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Abstract. We study the nodal curves of low energy Dirichlet eigenfunctions in generalized curvi-
linear quadrilaterals. The techniques can be seen as a generalization of the tools developed by

Grieser-Jerison in a series of works on convex planar domains and rectangles with one curved edge
and a large aspect ratio. Here, we study the structure of the nodal curve in greater detail, in that
we find precise bounds on its curvature, with uniform estimates up to the two points where it meets
the domain at right angles, and show that many of our results hold for relatively small aspect ratios
of the side lengths. We also discuss applications of our results to Courant-sharp eigenfunctions and
spectral partitioning.

1. Introduction and statement of results

Understanding the fundamental modes of vibration of a compact domain is a longstanding problem.
The original motivation was to describe how a metal sheet with a given shape would vibrate when
struck at some fundamental frequency. The main goal being to understand the structure of the set of
points in the sheet that are stable, i.e. that are not vibrating. These non-vibrating regions are the
zero sets of the Laplace eigenfunctions corresponding to solving the Helmholtz equation on the domain
that represents the metal sheet. In the 17th century R. Hook observed these patterns by spilling sand
on a glass sheet, and striking the sheet with a violin bow. When the sheet starts vibrating, the sand
rearranges itself across the sheet until it is placed on the non-vibrating areas, thus exhibiting the zero
sets for the corresponding eigenfunction. This experiment was later reproduced by E. Chladni, who
was the first to record an extensive list of zero set configurations. It is nowadays known as the Chladni
plates experiment.

We dedicate this article to giving a precise description of the structure of the zero set of the second
eigenfunction for a planar domain whose shape is obtained after perturbing a rectangle. While we focus
on the second Dirichlet eigenfunction, the techniques developed here can be applied to the low-lying
eigenfunctions in general up to a frequency depending upon the length of the domain. Also, there are
natural generalizations to Neumann (or more generally Robin) boundary conditions, but for the sake
of clarity and presentation we will focus on Dirichlet domains at present.

We note that low-lying eigenvalues and eigenfunctions of the Laplacian on a compact domain also
play a role in understanding random walks ([KP89]), heat conductivity ([S+96]) and more. See for
instance the recent works [Zel17, Ste17] and references therein for a nice overview of applications and
modern topics in the theory of eigenfunctions and nodal sets.

In this work, we study the second Dirichlet eigenfunction of the Laplacian on a planar domain Ω,
so that

{

∆v(x, y) = −µv(x, y) in Ω
v(x, y) = 0 on ∂Ω

where µ is the corresponding eigenvalue. The domain Ω is a curvilinear rectangle that is very nearly
rectangular in a Gromov-Hausdorff sense to be made precise below in (1). For convenience, we nor-
malize v so that ‖v‖L∞ = 1. We are interested in studying the nodal set of v, which we denote
by

Γ = {(x, y) ∈ Ω̊ : v(x, y) = 0}.
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below shows how Γ changes under the above perturbations of the rectangle. Let πx : R2 → R be the
projection onto the x-axis.

Theorem 1.1. There exist c > 0, C > 0, such that πx(Γ) ⊂ [N2 − C(η + δ), N
2 + C(η + δ)] and has

diameter bounded by

diam(πx(Γ)) ≤ C

(

ηe−cN +
δ

N2

)

.

Moreover, there exists a function g(y) such that Γ ∩ Ω̊ = {(x, y) ∈ Ω̊ : x = g(y)}, with

|g′(y)|+ |g′′(y)| ≤ C

(

ηe−cN +
δ

N2

)

.

The nodal line Γ ∩ Ω̊ touches the boundary of Ω at precisely 2 points, and it meets the boundary
orthogonally at these points.

Here and throughout, constants denoted by c, C, C1, etc, depend on the constants C̃j , but are
independent of η, δ, and N . (In fact we will only require control on derivatives up to j = 5.)

Increasing the length of the rectangle by a perturbation of size η decreases the eigenvalue by
O(ηN−3), while increasing the width of the rectangle by a perturbation of size δN−3 decreases the
eigenvalue by O(δN−3). Thus, by our choice of perturbations to the rectangle, when η and δ are of
comparable size, each perturbation leads to the same change in the eigenvalue. Increasing the length of
the rectangle by a perturbation of size η should move the nodal set by an amount η (see, for example,
Theorem 1 in [GJ96]). Analogous to this, we will see that a global y-perturbation of size δN−3 leads to
the nodal line moving by an amount at most δ from the unperturbed case. Near the nodal set we will
show that the x-derivative of the eigenfunction is of size N−1 and the y-perturbation gives an error of
size δN−3 to the eigenfunction from a sinusoidal function. This is the reason for the error term δN−2

appearing in the width and curvature of the nodal line.
An immediate feature to note is that in the special case of flat upper and lower boundaries (φ

B
(x) ≡ 0,

φ
T
(x) ≡ 1), we can set δ = 0 and the factor of δ

N2 does not appear in the estimates of Theorem 1.1.
Therefore, in this flat case the diameter of the nodal line, diam(πx(Γ)), is exponentially small in N
(rather than the polynomial decay in N when δ 6= 0).

From Theorem 1.1 we see that for N sufficiently large (and δ ≤ Cη), the perturbation of the nodal
line from straight is smaller than that of the side perturbations φ

L
(x), φ

R
(x). In the flat case, φ

B
(x) ≡ 0,

φ
T
(x) ≡ 1, we can track the constants in the proof of Theorem 1.1 (see Section 5) to obtain an explicit

lower bound on the size of N required for this to occur:

Corollary 1.1. There exists a constant N0 > 0 such that for N ≥ N0 and δ ≤ η,

diam(πx(Γ)) ≤ η
2 and |g′(y)|+ |g′′(y)| ≤ η

2 .

In the flat case, φ
B
(x) ≡ 0, φ

T
(x) ≡ 1, for each N ≥ 8, we can take η < η(N0) and the above estimates

hold.

By controlling the behavior of the nodal line up to the boundary, we are able to show for the class of
domains under consideration that the nodal line is not closed, but meets the boundary (orthogonally) at
two points. More generally, Payne [Pay67] conjectured that the nodal line of the second eigenfunction
of a bounded planar domain touches the boundary at 2 points. This was proved for smooth, convex
domains by Melas [Mel92], but a counterexample (for a non-simply connected planar domain) was
given by Hoffmann-Ostenhof, Hoffmann-Ostenhof, and Nadirashvili [HOHON97].

In [FK08], Freitas and Krejc̆ĭŕık study the Dirichlet Laplacian for a class of thin curved tubes.
As the volume of the cross-section tends to 0 they establish the convergence of the eigenvalues and
eigenfunctions in terms of an ordinary differential operator on the base curve of the tube. In particular,
they locate the nodal set to sufficient precision to also deduce that the nodal set must intersect the
boundary. Krejc̆ĭŕık and Tus̆ek also prove an analogous result for domains consisting of a thin tubular
neighborhood of a hypersurface, [KT15]. The idea of reducing to an associated ordinary differential
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operator has also been used extensively by Friedlander-Solomyak [FS08], [FS09] and Borisov-Freitas
[BF09] to obtain asymptotics of the eigenvalues, eigenfunctions, and resolvent of the Dirichlet Laplacian
in thin domains.

Applications to partitioning algorithms. Recently, in work on graph and data partitioning al-
gorithms, Szlam et al in [SMCB05, Szl09] observed the following. If one studies a dense graph that
is properly embedded in a domain in R

2 using iterated cuts along nodal sets of the first eigenvector
of the graph Laplacian, then the regions tend towards rectangles of bounded aspect ratios. Here, the
iteration must be stopped after a finite number of cuts depending upon the graph density in order for
the sets to have a geometric interpretation (and hence ”rectangles” being recognizable) rather than just
a combinatorial set of vertices of the graph. The underlying idea of graph partitions are for instance
to cluster data points or to provide a good foundation for a wavelet basis to name just two. There is
also the continuum limit version of this, in which one could ask to partition a planar domain using
the first non-trivial Neumann or second Dirichlet eigenfunction respectively. Again, for a very general
boundary, one expects that such partitions would converge rapidly to a set of near rectangles.

