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Abstract. Energy transport in proteins is critical to a variety of physical, chemical,
and biological processes in living organisms. While strenuous efforts have been made
to study vibrational energy transport in proteins, thermal transport processes across the
most fundamental building blocks of proteins, i.e. helices, are not well understood. This
work studies energy transport in a group of “isomer” helices. The n-helix is shown to
have the highest thermal conductivity, 110% higher than that of the a-helix and 207%
higher than that of the 310-helix. The H-bond connectivity is found to govern thermal
transport mechanisms including phonon spectral energy density, dispersion, mode-
specific transport, group velocity, and relaxation time. The energy transport is strongly
correlated with H-bond strength which is also modulated by the H-bond connectivity.
These fundamental insights provide a novel perspective for understanding energy
transfer in proteins and guiding a rational molecule-level design of novel materials with

configurable H-bonds.



Introduction

Energy transport and atomic vibrations in biomacromolecules such as proteins are
critical to a variety of physical, chemical and biological processes taking place in living
organisms, from structural construction, catalysis, to molecular recognition.'” In
principle, the vibrational energy flow is strongly associated with structural
characteristics of proteins including the conformation, amino acid sequence, and
intermolecular affinities.®® Due to their polymeric nature, proteins generate intricate
macromolecular structures as they attain their biological states in the process of folding.
Secondary structures are formed as an information bridge that links the primary
sequence with substructures to shape the protein systems. Representative protein
secondary structures include the B-sheet, 310-helix, a-helix and n-helix. They are stable
and energetically favorable, primarily due to many interlocking hydrogen bonds (H-
bonds) that exist between carbonyl (C=0O) and amide (N—H) groups (Fig. 1g).
Establishing the relationship between protein structures and energy transport pathways
is an important area of fundamental interest to better understand protein reactivity and
functionality. Further, the molecular insights gained from the study of nanoscale
thermal transport in proteins may also inspire the design of new materials with novel
structures and unprecedented properties.

Strenuous efforts have been made to probe energy transport in proteins and protein
secondary structures such as the heme cooling cofactor,'? peptide helices,!! and the B-
sheet.!> 13 On one hand, evidences show that heat diffusion is integrated with allosteric
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communication pathways which are closely related with the cellular and
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physiological functions of proteins.!’"!” On the other hand, studies demonstrate that heat
spreads through multiple pathways including the covalent backbone as well as the
relatively weak inter/intra-molecular interactions in protein secondary structures. As
such, the energy transport processes may be modulated by tuning the inter/intra-
molecular interactions,?’ where the H-bond is arguably one of the most important

factors. Although being a secondary bond, the H-bond is critical in proteins as it largely
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controls their structural stability, catalytic properties, chemical reactivity,
and energy transport.® Recent studies have reported that the H-bond significantly
enhances thermal transport in the B-sheet of spider silk proteins!? and a variety of
polymer blends.?®

Despite the progress, vibrational energy transport in helical protein structures are
underexplored. As biomolecular “nanowires”, protein helices differ from any other
nanowires in that they uniquely feature tortuous covalent backbones interlocked by H-
bonds. Different H-bond connectivities lead to different types of helices in the protein
database, which include the 31o-helix, a-helix, and the m-helix. While the 31¢-helix
widely exists in many biological channels and membrane proteins®’ (e.g. ABC-ATPase
SufC as shown in Fig. 1a), the a-helix is commonly found in globular proteins® (e.g.
T4 Lysozyme as shown in Fig. 1b) and the n-helix is usually identified near functional
sites of proteins’! (e.g. PGRP-SA as shown in Fig. 1¢). All composed of single amino
acid chains, these helices are differentiated by the different atomic sites of forming H-
bonds. For example, Fig. 1d-f illustrates ribbon schematics of the 31¢o-helix, a-helix and

