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Abstract. The shortest-path, commute time, and diffusion distances on undirected graphs have been widely
employed in applications such as dimensionality reduction, link prediction, and trip planning. In-
creasingly, there is interest in using asymmetric structure of data derived from Markov chains and
directed graphs, but few metrics are specifically adapted to this task. We introduce a metric on the
state space of any ergodic, finite-state, time-homogeneous Markov chain and, in particular, on any
Markov chain derived from a directed graph. Our construction is based on hitting probabilities, with
nearness in the metric space related to the transfer of random walkers from one node to another at
stationarity. Notably, our metric is insensitive to shortest and average walk distances, thus giving
new information compared to existing metrics. We use possible degeneracies in the metric to develop
an interesting structural theory of directed graphs and explore a related quotienting procedure. Our
metric can be computed in O(n3) time, where n is the number of states, and in examples we scale up
to n = 10,000 nodes and ~ 38 M edges on a desktop computer. In several examples, we explore the
nature of the metric, compare it to alternative methods, and demonstrate its utility for weak recovery
of community structure in dense graphs, visualization, structure recovering, dynamics exploration,
and multiscale cluster detection.
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1. Introduction.

1.1. Motivation. Many finite spaces can be endowed with meaningful metrics. For undi-
rected graphs, the geodesic (shortest-path), commute time (effective resistance), and diffusion
distance [28, 16, 15] metrics are widely applied [16, 31, 2]. The first two can be naively
generalized to directed graphs by summing shortest/average walk length in each direction,
whereas the third is specifically undirected. We know of only one graph metric specifically
designed for directed graphs, namely, the generalized effective resistance distance developed
in [54, 55]. Overlaying a metric onto a directed structure is a challenge since, by definition,
the metric is symmetric.

A related problem is finding metrics on the state space of a finite-state, discrete-time
Markov chain. In this case, there is also limited prior work, consisting of mean commute
time [42, 7, 11] and a constant-curvature metric [52].

Metrics fit into the broader category of dissimilarity measures, with the decision whether
to impose all metric axioms being application dependent. When a metric is used, this
additional structure can enable various algorithmic accelerations, improved guarantees, and
useful inductive biases [19, 36, 23, 4, 41]. Furthermore, the metric structure is a key ingredient
in proofs of convergence, consistency, and stability. While mostly settled for undirected
graphs [38, 45, 46, 48, 49], the development of such theories for directed graphs (digraphs) and
Markov chains is an open research problem. The first positive result for digraphs appeared
recently [56].

In the present work, we introduce and analyze a new metric for digraphs and Markov chains
based on the hitting probability from one node to another, by which we mean the probability
that a random walker starting at one node will reach the other node before returning to its
starting node. By correctly combining these probabilities with the invariant distribution of an
irreducible Markov chain, a metric can be constructed. This metric differs from other metrics
by being insensitive to walk length, thus measuring information that is, in a sense, orthogonal
to commute time, as illustrated in examples. In the special case of undirected graphs and
with the scale parameter 8 = 1 (defined below), the hitting probabilities metric is actually the
logarithm of effective resistance/commute time (plus a constant), a striking fact proven in [18,
section 1.3.4]. For other values of the scale parameter, the hitting probabilities metric is a new
addition to the limited catalogue of undirected graph metrics. We illustrate the utility of our
metric in several examples, both analytical and numerical, related to graph symmetrization,
clustering, structure detection, data exploration, and geometry detection.

1.2. Our contributions. Let (X;),, be a discrete-time Markov chain on the state space
[n] = {1,...,n} with initial distribution A and irreducible transition matrix P, i.e.,

P(Xo = ’L) = )\z and P(XtJrl :] | Xt = l) = f)i,j .
We emphasize that X is not required to be aperiodic.
Let ¢ € R} be the invariant distribution for P, i.e., PT¢ = ¢. The hitting time (starting

from a random state distributed like \) for a state ¢ € [n] is the random variable given by

1ii=1inf{t > 1: Xy =i}.
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For i,j € [n], let us define
(1.1) Qij = Pilry <7,

which denotes the probability that starting from site i (i.e., the subscript on P; is used to
indicate that A = §;) the hitting time of j is less than the time it takes to return to i. We
emphasize that we consider 7; < 7; here for a single walk and take the probability of such
an event over all walks starting at ¢ when computing @Q; ;. An expression for the hitting
probability matriz, @, in terms of the transition matrix will be given in (3.1); see section 3 on
computational methods.

Lemma 1.1. The following relationship holds' fori # j:
(1.2) Qij¢i = Qj,i®5 -

The weighting by the invariant measure is motivated by connections between the invariant
measure and random walks as found in [37, section 1.7]. A proof of Lemma 1.1 is given in
section 2.

Remark 1.2. Lemma 1.1 implies that, with appropriate choice of Q;;, %Q is a reversible
Markov chain with invariant distribution ¢.
We define the normalized hitting probabilities matriz, A®PP) ¢ R">" by
8
?; o,
(hp,B) . Q’L,ja i # J,
(1.3) 4 V] = ¢J
L, i =7,
where 5 € [1/2,00). In contexts where the choice of § is not important, we simply write
AlP) = A(PB)  Tywo useful choices for 8 are 1 and 1/2. The Q;; matrix has recently been
shown to play a key role in determining the error of a family of stratified Markov chain Monte
Carlo methods [17, 47].
From Lemma 1.1, we immediately have the following corollary.

Corollary 1.3. The matriz AM®P) defined in (1.3) is symmetric. In particular,

(1.4) AP = /Qi5Q.

Proof. We observe

B _ 4 o
AZ(};P ) = ¢1 ﬁQz,g qu ¢1Qz,]
Cbﬁ 1 (z)ﬁ (hp,5)
_¢j ¢]sz:¢1 BQJZ_ jlp .

Hence, A®P:5) ig symmetric.

To prove (1.4), we observe that (A(hp’ /2)) = ¢J = Q;,;Qj: by (1.2). [ ]

'Lemma 1.1 was previously (and independently) proven in [10], in the context of Markov chain perturbation
theory applied to the internet. It was possibly known even earlier.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/04/21 to 152.2.176.242. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

470 BOYD, FRAIMAN, MARZUOLA, MUCHA, OSTING, WEARE

In some applications, information about relatedness of vertices in a graph will be most
immediately encoded in the form of a nonstochastic adjacency matrix A. In this case the
input adjacency matrix can be transformed into a stochastic matrix P either by a similarity
transformation involving the dominant right eigenvector of A or by normalization of the rows
of A so that they sum to 1. The resulting stochastic matrix P can then be used as in (1.3) to
construct AMPA) | itself a symmetric adjacency matrix on the vertices of the network. In this
article we do not address the relative merits of methods to transform an adjacency matrix into
a stochastic matrix. We use row normalization unless otherwise stated.

Given an irreducible stochastic matrix P, we can thus define a distance d?: [n] x [n] — R,
which we refer to as the hitting probability metric, by

(1.5) d8(i, j) = —log (Agf}p’ﬂ)) .

Theorem 1.4. The hitting probability metric, d°: [n] x [n] — R, defined in (1.5) is a metric
for B € (12,1]. For B =1/2, d° is a pseudometric,”and there exists a quotient graph on which
the distance function becomes a metric.

In Theorem 2.15, we show that there exists a quotient graph on which d'/? is a metric and
which preserves many of the metric properties of the original graph.® The key observation for
the d'/2 pseudometric is that in order for two vertices to be distance 0 from each other, the
probability of hitting the other vertex before returning must be 1 for both. Hence we provide
(in subsections 2.3 and 2.4) a means of effectively collapsing these vertices to a single vertex,
carefully preserving the overall probabilities relative to the remaining vertices.

