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a b s t r a c t

Traveling wave solutions are studied numerically and theoretically for models of viscous core–annular
flows and falling film flows inside a tube. The models studied fall into one of two classes, referred
to here as ‘thin-film’ or ‘long-wave’. One model of each type is studied for three problems: a falling
viscous film lining the inside of a tube, and core–annular flow with either equal- or unequal-density
fluids. In recent work, traveling wave solutions for some of these equations were found using a
smoothing technique that removes a degeneracy and allows for continuation onto a periodic family
of solutions from a Hopf bifurcation. This paper has three goals. First, the smoothing technique used
in earlier studies is justified for these models using asymptotics. Second, this technique is used to
find numerically families of traveling wave solutions not previously explored in detail, including some
which have multiple turning points due to the interaction between gravity, viscous forces, surface
tension, and pressure-driven flow. Third, the stability of these solutions is studied using asymptotics
near the Hopf bifurcation point, and numerically far from this point. In particular, a simple theory
using the constant solution at the Hopf bifurcation point produces estimates for the eigenvalues in
good agreement with numerics, with the exception of the eigenvalues closest to zero; higher-order
asymptotics are used to predict these eigenvalues. Far from the Hopf bifurcation point, the stabilizing
role of increasing surface tension is quantified numerically for the thin-film models, while multiple
changes in stability occur along families of solutions for some of the long-wave models.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Core–annular flows and viscous film flows inside a tube arise
in a wide variety of engineering, biological, and other scientific
applications [1]. Even in the absence of any background flow, the
presence of a free surface in such settings results in interesting
dynamics due to long-wave instabilities, including plug formation
and film breakup.

In the presence of background flow due to, e.g., density differ-
ences between the core and annular fluids, and/or active
pressure-driven flow, the free-surface dynamics can become
quite rich, and these problems are the focus of the current paper.
In particular, the problems studied here are (i) the flow of a
viscous film coating the interior of a vertical rigid tube of radius ā,
and (ii) core–annular flow; see Fig. 1 for a definition sketch of the
flow variables for problem (ii). Since many experiments exhibit
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dynamics that are predominantly axisymmetric, an axisymmetric
flow is assumed here so that the annular film lies within R̄(z̄, t̄) <
r̄ < ā, where R̄ represents the film’s free-surface. The core region
(0 < r̄ < R̄) is filled with a second, much less viscous, fluid that is
either passive or is driven up the tube with volume flux Q̄ by an
imposed pressure gradient. Superscripts of (a) and (c) will be used
to denote variables and parameters associated with the annular
and core regions, respectively. In the event that (i) the density
difference between the two fluids is negligible (ρ(a) − ρ(c) = 0),
and/or (ii) the core fluid is passive (Q̄ = 0), some terms of the
model equations may be neglected resulting in a simpler model
with fewer parameters.

It is well known that the free surface in such problems is
unstable to long-wave disturbances; see, e.g., [2–5]. Lubrication
theory has been used to derive a variety of strongly nonlinear
single-PDE models that have successfully described the evolu-
tion of the free surface in these axisymmetric film flows. These
strongly nonlinear models are derived by assuming a small ratio
of lengthscales and fall into one of two categories. ‘Thin-film’
models rely on a small film thickness compared with the tube
radius [6–8], while ‘long-wave’ models utilize a small film thick-
ness relative to a typical wavelength of free-surface disturbances
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Fig. 1. Definition sketch of the flow variables. r̄ = R̄(z̄, t̄) denotes the location

of the free-surface, λ̄ is a typical free-surface wavelength, Q̄ denotes the volume

flux of core fluid moving up the tube, and g is acceleration due to gravity.

[9–13]. See [14] for further discussion of this classification in
film flows coating a tube. These models display a wide range of
free-surface dynamics, including traveling wavetrains, interacting
pulses (which have been well-described by systematic coherent-
structure theories in various settings [15–20]), chaotic dynamics,
and finite-time blow-up. We also note that other modeling ap-
proaches have been developed, particularly integral boundary
layer models for moderate Reynolds number flows [21–23].

In previous works, these and related model equations have
been studied numerically and analytically in order to address
a variety of questions regarding linear stability analysis, wave
amplitude saturation, interactions between free-surface waves,
traveling wave solutions, solitary waves, and the stability of so-
lutions [6–11,14,19,20,24–29]. Due to the nonlinearities in each
model (particularly the long-wave models), numerical techniques
have been relied upon to find families of traveling wave solutions.
One method for finding such solutions is to identify a Hopf
bifurcation and continue onto a branch of periodic solutions from
the Hopf bifurcation point.

