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Abstract— This paper addresses the problem of steering a
discrete-time linear dynamical system from an initial Gaussian
distribution to a final distribution in a game-theoretic setting.
One of the two players strives to minimize a quadratic payoff,
while at the same time tries to meet a given mean and
covariance constraints at the final time-step. The other player
maximizes the same payoff, but it is assumed to be indifferent
to the terminal constraint. At first, the unconstrained version
of the game is examined, and the necessary conditions for the
existence of a saddle point are obtained. We show that obtaining
a solution for the one-sided constrained dynamic game is not
guaranteed, and subsequently the players’ best responses are
analyzed. Finally, we propose to numerically solve the problem
of steering the distribution under adversarial scenarios using
the Jacobi iteration method.

I. INTRODUCTION

Stochastic games, introduced by Shapley in 1953, deal
with instances where a stochastic process is jointly controlled
by two players, a controller and a stopper, along with an
underlying payoff function that is common to both play-
ers [1]. The stopper tries to maximize the payoff function,
while the controller strives to minimize it. The current work
addresses a class of linear-quadratic (LQ) stochastic dynamic
games in discrete-time with finite-time horizon. It is assumed
that the players have perfect measurements of the state at
each time instant and that the initial state is sampled from
a given Gaussian distribution. First, the problem of steering
the covariance in an LQ game setting without any constraints
is analyzed, and the associated saddle point equilibrium is
identified. Subsequently, the problem of steering the initial
distribution to a specified terminal distribution (which is
also Gaussian) under adversarial situations, which can be
categorized as a general constrained game (GCG) [2], is
considered.

Owing to the fact that a Gaussian distribution can be
fully defined using its first two moments, the problem
discussed in this paper can be decomposed into mean and
covariance steering problems [3]. The mean steering problem
is essentially a deterministic dynamic game. The necessary
and sufficient conditions for the existence of a solution to the
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discrete-time LQ dynamic game was provided by Pachter and
Pham, along with a closed-form solution [4].

The idea of covariance steering has its genesis in the
1980s. First introduced by Hotz and Skelton [5], the problem
of infinite-horizon covariance assignment for continuous
and discrete-time systems has been analyzed by various
researchers [6], [7]. The finite-horizon equivalent of the
problem in continuous-time was investigated only recently by
Chen et al. [8], [9], where it was shown that the related solu-
tions have theoretical connections to the Schrödinger bridges
and the optimal mass transport problems. The solution to the
problem of covariance steering in finite time is also of great
importance to entry, descent, and landing problems [10].

The contributions of this work are as follows. i) A novel
LQ formulation for driving a Gaussian to a given terminal
distribution under an adversarial setting is introduced. The
adversary is assumed to be indifferent to the controller’s
terminal constraint which is unique to the literature on
covariance steering. ii) It is shown that the proposed game
theoretic formulation can be decomposed into two indepen-
dent games, mean steering and covariance steering games,
which makes the problem tractable. iii) The existence of
equilibrium solutions is discussed for both unconstrained and
constrained versions of the games. iv) A condition in terms of
relative controllability is identified in the mean steering game
with controller constraints for discrete systems. v) A simple
Jacobi procedure for finding saddle points is introduced to
solve the constrained covariance steering game, assuming a
linear feedback control structure.

At this point, it is worth mentioning that the attitude of a
player towards its opponent’s constraints influences the out-
come of the GCG [2]. In the case where a player’s main goal
is to prevent the opponent from meeting its constraints, his
attitude is to be understood as being aggressive. Analyzing
the scenario where the stopper has an aggressive attitude
towards the controller’s constraints is beyond the scope of
this work. The proofs for some lemmas in this paper are
omitted for brevity, and can be found in Ref. [11].