We can use Corollary 1.1 to illustrate such a convergence is possible at least at the outset. Let us
focus on the flat top and bottom case for simplicity, with N ≥ 8, and η = η(N) sufficiently small. Given
such a domain Ω, we can form 2 new domains by cutting Ω along the nodal line Γ. Using the estimates
above, we can ensure that these two new domains are of the form of Ω but with roughly N1 ≈ N/2
length scale in the x direction, and that one side of the new domain satisfies a stronger curvature
bound than that of Ω. We can continue to iterate this procedure j times until N/2j ≈ Nj ≤ 8, with
the curvature of one side decreasing in each iteration by Corollary 1.1. However, at some point in
the process we once again arrive at a curvilinear quadrilateral with aspect ratio small enough such
that the constants fall outside the scope of our strong quantitative estimates. The fluctuations do not
decrease as clearly using our methods beyond that point as we would need stronger control over the
constants c, C in Theorem 1.1, and hence stronger control on the constituent curves of the domain.
Cutting along the nodal line will thus result in a dynamical system of domains with bounded aspect
ratios such that the spectral cuts rely on the structure of the iterated component curves. Analogously,
for the general top and bottom boundaries considered here, using the estimates in Corollary 1.1, given
η, δ, with δ ≤ η, and for N sufficiently large, we can repeat the above scenario, to again give a possible
sequence of domains converging to a rectangle up to a point where we saturate the aspect ratios for
which we can prove strong decreasing bounds on the curvature of the component curves. We leave this
as a conjecture and focus here on proving quantitative estimates in nearly rectangular domains.

Another partitioning related to the nodal set of Dirichlet eigenfunctions of the Laplacian is the
following: Given a domain Ω and integer k ≥ 2, a spectral minimal k-partition of Ω is a partition
of Ω into k disjoint sets Ωi that minimizes maxi λ(Ωi). Here λ(Ωi) is the first Dirichlet eigenvalue
of Ωi. If k = 2, then the spectral minimal partition is given by the nodal domains of a second
Dirichlet eigenfunction of Ω. More generally, if a k-th Dirichlet eigenfunction has exactly k-nodal
domains (and so gives equality in the Courant nodal domain Theorem), then these nodal domains
form a minimal k-partition. See the survey paper of Helffer [Hel10] for greater discussion of spectral
minimal partitions and references. It is therefore important to classify examples where the Courant
nodal domain Theorem is sharp. For instance, it is a direct computation to observe that the third
Dirichlet eigenfunction of the rectangle has three nodal domains whenever the aspect ratio is greater
than

√

8/3. This result and many others on spectral partitions and Courant sharp eigenfunctions can
be found for instance in the seminal work [HHOT09]. Using the techniques presented here, for any
fixed j ≥ 2, by taking N sufficiently large, for all 2 ≤ k ≤ j, the k-th Dirichlet eigenfunction of the
perturbed rectangle has exactly k nodal domains (with nodal set approximately equal to the union of
the k − 1 lines { l

kN} × [0, 1] for 1 ≤ l ≤ k − 1). Thus, in this case, the nodal domains will provide a
spectral minimal k-partition.

Outline of the paper. The structure of the rest of the paper as follows: In Section 2 we describe
an adiabatic approximation of the eigenfunction that is a key ingredient in the proof of Theorem
1.1. This type of approximation, which can be viewed as an approximate separation of variables



NODAL LINE ESTIMATES FOR THE SECOND DIRICHLET EIGENFUNCTION 5

for our approximately rectangular domain, has been used in the work of Grieser and Jerison [GJ96],
[GJ09]. The approximation has also been used in [BSS97] for numerical analysis of eigenfunctions
in partially rectangular billiards, and in [HM12] to analyze non-concentration of eigenfunctions in
partially rectangular billiards. In Section 3, we establish the desired properties of the width and
regularity of the nodal line using the adiabatic approximation. Then, in Section 4 we demonstrate how
in the flat case, we have simple ODE estimates to establish the approximation, and following this, we
prove the error estimates for the approximation for our general class of domains. Lastly, in Section 5
we compute an explicit Hadamard variation formula to evaluate the effect the side perturbations have
on the eigenfunction. This will in particular allow us to track the constants appearing in the proof of
Theorem 1.1 in the flat case and prove Corollary 1.1.

Acknowledgements. This project was started due to a conversation with Stefan Steinerberger and
Hau-tieng Wu, who pointed us to the work of [Szl09] as motivation to understand nodal line partitioning
in domains, and with whom the third author is exploring a related question for the 1-Laplacian on
curvilinear rectangles. YC is supported in part by the Sloan Foundation. JLM acknowledges support
from the NSF through NSF CAREER Grant DMS-1352353. The authors thank the anonymous referee
for a careful reading of the result and in particular for suggesting a means to strengthen the Theorem
in relation to the location of the nodal cut.

2. The Adiabatic Ansatz

A key ingredient in the proof of Theorem 1.1 is to establish properties of a Fourier decomposition
of the eigenfunction v(x, y). For convenience, we introduce the height function

h(x) := φ
T
(x)− φ

B
(x),

and note that by (3) we have 1− 2δ
N3 ≤ h(x) ≤ 1+ 2δ

N3 for all x ∈ [0, N ]. For (x, y) ∈ Ω with 0 ≤ x ≤ N ,
we write v as

v(x, y) = v1(x) sin(β(x, y)) + E(x, y), (4)

where

β(x, y) :=
π(y − φ

B
(x))

h(x)

and where the function v1(x) is given by

v1(x) =
2

h(x)

ˆ φ
T
(x)

φ
B
(x)

v(x, y) sin(β(x, y)) dy.

We will view the first term in the right hand side of (4) as the main term, with E(x, y) an error term
when N is large, and δ, η are small. The function v1(x) is the first Fourier mode in the y-direction.
To prove Theorem 1.1 we will use this decomposition of v, and will require a lower bound on |v′1(x)|,
together with upper bounds on v1(x), E(x, y) and their derivatives. In fact, to prove the estimates on
regularity of the nodal line near ∂Ω, we need to consider a larger class of decompositions of v: Given
(x0, y0) ∈ Γ, suppose that (x1, y1) ∈ ∂Ω, with y1 = φ

B
(x1) and d((x0, y0), ∂Ω) = d((x0, y0), (x1, y1)).

We now rotate the domain so that (x1, y1) is vertically below (x0, y0). More precisely, we intoduce
the new coordinates (x̃, ỹ) = F−1(x, y), where F is the linear isometry obtained by rotating around
(x0, y0) followed by a vertical shift so that (x1, y1) = F (x̃0, 0). We then define w(x̃, ỹ) to be equal to
the eigenfunction v in these rotated coordinates,

w = v ◦ F.
Remark 2.1. By the bounds on φ

B

′(x) and φ
T

′(x) from (3), there exists C > 0 such that the angle of
rotation is bounded by C δ

N3 .