One difficulty, however, is a degeneracy that arises due to
the presence of a zero-Hopf bifurcation point (sometimes called
a fold-Hopf bifurcation point) in each of these equations; such
bifurcations have both a zero eigenvalue and an imaginary pair
of eigenvalues [30]. The presence of the zero eigenvalue makes
continuation onto a branch of periodic solutions more difficult
numerically. In order to make this continuation easier, the de-
generacy may be removed by adding a small smoothing term to
the equation; once on the periodic branch, the smoothing term
may be removed via continuation. This was done in, e.g., [25],
and while this technique appears to provide a reasonable route
to study families of solutions, no careful justification of the tech-
nique on these equations was provided in [25]. Furthermore, the
stability of these traveling wave solutions was studied numeri-
cally in [10,25] for the case of passive core flow, and it was shown
that for combinations of period and parameter values relevant to
motivating experiments, all of the traveling wave solutions were
unstable.

These results suggest several questions that motivate the cur-
rent study. Can the smoothing technique used in [25] to find
traveling wave solutions be justified analytically? How does in-
cluding active core flow in the model equations affect the family
of solutions (and their stability) found for passive core flow

in [25]? What can be said analytically about the stability of these
solutions?

In this paper, a combination of numerical and analytical results
are presented to address these motivating questions. First, the
smoothing technique used in [25] to remove the degeneracy of
the Hopf bifurcation is justified analytically. Second, families of
periodic solutions are found for a class of both long-wave and
thin-film models; some of these families have multiple turn-
ing points not previously reported. Lastly, the stability of these
traveling wave solutions is studied near the Hopf bifurcation
point using asymptotics, and far from the Hopf bifurcation point
numerically. The analytical work is presented primarily for thin-
film equations as their simpler nonlinearities allow for clearer
exposition, but in principle the same techniques should also be
applicable to their corresponding long-wave equations.

The rest of the paper is organized as follows: the model equa-
tions studied here are discussed in Section 2. Families of solutions
for these models are found numerically in Section 3 using the
smoothing method described above, and justification for this
technique is provided in Section 4. The stability of traveling wave
solutions far from the Hopf point in several of the models is
studied numerically in Section 5, and asymptotic results on the
stability of solutions near the Hopf bifurcation is presented in
Section 6. Conclusions are given in Section 7.

2. Model equations

We first introduce the six model equations that will be dis-
cussed; the derivation of each model may be found in the lit-
erature cited. The theoretical work presented in this paper will
primarily focus on two of the thin-film models, as their simpler
structure allows for more explicit calculations and greater clarity,
but we include the remaining models as the tools presented here
apply to those models as well.

2.1. Thin-film models

The first three models belong to the ‘thin-film’ class, and are
derived by exploiting an assumed small film thickness relative to
tube radius. Each equation is written here in terms of dimension-
less film thickness h(z, t) = a − R(z, t), where a = ā/R̄0. In the
case of passive core flow (Q̄ = 0) with unequal fluid densities,
the free-surface dynamics are governed by the model derived by
Frenkel [6]:

ht + 2h2hz + S
[

h3(hz + hzzz)
]

z
= 0, (1)

where the parameter S (the inverse of Bond number) encapsu-
lates surface tension effects competing with gravity. Here S =
SF = 2σ̄ h̄0/(3ρ̄ḡ ā

3) with surface tension σ̄ , mean film thickness
h̄0, film density ρ̄, acceleration due to gravity ḡ , and tube radius
ā. In the case of active core flow and negligible density difference,
the free surface dynamics are described by the model derived by
Kerchman [7]:

ht + hhz + S
[

h3(hz + hzzz)
]

z
= 0. (2)

where S can now be viewed as a modified capillary number:
S = SK = πσ̄ h̄2

0/(12µ̄
(c)Q̄c), with Q̄c the volume flux of the core

fluid, and µ̄(c) the dynamic viscosity of the core fluid. Superscripts
of (a) and (c) represent the annular and core fluids, respectively.
If neither density difference or core flow may be neglected, the
following model applies,

ht + hhz − 2Fh2hz + S
[

h3(hz + hzzz)
]

z
= 0, (3)

where F = π (ρ̄(a) − ρ̄(c))ḡ ā3h̄0/(8µ̄
(c)Q̄c) and S = SK . In the

limit F → 0, Eq. (2) may be recovered, and we note that the
term h2hz appears at higher-order in the asymptotics than the hhz

2
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term (i.e., for thin films, the effects of the core flow are dominant
relative to the effects of gravity on the free-surface evolution).