II. PROBLEM FORMULATION

Consider the following discrete-time linear stochastic sys-
tem

xk+1 = Akxk +Bkuk + Ckvk +Dkwk, (1)

where k = 0, 1, . . . , N −1 is the time-step. At the kth time-
step, xk ∈ Rn denotes the state, uk ∈ Rm is the controller
input, vk ∈ R` is the stopper input, and wk ∈ Rr is a
zero-mean white Gaussian noise with unit covariance. It is
assumed that E[xk1w

>
k2

] = 0, 0 ≤ k1 ≤ k2 ≤ N. The
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initial state x0 is a sample from the Gaussian distribution
N (µ0,Σ0), where µ0 ∈ Rn is the initial state mean, and
Σ0 ∈ Rn×n is the initial state covariance, with Σ0 � 0. The
payoff function is

J(u0, . . . , uN−1, v0, . . . , vN−1) =

E

[
N−1∑
k=0

(
x>k Qkxk + u>k Rkuk − v>k Skvk

)]
. (2)

It is assumed that Qk � 0, Rk, Sk � 0 for all k = 0, . . . , N−
1. The set of control inputs {u0, . . . , uN−1} is chosen by
the controller to minimize the payoff function (2), and the
control inputs {v0, . . . , vN−1} are chosen by the stopper to
maximize (2).

Using the notation introduced in [12], the system dynamics
in (1) can be alternatively expressed as

X = Ax0 + BU + CV +DW, (3)

where X = [x>1 , x>2 , . . . , x
>
N ]>, U =

[u>0 , u>1 , . . . , u
>
N−1]>, V = [v>0 , v>1 , . . . , v

>
N−1]>, and

W = [w>0 , w>1 , . . . , w
>
N−1]> for some appropriately

constructed matrices A, B, C, and D. Note that
E[x0x

>
0 ] = Σ0 + µ0µ

>
0 , E[x0W

>] = 0, E[WW>] = I.
Consequently, the payoff function (2) can be expressed as

J(U, V ) = E[X>Q̄X + U>R̄U − V >S̄V ], (4)

where Q̄ = blkdiag(Q0, . . . , QN−1, 0) ∈ R(N+1)n×(N+1)n,
R̄ = blkdiag(R0, R1, . . . , RN−1) ∈ RNm×Nm, and S̄ =
blkdiag(S0, S1, . . . , SN−1) ∈ RN`×N`. Also, since Qk � 0
and Rk, Sk � 0 for all k = 0, . . . , N − 1, it follows that
Q̄ � 0 and R̄, S̄ � 0.

The mean and the covariance of the initial state x0 can be
written in terms of X as

µ0 = E0E[X], Σ0 = E0(E[XX>]− E[X]E[X]>)E>0 ,
(5)

where E0 , [In, 0, . . . , 0] ∈ Rn×(N+1)n.

Definition II.1. The upper game is a scheme in which the
stopper chooses V based on the information it has on the
control U , and the upper value is defined by

V+ = inf
U∈RNm

sup
V ∈RN`

J(U, V ). (6)

Similarly, the lower game is a scheme in which the controller
chooses U based on the information it has on the control V ,
and the lower value is defined by

V− = sup
V ∈RN`

inf
U∈RNm

J(U, V ). (7)

It is well known that, in general V− ≤ V+. If the
Isaacs minimax condition holds, then V− = V+, and the
corresponding set of control actions (U∗, V ∗) is called the
equilibrium solution or saddle point [13]. The unconstrained
Gaussian steering problem to be addressed in this paper can
now be stated as follows.

Problem 1. Find the saddle point (U∗, V ∗) for the un-
constrained dynamic game (UDG), described by the payoff
function (4), the system (3), and the initial conditions (5).