The function w satisfies

(∆ + µ)w = 0
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in the domain

Ω̃ = {(x̃, ỹ) : ρ
L
(ỹ) ≤ x̃ ≤ ρ

R
(ỹ), ρ

B
(x̃) ≤ ỹ ≤ ρ

T
(x̃)},

with w|∂Ω̃ = 0. In particular, for 0 ≤ x̃ ≤ N , we have w(x̃, ρ
B
(x̃)) = w(x̃, ρ

T
(x̃)) = 0. Here ρ

B
, ρ

T
satisfy

the bounds

|ρ
B
(x̃)| ≤ 2δ

N3
(1 + |x̃− x̃0|), |ρ

T
(x̃)− 1| ≤ 2δ

N3
(1 + |x̃− x̃0|),

∣

∣

∣

∣

dj

dx̃j
ρ
B
(x̃)

∣

∣

∣

∣

≤ 2C̃j
δ

N3
,

∣

∣

∣

∣

dj

dx̃j
ρ
T
(x̃)

∣

∣

∣

∣

≤ 2C̃j
δ

N3
, (5)

j ≥ 1. Up to the factor of 2, the derivative bounds are the same as for φ
B
, φ

T
. Moreover, by the

construction of F , we have ρ
B
(x̃0) = ρ

B

′(x̃0) = 0. The functions ρL(ỹ), ρR(ỹ) satisfy

−η − δ

N3
≤ ρ

L
(ỹ) ≤ δ

N3
, − δ

N3
≤ ρ

R
(ỹ)−N ≤ η +

δ

N3
,

∣

∣

∣

∣

dj

dỹj
ρ
L
(ỹ)

∣

∣

∣

∣

≤ η +
δ

N3
,

∣

∣

∣

∣

dj

dỹj
ρ
R
(ỹ)

∣

∣

∣

∣

≤ η +
δ

N3
, (6)

for j = 1, 2. We can make the analogous definition if the closest point to (x0, y0) lies on the upper
boundary of Ω. For ease of notation, we now drop the tildes, and for each function w(x, y) coming
from such a rotation, for x ∈ [0, N ] we write

w(x, y) = w1(x) sin(β̃(x, y)) + Ẽ(x, y), (7)

where

β̃(x, y) :=
π(y − ρ

B
(x))

h̃(x)
,

for the new height function h̃(x) = ρ
T
(x) − ρ

B
(x). To prove Theorem 1.1, we will use the proposition

below which gives properties of these decompositions.

Proposition 2.1. There exist positive constants c, C such that the following properties hold: For each
decomposition, there exists a unique point x0 ∈ [ 14N, 3

4N ] such that w1(x0) = 0, and this point lies in

the interval [N2 − C(η +Nδ), N
2 + C(η +Nδ)]. Moreover, for x ∈ [ 14N, 3

4N ],

|w′
1(x)| ≥ C−1N−1,

and for x ∈ [1, N − 1], 0 ≤ j ≤ 3, we have

|w(j)
1 (x)| ≤ CN−j , sup

y∈[ρ
B
(x),ρ

T
(x)]

∣

∣

∣
∇jẼ(x, y)

∣

∣

∣
≤ C

(

ηe−cN +
δ

N3

)

.

Proposition 2.1 is proved in Section 4.

Remark 2.2. When the rotation is trivial, w is equal to v and the decomposition reduces to the one
for v given in (4). Therefore, the properties in this proposition also hold for v1(x) and E(x, y). In
fact, in this case, the unique point x0 where v1(x0) = 0 lies in the interval

[N2 − C(η + δ) , N
2 + C(η + δ)].
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3. Estimates on the nodal line

In this section we will prove Theorem 1.1 assuming that Proposition 2.1 holds. We first establish
an upper bound on the width of the projection to the x-axis of the nodal line in terms of the error E
and its derivatives. We will require a different argument to control the behavior of the nodal line near
the boundary, and so we set

S(x) = SB(x) ∪ ST (x) := [φ
B
(x), φ

B
(x) + 1

4 ] ∪ [φ
T
(x)− 1

4 , φT
(x)].

We continue to write h(x) = φ
T
(x)− φ

B
(x) and β(x, y) = π(y − φ

B
(x))/h(x). Since h(x) ≥ 1

2 for all

x, we have that 0 ≤ β(x, y) ≤ π
2 on SB and 3π

2 ≤ β(x, y) ≤ π on ST . Therefore, this choice yields

sin(β(x, y)) ≥ 2

π
β(x, y) =

2(y − φ
B
(x))

h(x)
y ∈ SB(x),

and similarly

sin(β(x, y)) ≥ 2(φ
T
(x)− y)

h(x)
y ∈ ST (x).

Applying Proposition 2.1, we let x0 be the unique point in the interval [ 14N, 3
4N ] where v1(x0) = 0.

Using the decomposition of v from (4), define Ĩ to be the smallest interval with x0 ∈ Ĩ and such that

A) sup
x∈[0,N ]
y∈S(x)c

|E(x, y)| < 1

2
inf
x∈Ĩc

|v1(x)|
h(x)

B) sup
x∈[0,N ]
y∈S(x)

|∂yE(x, y)| < 2 inf
x∈Ĩc

|v1(x)|
h(x)

Lemma 3.1. If x ∈ Ĩc, then v(x, y) 6= 0 for all y ∈ (φ
B
(x), φ

T
(x)).

Proof of Lemma 3.1: Let y ∈ S(x)c. Then, sin(β(x, y)) ≥ sin(β(x, φ
B
(x) + 1

4 )) ≥ 1
2h(x) and so

|v(x, y)| = |v1(x) sin(β(x, y)) + E(x, y)| ≥ |v1(x)| 1
2h(x) − |E(x, y)| > 0. (8)

By assumption (A), this is strictly positive. Now let y ∈ SB(x). Then, since E(x, φ
B
(x)) = 0, we

have |E(x, y)| ≤ (y−φ
B
(x)) supy∈SB(x) |∂yE(x, y)|. Also, using that sin(β(x, y)) ≥ 2(y−φ

B
(x))

h(x) we obtain

|v(x, y)| = |v1(x) sin(β(x, y)) + E(x, y)| ≥ (y − φ
B
(x))

(

|v1(x)| 2
h(x) − sup

y∈SB(x)

|∂yE(x, y)|
)

> 0, (9)

and by assumption (B) this is strictly positive. The case y ∈ ST (x) is treated in the same way. �

We now define the interval I,

I := [x0 − τ, x0 + τ ]

where

τ :=
supx∈Ĩ h(x)

2 infx∈Ĩ |v′1(x)|
max

{

4 sup
(x,y)∈Ω

x∈Ĩ

|E(x, y)| , sup
(x,y)∈Ω

x∈Ĩ

|∂yE(x, y)|
}

.

Lemma 3.2. If x ∈ Ic, then v(x, y) 6= 0 for all y ∈ (φ
B
(x), φ

T
(x)).

Proof of Lemma 3.2: Let y ∈ S(x)c. Then, as in (8),

|v(x, y)| ≥ |v1(x)| 1
2h(x) − |E(x, y)|.

Also, since v1(x0) = 0, we have |v1(x)| ≥ |x− x0| infx∈Ĩ |v′1(x)|. Therefore, |v(x, y)| > 0 provided

|x− x0| >
2h(x) supy |E(x, y)|

infx∈Ĩ |v′1(x)|
,

and the latter always holds if |x− x0| > τ .
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Now let y ∈ SB(x). Then, as in (9)

|v(x, y)| ≥ (y − φ
B
(x))

(

|v1(x)| 2
h(x) − sup

y∈SB(x)

|∂yE(x, y)|
)

and using |v1(x)| ≥ |x− x0| infx∈Ĩ |v′1(x)| gives

|v(x, y)| ≥ (y − φ
B
(x))

(

2
h(x) |x− x0| inf

x∈Ĩ
|v′1(x)| − sup

y∈SB(x)

|∂yE(x, y)|
)

Therefore, from the definition of τ , |v(x, y)| > 0 for |x− x0| > τ . �

Using Proposition 2.1 and Remark 2.2, there exist c > 0 and C > 0 such that τ ≤ C
(

ηe−cN + δ
N2

)

and I ⊂ [N2 −CN(η + δN−1), N
2 +CN(η + δN−1)], and so the estimate on the width and location of

the nodal line in Theorem 1.1 follows immediately from Lemma 3.2.
To study the regularity of the nodal line, we use the coordinate change described in Section 2. For

a given (x0, y0) with v(x0, y0) = 0, y0 ≤ 1
2 , this coordinate change transforms (x0, y0) to (x̃0, ỹ0) and

the eigenfunction v to w(x̃, ỹ). Dropping the tildes, we have (∆ + µ)w = 0 in the domain