Each of Eqs. (1)–(3) is a conservation law for film thickness h,
and linear stability analysis shows that each of these equations
has a constant solution that is unstable to long-wave distur-
bances. Solutions to (1) were studied numerically by Kerchman
and Frenkel [28]; simulations show a rich variety of wave dy-
namics and traveling wave solutions were found for a variety
of parameter values S and period. In [27], Kalliadasis and Chang
studied the existence of solitary wave solutions to (1) and found a
critical thickness that could determine whether finite-time blow-
up of solutions could be expected. Note that in the absence of
a base flow, Eq. (1) reduces to the equation derived by Ham-
mond [31]. Numerical solutions to (2) were studied by Kerchman
in [7] for a variety of values of S and period, and we note that (2)
can be reduced to the Kuramoto–Sivashinsky equation [32–34].
We also note that the same equation has been derived for Taylor–
Couette flow, but where the independent variable is an angle, θ ,
rather than the height z; thus different boundary conditions apply
in this setting [35].

Lastly, we stress that the notation S is used in each of (1)–(3),
but has a different definition in terms of physical quantities for
each equation.

2.2. Long-wave models

Each of (1)–(3) has a corresponding long-wave model that is
applicable in the event that the film thickness is not necessarily
small relative to the tube radius. For passive core flow, the model
studied in [10,25] applies,

Rt − f2(R; a)Rz + S̃

R
[f̃3(R; a)(Rz + R2Rzzz)]z = 0, (4)

where

f2(R; a) = a2 − R2 − 2R2 log
( a

R

)

,

f̃3(R; a) = 1

a2

[

a4

R2
− 4a2 + 3R2 + 4R2 log

( a

R

)

]

,

and where the dynamics are governed by the film thickness
parameter a = ā/R̄0 and S̃ = 3āSF/(16h̄0). (We note that S̃ is

a rescaled version of the parameter S used in [14], with S̃ = a2S,
so that S does not depend on film thickness but only on the
‘hardware’ parameters like density, viscosity, etc.). This model is
nearly identical to the one derived by [26] to study a falling film
on the exterior of a tube.

For negligible density difference, the model derived in [14,24]
applies,

Rt + f1(R; a)Rz + S̃

R
[f̃3(R; a)(Rz + R2Rzzz)]z = 0, (5)

where

f1(R; a) = a2

R4

(

a2

R2
− 1

)

,

and where S̃ = 3ā2SK/(8h̄
2
0).

Finally, if neither density difference or core flow may be ne-
glected, the model derived in [9] applies,

Rt+[f1(R; a) − F̃ f̃2(R; a)]Rz

+ S̃

R
[f̃3(r; a)(Rz + R2Rzzz)]z = 0, (6)

and where

f̃2(R; a) = 1

a4

[

a2 − R2 − 2R2 log
( a

R

)]

,

Fig. 2. Family of equilibrium solutions shown in c −h0 space for (a) Eq. (1) and

(b) Eq. (2). Red × denotes a Hopf bifurcation.

f̃3(R; a) = 1

a2

[

a4

R2
− 4a2 + 3R2 + 4R2 log

( a

R

)

]

,

and where F̃ = 2āF/h̄0 = π (ρ̄(a) − ρ̄(c))ḡ ā4/(4µ̄(c)Q̄ (c)) and

S̃ = 3ā2SK/(8h̄
2
0). Similar to F in (3), in the limit F̃ → 0, Eq. (5) is

recovered. We note that each of (4)–(6) contains a parameter S̃,
but that this parameter is uniquely defined in terms of physical
constants for each equation.

The thin-film Eqs. (1)–(3) may be recovered from (4)–(6) in
the appropriate thin-film limit, and as with the thin-film coun-
terparts, each of the Eqs. (4)–(6) has a constant solution that
is unstable to long-wave disturbances (with the wavelength of
maximum growth rate determined by the mean location of the
free-surface). In contrast to Eqs. (1)–(3), each of the long-wave
models (4)–(6) is a conservation law for R2, so that the volume
of annular fluid, rather than mean film thickness, is conserved.
Significantly different dynamics can occur in the thin-film and
long-wave models, even for moderate thickness; see [14] for a
discussion of differences in wave dynamics, absolute and convec-
tive instability, plug formation, streamlines within the film, and
other features which may differ qualitatively between the two
classes of models.

