational complexity of the related problem
of commute times; see, for instance, the works [30, 3]. The computational cost of computing
hitting probabilities through inversion of the Laplacian has been explored further in [22, 14, 13],
resulting in some cases in which the method may be improved to better than O(n3). As we
are mostly interested in the construction of the metric here, we will not further explore the
question of optimal order of the computation.

4. Examples. We consider examples of Markov chains and directed graphs to illustrate
the proposed metric. We start with simple graphs for which the calculations can be performed
exactly. We then numerically explore a variety of synthetic graphs and a real-world example
defined from New York City taxi cab data.

4.1. Exact formulations. Here we consider some simple graphs on which the invariant
measure and hitting probabilities can be computed exactly to help us understand A(hp,\beta ) and
d\beta .

1. Directed cycles: Consider a directed cycle on n nodes. Then \phi i = 1/n for all i, and
Qi,j = 1 for all i \not = j. Therefore, A(hp,\beta ) is a weighted clique, and d\beta has all points
equidistant. For \beta = 1/2, the weights equal to 1, and all nodes are identified with each
other in the metric topology.

2. Complete graphs: Consider a complete graph on n > 2 nodes. Then \phi i = 1/n for all i,
and Qi,j = const < 1 for all i \not = j. Therefore, A(hp,\beta ) is a weighted clique. Unlike the
directed cycle case, the weights in the clique are < 1 for all \beta \geq 1/2.

3. Glued cycles: Consider graphs of the type depicted in Figure 4.1, namely, graphs
composed of nb “backbone nodes” forming a directed chain, which then branches into
C chains of length nc, each of which finally connects back to the beginning of the
backbone chain. Intuitively, a random walker on this graph transitions between C + 1
groups of nodes, namely, each of the C branches and the backbone. As illustratedD
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Table 4.1

Values of Q, A(hp,\beta ), and d evaluated at distinct nodes i and j for the glued cycles example from subsection 4.1.
We include extra columns for the case β = 1/2, which is particularly interpretable. Observe that neither A(hp,\beta )

nor d\beta depends on nb or nt (except up to scaling), which is a manifestation of their blindness to walk length.
Also, the nodes that are closest together are those which lie on common chains. Note that we scaled A(hp,\beta ) for
visual clarity. The invariant measure is easily verified to be (nb + nc)

 - 1 on the backbone and (C(nb + nc))
 - 1

elsewhere.

i j Q A(hp,β)

(nb+nc)1−2β A(hp,1/2) d
1
2

Branch Same branch 1 1/C2β−1 1 0

Branch Different branch 1/2 1/2C2β−1 1/2 log 2

Backbone Branch 1/C 1/Cβ C - 1/2 1/2 logC

Branch Backbone 1 1/Cβ C - 1/2 1/2 logC

Backbone Backbone 1 1 1 0

in Table 4.1, our metric captures this intuition by placing each node very close to the
others on its chain. This is in contrast to commute-time-based metrics, where the
length of the chain must be taken into account. (See Figure 4.2.) In subsection 4.2, we
consider some numerical results based on this example.

4.2. Synthetic numerical examples. We consider four examples. The first two demon-
strate that the spectrum of A(hp,\beta ) (for \beta = 1/2 or \beta = 1) identifies cyclic and clique-like sets
in a useful manner. We compare to two alternative symmetrizations and another metric. The
second example additionally shows the scalability of our approach. In the third example, we
explore when it is advantageous to use d for visualization and clustering purposes, using a
directed planted partition model for ground truth comparisons. In dense, difficult-to-detect
regimes, our method is more accurate than clustering using the input adjacency matrix directly.
Finally, in the fourth example, we compare d1/2, d1, and spatial distance for geometric graphs,
finding that our distance captures comparable information to the spatial distance, with the
similarity being especially tight when \beta = 1/2.

4.2.1. Glued-cycles networks. For the two-glued-cycles networks illustrated in Figure 4.1,
we construct a probability transition matrix P by taking a uniform edge weight for all connected
vertices and performing a row normalization. We then compute the Fiedler eigenvector
corresponding to the second smallest eigenvalue of the graph Laplacian (sometimes called the
Fiedler vector) for different symmetrized adjacency matrices. For the adjacency matrices A
constructed below, we calculate the graph Laplacian L = D  - A with D the diagonal matrix
of node degrees (row or column sums of A). The examples here are two directly glued cycles,
as well as two glued cycles with a bidirectional edge between the cycles. In the first case, the
results are all very similar regardless of the symmetrization, but for the second case the results
differ significantly. In each case, we group the nodes based on whether the corresponding
vector element is positive, negative, or zero.

