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Abstract— In this paper, co-states are used to develop
a framework that desensitizes the optimal cost. A general
formulation for an optimal control problem with fixed final
time is considered. The proposed scheme involves elevating
the parameters of interest into states, and further augmenting
the co-state equations of the optimal control problem to the
dynamical model. A running cost that penalizes the co-states
of the targeted parameters is then added to the original cost
function. The solution obtained by minimizing the augmented
cost yields a control which reduces the dispersion of the original
cost with respect to parametric variations. The relationship
between co-states and the cost-to-go function, for any given
control law, is established substantiating the approach.

I. INTRODUCTION

Obtaining robust solutions against parametric variations in
optimal control problems is a requirement in various applica-
tions, particularly in the fields of aerospace and robotics. For
many problems, it is essential that for a given performance
criterion, one can also ensure minimal dispersion in the
total cost, in spite of variations in the problem parameters.
Previous attempts have primarily aimed at stability and
performance criteria defined over an infinite horizon [1], [2].
Questions regarding the sensitivity of the trajectory (or the
cost) explicitly and its implications on the performance have
been largely overlooked. In [3], the authors have addressed
the implications of parametric uncertainties over a finite
horizon using linear matrix inequalities (LMIs), however, the
problem does not address the sensitivity of the performance
with respect to the parameters. Traditionally, robust optimal
control [4]–[6] and feedback control synthesis [7] have been
used to address the issue of parametric uncertainty, with an
inherent trade-off between cost and robustness to be decided.
Indeed, the increased cost is incurred due to additional
control effort, in magnitude or over time. The main goal
of desensitized optimal control (DOC) is to alleviate the
additional effort induced onto the control feedback loop
by, instead, picking a trajectory which is less sensitive to
variations under parametric uncertainty.

Early work on trajectory sensitivity design include those of
Winsor and Roy [8], who developed a technique to design
controllers that provide assurance for system performance
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under mathematical modeling inaccuracy. The feasibility of
the technique was established with appropriate simulation
results. However, their work has been restricted to linear
systems. Following that work, several approaches including
sensitivity-reduction for linear regulators, using increased-
order augmented system [9], modification of weighting ma-
trix [10], feedback [11], [12], and an augmented cost function
[13], [14], were all thoroughly analyzed. The approach of
using an augmented cost function was further tested on the
linear quadratic regulator (LQR) problem, which was later
applied for active suspension control in passenger cars [14].
The work by Seywald et al. on desensitized optimal control
makes use of sensitivity matrices to obtain an optimal open-
loop trajectory that is insensitive to first-order parametric
variations [15], [16]. However, the sensitivity matrix based
approaches [15], [16] requires propagating the original states,
the targeted parameters, and the elements in the sensitivity
matrix, resulting to a total of (n+`)2+n+` number of states.
An alternative approach was presented in [17] where the
dimensionality of the state-space for the augmented problem
is reduced to n+ n`, using traditional sensitivity functions.

Desensitization of a solution can include addressing the
problem of minimizing variations: a) in the optimal trajec-
tory; b) in the final state; or c) in the optimal cost under
variation in model parameters, for a given optimal control
problem. The former two cases were dealt with in our
previous work [17]. Three different formulations that employ
sensitivity functions were put forth which desensitize either
entire trajectories or the state at a particular time (e.g., final
time).

An approach to desensitize the cost for an optimal control
problem with fixed final time is presented in this paper. To
this end, we recall that the co-states in an optimal control
problem are a measure of the sensitivity of the value function
with respect to the states along the optimal trajectory [18],
[19]. In this paper, we first prove that the co-states indeed
capture sensitivity of the cost-to-go function with respect to
perturbations in the state given any prescribed control law
u(t), not just the optimal one. Using this fact, a new approach
to solve the DOC problem is presented.