The theoretical results in Sections 4 and 6 will focus primarily
on Eqs. (1) and (2). The simple structure of these equations allows
for simpler calculations, but the theoretical tools used here apply
equally to the remaining models. Additional numerical results
will be given for Eq. (6), as there are interesting features in the
families of solutions and their stability that are not present in the
other equations.

3. Hopf bifurcations and periodic solutions: numerics

Traveling wave solutions to each of (1)–(6) may be found by
substituting h(z, t) = H(Z) (or R(z, t) = Q (Z)), where Z = z − ct

with c the wave speed, into the PDE to obtain a fourth-order ODE
in Z . Since each equation is a conservation law, these ODEs may
be integrated once to obtain a third-order ODE with a constant
of integration K that becomes an additional parameter in the
problem. For example, for Eq. (2), this third-order ODE is

− ch + 1

2
h2 + Sh3(h′ + h′′′) = K , (7)

Each of the models (1)–(3) has a family of constant solutions
h(z, t) = h0 where h0 depends on K , c , and F ; e.g., for (7), constant
solutions must satisfy −ch + h2/2 = K . Similarly each model
(4)–(6) has a family of constant solutions R(x, t) = R0 where R0

depends on K , c , a and F . Fig. 2 shows the parameter space of this
family of constant solutions for fixed K = −4/3 for Eq. (1), and
for K = −1/2 for Eq. (2); these choices of K produce a zero-Hopf
bifurcation at h = 1.

The fact that these Hopf bifurcations are degenerate makes
numerical continuation off the Hopf point more difficult. One
approach to removing the degeneracy is to add a small viscosity
term to the third-order ODE. This approach was used on Eq. (4)

3
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Fig. 3. (a) Family of periodic solutions to (2) with S = 1, h0 = 1, and varying

period. (b) Family of periodic solutions to (2) with h0 = 1, period 4π and varying

S.

Fig. 4. (a) Family of solutions to (5) with period 4π , h0 = 1, and various values

of a; S = 14.9 (solid), S = 4.0 (dashed), and S = 1.0 (dotted) shown. Red

×’s denote solutions shown in right panel. (b) Periodic solutions to Eq. (5) for

various values of a = ā/R̄0 . Period of 4π has been rescaled to 1; h has been

rescaled to take on values from 0 (tube wall) to 1 (tube center).

in [25] (and was also used in [36], and discussed in [7]), and
is used again here on the remaining five equations. We briefly
review this method with Eq. (2), for which the smoothed ODE is

−ch + 1

2
h2 + Sh3(h′ + h′′′) + βh′′ = K , (8)

where β > 0 represents a small viscosity that removes the
degeneracy, resulting in a pure Hopf bifurcation. A family of
periodic solutions is obtained from this Hopf point using the
continuation software AUTO [37], and once on this branch of
solutions, we take β → 0 to limit to a family of solutions to the
original equation. Fig. 3 shows the parametric representation of
this family of solutions for S = 1 and mean thickness h0 = 1
(letting K vary as needed to enforce this integral condition).

Analytically proving that we may satisfactorily compute the
β → 0 branch once we have properly bifurcated off the de-
generate Hopf bifurcation is an open problem that is beyond the
scope of this article but hopefully a topic of future study. Near
the Hopf bifurcation, this requires using singular perturbation
theory to prove that the corresponding linear operator is properly
invertible such that one may bifurcate in β using the standard
Lyapunov–Schmidt methods.

Fig. 4 shows solutions to (5) for three different values of S,
fixed period 4π , and various values of a; see [14] for additional
information about these families of solutions. In contrast, in [10,
25] families of solutions to (4) were shown to have a turnaround
point, or fold point. This turnaround point appeared to be an
indication of a critical thickness that separated a liquid-plug-
forming regime from a non-plug-forming regime; see also [38]
for some recent results on plug formation in a different model.

Fig. 5 shows the parametric location of families of solutions
to Eq. (6), which is essentially a combination of the two Eqs. (5)
and (4), though now with the two hyperbolic terms having op-
posite sign from one another. For small F̃ , families of solutions
resemble those of Fig. 4; for some critical F̃ , however, multiple
turnaround points appear, creating families of solutions that look

Fig. 5. (a) Families of periodic solutions to Eq. (6) with S̃ ≈ 12.5 and various

values of F̃ and a. (b) Families of periodic solutions to Eq. (6) in h̄max − h̄0 space.

like a blend of solutions to (4) and (5). These families create the
possibility of hysteresis in the behavior of solutions, whereby
a traveling wave solution may disappear if the film thickness
is modified. Profiles of some of these solutions are shown in
Section 5.