For the two glued cycles without the bidirectional edge, the naive symmetrizations of the
directed adjacency matrix, either A = (P + P T )/2 or A = max

\bigl( 

P, P T
\bigr) 

, have a Fiedler vector
that is 0 on the spine and splits each cycle into signed components; see the top right plotD
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= max( ) Chung’s [12] = (hp 1) = (hp )

A = max(P, P T ) Chung’s L [12] A = A(hp,1) A = A(hp,1/2)

Figure 4.1. (Top left) Two-glued-cycles example from subsection 4.1 with nb = 3, nc = 4, and C = 2. The
“backbone” nodes run along the center, and the two partial cycles split off from and then return to it. (Top
middle) Similar two-glued-cycles network with a bidirectional edge. (Top right) Sign of the Fiedler vector of the
Laplacian for several different symmetrizations. (Bottom) The sign of the Fiedler vector of the Laplacian for
several different symmetrizations. The sign of the Fiedler vectors is encoded as (−, green), (0, magenta), and
(+, blue).

in Figure 4.1. However, in the bottom left component Figure 4.1, for the two-glued-cycles
network with the bidirectional edge, the naive symmetrization splits the network horizontally,
which is reasonable, since the resulting graph cut is small, although this (by construction) does
not reflect the coherent, directed structure of the original graph.

One way to account for directed structure in a way that minimizes equilibrium flux across
the cut was suggested by Fan Chung [12] (cited in subsection 1.3), defining the Laplacian by
L = I - 1

2

\bigl[ 

Φ1/2PΦ - 1/2 +Φ - 1/2P TΦ1/2
\bigr] 

, where Φ = diag(\phi ) \in R
n\times n. Chung uses L to establish

a Cheeger-type inequality for digraphs, which is used to study the rate of convergence for
Markov chains. Using Chung’s Laplacian again gives a comparable outcome for the two-glued-
cycles example (Figure 4.1), but in the example with the bidirectional edge, this symmetrization
places most of the nonbackbone nodes in one class and all backbone nodes in the other (second
plot in Figure 4.1).

The normalized hitting probabilities matrices A(hp,1) and A(hp,1/2) each distinguish between
the two branches, with the backbone set equal to zero in both the cases of the glued cycles and
the glued cycles with a bidirectional edge as seen in Figure 4.1. Thus, all three approaches
uncover different structure in the two-glued-cycles graph with the bidirectional edge, with the
naive symmetrization yielding small undirected cuts, Chung’s approach yielding (perhaps)
two different dynamical states, and A(hp,\beta ) showing all three chains in a natural way for both
\beta = 1/2, 1.

Finally, we compare the total effective resistance metric of [54] to our metric on the
example of the two-glued-cycles network (with no bidirectional edge). As one might expect
given the relationship between effective resistance and commute times in the undirected case,
the total effective resistance of [54] is sensitive to cycle length. Figure 4.2 demonstrates that
the commute time approach views the distances on each cycle quite differently and that the
relative distances from the total effective resistance metric are more difficult to interpret in
the second loop.D
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positive on the cycle nodes and negative elsewhere. In contrast, the Fiedler vector of the naive
symmetrization A = (P + P T )/2 or Chung’s L [12] does not separate the cycle and ER nodes.
Scaling up to n = ner + ncycle = 7, 200 + 2, 800 = 10, 000 nodes, keeping the other parameters
the same (\approx 38.7 million edges), gives similar eigenvector results. The computation takes 31
seconds on a Lenovo ThinkStation P410 desktop with Xeon E5–1620V4 3.5 GHz CPU and 16
GB RAM using MATLAB R2019a Update 4 (9.6.0.1150989) 64-bit (glnxa64): 18 seconds to
compute Q, 6 seconds to compute \phi , 2 seconds to form A(hp,1/2), and 5 seconds to compute the
Fiedler vector.