In this paper, as mentioned earlier, we propose to analyze
the one-sided constrained dynamic game. To this end, let

ENX = xN ∼ N (µN ,ΣN ), (8)

where EN , [0, . . . , 0, In] ∈ Rn×(N+1)n, be terminal state
that the controller strives to achieve at the final time-step.
Note that it is only the controller who is concerned about
meeting the terminal condition (8), and hence (8) is a one-
sided constraint. It is assumed that the stopper is aware of
the controller’s terminal constraint. However, it is indifferent
to this constraint, and it is solely interested in maximizing
the payoff (4). Furthermore, since the terminal constraint (8)
is dependent on the control inputs of both players, and it
is a one-sided constraint, the problem of interest can be
categorized as a GCG [2]. The terminal condition (8) can
be used to enforce probabilistic capture in the case of a
two-player pursuit-evasion game with µN = 0, when (1)
represents the relative motion between the pursuer and the
evader.

We will now formally define the saddle point in the one-
sided constrained dynamic game using the corresponding
upper and lower values. For a given stopper action V , let
U(V ) denote the set of controls U ∈ RNm that drive the
system to the terminal Gaussian distribution in (8), and let
R ,

⋃
V ∈RN` U(V ) ⊆ RNm.

Definition II.2. The constrained upper value is defined by

V+
c = inf

U∈RNm
sup

V ∈RN`

J(U, V ), (9)

and the constrained lower value is defined by

V−c = sup
V ∈RN`

inf
U∈R

J(U, V ). (10)

Finally, a saddle point in the constrained game can be
defined as (U∗c , V

∗
c ) for which the V+

c and V−c exist, and are
equal.

Problem 2. Find necessary conditions such that the con-
troller can drive the system to the final state given by (8),
while the stopper tries to maximize the payoff function (4),
given the system dynamics (3) and the initial conditions (5).
Furthermore, find the optimal control inputs for both players.
Hereafter, this problem will be referred to as the constrained
dynamic game (CDG).

III. SEPARATION OF MEAN AND COVARIANCE STEERING
PROBLEMS

It can be easily shown that that

X̄ , E[X] = Aµ0 + BŪ + CV̄ , (11)

and

X̃ , X − E[X] = Ax̃0 + BŨ + CṼ +DW. (12)

The objective function (4) can be further rewritten as

J(U, V ) = Jµ(Ū , V̄ ) + JΣ(Ũ , Ṽ ), (13)

where

Jµ(Ū , V̄ ) = X̄>Q̄X̄ + Ū>R̄Ū − V̄ >S̄V̄ , (14)
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and

JΣ(Ũ , Ṽ ) = tr(Q̄E[X̃X̃>]) + tr(R̄E[Ũ Ũ>])− tr(S̄E[Ṽ Ṽ >]).
(15)

Lemma III.1. For the UDG, the saddle point controls
(U∗, V ∗) that solve the problem (if they exist) are given
by U∗ = Ū∗ + Ũ∗ and V ∗ = V̄ ∗ + Ṽ ∗, where (Ū∗, V̄ ∗)
solves the unconstrained mean steering game (UMSG), de-
fined using the payoff function in (14) along with (11), and
(Ũ∗, Ṽ ∗) solves the unconstrained covariance steering game
defined using the payoff function in (15) along with (12)

Lemma III.2. For the CDG, the solution (U∗c , V
∗
c ) can

be characterized as U∗c = Ū∗c + Ũ∗c , V ∗c = V̄ ∗c + Ṽ ∗c ,
where (Ū∗c , V̄

∗
c ) solves the constrained mean steering game

(CMSG), defined using payoff function in (14) along with
(11) and controller constraint

µN = EN X̄ = ĀNµ0 + B̄N Ū + C̄N V̄ , (16)

and (Ũ∗c , Ṽ
∗
c ) solves the constrained covariance steering

game (CCSG), defined using payoff function in (15) along
with (12) and controller constraint

ΣN = EN
(
E[XX>]− E[X]E[X]>

)
E>N , (17)

where the constraints (16) and (17), as stated earlier, are of
concern only for the controller.

Note that non-existence of saddle point in either CMSG
or CCSG or both, implies non-existence of saddle point
in CDG. For the analysis of mean steering game in the
following section, we introduce the set R̄. For a given
stopper action V̄ in CMSG, let Ū(V̄ ) denote the set of mean
controllers Ū ∈ RNm that satisfies the constraint in (16),
and let R̄ ,

⋃
V̄ ∈RN` Ū(V̄ ) ⊆ RNm.