Ω̃ = {(x, y) : ρL(y) ≤ x ≤ ρR(y), ρB(x) ≤ y ≤ ρ
T
(x)}, (10)

with w(x, ρ
B
(x)) = w(x, ρ

T
(x)) = 0. Moreover, ρ

B
(x0) = ρ

B

′(x0) = 0. Setting h̃(x) = ρ
T
(x) − ρ

B
(x),

β̃ =
π(y−ρ

B
(x))

h̃(x)
, we decompose w(x, y) as in (7). Note that in the case of a flat top and bottom

boundary, the coordinate change is trivial, and w is identically equal to v. The case y0 ≥ 1
2 is treated

in the analogous way by making a rotation about the top boundary.
We set S̃(x) = S̃B(x)∪ S̃T (x) = [ρ

B
(x), ρ

B
(x) + 1

4 ]∪ [ρ
T
(x)− 1

4 , ρT(x)], and to establish the regularity

of the nodal line, we first study it away from the boundary of Ω̃. Define

e1 := sup
(x,y)∈Ω̃

x∈I

|∂xẼ(x, y)|+ π sup
x∈I

|w1(x)| sup
x∈I

(

h̃(x)−2
(

|h̃′(x)|+ |ρ
B

′(x)ρ
T
(x)|

))

(11)

and

Λ1 :=
1

2
inf
x∈I

|w′
1(x)|
h̃(x)

− e1. (12)

We will show in the proof of Lemma 3.3 that Λ1 provides a lower bound for |∂xw(x0, y0)| for points

(x0, y0) ∈ w−1(0) with y0 ∈ S̃(x0)
c.

Lemma 3.3. Suppose that Λ1 > 0. Then, for every (x0, y0) ∈ w−1(0) with y0 ∈ S̃(x0)
c there exist a

smooth real valued function g and a neighborhood U of (x0, y0) such that

w−1(0) ∩ U = {(x, y) ∈ U : x = g(y)},
with

|g′(y)| ≤ 1

Λ1

(

π sup
x∈I

|w1(x)|
h̃(x)

+ sup
(x,y)∈Ω̃

x∈I

|∂yẼ(x, y)|
)

.

Proof of Lemma 3.3: Note that for all (x, y) ∈ Ω̃

∂xw(x, y) = w′
1(x) sin(β̃(x, y)) + w1(x)∂xβ̃(x, y) cos(β̃(x, y)) + ∂xẼ(x, y),

and
∂xβ̃(x, y) = − π

h̃(x)2

(

yh̃′(x) + ρ
B

′(x)ρ
T
(x)
)

. (13)

Therefore,

|∂xw(x, y)| ≥ |w′
1(x)| sin(β̃(x, y))− |w1(x)∂xβ̃(x, y) cos(β̃(x, y)) + ∂xẼ(x, y)|.

Let (x0, y0) ∈ w−1(0), and suppose that y0 ∈ S̃(x0)
c. Then, using sin(β̃(x0, y0)) ≥ 1

2h̃(x0)

|∂xw(x0, y0)| ≥
1

2
inf
x∈I

|w′
1(x)|
h̃(x)

− e1 = Λ1, (14)
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with e1 as defined in (11). Thus, |∂xw(x0, y0)| > 0 since Λ1 > 0 by assumption. This implies the

existence of the graph function g along a neighborhood of w−1(0) ∩ {(x, y) ∈ Ω : y ∈ S̃(x)c}. Note
that for every y

g′(y) = −∂yw(g(y), y)

∂xw(g(y), y)
. (15)

We next find an upper bound for |∂yw(g(y), y)|. Since for all (x, y) ∈ Ω

∂yw(x, y) = π
w1(x)

h̃(x)
cos(β̃(x, y)) + ∂yẼ(x, y),

then

|∂yw(x, y)| ≤ π sup
x∈I

|w1(x)|
h̃(x)

+ sup
(x,y)∈Ω̃

x∈I

|∂yẼ(x, y)|. (16)

This together with (14) yield the claimed bound on |g′(y)| when y ∈ S̃(x)c. �

To study the regularity of the nodal line near ∂Ω̃, we define

e2 := sup
x∈I

y∈S̃B(x)

|∂y∂xẼ(x, y)|+ π sup
x∈I

|w1(x)| sup
(x,y)∈Ω̃

x∈I

|h̃′(x)|
h̃(x)2

(17)

and

Λ2 := 2 inf
x∈I

|w′
1(x)|
h̃(x)

− e2. (18)

We will show in Lemma 3.4 that Λ2 provides a lower bound for |∂xw(x0, y0)| for all points (x0, y0) ∈
w−1(0).

Lemma 3.4. If Λ2 > 0, there exist a neighborhood U of (x0, y0), and smooth real valued function g,
such that w−1(0) ∩ U = {(x, y) ∈ U : x = g(y)}, and

|g′(y)| ≤ |y|
Λ2

sup
x∈I

y∈S̃B(x)

(

1
2 h̃(x)

−2(1 + |ρ
B

′′(x)|)|∂yẼ(x, y)|+ 1
2 |ρB

′′(x)||∂2
yE(x, y)|+ |∂3

yE(x, y)|
)

Furthermore, w−1(0) meets ∂Ω̃ orthogonally.

Proof of Lemma 3.4: Since ∂xẼ(x, ρ
B
(x)) = 0, we have ∂xẼ(x0, 0) = 0, and so

|∂xẼ(x0, y0)| ≤ y0 sup
y∈S̃B(x0)

|∂y∂xẼ(x0, y)|.

In addition, using ρ
B
(x0) = ρ

B

′(x0) = 0, we know that sin(β̃(x0, y0)) ≥ 2
h̃(x0)

y0 and ∂xβ̃(x0, y0) =

− π
h̃(x0)2

y0h̃
′(x0). Therefore,

|∂xw(x0, y0)| ≥ y0

(

2 inf
x∈I

|w′
1(x)|
h̃(x)

− e2

)

= Λ2 y0. (19)

This proves the existence of g. For (x0, y0) ∈ w−1(0), with y0 ∈ S̃B(x0) we have w1(x0) = − Ẽ(x0,y0)

sin(β̃(x0,y0))
.

Therefore,

∂yw(x0, y0) = − 1

h̃(x0)
Ẽ(x0, y0)

π cos(β̃(x0, y0))

sin(β̃(x0, y0))
+ ∂yẼ(x0, y0).

Note that π cos(πs)
sin(πs) = 1

s (1 − r(s)) with 0 ≤ r(s) ≤ π2

2 |s|2 for |s| < 1
2 . Since β̃(x0, y0) = πy0

h̃(x0)
, it

follows that

∂yw(x0, y0) = − 1
y0

Ẽ(x0, y0)(1− r( y0

h̃(x0)
)) + ∂yẼ(x0, y0)

= − 1
y0

Ẽ(x0, y0) + ∂yẼ(x0, y0) +
1
y0

Ẽ(x0, y0)r(
y0

h̃(x0)
). (20)
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Moreover,
1
y0

Ẽ(x0, y0) = ∂yẼ(x0, 0) +
1
2∂

2
yẼ(x0, 0)y0 +

1
6∂

3
yẼ(x, y1)y

2
0 ,

for some y1 ∈ S̃B(x0), and

∂yẼ(x0, y0) = ∂yẼ(x0, 0) + ∂2
yẼ(x0, 0)y0 +

1
2∂

3
yẼ(x0, y2)y

2
0 ,

for some y2 ∈ S̃B(x0). In particular, (20) yields

∂yw(x0, y0) =
1
2∂

2
yẼ(x0, 0)y0 +

1
2∂

3
yẼ(x0, y2)y

2
0 − 1

6∂
3
yẼ(x, y1)y

2
0 +

1
y0

Ẽ(x0, y0)r(
y0

h̃(x0)
). (21)

Next, note that since Ẽ(x0, 0) = 0, there exists y2 ∈ S̃B(x) such that Ẽ(x0, y0) = ∂yẼ(x0, y3)y0. Since

0 ≤ r(s) ≤ π2

2 |s|2 for |s| < 1
2 , it follows that

|∂yw(x0, y0)| ≤ 1
2 |∂

2
yẼ(x0, 0)|y0 + 1

2 |∂
3
yẼ(x0, y2)|y20 + 1

6 |∂
3
yẼ(x0, y1)|y20 + π2

2 h̃(x0)
−2|∂yẼ(x0, y3)|y20 .