4.2.3. Cluster detection and visualization for digraphs. We next use d for clustering and
dimension reduction. We consider directed graphs generated by a planted partition model with
nodes grouped into three ground truth communities and form a uniformly weighted adjacency
matrix by connecting an edge from i to j with probability pin if i and j are in the same
community and pout (< pin) otherwise. A probability transition matrix can then be formed
using row normalization. We then attempt to recover the ground truth node assignments.
The difficulty of this problem is generally understood in terms of ∆ = pin  - pout and \rho =
pin+2pout

3 . Small values of ∆ correspond to more difficult clustering problems that may be solved
less accurately (relative to the ground truth). In this example we attempt to cluster the nodes
into k = 3 clusters using several approaches: (1) principal component analysis7 (PCA) [40]
on the adjacency matrix, A, followed by k-means clustering on the first k  - 1 PCA vectors;
(2) PCA on d1/2 followed by k-means; and (3) k-medoids on d1/2. (The k-medoids algorithm
is similar in spirit to the k-means unsupervised clustering algorithm but applies in arbitrary
metric spaces; see, for instance, [26, 39].) Results are shown in Figures 4.4 and 4.5. We find that
method (1) works best on sparse or well-separated clusters, method (2) works best with dense,
difficult-to-detect clusters, and method (3) has no clear advantage. More specifically, using d1/2

in method (2) enhances our ability to get a better-than-chance clustering in dense networks.8

(We note that spectral methods in undirected graphs give asymptotically optimal almost-exact
recovery but are not optimal for harder cases where only better-than-chance recoverability is
possible [1]. This is consistent with Figures 4.4 and 4.5.) Finally, we can also use PCA on d1/2

to visualize the directed network. The first and second principal components, generated using
the built-in routine in MATLAB, are plotted in Figure 4.6, clearly showing the separation into
three clusters, which are in accordance with the three ground-truth communities.

4.2.4. Distances on geometric graphs. Given known convergence properties of various
graph models to continuum problems (e.g., [49, 48, 45, 46, 38]), we are motivated by the
question of how our distance metric compares to a standard notion of distance when the

7Specifically, we used the PCA routine from MATLAB R2019a Update 4 (9.6.0.1150989) 64-bit (glnxa64).
As expected, this gives different results in general when applied to a matrix versus its transpose. In this case, the
matrix is stochastically equivalent with its transpose, and in the New York taxi example below, the PCA-based
plots are similar regardless of whether the transpose is used.

8We also tried using the shortest commute and generalized effective resistance metrics [54, 55] as substitute
for the hitting time metric in this example and found similar improvements over using the raw adjacency matrix.
In particular, the shortest commute was the most effective metric for this task (although this metric is not
robust, so the real-life performance may be different).D
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(a) Flat torus
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(b) Flat torus with a hole
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(c) H shaped domain
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(d) Circle
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(e) Sphere
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(f) Square lattice

Figure 4.7. Normalized distance plots comparing the scaled distances from one node in a geometric graph
computed using Euclidean distances (black), d

1/2 (blue), and d1 (red). The geometric graphs from top left to
bottom right are (a) a random point cloud on a flat torus, (b) a random point cloud on a flat torus with a hole,
(c) a random point cloud on an H shaped domain, (d) a random point cloud on the circle, (e) a random point
cloud on a sphere, and (f) a square lattice on the flat torus. Note, in all subplots, we have ordered the vertices
from closest to farthest from a reference node given by the first vertex generated relative to the d

1/2 metric.

For the regular lattice example, the edge weights are only carried on nearest neighbor vertices.
In all other cases, we consider the edge weights to be of the form e - \gamma dEuc(xi,xj)

2

, where dEuc
is just the Euclidean distance metric (determined with periodicity if the domain is periodic,
i.e., we take shortest-path distance in the flat torus). We have chosen the scale factor \gamma = 1
uniformly throughout.

Once the geometric graph is constructed, we computed the pairwise Euclidean distances,
as well as the pairwise distances d1/2 and d1 for comparison. To assist with interpretation and
comparison, we have ordered the vertices in Figure 4.7 from closest to farthest relative to the
d1/2 metric and plotted for each distance function the rescaled distances (d - dmin)/(dmax - dmin)
to normalize all of them to the same scale.