IV. MEAN STEERING GAME

The solution to the UMSG is given in the following
proposition.

Proposition IV.1. Assume that

S̄ − C>Q̄C � 0, (18)

then the saddle point (Ū∗, V̄ ∗) that solves the UMSG is given
by[
Ū∗

V̄ ∗

]
= −

[
B>Q̄B + R̄ B>Q̄C
C>Q̄B C>Q̄C − S̄

]−1 [ B>Q̄A
C>Q̄A

]
µ0

(19)

and this solution is unique.

Proof. The payoff function of the UMSG can be expressed
as Jµ(Ū , V̄ ) = (Aµ0 + BŪ + CV̄ )>Q̄(Aµ0 + BŪ + CV̄ ) +
Ū>R̄Ū − V̄ >S̄V̄ . The first-order necessary conditions [14]
for a saddle point yield

∇ŪJµ = (B>Q̄B + R̄)Ū + B>Q̄CV̄ + B>Q̄Aµ0 = 0,
(20a)

∇V̄ Jµ = (C>Q̄C − S̄)V̄ + C>Q̄BŪ + C>Q̄Aµ0 = 0.
(20b)

The above two equations can be expressed as[
B>Q̄B + R̄ B>Q̄C
C>Q̄B C>Q̄C − S̄

] [
Ū∗

V̄ ∗

]
= −

[
B>Q̄A
C>Q̄A

]
µ0,

(21)

Let

Tm =

[
B>Q̄B + R̄ B>Q̄C
C>Q̄B C>Q̄C − S̄

]
, (22)

and from (18), B>Q̄C(C>Q̄C−S̄)−1C>Q̄B ≺ 0. As a result,
B>Q̄B + R̄ − B>Q̄C(C>Q̄C − S̄)−1C>Q̄B � 0. Therefore,
det(Tm) = det(C>Q̄C−S̄)det(B>Q̄B+R̄−B>Q̄C(C>Q̄C−
S̄)−1C>Q̄B) 6= 0, and Tm is invertible. Equation (19) then
follows immediately from (21). From (18), the second order
derivatives yield ∇ŪŪJµ = B>Q̄B + R̄ � 0, ∇V̄ V̄ Jµ =
C>Q̄C − S̄ ≺ 0. Therefore, the payoff function is convex
in Ū , and concave in V̄ . Hence (Ū∗, V̄ ∗) is the only saddle
point that solves the given dynamic game [14].

Next, we analyze the CMSG. As this is a constrained
zero-sum game, we obtain the following inequality. A similar
result can be found in Ref. [2] (Theorem III.1).

Lemma IV.2. Assuming that the UMSG has a saddle point
equilibrium (Proposition IV.1), the CMSG satisfies

inf
Ū∈RNm

sup
V̄ ∈RN`

Jµ(Ū , V̄ ) ≤ sup
V̄ ∈RN`

inf
Ū∈R̄

Jµ(Ū , V̄ ). (23)

Proof. Given that the UMSG has a saddle point equilibrium,
it follows that

inf
Ū∈RNm

sup
V̄ ∈RN`

Jµ(Ū , V̄ ) = sup
V̄ ∈RN`

inf
Ū∈RNm

Jµ(Ū , V̄ ).

(24)

Since R̄ ⊆ RNm,

inf
Ū∈RNm

Jµ(Ū , V̄ ) ≤ inf
Ū∈R̄

Jµ(Ū , V̄ ). (25)

Hence,

sup
V̄ ∈RN`

inf
Ū∈RNm

Jµ(Ū , V̄ ) ≤ sup
V̄ ∈RN`

inf
Ū∈R̄

Jµ(Ū , V̄ ), (26)

and from (24), the result follows.