Therefore,

|∂yw(x0, y0)| ≤ 1
2y0|∂

2
yẼ(x0, 0)|+ y20 sup

x∈I
y∈S̃B(x)

[

|∂3
yẼ(x, y)|+ π2

2 h̃(x0)
−2|∂yẼ(x, y)|

]

. (22)

In the same way, we have

∂yw(x0, 0) = −
π

2h̃(x0)
y20∂

2
yẼ(x0, y1)

sin
(

πy0

h̃(x0)

) + ∂yẼ(x0, 0)r(
y0

h̃(x0)
),

and

|∂yw(x0, 0)| ≤ y0 sup
x∈I

y∈S̃B(x)

|∂2
yẼ(x, y)|+ π2

2 h̃(x0)
−2y20 |∂yẼ(x0, 0)|. (23)

To improve (22) and obtain a y20 in the upper bound, we need better control on ∂2
yẼ(x0, 0) in (21). To

do this we note

∂2
yẼ(x0, 0) = ∂2

yw(x0, 0) = −∂2
xw(x0, 0)− µw(x0, 0) = −∂2

xw(x0, 0) = −ρ
B

′′(x0)∂yw(x0, 0), (24)

where the last equality was obtained after differentiating w(x, ρ
B
(x)) ≡ 0 twice and using ρ

B

′(x0) =

ρ
B
(x0) = 0. From (22) it follows that for y ∈ S̃B(x) and (x, y) ∈ w−1(0),

|∂yw(x0, y0)| ≤ y20 sup
x∈I

y∈S̃B(x)

(

π2

2 h̃(x)−2(1 + |ρ
B

′′(x)|)|∂yẼ(x, y)|+ 1
2 |ρB

′′(x)||∂2
yE(x, y)|+ |∂3

yE(x, y)|
)

(25)
The bound on g′ follows from combining (15) with (19) and (25). In particular g′(0) = 0, showing

that w−1(0) meets ∂Ω̃ orthogonally. �

Applying Proposition 2.1, the estimate on |g′(y)| given in Theorem 1.1 follows immediately from
Lemmas 3.3 and 3.4. The following lemma gives the desired uniform bound on g′′(y) and completes
the proof of Theorem 1.1:

Lemma 3.5. There exist constants c > 0, C such that

|g′′(y)| ≤ C

(

ηe−cN +
δ

N2

)

.

Proof of Lemma 3.5: Let (x0, y0) be a point on the nodal line Γ. Then, differentiating w(g(y), y) = 0
twice gives the expression

g′′(y0) =
(∂yw(x0, y0))

2∂2
xw(x0, y0) + (∂xw(x0, y0))

2∂2
yw(x0, y0)− 2∂yw(x0, y0)∂xw(x0, y0)∂x∂yw(x0, y0)

(∂xw(x0, y0))3
.

(26)
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To bound the denominator, we use the lower bounds on ∂xw(x0, y0) from (14) (in the centre) and (19)
(near the boundary). By Proposition 2.1 this implies that

|∂xw(x0, y0)| ≥ C−1N−1|y0|.
We also have upper bounds on ∂yw(x0, y0) from (16) (in the centre) and (25) (near the boundary),
which again using Proposition 2.1 gives

|∂yw(x0, y0)| ≤ C|y0|2
(

ηe−cN +
δ

N3

)

.

Finally, from Proposition 2.1 we have |∂x∂yw(x0, y0)| ≤ CN−1,
∣

∣∂2
xw(x0, y0)

∣

∣ ≤ CN−2, and combining
(24) with

∣

∣∂2
yw(x0, y0)

∣

∣ ≤
∣

∣∂2
yw(x0, 0)

∣

∣+ |y0| sup
y∈[0,y0]

|∂3
yw(x0, y0)|,

gives

∣

∣∂2
yw(x0, y0)

∣

∣ ≤ C|y0|
(

ηe−cN +
δ

N3

)

.

Using these estimates gives the desired bound for the expression for g′′(y0) in (26). �

Remark 3.1. In the case of flat upper and lower boundaries, we have the following estimates on the
quantities appearing in the numerator of (26): First, ∂yv(x0, y0) satisfies

|∂yv(x0, y0)| ≤ π sup
x∈I

|v1(x)|+ sup
(x,y)∈Ω

x∈I

|∂yE(x, y)| for 1
4 ≤ y0 ≤ 3

4 ,

|∂yv(x0, y0)| ≤ y20 sup
(x,y)∈Ω

x∈I

[

|∂3
yE(x, y) + 1

2 |∂yE(x, y)|
]

for y0 ≤ 1
4 , y0 ≥ 3

4 ,

where in the second inequality we have used (22) (and the fact that ∂2
yE(x0, 0) = 0 in the flat case).

We also immediately have the estimates on the second derivatives of v of

|∂x∂yv(x0, y0)| ≤ π sup
x∈I

|v′1(x)|+ sup
(x,y)∈Ω

x∈I

|∂x∂yE(x, y)|,

|∂2
xv(x0, y0)| ≤ sup

x∈I
|v′′1 (x)|+ sup

(x,y)∈Ω
x∈I

|∂2
xE(x, y)|.

Finally,

|∂2
yv(x0, y0)| ≤ π2 sup

x∈I
|v1(x)|+ sup

(x,y)∈Ω
x∈I

|∂2
yE(x, y)| for 1

4 ≤ y0 ≤ 3
4

|∂2
yv(x0, y0)| ≤ π3y0 sup

x∈I
|v1(x)|+ y0 sup

(x,y)∈Ω
x∈I

|∂3
yE(x, y)| for y0 ≤ 1

4 , y0 ≥ 3
4 ,

where in the second inequality, we have used |∂2
yv(x0, y0)| ≤ |∂2

yv(x0, 0)| + y0 supy∈[0,y0] |∂3
yv(x0, y)|,

and that ∂2
yv(x0, 0) = 0 in the flat case. We will use these estimates in Section 5 when we explicitly

track the constants in the flat case.

4. Proof of Proposition 2.1

In this section we will prove Proposition 2.1 by establishing the required properties of the decom-
positions of v and w defined in (4) and (7). From the definition of the domain Ω from (1), Ω contains
the rectangle [0, N ] × [ δ

N3 , 1 − δ
N3 ], and is contained in the rectangle [−2η,N + 2η] × [− δ

N3 , 1 +
δ

N3 ].
Therefore, by domain monotonicity for Dirichlet eigenvalues we have the following lemma.

Lemma 4.1. The second Dirichlet eigenvalue µ satisfies

π2
(

1 + 2 δ
N3

)−2
+ 4π2(N + 4η)−2 ≤ µ ≤ π2

(

1− 2 δ
N3

)−2
+ 4π2N−2.
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We can use this eigenvalue bound to obtain control on the growth of the eigenfunction v away from
the left and right sides of Ω.

Lemma 4.2. There exists a constant C (depending only on C̃1, C̃2 from (3)) with the following
properties: First, |∇v(x, y)| ≤ C for (x, y) ∈ Ω, and moreover for all y,

|v(x, y)| ≤ CN−1(η + x) for x ≤ 1
2N, |v(x, y)| ≤ CN−1(η +N − x) for x ≥ 1

2N.