Throughout, we note that d1/2 is a reasonable fit to the measured Euclidean distances, while
d1 seems to do well only when the geometry is such that the invariant measure normalization
(that is, the choice of \beta ) does not matter as much. Note that the distance d1/2 and d1 are
identical on the square lattice, up to scaling. In this case, we are really studying the structure
of the Q hitting probability matrix. Our results give some preliminary indication that in the
consistency limit the d1/2 metric may converge to the Euclidean distance while the d1 metric
converges to something else entirely. However, we leave this pursuit for future analytical
studies.D
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clearly highlighted as its own, close group, which is reasonable given the geographic proximity
of these neighborhoods and the fact that a disproportionately large number of trips involving
Staten Island both started and ended there. Although the purpose of this example is not to
provide an optimal clustering of the data, we note that Staten Island does represent a difficult
cluster to detect, and arguably is not even a cluster, since there are only eight interior edges
(counting multiplicity but excluding self-edges) and 309 incoming or outgoing edges, all of
which are hidden in over 1 million edges (again, counting multiplicity).

Note that the fact that Staten Island is highlighted by d1/2 is not simply because of
degree scaling, as a heat map of P does not highlight Staten Island as a block. The true
explanation seems to involve two factors: (1) Staten Island has eight nondiagonal in-edges 13
neighborhoods,11 and the median out-degree is 4. Thus, a taxi that does enter Staten Island
has a relatively large likelihood of visiting another Staten Island location next, relative to taxis
starting at other neighborhoods. (2) The average frequency of visiting Staten Island at all
is so low that the pattern of visiting is almost memoryless, with taxis leaving Staten Island
having plenty of time to mix in other areas before visiting Staten Island again, so that the
probability of leaving Staten Island and then reaching another Staten Island location before
returning to the first one is about 1

2 , despite the low degree of Staten Island neighborhoods.
In contrast, Staten Island is far from other locations, especially Manhattan, since by (1.4),
mutually high hitting probabilities are required for closeness, but the probability of starting in
a Manhattan neighborhood and reaching Staten Island before returning is very low.

The distance d1 places the Manhattan nodes close to most other nodes, especially each
other, while the Staten Island nodes are far from everything, especially each other. Since
d1i,j =  - log(\phi i) - log(Qi,j), this distance is small only when (1) \phi i is large and (2) Qi,j is far
from zero. Thus, the Staten Island nodes, which have small values of \phi , cannot be close to
anything, and the Manhattan nodes, which have the largest values of \phi , can be close to other
nodes, depending on Qi,j . Empirically, Qi,j is usually not very small, with 77% of the entries
in Q being at least 0.1, which explains Manhattan’s overall closeness to other nodes. The fact
that the Manhattan nodes are closer to each other than to other nodes is accounted for by the
fact that Qi,j for i in Manhattan is generally larger if j is also in Manhattan, which might
be expected. (The medians differ by a factor of 5.4.) A similar observation explains why the
Staten Island nodes are considered farther from each other than they are from nodes in the
other boroughs.

Finally, we used d1/2 to perform PCA, with the first two principal components (PCs)
visualized in Figure 4.9. These two PCs explained 64% and 34% of the variation, respectively,
with the first PC being closely related to out-degree (Pearson correlation with log kout is .96)
and the second PC being well correlated (Pearson correlation .9978) with the column means
of d1/2. So over 98% of the variance is explained by these two PCs. Interestingly, both the

highest- and lowest-degree nodes were on average far from other nodes. Recalling that d
1/2
i,j

is the negative log of the geometric mean of Qi,j and Qj,i (see (1.4)), closeness requires that
both of these factors be high. If i is a high-degree core node, then Qi,j is small for most j. In
contrast, a mid-degree peripheral node in Queens, the Bronx, or Brooklyn enjoys reasonable

11Staten Island has 20 neighborhoods, but 7 have 0 out-degree and are thus excluded from the strongly
connected component.D
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Figure 4.9. (Left) These two PCs explain 98.3% of the variance. The first PC has a .96 correlation
coefficient with log kout, and the second PC as a correlation coefficient of .9978 with the column means of d

1/2,
which we interpret as the average distance to other nodes. Notably, the highest-degree nodes also have high
average distance to other nodes. This is also true of the lowest-degree nodes, while the mid-degree nodes in
Queens, Brooklyn, and the Bronx are closer to other nodes on average. We interpret this by noting that, while
high-degree nodes are common endpoints for trips (so Qi,j might be high when j is a high-degree node), they
have a lot of self-loops, and the taxis that leave them tend to return relatively quickly (so Qj,i is low for most i).