II. PROBLEM FORMULATION

Consider a standard optimal control problem of the form

inf
u
J (u, p) , φ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t) dt, (1)

subject to

ẋ = f(x, p, u, t), x(t0) = x0, , (2a)
ψ(x(tf ),tf ) = 0, (2b)
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where t ∈ [t0, tf ] denotes time, with t0 being the ini-
tial time and tf being the final time (both assumed to
be fixed), p ∈ P ⊂ R` are ` unknown, possibly time-
varying, model parameters, x(t) ∈ Rn denotes the state,
with x0 being the fixed state at t0. The control u ∈ U =
{Piecewise Continuous (PWC), u(t) ∈ U, ∀ t ∈ [t0, tf ]},
with U ⊆ Rm being the set of allowable values of u(t),
φ : Rn × [t0, tf ] → R, the terminal cost function, and
L : Rn × Rm × [t0, tf ] → R, the running cost. Finally,
ψ : Rn × [t0, tf ]→ Rk is a function representing k-number
of constraint equations at the final time. The above problem
is to be solved by finding the optimal control u∗ ∈ U that
minimizes the cost function in (1). The solution involves
the optimal trajectory x∗(t), t ∈ [t0, tf ], determined from
ẋ∗(t) = f(x∗(t), p, u∗(t), t) subject to x∗(t0) = x0, and the
optimal cost J ∗ = φ(x∗(tf ), tf ) +

∫ tf
t0
L(x∗(t), u∗(t), t) dt.

The system dynamics represented by the function
f(x, p, u, t) contains the model parameters p which are
assumed to be constant. It is understood that the optimal
solution (constituting the cost, and the trajectory) is model-
sensitive and, if changes in the parameters p occur at any time
t ∈ [t0, tf ], then the optimality of the obtained solution is not
guaranteed. Consequently, the optimal control problem has to
be resolved for each new value of the parameter vector. If the
optimal solution u∗ is used despite the parameter variations,
one can expect a dispersion in the optimal trajectory (and/or
cost J ∗). With a motivation to minimize the dispersion of the
final state x∗(tf ) of the optimal solution, under parametric
uncertainties, Seywald and Kumar constructed an augmented
cost function using sensitivity matrices [15]. The approach
goes as follows.

First, the parameters of interest and the corresponding
entries in the sensitivity matrix are elevated to states, and
the augmented state [x̃> (vecS)>]>, where x̃ = [x> p>]>,
along with the corresponding dynamics and initial conditions
are derived. The sensitivity of the vector x̃(t)1 at time t with
respect to perturbations in the initial state vector x̃(t0) = x̃0
is denoted as S(t|t0, x̃0) That is,

S(t|t0, x̃0) =
∂x̃(t|t0, x̃0)

∂x̃0
. (3)

The dynamics of the state x̃ can be written as

˙̃x = f̃(x̃, u, t) = [f>(x, p, u, t) 01×`]
>,

x̃(t0) = x̃0 = [x>0 p>0 ]>, (4)

and

Ṡ(t|t0, x̃0) =
∂f̃

∂x̃
S(t|t0, x̃0), S(t0|t0, x̃0) = I(n+`), (5)

where p0 is the nominal value of the parameter vector, and
where S(t|t0, x̃0) represents the sensitivity of the vector x̃(t)
at time t with respect to perturbations in the initial state
vector x̃(t0).

The augmented cost function, given in (6) below, is then
minimized to obtain an optimal solution with the final state

1From time to time we will denote x̃(t) as x̃(t|t0, x̃0) to explicitly
represent the dependency on the initial conditions x̃0 = [x(t0)> p(t0)>]

being “desensitized” with respect to the parameter variations

Js(u, p) =J (u, p)

+

∫ tf

t0

‖ vec
(
S(tf |t0, x̃0)S(t|t0, x̃0)−1

)
‖2Q(t)

)
dt, (6)

with Q(t) ≥ 0, for all t ≥ t0. Note that the sensitivity matrix
of Seywald in (3) has the form of a state transition matrix
and its properties are exploited to construct the sensitivity
of the final state with respect to the variations in the state
at time t ∈ [0, tf ], which is then plugged into the running
cost (6). This is elaborated upon in Ref. [15]. The approach
achieves the desensitization of the final state.