Proof of Lemma 4.2: The boundary of Ω is C2-smooth, except at 4 points where the C2-curves meet
at a convex angle. This ensures that the gradient of v is bounded. To obtain the pointwise estimate
on v we follow the proof of Lemma 3.12 (a) in [GJ98]: We define a comparison function R(x, y) by

R(x, y) = C1 sin

(

π
x+ η

c1N

)

sin

(

π
y − δN−3

1 + 2δN−3

)

.

Here c1 > 0 is chosen so that (∆+µ)R(x, y) < 0 for (x, y) ∈ Ω with x ≤ 1
2c1N − η. This is possible by

the eigenvalue upper bound on µ from Lemma 4.1. Since v vanishes on ∂Ω and its gradient is bounded,
we can then choose the constant C1 so that |v(x, y)| ≤ R(x, y) for (x, y) ∈ Ω with x = 1

2c1N − η.

Moreover, R > 0 on the part of ∂Ω with x ≤ 1
2c1N−η. Therefore, by applying the maximum principle

to v and R to the subset of Ω with x ≤ 1
2c1N − η we have

|v(x, y)| ≤ R(x, y) for (x, y) ∈ Ω with x ≤ 1
2c1N − η.

This gives the desired estimate on |v(x, y)| for x ≤ 1
2N and the case of x ≥ 1

2N can be handled
analogously. �

We recall that the function w satisfies (∆+µ)w = 0 in the domain Ω̃ as in (10), with w(x, ρ
B
(x)) =

w(x, ρ
T
(x)) = 0. We recall that ρ

B
, ρ

T
, ρ

R
, ρ

L
, satisfy the bounds (5) and (6). The function w is equal

to v in the rotated coordinates, and as noted in Remark 2.1, the angle of rotation in the definition of
w is bounded by C δ

N3 for some C > 0. Therefore, by Lemma 4.2 we have |∇w(x, y)| ≤ C and

|w(x, y)| ≤ CN−1(η+ δN−2+x) for x ≤ 1
2N, |w(x, y)| ≤ CN−1(η+ δN−2+N −x) for x ≥ 1

2N.
(27)

Defining a height function by h̃(x) = ρ
B
(x)− ρ

T
(x) ≥ 3

5 , we write w as the Fourier series

w(x, y) =
∑

k≥1

wk(x) sin(kβ̃(x, y)).

Here the k-th mode wk(x) is given by

wk(x) =
2

h̃(x)

ˆ ρ
T
(x)

ρ
B
(x)

w(x, y) sin(kβ̃(x, y)) dy.

To prove Proposition 2.1, we will first bound each mode wk(x), then sum over k, and finally use elliptic
estimates to extend these to derivative bounds. To estimate wk(x), we use the eigenfunction equation
to find the equation that it satisfies, and then use the Duhamel principle to find an implicit expression.
To bound this expression we need control on the boundary values wk(0), wk(N).

Lemma 4.3. There exists a constant C such that

|wk(0)|+ |wk(N)| ≤ C
(

η
N + δ

N3

)

.

Proof of Lemma 4.3: By definition

wk(0) =
2

h̃(0)

ˆ ρ
T
(0)

ρ
B
(0)

w(0, y) sin(kβ̃(0, y)) dy. (28)

The estimate on |wk(0)| therefore follows immediately from (27). The estimate for wk(N) follows in
the same way. �
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Proof of Proposition 2.1: Flat case. Let us first consider the case of a flat top and bottom, with
w = v, and ρ

B
(x) ≡ 0, ρ

T
(x) ≡ 1. In this case, we can remove the factor of δ

N3 in the estimate in Lemma

4.3 above. Using that (∆ + µ)v(x, y) = 0 for 0 ≤ x ≤ N , the function vk(x) = 2
´ 1

0
v(x, y) sin(kπy) dy

satisfies the ODE

v′′k (x) + (µ− π2k2)vk(x) = 0. (29)

Writing µ2
k = π2k2 − µ ≥ π2(k2 − 1) − 4π2N−2 ≥ (k2 − 2)π2 for k ≥ 2 (by Lemma 4.1, provided

N ≥ 2), we therefore have, for k ≥ 2,

vk(x) =
1

eµkN − e−µkN

(

vk(0)
(

eµk(N−x) − eµk(x−N)
)

+ vk(N)
(

eµkx − e−µkx
)

)

=
1

sinh(µkN)
(vk(0) sinh(µk(N − x)) + vk(N) sinh(µkx)) . (30)

Writing v(x, y) = v1(x) sin(πy) + E(x, y) as in (4), this expression gives |E(x, y)| ≤ Cηe−cN , and
likewise for derivatives of E(x, y). For k = 1,

4π2(N + 4η)−2 ≤ µ− π2 ≤ 4π2N−2,

and we set µ2
1 = µ− π2. The function v1(x) satisfies

v1(x) = v1(0) cos(µ1x) +
v1(N)− v1(0) cos(µ1N)

sin(µ1N)
sin(µ1x). (31)

Setting A1 = v1(N)−v1(0) cos(µ1N)
sin(µ1N) gives |v1(x)−A1 sin(µ1x)| ≤ Cη/N , and since ‖v‖L∞ = 1, this implies

that ||A1| − 1| ≤ Cη/N . The estimates from Proposition 2.1 then follow readily from the expressions
in (30) and (31).

Proof of Proposition 2.1: General case. In the general case, wk(x) satisfies an approximate
version of the ODE in (29), with an error depending on ρ

B
(x), ρ

T
(x) and their first two derivatives:

Fix x∗ ∈ [0, N ], and set

ek(x, y) =
2

h̃(x)
sin(kβ̃(x, y)). (32)

Lemma 4.4. The function wk(x) satisfies the equation

w′′
k(x) +

(

µ− π2k2

h̃(x∗)2

)

wk(x) = Fk(x),

where Fk(x) has the bound

|Fk(x)| ≤ Ck
(∣

∣

∣

1
h̃(x)2

− 1
h̃(x∗)2

∣

∣

∣
+ |ρ

T

′(x)|+ |ρ
B

′(x)|+ |ρ
T

′′(x)|+ |ρ
B

′′(x)|
)

,

for an absolute constant C.

Proof of Lemma 4.4: The function Fk(x) is equal to

Fk(x) = π2k2
(

1

h̃(x)2
− 1

h̃(x∗)2

)

wk(x) + 2

ˆ ρ
T
(x)

ρ
B
(x)

∂xw(x, y)∂xek(x, y) dy +

ˆ ρ
T
(x)

ρ
B
(x)

w(x, y)∂2
xek(x, y) dy.

(33)

Applying the bounds we have derived for w in (27) and the definition of ek in (32), the terms that do
not immediately obey the estimate of the lemma are the first term and the term in the final integral
given by

− 2k2

h̃(x)

ˆ ρ
T
(x)

ρ
B
(x)

w(x, y)
(

∂xβ̃(x, y)
)2

sin
(

kβ̃(x, y)
)

dy. (34)

This is because this is the only term in the final integral in (33) for which a factor k2 appears in the
expression for ∂2

xe(x, y). All of the other terms in the last two integrals in (33) contain at most one
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derivative of w, two derivatives of ρ
T
and ρ

B
, and one factor of k. After an integration by parts wk(x)

is equal to

2

kπ

ˆ ρ
T
(x)

ρ
B
(x)

∂yw(x, y) cos
(

kβ̃(x, y)
)

dy,

and (34) can be written as

−2k

π

ˆ ρ
T
(x)

ρ
B
(x)

∂y

(

w(x, y)
(

∂xβ̃(x, y)
)2
)

cos
(

kβ̃(x, y)
)

dy.

Since |∂yw(x, y)| is bounded by a constant, both of these terms are of the desired form. �

The function wk(x) also satisfies the boundary conditions

wk(0) = α
(1)
k , wk(N) = α

(2)
k ,

where α
(i)
k are values coming from the side variation of the domain, wih bounds in Lemma 4.3.