Remark 1.5. In light of Lemma 1.1 and Theorem 1.4, AMP) has two interpretations, first
as a symmetrization of A and second as a weighted similarity graph corresponding to d,
since A(i,j) = e~4#7). The practice of associating a finite (subset of a) metric space with a
similarity graph in this way is widespread, especially in the manifold learning and graph-based
machine-learning communities.* Thus, in our experiments, we favored the use of A®P) for
certain applications where it seemed more natural.

Finally, we show how advances from [47] enable us to compute the distance matrix in O(n?)
operations, allowing us to scale up to ~ 38 M edges in examples on a Lenovo ThinkStation
P410 desktop with Xeon E5-1620V4 3.5 GHz CPU and 16 GB RAM using MATLAB R2019a
Update 4 (9.6.0.1150989) 64-bit (glnxa64). We also provide various synthetic examples to
help develop an intuition for the metric and its differences from other measures. We conclude
with an example using New York City taxi data to illustrate how our metric can aid in data
exploration.

1.3. Relationship to other notions of similarity and metrics. In this section, we dis-
cuss some related notions of similarity and metrics on finite state spaces with asymmetric

2Recall that a pseudometric on [n] is a nonnegative real function f: [n] x [n] — Rx¢ satisfying d(i,4) = 0,
symmetry d(i,7) = d(j,4), and the triangle inequality d(i,j) < d(i, k) + d(k, 7). A pseudometric is a metric if
we can identify indiscernible values, i.e., d(i,j) =0 < i=j.

3While the usual pseudometric quotienting procedure could apply here, there is no guarantee that there
would be a corresponding subgraph, which is why Theorem 2.15 is needed.

4[57] cites [25, 44] as this similarity function’s first use specifically for graph-based clustering.
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(directional) relationships. Our focus is on symmetric notions of dissimilarity, with an emphasis
on metrics. While, in some applications, asymmetric similarity scores may be the right choice
(see, e.g., Tversky’s seminal work on features of similarity [50]), we restrict our scope to sym-
metric notions. We do, however, wish to mention directed metrics (also called quasi-metrics),
which are a natural analogue to metric spaces for relaxations of digraph cut problems [6].

From [7, 27, 42], we know that commute time is a metric on ergodic Markov chains.
In [11, 54, 55], generalizations of effective resistance are developed for ergodic Markov chains
and directed graphs. Commute-time- and resistance-based metrics are popular and more
robust than shortest-path distances, although they are not informative in certain large-graph
limits [53]. In subsection 4.2.1, we compare the effective resistance of [54, 55] to the hitting
probability metric on a particular example.

In [52], a metric is developed on Markov chains. This metric gives the chain constant
curvature in an appropriate generalized sense. Distance in this metric is then related to the
distinguishability after one step of random walks beginning at the two distinct nodes. The
metric is constructed jointly with the curvature using a fixed point argument. It is expected
to be useful in proving, for example, concentration inequalities for Markov chains.

Notions of diffusion distance to a set B on undirected graphs have been explored recently
for the connection Laplacian [45] and for the graph Laplacian [9]. The notion of distance
is determined by taking ¢ steps using the random walk generated by the symmetric graph
adjacency matrix A with degree matrix D, i.e., it counts the number of walks of length 2¢ from
i to j. Diffusion distances from a vertex i to a subgraph B in [9] is defined as the smallest
number of steps for all random walks started at ¢ to reach B. The work [45] established that
diffusion distances converge to geodesic distances in the high density limit of random graphs
on manifolds, and [9] explored how eigenvectors relate to this notion of distance. Directed
graphs have been represented as magnetic connection Laplacians on undirected graphs through
a notion of polarization (see [20]), after which a version of diffusion distance can be applied.

A variety of methods exist in machine learning to compute “graph representations,” which
are learned embeddings of nodes, subgraphs, or entire (possibly directed) graphs into Euclidean
space so that they can be fed into standard machine learning tools [24]. These can be seen
as imposing a metric on directed graphs, with the main drawbacks relative to the hitting
probability metric being model complexity, difficulty of interpretation, and difficulty of analysis.

In [33], existing symmetrization techniques for directed graphs are surveyed. In partic-
ular, we mention [43, 58, 29, 8]. In each of these articles, clustering, community detection,
and/or semi-supervised learning techniques are considered on directed graphs using various
symmetrizations, such as that of Fan Chung (e.g., [43]) or using commute times similar to those
in the effective resistance metric (e.g., [8]). Our results use AMP) as a symmetrization, and we
will see that this enables us to perform the tasks just mentioned, although with different and
sometimes more helpful results.

In [21], the metric of [55, 54] is used as the basis for a digraph symmetrization technique.
It is guaranteed to preserve effective resistances, possibly relying on negative entries. Rigorous
applications to directed cut and graph sparsification are given.

QOutline. We prove Lemma 1.1, Corollary 1.3, and Theorem 1.4 in section 2. In section 3,
we describe computational methods to compute the normalized hitting probabilities matrix,
A®P.B) Tn section 4, we give some examples of the computed metric. We conclude in section 5.
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2. Proofs and discussion of structural properties.
2.1. Structure of the normalized hitting probabilities matrix.

Proof of Lemma 1.1. The probability that X; starts from ¢ and hits j at least £ + 1 times
before returning to ¢ can be expressed as

Pi[Tj < Ti]Pj[Tj < Ti]k

We let Vij be the number of times X; hits j before returning to ¢, Vij =7, 1x,—j. Then, we
have |
Pi[Tj < Ti]Pj[Tj < Ti]k = Pi[Vi] >k + 1] .

Now observe that

i .
(2.1) > Piln < mlPiln < nil = YRV 2 k1] =Y B[,
k=0 k=0 k=0

:EizﬁW%H:EiZ%MHC:z%HW:H
k=0 k=0 k=0
(2:2) =Ei[V/].
The expectation in (2.2) is known to satisfy
(2.3) E[V/] = ZJ

which is proved in, for example, [37, Theorem 1.7.6].
However, we recognize the expression (2.1) as a geometric series and hence have

00
ZPi[Tj < Ti]Pj[Tj < Ti]k = Pi[’i‘j < Ti](l — Pj[Tj < Ti])_l
k=0

=Pi[r; <7ilPj[r < 7] = QiQ5; -
Combining this with (2.3) we arrive at QmQj_’il = % u
To prove Theorem 1.4, we will need one more lemma.

Lemma 2.1. The following inequality holds:
(2.4) Qij > QikQrj -

Proof. Consider the corresponding auxiliary Markov process restricted to nodes i, j, and
k with 3 x 3 transition matrix F', the elements of which we denote by, e.g., F; ; = P;[1; <
min{7;, 7 }] and Fj; = P;[r; < min{7;,7;}]. That is, F;; gives the probability of a random
walker starting at ¢ eventually reaching j before either reaching k& or returning to 7, while Fj ;
gives the probability of a random walker starting at ¢ returning to 7 before reaching either j or
k. Since F;; + F; j + F; j, = 1, we have

Fy . Fj
1-F,;

F;  Fy j

, Qip=Fp+ 2 Qui=Fi,+
1— Fr

Qij=Fij+ - F,
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Hence, we observe

F iFiy F il
Qz,ka,y < i,k + 1— Fjj) ( k.j + 1—-F;
Bk kg B\ 1 — Fj; 1-F;  (1-Fy)(1 - Fjy)

Using
e __ Fie
1-Fj;  Fi+Fg

we then observe

FipFr;  FrFj
Qquk’,] S U lkj + Fig < kg T 1— F 1— Fy

= FikFrg + Fij ( Foj+ Fri———
1—Fjy
= F,Fyj+ Fij (Fy; + Fri)

F; 1 Fy j
= (k) LR )1 - F
(1 ~ Fir +Fij)( )

=Qij(1—Frr) <Qij. u

2.2. Hitting probability metric. In this section we establish Theorem 1.4. In particular,
we explore the notion that, much like effective resistance, the normalized hitting probabilities
matrix provides a natural notion of distance on the digraph (or between states of a Markov
chain).