We note that additional traveling wave solutions have been
previously found for some of these models, including solutions
with multiple humps; see, e.g., [7] and [25] for such solutions
in Eqs. (2) and (4), respectively. However, since both numerical
studies and experiments have consistently suggested that single-
hump waves are the dominant feature seen in the evolution of the
free-surface in these problems, we focus exclusively on single-
hump solutions in this paper and leave study of other types to
future work [7,9,10].

4. Solutions near Hopf bifurcations for thin film models:

asymptotics

We next establish the validity of the smoothing procedure
used to find solutions numerically to thin-film Eqs. (1) and (2).
Our focus in this section is on the simplified thin-film models
to give a clear picture of the degenerate Hopf structure and the
means by which to successfully bifurcate using our algorithms.
However, we note that similar methods can be applied to each
of our models. To this end, we perform a first order, normal form
analysis as prescribed in [30], but to implement the procedure we
need to choose carefully the parameters for bifurcation. To lay out
the procedure, we begin with Eq. (2) (and the corresponding ODE
(7)) and consider the system given by

ψ ′
1 = ψ2, ψ ′

2 = ψ3, ψ ′
3 = f (ψ1, ψ2, ψ3, β), (9)

where ψ1 = h, ψ2 = h′, ψ3 = h′′, and

f (ψ1, ψ2, ψ3, β) = K

Sψ3
1

+ c

Sψ2
1

− 1

2Sψ1

− ψ2 − βψ3

ψ3
1

.

The system may be linearized at an equilibrium (constant) solu-
tion h = he,

Ψ ′ = Aβ,JΨ (10)

4
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where

Aβ,J =

⎡

⎣

0 1 0
0 0 1

J −1 − β

Sh3e

⎤

⎦ , J = − 3K

Sh4
e

− 2c

Sh3
e

+ 1

2Sh2
e

. (11)

When β = 0, Aβ,J realizes a Hopf bifurcation if and only if

J = 0, which occurs provided he =
√

−2K ; the corresponding
eigenvalues are 0 and ±i.

Next, define

F (β, he,Ψ ) = (ψ2, ψ3, fβ (ψ1 + he + hH , ψ2, ψ3)), (12)

where Ψ = (ψ1, ψ2, ψ3) and hH :=
√

−2K , and consider the
problem

dΨ

dt
= F (β, he,Ψ ). (13)

Given the regularity of f in a neighborhood of the degenerate
Hopf bifurcation, the existence of asymptotic solutions to (13)
near β = 0 and he = hH may be demonstrated using β and he

as continuation parameter and applying the result of [30].
Once we have chosen the correct coordinates in which to

bifurcate, these asymptotic solutions may be constructed using
the work of Langford [39] and are given by

Ψ (s, ε) = ε[xΦ0(s) + yc⃗] + ε2w(s) + O(ε3),

he(ε) = νε,

β(ε) = εµ+ O(ε2),

T (ε) = 2π + O(ε2), (14)

where

Φ0(s) =
√

2

3
(− sin s, cos s, sin s)T , (15a)

c⃗ = (0, 0, 1)T , |µ| < 1, ν = ±1, (15b)

w ∈ N(L)⊥, L = d

ds
− A0,0, (15c)

and

x =
√

−3(µ2 − 1), y = µ− ν. (16)

Though one may expect to take c as a bifurcating, or continuation,
parameter, the structure of (7) actually makes construction of
the asymptotic solutions via [39] impossible as the system is
not sufficiently smooth in c (due to the appearance of

√
c), thus

motivating use of he as a continuation parameter here.
A comparison of these asymptotic results with the numerical

results is shown in Fig. 6 for Eq. (2). Solutions were calculated for
a fixed Hopf thickness he and for a variety of values for β; both
the predicted amplitude and the mean thickness of the resulting
solution are in excellent agreement between the asymptotics and
the numerics. The agreement was checked for other values of he

and degrades as one moves further down the periodic branch
away from the Hopf as can be expected.