n-helix, respectively. In the 31o-helix, H-bonds are established between the CO group
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of the i-th residue and the NH group of the (i+3)th residue. By comparison, H-bonds of
the a-helix are formed between the i-th and the (i+4)th residues, while those of the =-
helix are formed between the i-th and the (i+5)th residues. The different H-bond
network leads to significantly different structural characteristics of the three helices
including the number of amino acids per turn and the helical pitch. Understanding
energy transport in such helical structures may fundamentally reveal how the H-bond,
together with the helical backbone, dictates vibrational energy flow in proteins. A
previous study has shown that the polymer chain conformation significantly influences
thermal transport as a short straight chain is elongated to be a torturous long chain.>
This work investigates vibrational energy transfer and thermal transport
mechanisms in the three key building blocks of proteins including the 310-, a-, and 7-
helices. To focus on the important effects of H-bond connectivity, three model helices
are assumed which have the same amino acid sequence of poly-Glycine. The molecular
structures of these helix “isomers” are shown in Fig. 1h-i. These “isomer” helices
feature different H-bond connectivities as illustrated in Fig. 1d-f for the 31¢-, a-, and =-
helices, respectively. Using the molecular dynamic (MD) simulation and vibrational
energy transfer analysis, we demonstrate that the m-helix has the largest thermal
conductivity, followed by the a-helix and then the 3io-helix. Energy transfer
mechanisms are explored via the analysis of phonon dispersion, spectral thermal
conductivity, relaxation time, and group velocity. Results show that the different H-
bond networks that form the “isomer” helices fundamentally change the behavior of

both low-frequency acoustic and semi-optical phonons. The energy transport properties



of the three types of helices are strongly correlated with the different strengths of
intramolecular H-bonds as revealed by quantum-chemical analyses based on the density
functional theory (DFT) calculations. The results enrich our fundamental understanding
of the energy transfer in protein structures and the critical role of interlocking H-bonds.
The understanding may open new avenues to design novel biomacromolecules, e.g.
synthetic spider silk with designed “blueprints” of amino acid sequences,>® with

extraordinary energy transfer properties for a wide range of applications.

Results and Discussion

Thermal Conductivity. Vibrational energy transport in “isomer” protein helices is first
studied by quantifying and comparing how fast energy is conducted in these structures.
Fig. 1k plots the thermal conductivity calculated by MD simulation for the 310-, a- and
n-helices with various lengths including 2 nm, 3 nm, 5 nm, 10 nm, 20 nm, and 40 nm.
Since helical segments in proteins are usually short with only a few nanometers in
length, vibrational energy carriers, i.e. phonons, are not relaxed and their transport is
constrained by and sensitive to the geometry. As shown in Fig. 1k, the thermal
conductivity (k,) of the helices increases nonlinearly with the length (L), conforming
to the ballistic-diffusive empirical formula, k, = ky e (1 —e7L/k¢), where kyo is
the thermal conductivity in the diffusive limit and L. denotes a characteristic length
of the ballistic-to-diffusive transition. Another ballistic-diffusive characteristic is
demonstrated in Fig. S2, which shows that 1/k, and 1/L are almost linearly
correlated except when the helix length is extremely short. When the characteristic

length is very short, thermal transport is strongly influenced by multiple scattering
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mechanisms such as phonon-phonon scattering, multi-phonons scattering, and phonon-
boundary scattering. These multi-scattering mechanisms are not mutually independent,
leading to nonlinearity at large 1/L or short helix lengths. By fitting computational
results of k, with the empirical formula, thermal conductivity in the diffusive limit
(ky ) is predicted to be 6.36 W m™ K! for the 310-helix, 9.31 W m™ K™! for the a-helix,
and 19.54 W m™! K! for the n-helix. Among the three helical “isomers”, the n-helix is
the most thermally conductive, followed by the a-helix (52.35% lower k, o) and 310-
helix (67.45% lower k, ). The phonon mean free path that corresponds to fully
diffusive phonon transport is approximated by L,q¢9, namely, the length at which
thermal conductivity k, = 0.99k, .. Based on the empirical formula with predicted
k «, the phonon mean free path is approximated as 139.39 nm, 148.10 nm and 160.02
nm for the 310-, a- and n-helices, respectively. The n-helix, which has the higher thermal
conductivity, is also found to have longer phonon mean free path. The empirical
equation is important because nearly all helix segments in proteins are short in length
so they are in the ballistic-to-diffusive transition regime.