A. Problem Formulation
In this work, we are interested in desensitizing the cost

itself. By denoting

J (u, p) =

∫ t

t0

L(x(s), u(s), s)dt+ C(x̃(t), u, t), (7)

C(x̃(t), u, t) =

∫ tf

t

L(x(s), u(s), s)dt+ φ(x(tf ), tf ), (8)

we immediately notice that the parametric variation at time
t, affects the total cost J (u, p) only through the cost-to-
go C(x̃(t), u, t). Thus, the sensitivity of the total cost for a
parametric variation at time t from its nominal value p0 can
be captured through the term

SC(x(t), p0, u, t) =
∂C

∂p
(x̃(t), u, t)

∣∣∣
p=p0

. (9)

There are several ways to capture the effect of the parametric
variations on the cost, one of which is to consider the
following sensitivity cost

Jc(u, p0) =

∫ tf

t0

‖SC(x(t), p0, u, t)‖2Q(t)dt, (10)

for some Q(t) ≥ 0, for all t ≥ t0.
There are three major formulations relevant to the problem

of cost-based desensitization, which are as follows.
Problem 2.1: Solve

inf
u∈U

J (u, p0), (11a)

subject to Jc(u, p0) ≤ D. (11b)

Let us denote the solution of Problem 2.1 to be the “cost-
desensitization” function J(D) which represents the optimal
cost given a bound on the sensitivity metric. A similar
problem is to consider minimizing the sensitivity of the cost
for a given bound on the performance index, as presented
below.

Problem 2.2: Solve

inf
u∈U

Jc(u, p0), (12a)

subject to J (u, p0) ≤ J. (12b)

Let us denote the solution of Problem 2.2 to be the
“desensitization-cost” function D(J). Finding analytical or
numerical solutions to J(D) or D(J) are challenging. How-
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ever, J(D) or D(J) can be constructed by solving the fol-
lowing family of optimization problems for all α ∈ [0,∞).

Problem 2.3: Solve

inf
u∈U
J (u, p0) + αJc(u, p0) (13)

By observing that the scalar α can be absorbed into the
matrix Q(t), we will rewrite the objetive function in Problem
2.3 as

Js(u) = J (u, p0) + Jc(u, p0).

When the sensitivity cost has zero weight (Q(t) ≡ 0), we
solve problem (1) and retrieve lim supD→∞ J(D), and as we
increase the weight on the sensitivity cost (through Q(t)),
we arrive at an optimal control whose performance is more
insensitive to the variations in the parameters. In the limit
when Q(t) → ∞ for all t, we retrieve lim supJ→∞ D(J).
In this work, we will focus on minimizing Js(u). Detailed
analysis of J(D) and D(J) will appear elsewhere.

The new optimization problem we are interested in solving
is

inf
u
Js(u), (14a)

subject to ẋ = f(x, p0, u, t), x(t0) = x0, (14b)
ψ(x(tf ), tf ) = 0. (14c)

The following section presents a formal theorem for the
fact that the co-states capture the sensitivity of the cost-to-go
function for any given control input ū(t), that satisfies the
terminal constraint (14c) with nominal value of the parameter
p0. The result would allow us to penalize a weighted norm of
the co-states, with their dynamics obtained from the adjoint
equations, that desensitizes the cost function with respect to
the variations in the targeted parameters.

III. CO-STATES AND DESENSITIZED OPTIMAL CONTROL

In this section we characterize the cost-sensitivity
SC(x(t), p0, u, t) in terms of the co-state process associated
with the optimal control problem given by (1)-(2b). The
following theorem shows that the sensitivity of the cost-to-go
function with respect to the state at time t can be represented
by a co-state process λ with certain boundary conditions at
the final time tf .

Theorem 3.1: Consider the dynamical system ẋ =
f(x, u, t), evolving under a given control law ū ∈ Ū ⊆ U ,
where

Ū =
{
ū : [t0, tf ]→ Rm is PWC, ū(t) ∈ U, ψ(x(tf ), tf ) = 0,

x(tf ) = x0 +

∫ tf

t0

f(x(t), ū(t), t) dt
}
.

Then, for a cost-to-go function (associated with the cost
functional (1)) with x = x(t)

C(x, ū, t) = φ(x(tf ), tf ) +

∫ tf

t

L(x(τ), ū(τ), τ) dτ, (15)

under the control ū ∈ Ū , the sensitivity of the cost-to-go

function with respect to the state x at time t is,

λ>(t) =
∂C

∂x
(x(t), ū, t), (16)

which obeys the dynamics

λ̇>(t) = −∂H
∂x

(x(t), ū, λ(t), t), (17)

where

H(x, u, λ, t) = L(x, u, t) + λ>f(x, u, t). (18)

Furthermore, the terminal condition for (17) is given by

λ(tf ) =
∂φ

∂x
(x(tf ), tf ). (19)

Proof: The proof is presented in Appendix A.