The same asymptotic procedure may be applied to Eq. (1);
these solutions are given as in (14) with Φ0, c⃗, µ, ν, and w as
before and with

x =
√

3ν2 −
3
√
6

8
3
√
K 2
µ2, y = −ν − 1

2
3
√
6K
µ. (17)

Similar agreement between asymptotics and numerics was found
for Eq. (1) as well (not shown).

5. Stability far from Hopf bifurcations: numerics

We next study the stability of traveling wave solutions to
Eqs. (1)–(6). A refined stability analysis has been conducted for

many other PDEs like, e.g., the Allen–Cahn equation, the mKdV
equation, the Kuramoto–Sivashinsky equation, or in reaction–
diffusion equations; see, e.g., [40–49]. In many of these cases
listed here, the nature of the nonlinearities present in the model
allows an in depth ODE analysis to prescribe the structure of the
traveling waves. However, the types of nonlinearities present in
the long-wave models (4)–(6) make analytical tools somewhat
difficult to apply, and so we turn to numerical methods for
exploring the stability of solutions to all of the model equations;
the stability of solutions to thin-film Eqs. (1)–(3) near the Hopf
will be studied analytically in the next section.

The method used here for studying the stability of traveling
wave solutions is described in detail in [25] and is summarized
briefly here for Eq. (2). In the traveling reference frame Z = z−ct ,
substituting h(z, t) = Q (z − ct)+w(t, z − ct) and retaining linear
terms results in

wt − Lc,Kerw = 0 (18)

with

Lc,Ker = −SQ 3∂4Z − 3SQ 2Q ′∂3Z − SQ 3∂2Z

− [Q + 3SQ 2Q ′ − c + 3SQ 2(Q ′ + Q ′′′)]∂Z
− [Q ′ + 3S(Q 2(Q ′ + Q ′′′))′]. (19)

With the separation of variables

w(Z, t) = eλtψ(Z) (20)

Eq. (19) is an eigenvalue problem for λ; these eigenvalues are
found numerically. To improve the accuracy of the solutions
computed in AUTO, the Newton solver ‘nsoli’ is used in Matlab to
refine Q (Z). This refined solution is then used in a pseudospectral
implementation of Hill’s method in Matlab; see [25] for more
details of the method. The same approach was used for each of
(1)–(6).

As we will discuss the linear stability near the Hopf bifurcation
later, we record here that for (1), we have

Lc,Fr = −SQ 3∂4Z − 3SQ 2Q ′∂3Z − SQ 3∂2Z

− [2Q 2 + 3SQ 2Q ′ − c + 3SQ 2(Q ′ + Q ′′′)]∂Z
− [4QQ ′ + 3S(Q 2(Q ′ + Q ′′′))′]. (21)

Similar formulae can be derived for linearized versions of each of
the models (1)–(6).

A family of solutions to Eq. (2) with fixed mean thickness
h0 = 1, period 8π , and a range of S values is shown in Fig. 7. For
small S, solutions are weakly unstable, where one or more pairs of
complex conjugate eigenvalues has small positive real part. These
eigenvalues with positive real part represent an instability akin
to the flat-film instability and are a result of having a sufficiently
long domain. As S increases, however, these eigenvalues move
to the left, eventually crossing the imaginary axis; for S greater
than this critical value, all solutions appear to be stable, with
all eigenvalues (except for the zero eigenvalue present in all
solutions) containing negative real part. Thus large S can stabilize
these solutions, and the critical S at which stability is reached
increases with increasing period. For period less than 4π , all

solutions were found to be stable, presumably due to a lack of
room in the domain for a flat-film type instability to be present.
Qualitatively similar results were found for (1) as well and are
shown in Fig. 8 for fixed period and Fig. 9 for fixed S. The critical
S at which stability is reached is shown in Fig. 10 as a function of
period.

Next, we study how the stability changes in the corresponding
long-wave model solutions. The stability of solutions to Eq. (4)
was studied in [25], and it was shown that lower branch (small-
amplitude) solutions were weakly unstable with one or more
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Fig. 6. (a) Amplitude and (b) mean thickness (deviation from 1) of numerical (black ×’s) and asymptotic (blue line) periodic solutions to (2) coming from a Hopf

bifurcation occurring at h0 − 1 = he ≈ 0.0043688. (c) Profile of solution corresponding to red × in (a,b). (d,e) Difference between numerics and theory in panels

(a,b), respectively. (f) Increase in period from Hopf period of 2π . (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Fig. 7. Traveling wave solutions and linearized spectrum around those solutions

to (2) with mean thickness h0 = 1 and period 8π for (top row) S ≈ 0.05,

(second row) S ≈ 0.13, (third row) S ≈ 0.22, and (bottom row) S ≈ 0.32. Only

eigenvalues with largest real part are shown; the maximum real part of the

eigenvalues is listed to five decimal places. Red ×’s in third column corresponds

to parameter values of solutions shown.

pairs of complex-conjugate eigenvalues containing small positive

real parts, while upper branch (large-amplitude) solutions were

unstable with one large, positive real eigenvalue. For Eq. (5), each
family of solutions examined with fixed S̃, h0 and period was

either stable or weakly unstable.