To begin, we recall the definition of d° from (1.5) and note that we have already established
the symmetry d’(i, j) = d®(j,i) for all 4,5. As seen from the statement of Theorem 1.4, we will
observe that the triangle inequality holds for all 5 > 1/2 and that positivity holds for all 5 > 1/2.
In the case g =1/, d'? gives a pseudometric structure, as there can indeed exist structures in
a directed graph or Markov chain on which d'/?(,5) = 0 and i # j. As an example, consider
the nodes on a cycle with in-degree and out-degree 1. (See section 4.)

When d'/? (i,7) = 0 there are specific structures that restrict all random walks leaving i so
that they must hit j before returning to i. We show in Theorem 2.15 that for any graph, there
exists a canonical quotient graph on which d'/2 is indeed a metric that is closely related to d'/?
on the original graph. Let us now proceed to the proofs.

Proof of Theorem 1.4. First, we show positivity for i # j. Note that d®(i,j) > 0 if and

only if AS}}P’B ) < 1. Consider the converse:
3 o°
1< AlPd) — i Qij = —15Qji,
4J ¢j1 B (2521 B
that is,
¢ " o7
<Qi; and —— <Qj,.
¢ ¢
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Then if 8 > 1/2, we have
1-28 12
1> QiQji > o) o 7 > 1,

a contradiction. For 8 = 1/2, the last inequality above becomes an equality, so the corresponding
argument by contradiction requires only that A®P'/2) < 1 and thus d'/(i, j) > 0.

Symmetry follows from Corollary 1.3, and d®(i,i) = 0 is immediate, so all that remains is
the triangle inequality.

To prove the triangle inequality, we observe for ¢ £ j # k that

d(i, ) = —log (A"} = —Blog ¢ — (8 —1)log ¢, — log Qs
(2.5) = d’(i, k) + d°(k, j) + (28 — 1) log ¢y, + [log Qi x +log Qk ; — log Qi ;] ,

which, applying Lemma 2.1, proves that the triangle inequality holds for all g > 1/2. |

We observe that the 25 — 1 coefficient of log ¢y, in (2.5) vanishes when 8 = 1/2; hence the
triangle inequality is as tight as possible (since Q; 1 Q. ;j/Qi; = 1, e.g., for a directed cycle
graph). From the above argument, we can see that the only obstruction to dz being a metric
is if there is a pair 7, 7 such that

Ae1/2) — \/é@j,i = \/ZT;QM =1.
Qj,i = \/gj and QZ,] = \/%

Thus, Q; ;jQj; = 1, which, as they are both probabilities, means in fact Q); ; = Q;; = 1. Hence,
also ¢; = ¢;.
Observation 2.2. The condition ¢; = ¢; is not an extra restriction beyond Q;; = Q;; = 1:

if Qi; = @Q;; = 1, then a random walker must visit ¢ every time it visits j (and vice versa),
and hence the invariant probabilities of sites ¢ and j must be equivalent.

In this case,

2.3. Structure theory of digraphs where d'/? is not a metric. In this subsection, we
investigate the structure of graphs where d'/2 is not a metric, which we refer to as (dl/Q—)
degenerate. This is useful for understanding our metric embedding and is foundational
for subsection 2.4, where we derive the quotienting procedure to repair graph degeneracies. In
this section, we first give a general construction to produce degenerate graphs and show that
all degenerate graphs can be constructed in this way. Next, we give a general decomposition of
degenerate graphs into equivalence classes and their segments.

2.3.1. A general construction for degenerate graphs. A simple example of a graph with
Qi; = Qj; = 1 is a closed, directed cycle. However, we also have the following much more
general construction: Take any two directed acyclic graphs, G; and Ga. Connect all the leaves
(sinks/nodes of out-degree zero) of G to i and all the leaves of G2 to j. Connect j to all
the roots (sources/nodes of in-degree 0) of G and i to all the roots of Ga. Possibly add
edges between i and j. Then, for each node k except ¢ and j, replace it with an arbitrary
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strongly connected graph Hy (corresponding to an irreducible Markov chain), replacing each
edge to (from) k with at least one edge to (from) a node in Hy. The resulting graph is strongly
connected and has ¢ and j only reachable through each other.

In fact, all graphs with @; j = Q;; = 1 can be constructed this way. To see this, note that
1 and j must have positive in- and out-degree by strong connectedness. Let C; be those nodes
reachable from 7 without passing through j, and define C; similarly. Consider the following
claim.

Claim 2.3. C; U Cj U4, } includes all nodes of the graph, and C; N C; is empty.

Proof. For the first part, consider a fixed node k& which is not ¢ or j, together with a
shortest path Cj; from i to k. If Cj does not pass through j, then k € C;; otherwise, k is
reachable from j without passing through ¢ since Cjj is a shortest path.

For the second part, assume otherwise; that is, pick £ € C; N C;. Then there exist (1) a
path Cj; from i to k not passing through j, (2) a path Cj;, from j to k not passing through 4,
and (3) a path Cy; from & to j (by strong connectedness). Assume without loss of generality
(WLOG) that Cj; passes through j only at the end. C}; cannot pass through i since otherwise
Cir + C; contains a walk from ¢ to ¢ without passing through j, violating @); ; = 1. But then
Cjk + Cij would be a walk from j to j that does not pass through 4, contradicting Q;; = 1.l

Since C; and C; can only be connected through i and j, removing 7 and j disconnects
these two sets. Now consider the subgraphs induced by C; and C, respectively. As can be
done with any directed graph, we reduce each of these subgraphs to their quotients under
the mutual reachability equivalence relation, yielding a pair of directed acyclic graphs. The
next subsection generalizes this decomposition to account for all nodes for which d'/? vanishes
rather than a single pair.

2.3.2. Decomposition into equivalence classes and segments. Consider an equivalence
class @ = {aj, a9, ...,ax} of nodes under the equivalence relation i ~ j < dz/; = 0. We refer
to a node in a nonsingleton equivalence class as (dl/"’— ) degenerate. A graph is d'/*>-degenerate
if it has a degenerate node.

Definition 2.4. e A walk is a sequence of nodes {i1,i2,...,ix} such that P,
1<k< K.

o A walk is closed if i = i1.

e A closed walk is a commute from i1 if ix # i1, for 1 <k < K.

o A walk is a path if iy, # iy when k' # k. A commute is a cycle if it is a path when the last
element is removed.

>0 for

kslk+1

Lemma 2.5. A commute from ap € a must include each of the other members of a exactly
once in an order that depends only on the graph.