It is interesting to note that the theorem holds not only
for the optimal control (a result that follows directly from
the maximum principle [20]), but for any control law that is
piecewise-continuous and ensures that the terminal constraint
is met. The C-DOC problem can now be fully formulated
using this result.

For the C-DOC problem the augmented state is x̃ =
[x>, p>] with dynamics given in (4). The Hamiltonian,
defined in Theorem 3.1, for this system, can be written as

H(x̃, u, λ, µ, t) = L(x, u, t) + λ>ẋ+ µ>ṗ

= L(x, u, t) + λ>f(x, p, u, t), (20)

where λ and µ are the co-states corresponding to state x
and vector of parameters defined by p, respectively. The
corresponding adjoint equations are given by

λ̇> = −∂H
∂x

(x̃, u, λ, µ, t)

= −λ> ∂f
∂x

(x, p, u, t)− ∂L

∂x
(x, u, t), (21)

µ̇> = −∂H
∂p

(x̃, u, λ, µ, t) = −λ> ∂f
∂p

(x, p, u, t). (22)

Since the co-states represent the sensitivity of the cost-to-go
function for a given control input u(t) (Theorem 3.1), they
can be expressed as

λ(t)> =
∂C

∂x
(x̃(t), u, t), (23)

µ(t)> =
∂C

∂p
(x̃(t), u, t), (24)

for a given control u ∈ Ū , this results in the trajectory x(t)
for t0 ≤ t ≤ tf , where

C(x̃, u, t) = φ(x(tf ), tf ) +

∫ tf

t

L(x(τ), u(τ), τ) dτ.

Note that p is an augmented state in the given problem and
affects the cost J through the state x, whose dynamics is
a function of p. Since we have used ṗ = 0 and p(t0) =
p0, we have ensured that p(t) = p0. Thus, by comparing
equations (9) and (24), we obtain µ(t) = SC(x(t), p0, u, t).
Therefore, weighting the co-state in the existing cost function
will ensure that the solution of the augmented problem
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minimizes the sensitivity of the cost J with respect to
parametric variations. This results in an updated optimal
control problem with an augmented cost, accounting for the
sensitivity component, given by

Js(u) = φ(x(tf ), tf )

+

∫ tf

t0

[
L(x(t), u(t), t) + µ>(t)Q(t)µ(t)

]
dt. (25)

Minimizing the cost (25) subject to the dynamics (4), ter-
minal constraint (2b), and the transversality conditions (19)
with

µ(tf ) = 0, (26)

yields a desensitized optimal control problem for the original
problem. Here, Q(t) ∈ R`×` is a user-defined positive semi-
definite weighting function and is generally of the form

Q(t) ≡ diag(α1(t), . . . , α`(t)). (27)

This co-state based approach requires formulating 2(n + `)
number of states, as compared to the higher 2(n+`)2+n+`
states in [15], employing sensitivity matrices for an optimal
control problem. The resulting problem (25) is typically
solved by the off-the-shelf existing solvers.

IV. NUMERICAL EXAMPLES

The following section presents some numerical examples
that will aid in understanding the implementation of this
technique and will elucidate its subtleties. The simulations
are obtained using GPOPS-II [21].

Consider an optimal control problem of minimizing a
quadratic cost

J (u) =

∫ tf

0

1

2
(x>R1x+ u>R2u) dt, (28)

given the n-dimensional linear dynamics with parameter
vector p

ẋ = A(p)x+B(p)u, (29)
ṗ = 0, (30)

with initial conditions x(0) = x0, p(0) = p0, where x ∈
Rn, u ∈ Rm, p ∈ R`, A : R` → Rn×n, B : R` → Rn×m,
R1 ≥ 0, R2 > 0, and tf is fixed. The goal is to desensitize
the cost with respect to the parameter p. Following the steps
to construct the cost term for desensitization, the Hamiltonian
is given by