As a result, a pure-strategy equilibrium might not exist
for the CMSG, and only players’ best responses can be
obtained [2]. To this end, the constrained upper and lower
games for the CMSG problem can be examined. As stated
in Definition II.2, in the constrained lower game, the stopper
has to choose its input first, while the controller has the
advantage of obtaining the stopper input, and then choosing
his best response accordingly.

Lemma IV.3. Assuming that the discrete-time linear dynam-
ical system (1) is controllable for Ck = 0 and Dk = 0
(i.e., rank[B̄N ] = n), the controller’s feasible set (the set
of controllers for which the constraint (16) is met given the
stopper input) is non-empty for any V̄ ∈ RN`.

From the above lemma, it is obvious that the controller can
meet the constraint (16), if the condition rank[B̄N ] = n is
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satisfied. In the upper game, the controller input is obtained
first and the stopper best responds accordingly. The terminal
condition (16) depends on the stopper input. Note that it
is assumed that the stopper is indifferent to this constraint,
and in this regard, the sufficient condition for which the
controller’s terminal constraint is met is derived in Lemma
IV.4 below.

From the first-order necessary conditions in (20a) and
(20b), the players’ best responses as a function of their
opponent’s response can be obtained as

Ū = −(B>Q̄B + R̄)−1(B>Q̄CV̄ + B>Q̄Aµ0), (27a)

V̄ = −(C>Q̄C − S̄)−1(C>Q̄BŪ + C>Q̄Aµ0). (27b)

In the upper game, where the controller plays first, the
stopper input as a function of Ū is given by (27b). Given
the stopper input (as per (27b)), from the constraint (16), it
follows that µN =

(
ĀN − C̄N (C>Q̄C − S̄)−1C>Q̄A

)
µ0 +(

B̄N − C̄N (C>Q̄C− S̄)−1C>Q̄B
)
Ū . For the sake of brevity,

let G = B̄N − C̄N (C>Q̄C − S̄)−1C>Q̄B.

Lemma IV.4. For the case of CMSG, in the associated upper
game, the constraint (16) is satisfied if and only if

rank
[
G µN −

(
ĀN − C̄N (C>Q̄C − S̄)−1C>Q̄A

)
µ0

]
= rank [G] . (28)

Note that the matrix G can be treated as a relative
controllability matrix, similar to the one introduced in Ref.
[15] for continuous systems. The optimal control sequences
Ū∗ and V̄∗ that solve the upper game can be found as follows.
From (27b), the upper game can be expressed in terms of
the following minimization problem.{

min
Ū∈RNm

X̄>Q̄X̄ + Ū>R̄Ū − V̄ >S̄V̄ ,

subject to µN = ĀNµ0 + B̄N Ū + C̄N V̄ ,
(29)

where X̄ = Aµ0 + BŪ + CV̄ , and V̄ = −(C>Q̄C −
S̄)−1(C>Q̄BŪ + C>Q̄Aµ0).

Proposition IV.5. Under the assumption

rank G = n, (30)

the optimal control sequence Ū∗ that solves the minimization
problem in (29) is given by

Ū∗ = R−1
(
M+ G>λ/2

)
, (31)

where R = R̄ + B>Q̄B − B>Q̄C(C>Q̄C − S̄)−1C>Q̄B
M =

(
B>Q̄C(C>Q̄C − S̄)−1C> − B>

)
Q̄Aµ0, λ =

2
(
GR−1G>

)−1(
µN−ĀNµ0+C̄N (C>Q̄C−S̄)−1C>Q̄Aµ0−

GR−1M
)
.