Proof. The proof is in three assertions. We assume WLOG that commutes are from a;.
First, each ay, is visited. This is the same as claiming that Qq, 4, = 1, which was shown in the
proof of Theorem 1.4. Second, each a;, is visited at most once, since Qq, 4, = 1. Lastly, each
ay, is visited in a fixed order: Let J; and Jo be commutes from aq that visit, respectively, ao
before as and vice versa. Then let J{ and Jé be the subwalks from a; to ay and from as to a;
in J1 and Ja, respectively. The concatenation of J{ and Jj is thus a commute from a; that
does not visit as, a contradiction. [ ]
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In the rest of subsection 2.3, we assume that equivalence classes under ~ are sorted so that
they must be visited in the order by commutes from their first element. Similarly, if the K
elements of an equivalence class are numbered aq,...,ax, we naturally identify a, = @ mod K-

Lemma 2.6. Given an equivalence class o under ~, for each j € G — « there is a unique k
such that all walks J containing j with a N J # & include either ay_1 before j or ay after j.

Proof. 1t is enough to consider paths. Suppose J; and Jo are two paths from j which
reach ay and ay, respectively, before reaching any other elements of a, with k # k’. By strong
connectivity, we can select a shortest path from aj to j to extend J; to a cycle from j, which
we call J3. That is, if we select a shortest (in number of distinct steps) path, 7, from ay to j,
then J; U~ = J3 is the required extension of Jj.

Now, J3 can be cyclically reordered to be a commute from ag. Thus, J3 includes axs, and
since v was shortest possible, it includes aj exactly once. Let Jy C J3 be the subwalk from
ap to j. Then concatenating Jy and Jo gives a commute from ax that does not include ag, a
contradiction. Thus, j has a unique successor a; in .

The conclusion that there is a unique predecessor of j in « follows by reversing the direction
of all edges and reapplying the above argument. It must be a;_; since ay is the first member
of the equivalence class encountered in any commute from j. |

Definition 2.7. We will here refer to the equivalence classes on G — « induced by Lemma 2.6
as (a-) segments of G.°

Lemma 2.8. Given distinct equivalence classes o and [ under ~, every element of o must
lie within a single segment induced by .

Proof. Let a = {a1,az,...,ax,} and 8 = {b1,b,...,bx,}. Suppose, by way of contradic-
tion, that a; lies between by, and by, 1 and ag lies between by, and by, for k; # ko. By
strong connectedness, there exists a (shortest) path from by, to aj to by, 41. If by, +1 and by,
are distinct nodes, there also exists a shortest path from by, 41 to by,. Since Qbkg»a2 < 1, there
exists a shortest path from by, to by,+; not passing though ay. Finally, if by, and by, are
distinct nodes, there exists a shortest path from by,11 to by,. Concatenating all these paths
gives a commute from aj to itself not passing though ao, a contradiction. |

The foregoing lemmata show that the nontrivial equivalence classes in a d'/’>-degenerate
digraph induce a structure of equivalence cycles and their segments, with distinct equivalence
cycles restricted to lie within the segments of each other. This has potential application in
segmentation of directed graphs and will be an important technical tool in the proofs in the
next subsection.

2.4. Quotients of d'/>-degenerate Markov chains. Next, we develop a way to transform
a Markov chain X for which d'/? is not a metric into a quotient Markov chain X', for which
d'”? is a metric.

5 Alternatively, we could define segments more generally with respect to any node set . Then the segment
corresponding to i € « is the set of nodes reachable from ¢ without passing through any other elements of a.
From this perspective, the absolute segments described later are simply the intersection of the segments with
respect to all the equivalence classes.
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Remark 2.9. In subsection 2.4, we identify singleton classes with their member. Addition-
ally, we append a prime to any symbol when it is meant to refer to X’ rather than X.

The quotient graph is given by the following construction, which has appeared in [35] as

well as in [32, 34, 5] and possibly other places.

Definition 2.10. Given a Markov chain X and an equivalence relation on the states of
X, the quotient Markov chain has one state for each equivalence class, and the transition
probabilities are given by

1 1
fﬁV:¢Uz;@Hy:¢w§:§:@3w

el jev

where ¢y = Y17 Gi-

The map that sends X to X’ is denoted ¢. It can be shown [35] that the invariant measure
on X' evaluated at state U is ¢}, = ¢y. Furthermore, P carries information about the
equilibration rate in ergodic chains [34, 32, 5], although we do not use this fact in this paper.
When applying Definition 2.10 to ~, the definition reduces to

Phy = 7 2 3 P

i€l jeV

since ¢ is constant within equivalence classes (see proof of Theorem 1.4).

Lemma 2.11 (quotienting one class at a time). Let ~ induce the nonsingleton classes
{ai,a9,...,ar}. For a node set S, let ~g be the relation with nonsingleton class S, keeping
all other nodes in individual (singleton) classes. One can then produce a graph with the same
nodes as P’ by performing a series of quotienting operations P — P, — --- — Pp. Then

~aq ~ag ~ag

Pr, = P', after identifying nested classes with the nodes in them, e.g., {{a},{b}} — {a,b}.

Proof. The proof is by induction on L. If L = 1, the result is vacuously true. So assume
the result is true for graphs having L nonsingleton equivalence classes, and we proceed to
establish the result for L + 1 nonsingleton classes. Let G have classes {a1,...,ar1} under
~. Then we apply ~, to get P and then use the inductive assumption to conclude that
Pr11 = P|. So we need to prove that P| = P'. We have

Pa,ﬂv Q#O{h/@?éal,
Zjeﬁplal,ja 012041,5750&1,
ﬁZieaPIi,ap a%ﬂl,ﬁ:al,

Plog,ala a:alzﬁv

Plog =

\

where we have implicitly used the fact that ¢ p, has the form given in Lemma 2.11. Expanding
further gives
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Pa’57 a%CKl?ﬁ#al;
1 —
Pll 5 _ 2]65 W Ziem Pi:j’ a = 041)5 7é aq,
b 1 _
¢ mziea Zanl Pij, a#a,B=a,

1 .. — _
Jo| Zieal,anl Pj, a=a =4.
Rearranging sums gives
/
PlaﬂB | j : P»] =P a,fB
i€, jER
as expected. i

Lemma 2.12. Collapsing a single equivalence class a respects Q) in the following sense. Let
i and j be two nonequivalent nodes.
If i and j lie in the same a-segment, then Q;; = Q’
If i and j lie in different a-segments, then QQ” < Q < Qij-
Ifi € a, then Q;; = \a|Q
If j € a, then Q;; =

Proof. Let a ={ay,... ,aK}, where K = |a. It is clear that @); ; is unaffected by taking

quotients if ¢ and j lie in the same a-segment or if j € a.

For i = aj, € a, we know that @, j = Qq,,; for all £, so WLOG assume that j lies in the
segment between aj and ap4q1. Now, let us denote by @, i, the probability of a random
walker starting at i1 and reaching is before reaching i3 (in particular, Q; ; = Q; ;). Then,

K
1 1
Qu;=Phi+ D> PhyQijo= whiit e Y Y PuiQija

"#j a =195 da
1 1 1
=—=PF; tx Z Pyt Qit ja = Epi,j e Z Py Qi ji = EQi,j-
/75] i'¢a i34

Finally let ¢ and j be such that any path from ¢ to 5 must pass through a,...,ar before
encountering j. Then the following reasoning applies. Let a = a1,b = ag, v = Qqp ; and
Yy = Qbi,q- Then we have

Qij = Qia,iQaji»
Qaji=1—2)+2Qs; i,
Qvji=1-y)Qay-
Solving for Q; ; yields
1—=z
Qij = Qi am

On the quotiented graph, we also have

N | =

1
Qi = QiaQojir Qugi=5[1—7+2Q0,] + 35 [(1-v)Qay] -

Hence, Q; ; = QiaTL 1y and thus Qi < Qij-
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Furthermore, we can bound the ratio

Qi 1
(2.6) = .
- (1—2)y
QZ’J 1 - l—z+y
Since the function g(z1,22) = 212 is bounded above by 3 on (0, 1)%, (2.6) cannot exceed 2,

which gives the bound. The bound is tight because all values of x and y can be attained when
considering arbitrary weighted graphs. (A graph with only the four nodes a, b, 7, ; mentioned
in the proof and edges a — j, a — b, j = b, b = i, b = a, and i — a suffices to attain all
possible values of z,y.) [ |

Definition 2.13. An absolute segment is a maximal set of nodes which lie in the same
segment with respect to all nonsingleton equivalence classes.