For k = 1, set µ2
1 = µ− π2

h̃(x∗)2
≥ 0 and for k ≥ 2, set µ2

k = µk(x
∗)2 = π2k2

h̃(x∗)2
− µ ≥ 0.

Lemma 4.5. Define the functions W1(x) and Wk(x) (for k ≥ 2) by

W1(x) =
1

µ1
sin(µ1x), Wk(x) =

1

2µk

(

eµkx − e−µkx
)

=
1

µk
sinh(µkx).

Then,

w1(x) =

ˆ N

x

W1(t− x)F1(t) dt+A1 sin(µ1(N − x)) + α
(2)
1 cos(µ1(N − x)),

with α
(1)
1 =

´ N

0
W1(t)F1(t) dt+A1 sin(µ1N) + α

(2)
1 cos(µ1N). Also,

wk(x) =

ˆ x

0

Wk(x− t)Fk(t) dt+Ake
µkx +Bke

−µkx,

for constants Ak, Bk, with

α
(1)
k = Ak +Bk

α
(2)
k = Ake

µkN +Bke
−µkN +

ˆ N

0

Wk(N − t)Fk(t) dt.

Proof of Lemma 4.5: The functions W1(x) and Wk(x) satisfy

W ′′
1 (x) + µ2

1W1(x) = 0, W1(0) = 0, W ′
1(0) = 1

W ′′
k (x)− µ2

kWk(x) = 0, Wk(0) = 0, W ′
k(0) = 1.

The lemma then follows from Lemma 4.4 and the boundary conditions of wk(x) at x = 0, N . �

Combining Lemmas 4.4 and 4.5, we can bound wk(x).

Proposition 4.1. There exist constants c, C, such that for x ∈ [0, N ], k ≥ 2,

|wk(x)| ≤ C

(

η

N
e−cµkd(x) + k−1 δ

N3

)

.

Here d(x) = min{x,N − x} is the distance of x from the endpoints of [0, N ].

Proof of Proposition 4.1: We fix x∗ ∈ [0, N ], and use Lemmas 4.4 and 4.5 to bound wk at x = x∗ (with
a bound independent of x∗). The constants Ak, Bk from Lemma 4.5 can be written for k ≥ 2 as

Ak = − 1

2µk

ˆ N

0

Wk(N − t)

Wk(N)
Fk(t) dt+

−e−µkNα
(1)
k + α

(2)
k

eµkN − e−µkN
,
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with Bk = α
(1)
k −Ak. From Lemma 4.4, we have the bound

|Fk(t)| ≤ Ck
δ

N3
(1 + |t− x∗|), (35)

and from Lemma 4.3, |wk(0)|, |wk(N)| ≤ C
(

η
N + δ

N3

)

. Therefore, since µk ≥ π
√
k2 − 2, the only terms

in the expression for wk(x
∗) from Lemma 4.5 that do not immediately satisfy the required estimates

are
ˆ x∗

0

Wk(x
∗ − t)Fk(t) dt−

1

2µk
eµkx

∗

ˆ N

0

eµk(N−t)

eµkN
Fk(t) dt.

However, these integrals can be combined to be written as

− 1

2µk

ˆ x∗

0

e−µk(x
∗−t)Fk(t) dt−

1

2µk

ˆ N

x∗

eµk(x
∗−t)Fk(t) dt. (36)

Using the bound on Fk(t) from (35) and integrating gives the desired bound. �

We write

w(x, y) = w1(x) sin
(

β̃(x, y)
)

+
∑

k≥2

w(x, y) sin
(

kβ̃(x, y)
)

= V1(x, y) + Ẽ(x, y).

Summing the estimate from Proposition 4.1 over k we can control the L2-norm of Ẽ. For the rest of
the section, fix x∗ ∈ [1, N − 1] and denote the cross-section at x∗ by U(x∗) = Ω̃ ∩ {(x, y) : x = x∗}.
Corollary 4.1. There exist constants c, C such that

‖Ẽ‖L2(U(x∗)) ≤ C

(

η

N
e−cd(x∗) +

δ

N3

)

.

We now convert this L2-estimate into bounds on derivatives of Ẽ.

Proposition 4.2. For each j ≥ 0, and with c > 0 as in Corollary 4.1, there exists a constant Cj such
that

‖Ẽ‖Hj(U(x∗)) ≤ Cj

(

η

N
e−cd(x∗) +

δ

N3

)

.

Proof of Proposition 4.2: To obtain this estimate on Ẽ we find the elliptic equation that it satisfies.

For V1(x, y) := w1(x) sin
(

π(y−ρ
B
(x))

h̃(x)

)

, we have

∆V1(x, y) =
2

h̃(x)

(

ˆ ρ
T
(x)

ρ
B
(x)

∂2
xw(x, y

′) sin
(

β̃(x, y′)
)

dy′

)

sin
(

β̃(x, y)
)

− π2

h̃(x)2
V1(x, y) +G1(x, y)

= −µV1(x, y) +G1(x, y).

The function G1(x, y) consists of terms where at least one derivative in x has been applied to a factor
of ρ

T
(x) or ρ

B
(x), and so for each j ≥ 0, there exists a constant Cj such that

‖G1‖Hj(U(x∗)) ≤ Cj
δ

N3
. (37)

Using the eigenfunction equation, Ẽ(x, y) satisfies
{

∆Ẽ(x, y) = −µẼ(x, y)−G1(x, y) in Ω̃

Ẽ(x, y) = 0 on ∂Ω̃.

Applying elliptic estimates to this equation, (37) and the estimate on Ẽ from Corollary 4.1 establishes
the proposition. �

Using Proposition 4.2, we can obtain more refined information about the first Fourier mode w1(x)
and complete the proof of Proposition 2.1.
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Proposition 4.3. There exists a constant C such that in the interval [N4 ,
3N
4 ] the function w1(x) has

a unique zero at x = x0 with
∣

∣x0 − N
2

∣

∣ ≤ C(η +Nδ). Moreover, |w′
1(x)| ≥ C−1N−1 for this range of

x, and for x ∈ [0, N ], 1 ≤ j ≤ 3, we have,

|w1(x)−A1 sin(µ1(N − x))| ≤ C (η/N + δ) , |w(j)
1 (x)| ≤ CN−j

Here the constant A1 is as in Lemma 4.5 and satisfies ||A1| − 1| ≤ C(η/N + δ).

Proof of Proposition 4.3: By Lemma 4.1,
∣

∣µ1 − 2π
N

∣

∣ ≤ CN−2 (δ + η) for a constant C. Therefore, using

the expression for w1(x) from Lemma 4.5 and the bound |F1(t)| ≤ C δ
N3 (1+ |t−x∗|) from Lemma 4.4,

we have

|w1(x)−A1 sin(µ1(N − x))| ≤ C(η/N + δ). (38)

Here C is a constant (changing from line-to-line). Moreover, since ‖w‖L∞ = 1, and

w(x, y) = w1(x) sin
(

β̃(x, y)
)

+ Ẽ(x, y),

combining (38) with Proposition 4.2, we have

||A1| − 1| ≤ C(η/N + δ).

To complete the proof of the lemma, we need to bound w′
1(x). Differentiating the expression from

Lemma 4.5 gives

w′
1(x) = −

ˆ N

x

W ′
1(t− x)F1(t) dt− µ1A1 cos(µ1(N − x)) + µ1α

(2)
1 sin(µ1(N − x)).