Proof. The Lagrangian for the constrained minimization
problem (29) can be written as

L(Ū , λ) = (Aµ0 + BŪ + CV̄ )>Q̄(Aµ0 + BŪ + CV̄ )

+ Ū>R̄Ū − V̄ >S̄V̄
+ λ>(µN − ĀNµ0 − B̄N Ū − C̄N V̄ ), (32)

where λ ∈ Rn. The first-order optimality condition yields

∇ŪL = 2(Aµ0 + BŪ + CV̄ )>Q̄

(
B + C ∂V̄

∂Ū

)
+ 2Ū>R̄

− 2V̄ >S̄
∂V̄

∂Ū
+ λ>

(
−B̄N − C̄N

∂V̄

∂Ū

)
= 0, (33)

and (31) follows from the fact that
∂V̄

∂Ū
= −(C>Q̄C −

S̄)−1C>Q̄B (obtained using (27b)), and from the second-
order optimality condition

∇ŪŪL
2

=

(
B + C ∂V̄

∂Ū

)>
Q̄

(
B + C ∂V̄

∂Ū

)
+ R̄− ∂V̄

∂Ū

>

S̄
∂V̄

∂Ū

=
(
R̄+ B>Q̄B − B>Q̄C(C>Q̄C − S̄)−1C>Q̄B

)
= R � 0

(34)

The Lagrange multiplier λ can be found by substituting
(31) into the terminal constraint, obtaining

(
GR−1G>

)
λ =

2
(
µN − ĀNµ0 + C̄N (C>Q̄C − S̄)−1C>Q̄Aµ0 −GR−1M

)
.

Note that since R is invertible and G has full row rank,
GR−1G> is invertible.

V. COVARIANCE STEERING GAME

The methodology to solve the UCSG and the CCSG is
presented in this section. Assuming a linear feedback control
structure for steering the covariance, we express Ũ and Ṽ as

ũk = Kkyk, ṽk = Lkyk, (35)

where Kk ∈ Rm×n, Lk ∈ R`×n,

yk+1 = Akyk +Dkwk, y0 = x0 − µ0, (36a)

and yk ∈ Rn. Note that E[y0] = 0 and E[y0y
>
0 ] = Σ0.

Further, it can be obtained that

Y = Ay0 +DW, (37)

where Y = [y>0 , . . . , y
>
N ]> ∈ R(N+1)n, using the matrices

introduced in Section II. Therefore, X̃ in (12) can be
rewritten as

X̃ = (I + BK + CL)(Ay0 +DW ). (38)

where,

K =

 K0 . . . 0 0
...

. . .
...

...
0 . . . KN−1 0

 , (39)

L =

 L0 . . . 0 0
...

. . .
...

...
0 . . . LN−1 0

 , (40)

are the controller and the stopper gain matrices, respectively.
Here K ∈ K and L ∈ L, where K is the set of Nm ×
(N + 1)n matrices that have the structure shown in (39),
and similarly, L is the set of N` × (N + 1)n matrices that
have the structure shown in (40). From (35), (37), and (38),
we have E[X̃X̃>] = (I + BK + CL)Σs(I + BK + CL)>,
E[Ũ Ũ>] = KΣsK

>, E[Ṽ Ṽ >] = LΣsL
>, where Σs =
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AΣ0A> + DD>. Therefore, the covariance cost function
JΣ(Ũ , Ṽ ) can be converted to the following quadratic form
in terms of K and L:

JΣ(K,L) = tr(((I + BK + CL)>Q̄(I + BK + CL)+

K>R̄K − L>S̄L)Σs), (41)

and the terminal constraint (17) can be rewritten as

ΣN = EN (I + BK + CL)Σs(I + BK + CL)>E>N . (42)

For the sake of analysis, we introduce the set R̃. Given
stopper gain L in CCSG, let K(L) denote the set of gains
K ∈ K for which the controller satisfies the constraint in
(42), and let R̃ ,

⋃
L∈L K(L) ⊆ K.