Lemma 2.14. ¢ respects Q in the following sense for nodes i and j in distinct equivalence
classes a and (:
o Ifi and j lie in the same absolute segment, then Q; ; = Q;’j.
e Otherwise, ﬁQi:j < ;”3 < Qi j, where c is the number of equivalence classes with respect
to which i and j lie in different segments. (In particular, ¢ < L.) Equality holds only when
c=0.

Proof. 1f i is degenerate, first collapse «, scaling @;; by |a|. Next, collapse all other
equivalence classes one at a time, further scaling @;; by the appropriate factor in (%, 1)
whenever ¢ and j lie in different segments with respect to the collapsing class. |

From this lemma we immediately get the following theorem.

Theorem 2.15. X' is a metric space with metric (d')"2. In particular, fori € o and j € f3,

with o« # (3,

e if i and j lie in the same absolute segment, then dll/; = (d’)l/Q'

4,37
o otherwise d;j < di, 5 < d;j + +log |a||B| + clog?2, where c is the number of equivalence
classes with respect to which i and j lie in different segments. Equality holds only when

c=0.
Thus, ¢ pushes apart the different absolute segments. All other distances are unaffected.

Remark 2.16. ¢ is analogous to a rigid motion on each absolute segment, in that none of
the in-absolute-segment distances are distorted.

3. Computational methods. To compute the normalized hitting probabilities matrix and
metric structure on a Markov chain (or network) consisting of n nodes/states with probability
transition matrix P, we require only the computation of the invariant measure and the @
matrix. The invariant measure can be computed using iterative eigenvector methods, which
need O(m) operations per iteration for m edges.

We briefly recall the work in [47, Theorem 5] that shows the @) matrix can be computed in
O(n?3) time. The key idea from [47, Lemma 5] is that one can compute

_ =1
_ U —P) Py M)y

LU= P) e M)

0

(3.1) Qij(P)
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where e; € R" is the vector with a 1 in the jth entry and zeros elsewhere, P; = (I — eje;-F)P €
R™ ™ and the invertible matrix M(j) =1 — P + eje;‘»FP € R™". See Theorem 5 of [47] for
full details, but this identity follows from realizing that as defined M (j) is invertible with
inverse

Ao (I =P)~h (1= P~ Fe;

given in block form on the ej-, e;j basis.

If we then compute M (1)~! on the way to obtaining the first column Q;; = M(l)l_ll/
M(1);;", then M (j) is a rank-2 perturbation of M(1) and we can apply the Sherman-Morrison—
Woodbury identity to compute M (j)~!. Since we only access 2n — 2 elements of M (j)~!,
the full O(n?)-time Sherman—Morrison—Woodbury update is not needed, and we can get the
jth column Q;; in O(n) computations from M(1)"'. A MATLAB implementation of this
procedure, along with code for all of the numerical experiments described in the paper, is
available at https://github.com/zboyd2/hitting_probabilities_metric.

The matrix @ encodes the hitting probabilities of a random walk on the nodes of a graph,
and the order of the method we present here is very well documented in [47]. However,
there are several results that consider the computational complexity of the related problem
of commute times; see, for instance, the works [30, 3]. The computational cost of computing
hitting probabilities through inversion of the Laplacian has been explored further in [22, 14, 13],
resulting in some cases in which the method may be improved to better than O(n3). As we
are mostly interested in the construction of the metric here, we will not further explore the
question of optimal order of the computation.

4. Examples. We consider examples of Markov chains and directed graphs to illustrate
the proposed metric. We start with simple graphs for which the calculations can be performed
exactly. We then numerically explore a variety of synthetic graphs and a real-world example
defined from New York City taxi cab data.

4.1. Exact formulations. Here we consider some simple graphs on which the invariant
measure and hitting probabilities can be computed exactly to help us understand A®P5) and
db.

1. Directed cycles: Consider a directed cycle on n nodes. Then ¢; = 1/n for all ¢, and
Q;,j = 1 for all ¢ # j. Therefore, A®r.B) g g weighted clique, and d? has all points
equidistant. For § = 1/2, the weights equal to 1, and all nodes are identified with each
other in the metric topology.

2. Complete graphs: Consider a complete graph on n > 2 nodes. Then ¢; = 1/n for all 1,
and @Q; ;j = const < 1 for all ¢ # j. Therefore, A®P.B) s a weighted clique. Unlike the
directed cycle case, the weights in the clique are < 1 for all g > 1/2.

3. Glued cycles: Consider graphs of the type depicted in Figure 4.1, namely, graphs
composed of ny “backbone nodes” forming a directed chain, which then branches into
C' chains of length n., each of which finally connects back to the beginning of the
backbone chain. Intuitively, a random walker on this graph transitions between C + 1
groups of nodes, namely, each of the C' branches and the backbone. As illustrated
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Table 4.1
Values of Q, A®™®) and d evaluated at distinct nodes i and j for the glued cycles example from subsection 4.1.
We include extra columns for the case B = 1/2, which is particularly interpretable. Observe that neither Aw:8)
nor d° depends on ny or ny (except up to scaling), which is a manifestation of their blindness to walk length.
Also, the nodes that are closest together are those which lie on common chains. Note that we scaled A®P®) for
visual clarity. The invariant measure is easily verified to be (ny +n.)”" on the backbone and (C(ny 4+ ne)) "
elsewhere.

‘ J Q ("bﬁ::;l;)_% Albe:1/2) d%
Branch Same branch 1 L/c2p-1 1 0
Branch Different branch  1/2 Lfac28-1 L/ log 2
Backbone Branch 1o 1ok c—'” 1/2log C
Branch Backbone 1 1/c# c~'?  1hlogC
Backbone Backbone 1 1 1 0

in Table 4.1, our metric captures this intuition by placing each node very close to the
others on its chain. This is in contrast to commute-time-based metrics, where the
length of the chain must be taken into account. (See Figure 4.2.) In subsection 4.2, we
consider some numerical results based on this example.

4.2. Synthetic numerical examples. We consider four examples. The first two demon-
strate that the spectrum of A®p:5) (for f =1/2 or = 1) identifies cyclic and clique-like sets
in a useful manner. We compare to two alternative symmetrizations and another metric. The
second example additionally shows the scalability of our approach. In the third example, we
explore when it is advantageous to use d for visualization and clustering purposes, using a
directed planted partition model for ground truth comparisons. In dense, difficult-to-detect
regimes, our method is more accurate than clustering using the input adjacency matrix directly.
Finally, in the fourth example, we compare d'/2, d*, and spatial distance for geometric graphs,
finding that our distance captures comparable information to the spatial distance, with the
similarity being especially tight when 5 = 1/2.