Are solutions to Eq. (6) stable? As with (4), the answer de-

pends on the branch of solutions considered. Fig. 11 shows the

linearized spectrum of several solutions lying along one of the

families shown in Fig. 5. For very thin films, only small-amplitude

Fig. 8. Same as Fig. 7 but for solutions to (1). (Top row) S ≈ 0.02, (second row)

S ≈ 0.39, (third row) S ≈ 0.66, and (bottom row) S ≈ 0.85.

solutions are found, and these are stable due to the period being
small enough to prevent any flat-film type instability. As one
moves further up the branch of solutions, a turnaround, or fold,
point is reached, similar to that found for (4) in [10,25]. As
one passes through this turnaround point, one real eigenvalue
changes sign from negative to positive. Moving further along this
‘middle’ branch of solutions, this positive real eigenvalue grows
until reaching some maximum, after which it begins to return to
zero. It crosses zero at a second turnaround point, and solutions
lying on this ‘upper’ branch are stable. This second turnaround
point does not exist in families of solutions to (4) and may
be attributed to the core flow’s role in saturating wave growth

6
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Fig. 9. Same as Fig. 8 but with fixed S ≈ 0.39 and various periods ranging from

T ≈ 3π to 8π .

Fig. 10. Regions of S-period parameter space where single-hump traveling wave

solutions to (1) with h0 = 1 are stable or unstable. Color indicates which

eigenvalue has real part of zero at these critical S values. Light gray asterisks

denote solutions shown in Figs. 8 and 9.

Fig. 11. Traveling wave solutions and linearized spectrum around those solu-

tions to (6) with mean thickness h0 = 1, S̃ ≈ 12.5, F̃ ≈ 124.3, and period

4π for various values of a. Only eigenvalues with largest real part are shown;

the maximum real part of the eigenvalues is listed. Red ×’s in third column

corresponds to parameter values of solutions shown. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version

of this article.)

for thick films. Thus the upper branch reflects the structure of
solutions to (5) as the core flow terms asymptotically dominate
the gravity terms for thick films along this upper branch, while
the middle and lower branches reflect the structure of solution
families for (4). Note also that the velocity changes sign from
negative to positive along the upper branch as a critical thickness
is reached where the core flow begins to dominate the effects
of gravity in the competition to determine the direction of the
wave’s propagation. At this threshold the wave profile reverses
orientation to reflect this change (i.e., the trough leads the crest,
and moves from the left of the wave crest to the right as one
increases film thickness along the upper branch of solutions).
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Fig. 12. (a) Spectrum of a traveling wave solution to (2) with S = 1 near the

Hopf bifurcation. Numerically computed spectrum (red circles) and constant

theory spectrum according to (22) (black ×’s) are shown; 2-mode theory

eigenvalues (see Eq. (24)) near zero are also shown. (b) Same as (a) but zoomed

in around 0.

6. Stability near Hopf bifurcations in thin film models: multi-

mode asymptotics

We first seek to understand the stability of traveling wave

solutions to (2) by examining the spectrum of the linearized

operator Lc,Ker with periodic boundary conditions near the Hopf

bifurcation at β = 0 and Q = he using asymptotics; we begin by

noting that Lc,Ker from (19) has linear spectrum
{

−SQ 3

(

( n

T

)2

− 1

)

( n

T

)2

− i(Q − c)
n

T
: n ∈ Z

}

. (22)

From (22) it is clear that at the Hopf bifurcation, where Q −
c = 0, the spectrum is real. For T ≤ 2π , Re λ ≤ 0, while

for T > 2π there are eigenvalues to the right of the imaginary

axis. Fig. 12(a) shows the eigenvalues predicted by this constant

theory (black ×’s) for a traveling wave solution to (2) near the

Hopf bifurcation. The agreement between numerics and constant

theory is excellent for n = 0, 2, 3, . . .; for n = 1, however, the

numerically computed eigenvalues are much closer to zero than

expected from the theory.