We first analyze the UCSG. Since the gain matrices K and
L have constraints on their structure with zeros, as shown in
(39) and (40), with a slight abuse of notation, the Lagrangian
can be written as

L(K,L,Θ,Ξ) = tr(((I + BK + CL)>Q̄(I + BK + CL)

+K>R̄K − L>S̄L)Σs)/2

+

Nm∑
i=1

∑
j∈Jk(i)

θije
>
i Kej +

N∑̀
i=1

∑
j∈Jl(i)

ξije
>
i Lej , (43)

where the functions Jk(.) and Jl(.) map each row number
to the set of columns in which the gains K and L, respec-
tively, have zero elements. The matrices Θ ∈ RNm×(N+1)n

and Ξ ∈ RN`×(N+1)n are Lagrange multipliers of sizes equal
to K and L, respectively. Note that the blocks in Θ and Ξ
(corresponding to Kk and Lk) are zeros, and θij and ξij
are the non-zero elements of these matrices. The first-order
necessary conditions for the existence of a saddle point can
be obtained by taking derivatives of the Lagrangian in (43)
with respect to K and L as

∇KL =
[
B>Q̄+ R̄K + B>Q̄BK + B>Q̄CL

]
Σs + Θ = 0,

(44a)

∇LL =
[
C>Q̄− S̄L+ C>Q̄BK + C>Q̄CL

]
Σs + Ξ = 0.

(44b)

The candidate solutions for the UCSG can be obtained by
solving the linear system of equations given in (44). Since the
gradients are linear, the second-order sufficient conditions,
using the bordered Hessians, can be invoked to find the
saddle points among the candidate solutions numerically
[16]. Next, we analyze the CCSG. A result similar to the
one proposed for the CMSG (Lemma IV.2) follows for the
CCSG and is given below.

Lemma V.1. Assuming that the UCSG with payoff function
(41) has a saddle point equilibrium, then the CCSG (17),
with the terminal constraint (42) imposed only for the
controller, satisfies

inf
K∈K

sup
L∈L

JΣ(K,L) ≤ sup
L∈L

inf
K∈R̃

JΣ(K,L). (45)

Similarly, in the CCSG, a pure-strategy equilibrium need
not exist. To this end, consider a simple Jacobi procedure
given in Algorithm 1 to arrive at an equilibrium solution,

assuming one exists. For Algorithm 1 to converge to an
equilibrium solution for any K0, L0, the solution has to be a
stable one [17]. The conditions for the existence of a stable
equilibrium for the case where the cost is convex in K and
concave in L can be found in Ref. [17].

Algorithm 1 Jacobi procedure to obtain saddle points

1: procedure JACOBI(K0,L0)
2: for i = 0,1,2,. . . do
3: Li+1 := arg max

L∈L
JΣ(Ki, L)

4: Ki+1 := arg min
K∈K(Li)

JΣ(K,Li)

5: return Ki+1, Li+1

Subsequently, under the assumptions that Σs⊗ (B>Q̄B+
R̄) � 0 (convex in K) and Σs ⊗ (C>Q̄C − S̄) ≺ 0 (concave
in L), we can formulate the successive minimization and
maximization problems as convex programming problems
by relaxing the equality constraint in (42) to an inequality
constraint,

ΣN � EN (I + BK + CL)Σs(I + BK + CL)>E>N . (46)

Lemma V.2. Assuming ΣN � 0, the inequality constraint
(46) can be expressed as

‖Σ−1/2
N EN (I + BK + CL)Σ1/2

s ‖2 − 1 ≤ 0. (47)

Proof. Since ΣN � 0, (46) can be rewritten as I −
Σ
−1/2
N EN (I + BK + CL)Σs(I + BK + CL)>E>NΣ

−1/2
N �

0. As it is symmetric, the matrix Σ
−1/2
N EN (I +

BK + CL)Σs(I + BK + CL)>E>NΣ
−1/2
N is diagonaliz-

able via an orthogonal matrix T ∈ Rn×n as T (In −
diag(λ1, . . . , λn))T> � 0, where λ1, . . . , λn are its eigen-
values. Consequently, we have

1− λmax
(
Σ
−1/2
N EN (I + BK + CL)Σs×

(I + BK + CL)>E>NΣ
−1/2
N

)
≥ 0. (48)

=⇒ 1− ‖Σ−1/2
N EN (I + BK + CL)Σ1/2

s ‖2 ≥ 0. (49)

Hence proved.