4.2.1. Glued-cycles networks. For the two-glued-cycles networks illustrated in Figure 4.1,
we construct a probability transition matrix P by taking a uniform edge weight for all connected
vertices and performing a row normalization. We then compute the Fiedler eigenvector
corresponding to the second smallest eigenvalue of the graph Laplacian (sometimes called the
Fiedler vector) for different symmetrized adjacency matrices. For the adjacency matrices A
constructed below, we calculate the graph Laplacian L = D — A with D the diagonal matrix
of node degrees (row or column sums of A). The examples here are two directly glued cycles,
as well as two glued cycles with a bidirectional edge between the cycles. In the first case, the
results are all very similar regardless of the symmetrization, but for the second case the results
differ significantly. In each case, we group the nodes based on whether the corresponding
vector element is positive, negative, or zero.

For the two glued cycles without the bidirectional edge, the naive symmetrizations of the
directed adjacency matrix, either A = (P + PT)/2 or A = max (P, PT), have a Fiedler vector
that is 0 on the spine and splits each cycle into signed components; see the top right plot
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A =max(P,P") Chung’s L [12] A= A®rD) 4= A(p.'/2)

Figure 4.1. (Top left) Two-glued-cycles example from subsection 4.1 with ny = 3, nc =4, and C = 2. The
“backbone” nodes run along the center, and the two partial cycles split off from and then return to it. (Top
middle) Similar two-glued-cycles network with a bidirectional edge. (Top right) Sign of the Fiedler vector of the
Laplacian for several different symmetrizations. (Bottom) The sign of the Fiedler vector of the Laplacian for
several different symmetrizations. The sign of the Fiedler vectors is encoded as (—, green), (0, magenta), and
(+, blue).

in Figure 4.1. However, in the bottom left component Figure 4.1, for the two-glued-cycles
network with the bidirectional edge, the naive symmetrization splits the network horizontally,
which is reasonable, since the resulting graph cut is small, although this (by construction) does
not reflect the coherent, directed structure of the original graph.

One way to account for directed structure in a way that minimizes equilibrium flux across
the cut was suggested by Fan Chung [12] (cited in subsection 1.3), defining the Laplacian by
L=1- % [<I>1/2P<I>_1/2 + <I>_1/2PT<I>1/2} , where ® = diag(¢) € R™*". Chung uses L to establish
a Cheeger-type inequality for digraphs, which is used to study the rate of convergence for
Markov chains. Using Chung’s Laplacian again gives a comparable outcome for the two-glued-
cycles example (Figure 4.1), but in the example with the bidirectional edge, this symmetrization
places most of the nonbackbone nodes in one class and all backbone nodes in the other (second
plot in Figure 4.1).

The normalized hitting probabilities matrices AMPY) and A®P:'/2) each distinguish between
the two branches, with the backbone set equal to zero in both the cases of the glued cycles and
the glued cycles with a bidirectional edge as seen in Figure 4.1. Thus, all three approaches
uncover different structure in the two-glued-cycles graph with the bidirectional edge, with the
naive symmetrization yielding small undirected cuts, Chung’s approach yielding (perhaps)
two different dynamical states, and AP showing all three chains in a natural way for both
B =1/2,1.

Finally, we compare the total effective resistance metric of [54] to our metric on the
example of the two-glued-cycles network (with no bidirectional edge). As one might expect
given the relationship between effective resistance and commute times in the undirected case,
the total effective resistance of [54] is sensitive to cycle length. Figure 4.2 demonstrates that
the commute time approach views the distances on each cycle quite differently and that the
relative distances from the total effective resistance metric are more difficult to interpret in
the second loop.
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d'”? dt Total effective resistance

Figure 4.2. Two glued cycles with n. = 55 and n, = 5, with nodes colored by distance from a node on the
far right. Blue denotes small distances. The metric d*/? has three levels of distance corresponding to nodes on
the same branch, backbone, and opposite branch, respectively. The metric d* is similar, except nodes on the same
branch are not distinguished from backbone nodes. Finally, the total effective resistance metric from [54] gives a
smoother notion of distance on the right branch and backbone, but on the left branch, proceeding counterclockwise,
one finds the distance decreasing and then increasing again, which is somewhat difficult to interpret. This
example shows how different resistance/commute time are from hitting-probability distance.

Figure 4.3. Erdds—Rényi plus cycle example.

4.2.2. Cycle adjoined to directed Erdés—Rényi (ER) graph. Consider the following con-
struction, illustrated in Figure 4.3. Let n = ner + neyele, and let the first ne nodes form an
unweighted, directed ER graph with connection probability p. The remaining n¢ycle nodes form
an unweighted, directed cycle. The ER graph and cycle are connected by adding 2 round(np) —1
edges of weight w to each cycle node from randomly selected nodes in the ER graph.® Fi-
nally, a single, bidirectional edge of weight 1 is added from one cycle node to one ER node.
Normalizing the rows to form a probability transition matrix, a random walker on this graph
would transition between the ER and cycle subgraphs, where the cycle subgraph is difficult
to escape quickly because of the single exit. For the particular choice of ne = 20, ncycle = 8,
p =5, and w = 3, we find that the Fiedler vector of (the Laplacian associated with) Ahp.1/2) 4g

5These edges are drawn with replacement with multiedges merged to a single edge of weight w. Results
were similar when we added the weights instead.
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positive on the cycle nodes and negative elsewhere. In contrast, the Fiedler vector of the naive
symmetrization A = (P + PT)/2 or Chung’s L [12] does not separate the cycle and ER nodes.
Scaling up to n = ner + Neyele = 7,200 + 2,800 = 10,000 nodes, keeping the other parameters
the same (= 38.7 million edges), gives similar eigenvector results. The computation takes 31
seconds on a Lenovo ThinkStation P410 desktop with Xeon E5-1620V4 3.5 GHz CPU and 16
GB RAM using MATLAB R2019a Update 4 (9.6.0.1150989) 64-bit (glnxa64): 18 seconds to
compute Q, 6 seconds to compute ¢, 2 seconds to form AMP"/2) and 5 seconds to compute the
Fiedler vector.

4.2.3. Cluster detection and visualization for digraphs. We next use d for clustering and
dimension reduction. We consider directed graphs generated by a planted partition model with
nodes grouped into three ground truth communities and form a uniformly weighted adjacency
matrix by connecting an edge from i to j with probability pi, if ¢ and j are in the same
community and poys (< pin) otherwise. A probability transition matrix can then be formed
using row normalization. We then attempt to recover the ground truth node assignments.
The difficulty of this problem is generally understood in terms of A = piy, — pPout and p =
%. Small values of A correspond to more difficult clustering problems that may be solved
less accurately (relative to the ground truth). In this example we attempt to cluster the nodes
into k = 3 clusters using several approaches: (1) principal component analysis’ (PCA) [40]
on the adjacency matrix, A, followed by k-means clustering on the first k — 1 PCA vectors;
(2) PCA on d'” followed by k-means; and (3) k-medoids on d'/?. (The k-medoids algorithm
is similar in spirit to the k-means unsupervised clustering algorithm but applies in arbitrary
metric spaces; see, for instance, [26, 39].) Results are shown in Figures 4.4 and 4.5. We find that
method (1) works best on sparse or well-separated clusters, method (2) works best with dense,
difficult-to-detect clusters, and method (3) has no clear advantage. More specifically, using d'/?
in method (2) enhances our ability to get a better-than-chance clustering in dense networks.®
(We note that spectral methods in undirected graphs give asymptotically optimal almost-exact
recovery but are not optimal for harder cases where only better-than-chance recoverability is
possible [1]. This is consistent with Figures 4.4 and 4.5.) Finally, we can also use PCA on d'/2
to visualize the directed network. The first and second principal components, generated using
the built-in routine in MATLAB, are plotted in Figure 4.6, clearly showing the separation into
three clusters, which are in accordance with the three ground-truth communities.