H =
1

2
(x>R1x+ u>R2u) + λ>ẋ+ µ>ṗ,

=
1

2
(x>R1x+ u>R2u) + λ>(A(p)x+B(p)u). (31)

The adjoint equations are

λ̇> = −∂H
∂x

= −x>R1 − λ>A(p), (32)

µ̇> = −∂H
∂p

= −(x> ⊗ λ>)
∂

∂p
vec(A(p))

− (u> ⊗ λ>)
∂

∂p
vec(B(p)). (33)

where λ and µ are the co-states of x and p, respectively.
Since the cost has to be desensitized with respect to p, the
augmented cost that has to be minimized for the C-DOC
problem is given by

Js(u) =

∫ tf

0

1

2
(x>R1x+ u>R2u+ µ>Qµ) dt. (34)

To demonstrate the results, we consider a one-dimensional
linear system with the dynamics ẋ = ax + bu with initial
condition x(0) = 1, and let R1 = R2 = 2, tf = 20. We first
analyze the case where b is the uncertain parameter with
its nominal value as b0 = 1, and a = −1. The solutions
obtained for Q = 0 and 1, 000 are shown in Fig. 1. Note
that the sensitivity measure (µ2(t)) in Fig. 1(b) is lower for
the desensitized solution. Since b is the source of uncertainty
that perturbs the trajectory (and eventually the cost), by
introducing desensitization (Q = 1, 000), it can be observed
from Fig. 1(d) that the control goes to zero earlier compared
to the non-desensitized solution. By making the control
zero, the source of uncertainty is removed from the system.
The results obtained from the Monte-Carlo simulations with
b ∈ [0.8b0, 1.2b0] are shown in Fig. 1(c), which suggests
that the variation in the cost for the desensitized solution is
significantly lower.
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(b) µ2(t) - a measure of sensitivity
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(d) Optimal Control (u∗)

Fig. 1. Results obtained for an LQR problem with an uncertain B matrix.

The results for the case where a is the uncertain parameter
with its nominal value as a0 = −1 (stable), and b = 1
are shown in Fig. 2. Since a is the source of uncertainty,
by switching on the desensitization (Q = 1, 000), it can be
observed from Fig. 2(a) that the state approaches zero faster
compared to the non-desensitized solution. Consequently,
from the Monte-Carlo simulations (a ∈ [0.8a0, 1.2a0]), it
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can be observed that the variations in the optimal trajectory
(Fig. 2(c)), and the cost (Fig. 2(d)) are significantly lower
for the desensitized solution, though the cost for the same
is higher which is a trade-off. The error bars in Fig. 2(d)
represent the minimum and the maximum costs obtained
form the Monte-Carlo results where the corresponding grey
bars represent the nominal costs with a = a0.
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Fig. 2. Results obtained for an LQR problem with a stable and uncertain
A matrix.

A more interesting case is a marginally stable system with
a0 = 0, and a ∈ [−0.2, 0.2]. The corresponding results
can be found in Fig. 3. In the previous cases, although
a parametric variation in a is studied, such variations did
not change the stability of the system, i.e., if the nominal
system is stable, then the system with parametric variation
is stable as well. Since a can be both stable and unstable,
the optimal control obtained for the nominal system without
desensitization will be less effective combating the instabil-
ities compared to the desensitized solution, as can be seen
from the dispersion in trajectories (and costs) in Fig. 3.

V. DISCUSSION: RELATION BETWEEN THE SENSITIVITY
MATRIX AND CO-STATES

In this section we address the relationship between the
sensitivity matrix defined in (3) and the co-states λ. Let us
note that, λ>(t) = ∂C

∂x (x(t), u, t), which can be expressed
as

λ>(t) =
∂C(x(t), u, t)

∂x0

[
∂x(t)

∂x0

]−1
,

=
∂C(x(t), u, t)

∂x0
S(t|t0, x0)−1, (35)
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Fig. 3. Results obtained for the LQR problem with a = 0 (red: Q = 0,
green: Q = 1, 000).

where S(t|t0, x0) =
∂x(t)

∂x0
is the sensitivity of the state at

time t along the trajectory with respect to variation in its
initial condition x0 [15]. Note that the dependency of x(t),
t ≥ t0 on t0 and x0 (initial conditions) is implicit. The
relationship between the co-state and the sensitivity matrix
in (35) can be generalized to obtain the sensitivity of the
solution with regards to the state at any other time t′ as

λ>(t) =
∂C(x(t), u, t)

∂x(t′)

∂x(t′)

∂x(t)
, (36)

=
∂C(x(t), u, t)

∂x(t′)
S(t|t′, x(t′))−1 ∀ t, t′ ∈ [t0, tf ].