In particular |w′
1(x) + µ1A1 cos(µ1(N − x))| ≤ CN−1(η+ δ), and combining this with the estimate for

A1 gives the required bound for |w′
1(x)|. The expression for w′′

1 (x) from Lemma 4.4 gives |w′′
1 (x)| ≤

CN−2, and differentiating we have |w′′′
1 (x)| ≤ CN−3. Since |w′

1(x)| is non-zero on [N4 ,
3N
4 ], w1(x) has

at most one zero in this interval. The function sin(µ1(N − x)) has its unique zero in this interval at
x̃0, with |x̃0 − N

2 | ≤ C(δ + η), and its derivative is bounded below by C−1N−1. Therefore, w1(x) also

has a unique zero at x = x0, and by (38) we have |x0 − N
2 | ≤ CN(η/N + δ). �

Remark 4.1. In the case that no rotation has been applied (so that v1 = w1), the function F1(t)
from Lemma 4.4 satisfies the stronger bound |F1(t)| ≤ C δ

N3 . Inserting this stronger estimate into the

argument above, the point x0 satisfies |x0 − N
2 | ≤ C(η + δ).

5. An explicit Hadamard variation formula and constant tracking

To prove Proposition 2.1, we used the estimate on the boundary values of the Fourier modes, wk(0)
and wk(N), in Lemma 4.3, which follows directly from a pointwise estimate on the eigenfunction. In
order to track the constants appearing in the error estimates in Proposition 2.1 in the flat case, we
require a more explicit bound on these boundary values. We do this as follows, using a variant of a
calculation given in [GJ09].

Proposition 5.1. There exists a constant C such that
∣

∣

∣

∣

∣

wk(0)−
4π

N

ˆ ρ
T
(0)

ρ
B
(0)

ρL(y) sin(β̃(0, y)) sin(kβ̃(0, y)) dy

∣

∣

∣

∣

∣

≤ C(η + δN−3)
(

η3/4 + δ + k2(η + δN−3)2
)

.

(39)

Proof of Proposition 5.1: We extract the main term in wk(0) as follows. First, we integrate by parts
to write wk(0) as

2

ˆ ρ
T
(0)

ρ
B
(0)

w(0, y) sin(kβ̃(0, y)) dy = 2

ˆ

∂Ω̃0

w(x, y)
∂

∂ν

(

x sin(kβ̃(0, y))
)

dσ

= −2

ˆ

∂Ω̃0

∂w

∂ν
(x, y)x sin(kβ̃(0, y)) dσ + 2

(

µ− k2π2

h̃(0)2

)
ˆ

Ω̃0

w(x, y)x sin(kβ̃(0, y)) dx dy (40)
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The domain Ω̃0 is the domain {(x, y) ∈ Ω̃ : ρL(y) ≤ x ≤ 0}. The second integral in (40) is bounded
in absolute value by Ck2(η + δN−3)3. The first integral in (40) consists of three terms. Two of these

integrals are over portions of the top and bottom boundaries of Ω̃ of length bounded by C(η+ δN−3),
and so since the gradient of w is bounded, these integrals are bounded in absolute value by C(η +
δN−3)2. The remaining contribution to (40) is given by

−2

ˆ ρ
T
(0)

ρ
B
(0)

(∂x − ρ′L(y)∂y)w(ρL(y), y)ρL(y) sin(kβ̃(0, y)) dy. (41)

To pick out the main term in (41) we write

w(x, y) = sin(µ1(N − x)) sin(β̃(0, y)) +B(x, y),

with µ2
1 = µ2

1(0) = µ− π2

h̃(0)2
and for an error term B(x, y) to be estimated below. Using |µ1 − 2π

N | ≤
CN−2(η + δ), (41) becomes

4π

N

ˆ ρ
T
(0)

ρ
B
(0)

ρL(y) sin(β̃(0, y)) sin(kβ̃(0, y)) dy − 2

ˆ ρ
T
(0)

ρ
B
(0)

(∂x − ρ′L(y)∂y)B(ρL(y), y)ρL(y) sin(kβ̃(0, y)) dy

(42)

up to an error C(η + δ)(η + δN−3). We are left to bound the second integral in (42), and to do this
we will use the results of Section 4 to estimate B(x, y). Summing the estimate from Proposition 4.1

over k ≥ 2, we obtain a bound on Ẽ(x, y) for x ≥ 0 of
∥

∥

∥
Ẽ(x, y)

∥

∥

∥

L2(U(x))
≤ C

(

η

N max{1, x}e
−cx +

δ

N3

)

,

for constants c, C, where we recall that U(x) is the cross-section of Ω̃ at x. Combining this with
Proposition 4.3 shows that for 0 ≤ x ≤ 1, we have

‖B(x, y)‖L2(U(x)) ≤ C

(

η

N max{1, x}e
−cx +

δ

N3

)

+ C(ηN−1 + δ) (43)

Using Lemma 4.2, we can also bound B(x, y) in a different way for 0 ≤ x ≤ 1 via

|B(x, y)| ≤ |w(x, y)|+
∣

∣

∣
sin(µ1(N − x)) sin(β̃(0, y))

∣

∣

∣
≤ CN−1(η + δN−2 + x). (44)

In particular, using (43) and (44), we have ‖B‖L2(Ω̃1)
≤ C

(

η3/4 + δ
)

. Moreover, B satisfies the
equation

∆B = ∆w +
(

µ2
1 +

π2

h̃(0)2

)

(w −B) = −
(

µ2
1 +

π2

h̃(0)2

)

B.

We can use this to bound the second integral in (42). Let χ(x) be a smooth cut-off function, equal to

1 for x ≤ 1
4 and 0 for x ≥ 3

4 . There exists an extension H(x, y) of sin(µ1(N − x)) sin(β̃(0, y))
∣

∣

x=ρL(y)

to Ω̃1, with H(1, y) ≡ 0 such that

‖H‖H1(Ω1)
≤ Cη.

The function χ(x)B(x, y)−H(x, y) therefore vanishes on ∂Ω̃1, and satisfies

∆ (χ(x)B(x, y)−H(x, y)) = (∆χ)B + 2∇χ.∇B + χ∆B −∆H =: F.

Elliptic estimates therefore imply that

‖χB −H‖H1(Ω̃1)
≤ ‖F‖H−1(Ω̃1)

≤ C
(

‖B‖L2(Ω̃1)
+ ‖H‖H1(Ω̃1)

)

.

Using ‖B‖L2(Ω̃1)
≤ C(η3/4 + δ), we have the same bound on ‖χB −H‖H1(Ω1)

. Elliptic estimates thus

give
∥

∥

∂B
∂ν

∥

∥

L2(D)
≤ C(η3/4 + δ), where D = {(ρL(y), y) : ρB(0) ≤ y ≤ ρ

T
(0)}. Applying this estimate in

the second integral in (42), we see that the integral can be bounded by C(η + δN−3)(η3/4 + δ), and
this therefore concludes the proof of the proposition. �
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Now consider the case where the domain Ω has flat top and bottom boundaries (so that φ
T
(x) = 1,

φ
B
(x) = 0). Proposition 5.1 then allows us to track the constants appearing in the error estimates in

Proposition 2.1: Given N (not necessarily large) and a small constant c > 0, we can choose η = η(N)
sufficiently small so that

|vk(0)|, |vk(N)| ≤ 8η

N
+ c

(

η

N
+

k2η

N2

)

.

By choosing c small compared to 8, we can use this in (30) and (31) to get explicit estimates on E(x, y)
and its derivatives, with the estimates not depending on any unknown constants. Using this in the
quantities appearing in Section 3, for any N ≥ 8 fixed and η = η(N) sufficiently small, this provides
the following bounds and proves Corollary 1.1: We have

τ ≤ 10−4η,

where we recall from Lemma 3.2 that the width of the nodal line is bounded by 2τ . Moreover, we have

Λ1 ≥ 0.3, Λ2 ≥ 1.2,

and from Lemmas 3.3 and 3.4 this gives the upper bound on |g′(y)| of
|g′(y)| ≤ 10−2η.

Finally, inserting the bounds from Remark 3.1 on the terms appearing in g′′(y) gives

|g′′(y)| ≤ 10−2η.
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