To investigate the discrepancy of near-zero eigenvalues near

the Hopf bifurcation, we will use what we call a two-mode

system. Multi-mode expansions of this type have appeared in

studying periodic traveling waves before, for instance in KdV and

related systems [50,51]. When Q − c = 0, λ = 0 is an eigenvalue

of Lc,Ker of multiplicity three. Furthermore, since Q solves the

nonlinear problem, Q ′ is a nearby kernel element of Lc,Ker . In the

perturbation, Lc,Ker,ε this ensures that cos
(

x
T

)

is (to order ε) in

the kernel of Lc,Ker,ε , so a higher order perturbation should be

used. We use the first and second Fourier modes to define the

perturbed operator L̃c,Ker given by replacing Q by

Q +
2

∑

k=1

εk sin (kx/T + ϕk)

in Lc,Ker , where εk and ϕk are numerically computed for 1 ≤ k ≤ 2.

Letting

⟨u, v⟩ = 1

2πT

∫ 2πT

0

uv̄ dx (23)

define an inner product on L2per ([0, 2πT ]), and defining the vector
space

V = span{v1 = e−ix/T , v2 = 1, v3 = eix/T ,

v4 = e−2ix/T , v5 = e2ix/T },
we then focus on the map φ : V → R

5 as the linear operator
defined by φ(vk) = ek, 1 ≤ k ≤ 5, where {ek}5k=1 is the standard

basis of R5. Next, let M : R5 → R
5 be the matrix defined by

M =
[

mjk

]

(24)

where mjk = ⟨L̃c,Kervj, vk⟩. This matrix is a representation of the

operator P ◦ L̃c,Ker , where P is the projection from L2per ([0, 2πT ]),
the space of square-integrable periodic functions, to V . Studying
this matrix gives insight into the spectrum of Lc,Ker when Q − c is
comparatively small to ε. Interestingly, this matrix has a strongly
negative movement of one of the zero eigenvalues.

Fig. 12(b) shows the near-zero eigenvalues computed numer-
ically (red circles) and predicted by the higher-order two-mode
system (blue asterisks). The agreement is significantly better than
with the constant theory; in particular, the negative movement
of one of the zero eigenvalues is in good agreement with the
numerical calculations. Given that we have increased our system
size to attempt to overcome the issue of degeneracy near 0, there
is a small positive real eigenvalue predicted by the higher-order
theory that is not seen in the numerically calculated eigenval-
ues. The behavior near zero requires further analysis, but overall
the agreement between the higher-order asymptotic theory and
numerics appears to be reasonable.

In a similar fashion, the stability of solutions to (1) can be
studied by examining the spectrum of Lc,Fr given in (21). The
spectrum of the constant problem is
{

−SQ 3

(

( n

T

)2

− 1

)

( n

T

)2

− i(2Q 2 − c)
n

T
: n ∈ Z

}

. (25)

Once again, agreement between the constant theory and numer-
ics is excellent for n = 0, 2, 3, . . . but not for n = 1 (not
shown). The two-mode theory discussed above can be applied
again to investigate this discrepancy, and the results show a
qualitatively similar strongly negative movement of one of the
zero eigenvalues which is again in good agreement with numerics
(not shown).

7. Conclusions

Traveling wave solutions have been explored asymptotically
and numerically for two classes of models for falling film flows
inside a tube and for core–annular flows. Asymptotics, making
use of the work of [39], were used to provide justification for
the smoothing technique used to find traveling wave solutions
numerically for these models. A numerical exploration of solu-
tions to one of the long-wave models revealed solution families
with multiple turning points arising from the interplay between
gravity, pressure-driven core flow, viscosity, and surface tension.
The stability of traveling wave solutions to the thin-film models
was explored using asymptotics near the Hopf bifurcation. A
simple theory based on the constant solution at the Hopf point
predicted all but two of the eigenvalues very well; for these two
eigenvalues near zero, higher-order asymptotics were required
to produce good agreement with numerics. Far from the Hopf
bifurcation, the stability of traveling wave solutions was explored
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numerically, and changes in stability corresponding to turning
points in solution families were shown.

We note that the current study has focused entirely on single-
hump traveling wave solutions which occur most frequently in
numerical simulations, and are seen most readily in thin-film
experiments. Other solutions, including multiple-hump solutions,
have been neglected here, and it would be interesting to explore
differences in stability for different types of solutions in the
future.
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