4.2.4. Distances on geometric graphs. Given known convergence properties of various
graph models to continuum problems (e.g., [49, 48, 45, 46, 38]), we are motivated by the
question of how our distance metric compares to a standard notion of distance when the

"Specifically, we used the PCA routine from MATLAB R2019a Update 4 (9.6.0.1150989) 64-bit (glnxa64).
As expected, this gives different results in general when applied to a matrix versus its transpose. In this case, the
matrix is stochastically equivalent with its transpose, and in the New York taxi example below, the PCA-based
plots are similar regardless of whether the transpose is used.

8We also tried using the shortest commute and generalized effective resistance metrics [54, 55] as substitute
for the hitting time metric in this example and found similar improvements over using the raw adjacency matrix.
In particular, the shortest commute was the most effective metric for this task (although this metric is not
robust, so the real-life performance may be different).
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Figure 4.4. Results of (top row) PCA on A followed by k-means, (middle) PCA on d'’? followed by k-means,
and (bottom) k-medoids on d'’? on 300-node graphs generated using the directed planted partition model with three
clusters, as described in subsection 4.2.3. We varied the mean edge density, p, and cluster quality, A = pin — Pout -
Since results depend on the random initialization, we report best of 5 runs for each entry. If any generated
graph was not strongly connected, we did not try to cluster it. The left column is the accuracy (purity) of
the recovered partition, and the right value is the empirical p value of the accuracy relative to 4,000 random
partitions obtained by drawing each community label uniformly at random. Notably, method (2) has the best
performance for dense, weakly clustered graphs. (Note that the triangular blue region on the lower left of each
plot represents a (p, A) parameter combination that cannot exist.)

network arises from a natural geometric setting. For instance, as mentioned in the introduction,
[45] proves that the notion of diffusion distance converges to that of geodesic distance as a
point cloud samples a closed manifold at higher and higher densities.
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Figure 4.5. (Left) Regions where the methods from Figure 4.4 perform best. Here, light blue is method (1),
green is method (2), and yellow is method (3). (Middle) Difference in accuracy between the best and second-best
methods. (Right) Ratio of p value of the best and second best methods from Figure 4.4. Combining these plots,
we see that there is a significant parameter regime consisting of dense, difficult to detect structure, where using
d'’? instead of A enhances the spectral detection of structure by 5-20% for graphs where method (1) is recovering
essentially no structure in A. Note that the y axis is different from Figure 4.4.

Figure 4.6. PCA embedding of d'/?, colored by ground truth community.

In Figure 4.7, we consider distances computed using our metric structure in a family
of geometric graphs constructed using Euclidean distances to determine edge weights. The
following geometric graphs are considered:

(a) A random point cloud on a flat torus [0, 27]* with 362 points.

(b) A random point cloud on a flat torus with a hole [0,27]% \ B((x,7),7/2) with 362

points (distances relative to a point in the bottom left of the torus).

(¢) An H shaped domain ([0,27]? N {|z1 — x| > 7/2}) U ([0, 27)* N {|x2 — 7| < 7/4}) with

362 points (distances relative to a point in the bottom right of the H).

(d) A random point cloud on the circle of length 27 with 1000 points.

(e) A random point cloud on a sphere of radius 1 in R? with 1000 points.

(f) A square 10 x 10 lattice on the flat torus [0, 27]>.
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Figure 4.7. Normalized distance plots comparing the scaled distances from one node in a geometric graph
computed using Euclidean distances (black), d'? (blue), and d* (red). The geometric graphs from top left to
bottom right are (a) a random point cloud on a flat torus, (b) a random point cloud on a flat torus with a hole,
(¢) a random point cloud on an H shaped domain, (d) a random point cloud on the circle, (e) a random point
cloud on a sphere, and (f) a square lattice on the flat torus. Note, in all subplots, we have ordered the vertices
from closest to farthest from a reference node given by the first verter generated relative to the d'/? metric.

For the regular lattice example, the edge weights are only carried on nearest neigghbor vertices.
In all other cases, we consider the edge weights to be of the form e~ 7%Eue(i%)”  where dpye
is just the Euclidean distance metric (determined with periodicity if the domain is periodic,
i.e., we take shortest-path distance in the flat torus). We have chosen the scale factor v =1
uniformly throughout.

Once the geometric graph is constructed, we computed the pairwise Euclidean distances,
as well as the pairwise distances d'/? and d! for comparison. To assist with interpretation and
comparison, we have ordered the vertices in Figure 4.7 from closest to farthest relative to the
d'/2 metric and plotted for each distance function the rescaled distances (d—dmin)/(dmax — dmin)
to normalize all of them to the same scale.

Throughout, we note that d'/2 is a reasonable fit to the measured Euclidean distances, while
d' seems to do well only when the geometry is such that the invariant measure normalization
(that is, the choice of 3) does not matter as much. Note that the distance d'/> and d' are
identical on the square lattice, up to scaling. In this case, we are really studying the structure
of the @ hitting probability matrix. Our results give some preliminary indication that in the
consistency limit the d'/2 metric may converge to the Euclidean distance while the d* metric
converges to something else entirely. However, we leave this pursuit for future analytical
studies.
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Figure 4.8. An example based on New York City taxi transit data, where nodes are 250 neighborhoods and
A; j is the number of trips from i to j. (Left) Heatmap of A with the nodes sorted by borough in this order:
EWR airport (one node), Staten Island, Manhattan, Queens, Brooklyn, and the Bronz. The tazi traffic is
dominated by the Manhattan block in the upper left, with Queens, Brooklyn, and the Bronz forming three blocks
further down and to the right. (Middle) A similarly arranged heatmap of d'?. The Manhattan neighborhoods
are close together, and the smaller upper left block corresponding to Staten Island is distinguished as a coherent
submodule, despite having only 8 interior edges. Queens, Brooklyn, and the Bronx form a large block in the
lower right. See subsection 4.3 for an explanation of these differences. (Right) A heatmap of d*. We observe
that in this normalization Staten Island is quite far from everything, including itself. Manhattan is relatively
close to almost everything, especially itself. This is exactly what we should expect because d{j is small only when
both ¢; and the i — j hitting probability are large. (In the right two heatmaps, the diagonal is set to a nonzero
value to improve contrast.)

4.3. Real-world example: The New York City taxi network. Consider the movement
over time of a New York City taxi, which we interpret as a Markov chain where the states
are neighborhoods and F; ; is the probability that a trip begun in neighborhood i ends in
neighborhood j. Using publicly available data from the New York City Taxi and Limousine
Commission,” we computed an adjacency matrix where A; ; is the number of Yellow Taxi
trips in January 2019 that started at ¢ and ended at j, where i and j are chosen from 262
neighborhoods!” spread across the city’s five boroughs (Manhattan, Staten Island, Queens,
Brooklyn, and the Bronx). We also included trips to and from Newark Liberty International
Airport (EWR) in New Jersey. We restricted our analysis to the 250-neighborhood strongly
connected component.

The data is dominated by degree, as shown in Figure 4.8, with the busier Manhattan
neighborhoods having tens of thousands of trips, and the Staten Island neighborhoods having
median out-degree of 4. Traffic is also organized by borough, although the distinctions between
the spatially adjacent Brooklyn, Queens, and Bronx boroughs are perhaps less apparent, and
they might be properly considered as peripheral to the Manhattan core. Staten Island is
notable for its remoteness, which is reflected in the sparsity of A in that block.