Using (1.4), we see that d
1/2
i,j will then not be very small for high-degree i. The mid-degree nodes, in contrast,

send a lot of taxis into the Manhattan core, which are likely to mix through the city for a long time before
returning (so Qi,j is not very small for almost all destinations j). (Right) PCA on A gives a similar first PC.
The second PC is nearly constant except on Manhattan, where it is correlated with the East-West coordinate
(Pearson .42, p = .0004). The second PC explains about half as much variance for A as for d

1/2.

values of Qi,j for other peripheral nodes j, since once a taxi enters the Manhattan core, it
is likely to visit a significant portion of the other nodes before returning to i. Finally, if a
node’s degree is too small, the probability of a taxi reaching it at all is too small for the hitting
probabilities to be high. For comparison, performing PCA directly on A gives a similar first
PC, with a different second PC that explains about half as much variance as the second PC of
d1/2. The second PC is nearly constant, except on Manhattan, where it correlates with the
East-West coordinate.

5. Conclusion. Given a probability transition matrix for an ergodic, finite-state, time-
homogeneous Markov chain, we have constructed a family of (possibly pseudo-)metrics on the
state space, which we refer to as hitting probability distances. Alternatively, this construction
gives a metric on the nodes of a strongly connected, directed graph. In the cases where
we do not obtain a proper metric, the degeneracies give global structural information, and
we can quotient them away. Our metrics can be computed in O(n3) time and O(n2) space,
in one example scaling up 10, 000 nodes and \approx 38M edges on a desktop computer. Our
metric captures different information compared to other directed graph metrics and captures
multiscale structure in the taxi example. We have considered the utility of this metric for
structure detection, dimension reduction, and visualization, finding in each case advantages of
our method compared to existing techniques.

Some other possible applications include efficient nearest-neighbor search, new notions of
graph curvature [51], Cheeger inequalities, and provable optimality of weak recovery for dense,
directed communities. Additionally, in our experiments, we observed that several eigenvaluesD
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of the symmetrized adjacency matrix contained useful information about structure such as
cycles, and it would be good to understand better which structures get encoded in leading
eigenspaces. Empirically, it is important to know how commonly d1/2 is degenerate and what
useful structure is revealed in practice. A natural theoretical question is consistency of the
distances in the large graph limit as we approach a natural geometric object embedded in a
standard Euclidean space [38, 45, 46, 48, 49, 56].

In terms of possible improvements to our method, an effective means of thresholding the
symmetrized hitting probability matrix could improve scalability. A natural question to pursue
in a variety of settings would be the sparsification of A(hp,\beta ) and its implications for spectral
analysis and clustering applications. In particular, the potentially sparse P will map into a full
(but symmetric) matrix A(hp,\beta ). In large systems the O(n2) storage requirement may become
a burden. Hence, it is natural to ask, If we sparsify the A(hp,\beta ) matrix to have a comparable
number of edges to that of the original P , how much information can be stably preserved in
the spectrum? This will be a topic of future work on the hitting probability matrices we have
constructed.
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[20] M. Fanuel, C. M. Aláız, Á. Fernández, and J. A. Suykens, Magnetic eigenmaps for the visualization
of directed networks, Appl. Comput. Harmon. Anal., 44 (2018), pp. 189–199.

[21] K. Fitch, Effective resistance preserving directed graph symmetrization, SIAM J. Matrix Anal. Appl., 40
(2019), pp. 49–65.

[22] G. Golnari, Z.-L. Zhang, and D. Boley, Markov fundamental tensor and its applications to network
analysis, Linear Algebra Appl., 564 (2019), pp. 126–158.

[23] G. Hamerly, Making k-means even faster, in Proceedings of the 2010 SIAM International Conference on
Data Mining, 2010, pp. 130–140.

[24] W. L. Hamilton, R. Ying, and J. Leskovec, Representation learning on graphs: Methods and
applications, IEEE Data Eng. Bull., 40 (2017), pp. 42–51.

