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Abstract. We correct the statement and proof of Corollary 4.2 in Keller et al. [Multi-

scale Model. Simul., 16 (2018), pp. 1684–1731] corresponding to the case of admissible potentials,
which are also reflection invariant (ρ-invariant). We also include a short addendum on implications,
in this case, for the effective Hamiltonian corresponding to states which are spectrally localized near
the M point.
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Corrections.

1. page 1687: part (D) of summary of results: Equation (1.5) should read as
follows:

µ±(M+ κ)− µS = (1− α)|κ|2 + Q6(κ)

±
√

γ̃2(κ2
1 − κ2

2)
2 + 4β2κ2

1κ
2
2 + Q8(κ).(A)

2. page 1699: The statement of Corollary 4.2 should read as follows.

Corollary 4.2. Assume the hypotheses of Theorem 4.1. Assume further that

with respect to the origin of coordinates, xc = 0, we have, in addition, that

V is reflection invariant in the sense of Definition 2.4, i.e., V (x1, x2) =
V (x2, x1). Then the coefficients β and γ in (4.1) are constrained to satisfy

β ∈ R and γ = −iγ̃ ∈ iR and we have

µ±(M+ κ)− µS = (1− α)|κ|2 + Q6(κ)

±
√

γ̃2(κ2
1 − κ2

2)
2 + 4β2κ2

1κ
2
2 + Q8(κ) .(B)

Here Q6(κ) and Q8(κ) are now also invariant under the reflection (κ1, κ2) 7→
(κ2, κ1).

3. pages 1710–1711: Correction to the statement of Claim 4.21 and its proof:

The correct form of Claim 4.21 is <(γ) = 4<(a1,21,1) = 0.
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1372 ERRATUM

Correction: In section 4.4, replace all discussion from Claim 4.21 through
the end of section 4.4 by the following.

Now consider the setting of Theorem 4.1; µS is an eigenvalue of H = −∆+V
acting in L2

M
of multiplicity 2. In particular, µS is a simple L2

M,i eigenvalue

with corresponding eigenfunction Φ1, and µS is a simple L2
M,−i eigenvalue

with corresponding eigenfunction Φ2, with Φ2(x) = Φ1(−x). By Claim 4.20,
ρΦ1 ∈ L2

M,−i, and since ρ commutes with H, we have that ρΦ1 is an L2
M,−i

eigenfunction. Thus, ρΦ1 = eiνΦ2 for some ν ∈ R or equivalently ρe−i ν
2 Φ1 =

ei
ν
2 Φ2. Hence, for the case ν 6= 0 replace Φ1 by e−i ν

2 Φ1 and Φ2 by ei
ν
2 Φ2 to

obtain the relation

(C) ρΦ1 = Φ2

in all cases. Recall from (4.27) of [2] that

α = 4a1,11,1 = 4 〈∂x1
Φ1,R(µS)∂x1

Φ1〉,(D)

β = 4a1,21,2 = 4 〈∂x1Φ1,R(µS)∂x2Φ2〉,
γ = 4a1,21,1 = 4 〈∂x1

Φ1,R(µS)∂x1
Φ2〉.

We have shown that α ∈ R. Using (C), we have the following constraints on
β and γ.
Claim. Assume [ρ,H] = 0. Then

β ∈ R,(E)

γ = −iγ̃, γ̃ ∈ R.(F)

Proof. We first prove (E). Since [ρ,H] = 0 and ρ∂x1
= ∂x2

ρ, we have

β = 4 〈∂x1
Φ1,R(µS)∂x2

Φ2〉
= 4 〈ρ ∂x1Φ1, ρR(µS)∂x2Φ2〉
= 4 〈∂x2

ρ Φ1,R(µS)∂x1
ρ Φ2〉

= 4 〈∂x2
Φ2,R(µS)∂x1

Φ1〉
= 4 〈R(µS)∂x2

Φ2, ∂x1
Φ1〉

= 4 〈∂x1
Φ1,R(µS)∂x2

Φ2〉 = β.

To prove (F), let κ ∈ R
2 be arbitrary. Using that R[Φ1] = iΦ1 and R[Φ2] =

−iΦ2, we have for j1, j2 ∈ {1, 2} that

κTAj1,j2κ = 〈∂yl
Φj1 ,R(µ?)∂ym

Φj2〉L2(Ωy)
κlκm

= 〈R(ρ[∂yl
Φj1 ]), R(µ?) R(ρ[∂ym

Φj2 ])〉L2(Ωx)
κlκm

= 〈Rnsρln∂xs
R[ρΦj1 ],R(µ?)Rqtρmq∂xt

R[ρΦj2 ]〉L2(Ωx)
κlκm

= 〈∂xs
i2j2−1Φj2 ,R(µ?)∂xq

i2j1−1Φj1 ]〉L2(Ωx)
Rns(ρlnκl) Rqt(ρmqκm)

= i2(j1−j2) 〈∂xs
Φj2 ,R(µ?)∂xt

Φj1〉
L2(Ωx)

Rns(ρκ)nRqt(ρκ)q

= i2(j1−j2)(Rρκ)TAj2,j1(Rρκ)
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ERRATUM 1373

for any choice of pairs (j1, j2) with j1, j2 ∈ {1, 2}. Since κ is arbitrary,

Aj1,j2 = i2(j1−j2)ρ RTAj2,j1R ρ.

For any pair j1, j2 ∈ {1, 2}, let

Aj1,j2 = A =

(

a b
c d

)

.

Then

RTAR =

(

d −c
−b a

)

.(G)

Consider j1 = 1 and j2 = 2. From the above analysis,

A = A1,2 = −ρ R A2,1 RT ρ = −ρ R (A1,2)† RT ρ = −ρ R A† RT ρ

so that

−ρ R A† RT ρ = −
(

0 1
1 0

)(

d̄ −b̄
−c̄ ā

)(

0 1
1 0

)

= −
(

−c̄ ā
d̄ −b̄

)(

0 1
1 0

)

= −
(

ā −c̄
−b̄ d̄

)

=

(

−ā c̄
b̄ −d̄

)

=

(

a b
c d

)

.

In particular, a = −ā and d = −d̄. That is, a1,21,1 = −ā1,21,1, and a1,22,2 = −ā1,22,2,
so that

<γ = 4<(a1,21,1) = 4<(a1,22,2) = 0.

Corollary 4.2 is now an immediate consequence of part 2 of Proposition 4.17.
4. page 1715: Include V 2

11 6= V 2
01 in the hypotheses of Corollary 5.4.

5. page 1725: At the start of Appendix C, recall the hypothesis V 2
11 6= V 2

01.

Addendum on effective Hamiltonians. The local behavior of wavepackets
which are spectral concentrated near the quasi-momentum M is governed by an ef-
fective Hamiltonian, Heff , which may be read off the leading order matrix Fourier
symbol in (4.26) of [2]; see also Appendix B. In the reflection invariant case, we have
γ ≡ −iγ̃ and γ̃ ∈ R and α, β ∈ R; see Remark 4.16 of [2] and (E), (F) above. Thus,

Heff = α|κ|2σ0 + γ̃(κ2
1 − κ2

2)σ2 + 2βκ1κ2σ1.

We note that in the case of systems with the symmetries P, C, π/2-rotational invari-
ance, and ρ, we have that Heff is unitarily equivalent to the Hamiltonian

H̃eff = α|κ|2σ0 + γ̃(κ2
1 − κ2

2)σ1 + 2βκ1κ2σ3,

obtained in [1]. Indeed, V ∗HeffV = H̃eff , where V is the unitary matrix

(H) V =
1√
2

(

1 −i
1 i

)

.
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