In Figure 4.8, we compare A with d'2 and d*. While d'/? highlights Manhattan in a
manner similar to A, it does not distinguish much between Queens, Brooklyn, and the Bronx,
showing them instead as a single interconnected group. In contrast, Staten Island is very

9Accessed at https://wwwl.nyc.gov/site/tlc/about /tlc-trip-record-data.page in April 2020.
0Two additional neighborhoods are marked “unknown” and appear to designate out-of-city or out-of-state
endpoints. We excluded these from our analysis.
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clearly highlighted as its own, close group, which is reasonable given the geographic proximity
of these neighborhoods and the fact that a disproportionately large number of trips involving
Staten Island both started and ended there. Although the purpose of this example is not to
provide an optimal clustering of the data, we note that Staten Island does represent a difficult
cluster to detect, and arguably is not even a cluster, since there are only eight interior edges
(counting multiplicity but excluding self-edges) and 309 incoming or outgoing edges, all of
which are hidden in over 1 million edges (again, counting multiplicity).

Note that the fact that Staten Island is highlighted by d'/? is not simply because of
degree scaling, as a heat map of P does not highlight Staten Island as a block. The true
explanation seems to involve two factors: (1) Staten Island has eight nondiagonal in-edges 13
neighborhoods,!! and the median out-degree is 4. Thus, a taxi that does enter Staten Island
has a relatively large likelihood of visiting another Staten Island location next, relative to taxis
starting at other neighborhoods. (2) The average frequency of visiting Staten Island at all
is so low that the pattern of visiting is almost memoryless, with taxis leaving Staten Island
having plenty of time to mix in other areas before visiting Staten Island again, so that the
probability of leaving Staten Island and then reaching another Staten Island location before
returning to the first one is about %, despite the low degree of Staten Island neighborhoods.
In contrast, Staten Island is far from other locations, especially Manhattan, since by (1.4),
mutually high hitting probabilities are required for closeness, but the probability of starting in
a Manhattan neighborhood and reaching Staten Island before returning is very low.

The distance d' places the Manhattan nodes close to most other nodes, especially each
other, while the Staten Island nodes are far from everything, especially each other. Since
dil’j = —log(¢;) — log(Qs,;), this distance is small only when (1) ¢; is large and (2) Q;; is far
from zero. Thus, the Staten Island nodes, which have small values of ¢, cannot be close to
anything, and the Manhattan nodes, which have the largest values of ¢, can be close to other
nodes, depending on @Q; ;. Empirically, @Q; ; is usually not very small, with 77% of the entries
in @ being at least 0.1, which explains Manhattan’s overall closeness to other nodes. The fact
that the Manhattan nodes are closer to each other than to other nodes is accounted for by the
fact that ();; for ¢ in Manhattan is generally larger if j is also in Manhattan, which might
be expected. (The medians differ by a factor of 5.4.) A similar observation explains why the
Staten Island nodes are considered farther from each other than they are from nodes in the
other boroughs.

Finally, we used d'/2 to perform PCA, with the first two principal components (PCs)
visualized in Figure 4.9. These two PCs explained 64% and 34% of the variation, respectively,
with the first PC being closely related to out-degree (Pearson correlation with log kot is .96)
and the second PC being well correlated (Pearson correlation .9978) with the column means
of d'2. So over 98% of the variance is explained by these two PCs. Interestingly, both the
highest- and lowest-degree nodes were on average far from other nodes. Recalling that d;/;
is the negative log of the geometric mean of @; ; and @;; (see (1.4)), closeness requires that
both of these factors be high. If ¢ is a high-degree core node, then @); ; is small for most j. In
contrast, a mid-degree peripheral node in Queens, the Bronx, or Brooklyn enjoys reasonable

HStaten Island has 20 neighborhoods, but 7 have 0 out-degree and are thus excluded from the strongly
connected component.
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Figure 4.9. (Left) These two PCs explain 98.3% of the variance. The first PC has a .96 correlation
coefficient with log kows, and the second PC as a correlation coefficient of .9978 with the column means of d'/?,
which we interpret as the average distance to other nodes. Notably, the highest-degree nodes also have high
average distance to other nodes. This is also true of the lowest-degree nodes, while the mid-degree nodes in
Queens, Brooklyn, and the Bronx are closer to other nodes on average. We interpret this by noting that, while
high-degree nodes are common endpoints for trips (so Q; ; might be high when j is a high-degree node), they
have a lot of self-loops, and the taxis that leave them tend to return relatively quickly (so Qj,: is low for most i).
Using (1.4), we see that di/; will then not be very small for high-degree i. The mid-degree nodes, in contrast,
send a lot of taxis into the Manhattan core, which are likely to mix through the city for a long time before
returning (so Qi,; s not very small for almost all destinations j). (Right) PCA on A gives a similar first PC.
The second PC' is nearly constant except on Manhattan, where it is correlated with the East-West coordinate
(Pearson .42, p = .0004). The second PC explains about half as much variance for A as for d'?.

values of @); ; for other peripheral nodes j, since once a taxi enters the Manhattan core, it
is likely to visit a significant portion of the other nodes before returning to i. Finally, if a
node’s degree is too small, the probability of a taxi reaching it at all is too small for the hitting
probabilities to be high. For comparison, performing PCA directly on A gives a similar first
PC, with a different second PC that explains about half as much variance as the second PC of
d'2. The second PC is nearly constant, except on Manhattan, where it correlates with the
East-West coordinate.

5. Conclusion. Given a probability transition matrix for an ergodic, finite-state, time-
homogeneous Markov chain, we have constructed a family of (possibly pseudo-)metrics on the
state space, which we refer to as hitting probability distances. Alternatively, this construction
gives a metric on the nodes of a strongly connected, directed graph. In the cases where
we do not obtain a proper metric, the degeneracies give global structural information, and
we can quotient them away. Our metrics can be computed in O(n?) time and O(n?) space,
in one example scaling up 10,000 nodes and ~ 38M edges on a desktop computer. Our
metric captures different information compared to other directed graph metrics and captures
multiscale structure in the taxi example. We have considered the utility of this metric for
structure detection, dimension reduction, and visualization, finding in each case advantages of
our method compared to existing techniques.

Some other possible applications include efficient nearest-neighbor search, new notions of
graph curvature [51], Cheeger inequalities, and provable optimality of weak recovery for dense,
directed communities. Additionally, in our experiments, we observed that several eigenvalues
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of the symmetrized adjacency matrix contained useful information about structure such as
cycles, and it would be good to understand better which structures get encoded in leading
cigenspaces. Empirically, it is important to know how commonly d'/? is degenerate and what
useful structure is revealed in practice. A natural theoretical question is consistency of the
distances in the large graph limit as we approach a natural geometric object embedded in a
standard Euclidean space [38, 45, 46, 48, 49, 56].

In terms of possible improvements to our method, an effective means of thresholding the
symmetrized hitting probability matrix could improve scalability. A natural question to pursue
in a variety of settings would be the sparsification of A®P#) and its implications for spectral
analysis and clustering applications. In particular, the potentially sparse P will map into a full
(but symmetric) matrix A(#)_ In large systems the O(n?) storage requirement may become
a burden. Hence, it is natural to ask, If we sparsify the A(P#) matrix to have a comparable
number of edges to that of the original P, how much information can be stably preserved in
the spectrum? This will be a topic of future work on the hitting probability matrices we have
constructed.
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