[25] Jianbo Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach.
Intell., 22 (2000), pp. 888–905.

[26] L. Kaufmann, Clustering by means of medoids, in Proceedings of the Conference on Statistical Data
Analysis Based on the L1 Norm, Neuchatel, 1987, 1987, pp. 405–416.

[27] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov Chains, Grad. Texts in Math. 40,
Springer, New York, 1976.

[28] S. S. Lafon, Diffusion Maps and Geometric Harmonics, Ph.D. thesis, Yale University, New Haven, CT,
2004.

[29] D. Lai, H. Lu, and C. Nardini, Extracting weights from edge directions to find communities in directed
networks, J. Stat. Mech. Theory Exp., 2010 (2010), P06003.

[30] Y. Li and Z.-L. Zhang, Random walks on digraphs, the generalized digraph Laplacian and the degree
of asymmetry, in Proceedings of the International Workshop on Algorithms and Models for the
Web-Graph, 2010, pp. 74–85.

[31] D. Liben-Nowell and J. Kleinberg, The link prediction problem for social networks, in Proceedings of
the Twelfth International Conference on Information and Knowledge Management, New York, 2003.

[32] N. Madras and D. Randall, Markov chain decomposition for convergence rate analysis, Ann. Appl.
Probab., 12 (2001), pp. 581–606.

[33] F. D. Malliaros and M. Vazirgiannis, Clustering and community detection in directed networks: A
survey, Phys. Rep., 533 (2013), pp. 95–142.

[34] R. A. Martin and D. Randall, Sampling adsorbing staircase walks using a new Markov chain decompo-
sition method, in Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
New York, 2000, IEEE, pp. 492–502.

[35] B. Mitavskiy, J. Rowe, A. Wright, and L. M. Schmitt, Quotients of Markov chains and asymptotic
properties of the stationary distribution of the Markov chain associated to an evolutionary algorithm,
Genet. Program. Evolvable Mach., 9 (2008), pp. 109–123.

[36] A. Moore, The anchors hierarchy: Using the triangle inequality to survive high dimensional data, in
Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, AAAI, 2000, pp. 397–
405.

[37] J. R. Norris, Markov Chains, Cambridge University Press, Cambridge, UK, 1997.
[38] B. Osting and T. H. Reeb, Consistency of Dirichlet partitions, SIAM J. Math. Anal., 49 (2017),

pp. 4251–4274.
[39] H.-S. Park and C.-H. Jun, A simple and fast algorithm for k-medoids clustering, Expert Systems Appl.,

36 (2009), pp. 3336–3341.D
o
w

n
lo

ad
ed

 0
5
/0

4
/2

1
 t

o
 1

5
2
.2

.1
7
6
.2

4
2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HITTING PROBABILITY METRIC 493

[40] K. Pearson, On lines and planes of closest fit to systems of points in space, London Edinburgh Dublin
Philos. Mag. J. Sci., 2 (1901), pp. 559–572.

[41] S. Pitis, H. Chan, K. Jamali, and J. Ba, An inductive bias for distances: Neural nets that respect the
triangle inequality, in Proceedings of the Eighth International Conference on Learning Representations,
2020.

[42] M. R. Rozinas, Metric on State Space of Markov Chain, preprint, arXiv:1004.4264 [math. PR], 2010,
https://arxiv.org/abs/1004.4264.

[43] V. Satuluri and S. Parthasarathy, Symmetrizations for clustering directed graphs, in Proceedings of
the 14th International Conference on Extending Database Technology, 2011, pp. 343–354.

[44] G. L. Scott and H. C. Longuet-higgins, Feature grouping by relocalisation of eigenvectors of proximity
matrix, in Proceedings of the British Machine Vision Conference, 1990, pp. 103–108.

[45] A. Singer and H.-T. Wu, Vector diffusion maps and the connection Laplacian, Comm. Pure Appl.
Math., 65 (2012), pp. 1067–1144.

[46] A. Singer and H.-T. Wu, Spectral convergence of the connection Laplacian from random samples, Inf.
Inference, 6 (2017), pp. 58–123.

[47] E. Thiede, B. V. Koten, and J. Weare, Sharp entrywise perturbation bounds for Markov chains, SIAM
J. Matrix Anal. Appl., 36 (2015), pp. 917–941.
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