VI. NUMERICAL SIMULATIONS

As mentioned earlier, in the lower game of the mean
steering case, the controller has an advantage to drive the
distribution to a given terminal Gaussian, assuming the
system is controllable. A more challenging case is that of
the upper game, where the controller has to ensure that the
terminal constraint (16) is met while choosing its input first.
In this section, we first present test examples for the upper
game of the CMSG with linear time-invariant systems. For
the covariance steering part, YALMIP [18] in conjunction
with MOSEK [19] was used to solve the successive convex
optimization problems in the Jacobi procedure. The conver-
gence criterion for the iterative method is εk, ε` ≤ ε, where
εk = ‖Ki+1 −Ki‖ and ε` = ‖Li+1 − Li‖.

Consider the linear system

zk+1 = Azk +Buk + Cvk +Dwk (50)
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where zk = [x1, x2, x3, x4]> ∈ R4, uk, vk ∈ R2, wk ∈ R4,

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


∆t2/2 0

0 ∆t2/2
∆t 0
0 ∆t

 ,
(51)

C = −B, and D = 0.01I4. Note that x1, x2 can be
understood as relative coordinates, and x3, x4 are the relative
velocities along the x1 and x2 axes, respectively, with
∆t = 0.2 being the time-step size. Finally, uk and vk are
the accelerations of the pursuer (controller) and the evader
(stopper), respectively.

(a) Case where the covariance condi-
tion is met by the controller.

(b) Case where the terminal covari-
ance constraint is not met.

Fig. 1: Numerical example of a constrained dynamic game

The initial condition is chosen to be µ0 =
[−10, 6, 0, 0], Σ0 = diag(0.05, 0.05, 0.01, 0.01), and
the terminal constraint is µN = [0, 0, 0, 0], ΣN =
diag(0.005, 0.005, 0.001, 0.001). The time horizon is fixed
at N = 10, and the cost matrices are Qk = I4, and Rk = I2
Sk = 100I2, for all k ≥ 1. The CCSG is solved using the
Jacobi procedure illustrated in Algorithm 1. For the CDG,
the relative controllability matrix is found to have full row
rank, and therefore the mean can be driven to the specified
terminal value. Also, the covariance steering problem is
feasible with ε = 10−5, and the result is illustrated in Fig.
1(a). The red ellipses in Fig. 1(a) denote the 3σ error of
the initial and the desired terminal state distributions of x1

and x2 coordinates. The blue solid line illustrates the mean
trajectory, and the blue ellipses illustrate the covariance
evolution over the time horizon. The gray lines are the
trajectories simulated for 100 different initial conditions
that are sampled from N (µ0,Σ0). From Fig. 1(a), it can be
observed that the covariance constraint is satisfied.

Fig. 1(b) illustrates the case where D = 0.1I4, while
the rest of the values are kept unchanged. Since changing
the matrix D does not change the behavior of the mean,
in this case, the mean converges to the specified terminal
value. However, the covariance constraint cannot be achieved
in this case and from Fig. 1(b), it can be observed that
the covariance ellipse grows with time. The result in Fig.
1(b) is for the set of optimal gains (K∗, L∗), obtained by
minimizing the cost (41) subject to the constraint (44b), since
the constraint (46) cannot be met.

VII. CONCLUSION

This work addressed the problem of steering a Gaussian in
adversarial scenarios using the theory of general constrained
games. The problem is posed from a perspective of the
player that desires to drive the distribution to a given terminal
Gaussian while minimizing a quadratic cost. The player that
tries to maximize the cost is assumed to be indifferent to
the terminal constraint. It is shown that the game need not
have a saddle point equilibrium. Subsequently, we obtained
necessary conditions for the controller to drive the mean
to the specified value in the upper game. The covariance
steering problem is solved numerically using the well-known
Jacobi procedure. The approach is illustrated via numerical
examples.
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