(37)

Therefore,

λ(t) = S(t|t′, x(t′))−>
[
∂C(x(t), u, t)

∂x(t′)

]>
,

(38)[
∂C(x(t), u, t)

∂x(t′)

]>
= S(t|t′, x(t′))>λ(t). (39)

From the above expressions, we observe that the sensitivity
matrix S(t|t′, x(t′))> is essentially the transition matrix
between the co-states λ(t) and the partial of the cost-to-go
function at time t with respect to the state at time t′, i.e., the
sensitivity of the cost-to-go function at time t with respect
to the state at time t′ < t.

VI. CONCLUSION

We attempt to exploit the co-states to obtain trajectories
that are less sensitive to parametric variations. It is estab-
lished that the co-states, defined by the Hamiltonian and
the adjoint equations, capture the sensitivity of a cost-to-
go function for any arbitrary control law. This has led to
the idea of inserting the co-states into the cost function
and then studying its implications in the context of DOC.
In particular, this approach has been used to solve the
problem of cost desensitization with respect to variations in
the system parameters. The results suggest that variations to
parametric uncertainty and optimality can be balanced using
this approach through the choice of an appropriate weighting
parameter. The numerical simulations show promising results
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that validate the theory. The proposed approach can be used
to look at some other interesting problems, especially related
to robust optimal control.
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APPENDIX

A. Proof of Theorem 3.1
For a fix control ū, the cost-to-go from any state x at time

t is

C(x, ū, t) =φ(x(tf ), tf ) +

∫ tf

t

L(x(s), ū(s), s)ds

where x(t) = x.
Let the perturbed state at time t be represented by

x(t, α) = x(t)+αδx(t) where α ∈ [0, α0) for some α0 > 0,
and δx(t) ∈ Rn. With this perturbation the new cost-to-go
is

C(x+ αδx, ū, t) =φ(x(tf , α), tf )+∫ tf

t

L(x(s, α), ū(s), s)ds

where x(s, α) denotes the perturbed state at time s ≥ t. By
denoting x(s, α) = x(s, 0)+αδx(s), for all s ≥ t, we obtain

δẋ(s) = fx(x(s, 0), ū(s), s)δx(s) +O(α),

where O(α) is such that limα→0O(α) = 0. Consequently,
δx(s) = Γ(s, t)δx(t)+O(α) where Γ(s, t) is the state transi-
tion matrix corresponding to the matrix fx(x(s, 0), u(s), s).

Therefore,

C(x+αδx, ū, t)− C(x, ū, t) = αφx(x(tf , 0), tf )Γ(tf , t)δx

+ α

[∫ tf

t

Lx(x(s, 0), u(s), s)Γ(s, t)ds

]
δx+O(α2)

and thus,

lim
α→0+

C(x+ αδx, ū, t)− C(x, ū, t)

α
=[

φx(x(tf , 0), tf )Γ(tf , t)+∫ tf

t

Lx(x(s, 0), u(s), s)Γ(s, t)ds
]
δx,

and

Cx(x, ū, t) = φx(x(tf , 0), tf )Γ(tf , t)

+

∫ tf

t

Lx(x(s, 0), ū(s), s)Γ(s, t)ds.

At this point, if we denote

λ> , Cx(x, ū, t).

We then have
λ̇> = −λ>fx − Lx,

since Γ̇(s, t) = −Γ(s, t)fx(x(t, 0), u(t), t). Furthermore,
λ(s) satisfies the terminal condition λ(tf ) = φx(x(tf ), tf ).

Thus, if we define the Hamiltonian as H = L + λTf , it
follows that

λ̇> = −∂H
∂x

and this λ represents the first order variation in cost-to-go
with boundary condition

λ(tf ) = φx(x(tf ), tf ).

The result follows. �
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