Phonon Vibrational Spectra. Effects of H-bond connectivity on phonon vibrational
spectra can be found in the phonon dispersion curves plotted for the three isomer helices
(Fig. 2a). The calculations are thermodynamically stable as no imaginary frequency is
found in the curves. Only the regime with frequency < 30 THz is displayed. Phonons
with higher frequencies are associated with localized interactions so they have low
group velocities and short relaxation times.**>” Each helix shows three lowest-lying

phonon branches including two transverse acoustic branches (TA1 and TA2) and one



longitudinal acoustic branch (LA). The two TA branches show almost linear dispersion,
whereas the LA branch is nearly quadratic. Among the three acoustic branches, the LA
branch has the largest slope, followed by the TA1 branch and then the TA2 branch.
Although most optical phonon branches are relatively flat indicating negligible
contributions to energy transport, all three helices show some optical branches that have
significant slopes especially in the frequency range of 5-10 THz.

The group velocity for three acoustic branches and two selected optical branches
are plotted in Fig. 2b. The two chosen optical branches (indicated by arrows in Fig. 2a)
contribute significantly to energy transport as discussed in the following section using
the mode-based thermal conductivity analysis. All branches except LA show bell-
shaped group velocity curves that peak approximately in the middle. By comparison,
the LA branch uniquely features an unsymmetrical curve with curve branching at the
high frequency end. Comparing the curves, it is readily seen that the LA branch has the
highest group velocity followed by the TA2 and TA1 branches, echoing the findings
relating to the slope of dispersion curves. The two optical branches show similar group
velocities as the TA1 and TA2 branches.

Importantly, the three isomer helices show critical differences as a result of their
different H-bond connectivities. On the one hand, the n-helix exhibits the highest group
velocity in all shown branches, followed by the a- and 31o-helices. These results agree
well with the ranking of the isomers in terms of their overall thermal conductivities. On
the other hand, an interesting “redshift” is identified among the isomers. For example,

the frequency at which the LA branch’s group velocity peaks is found to redshift from



1.50 THz for the m-helix to 0.97 THz for the a-helix, and then further redshift to 0.71
THz for the 310-helix. The same trend persists in the other acoustic and optical phonon
modes of importance to the energy transport processes.

Mode-Specific Contribution to Energy Transport. Based on the PSED analysis (Fig.
S3), Fig. 2a uses the line color to plot the contribution to energy transport made by
phonons of particular wave vector and frequency, i.e. k,(k,v). It is apparent that the
LA branch, especially when ¢ = 0.05 ~ 0.4, makes the most prominent contribution to
energy transport. The TA1 and TA2 branches in similar frequency ranges also contribute
significantly. Summing up k, (&, v) for the three branches, the LA branch is found to
contribute about 38-40% thermal conductivity for all of the three helices, followed by
the TA2 and TA1 branches which contribute about 13% and about 5-7%, respectively.
The three acoustic branches together account for 57.70%, 58.21% and 59.99% of the
overall thermal conductivity for the 31o-, a- and n-helices, respectively. Therefore, heat
1s mainly carried by acoustic phonons in biomolecular helices.

In addition to acoustic phonons, some optical branches especially the two indicated
by arrows in Fig. 2a also make important contributions as determined by their values
of k,(k, V). According to the mode-based thermal conductivity results shown in Fig.
2c, semi-optical branches in the range of 5-10 THz contribute 31.32%, 30.35% and
31.24% to the overall thermal conductivity for the 310-, a- and m-helices, respectively.
Fig. 2d further shows that, for all helix isomers, the cumulative thermal conductivity
increases significantly only in the frequency ranges of acoustic phonons and low-

frequency semi-optical phonons. The cumulative thermal conductivity curve almost



plateaus after 30 THz. Therefore, acoustic phonons and semi-optical phonons with low
frequencies make the most important contributions to energy transfer in biomolecular
helices. They together account for about 90% of the overall thermal conductivity of the
helix isomers under investigation.

The mode-based analysis also provides a means to verify the thermal conductivities
calculated by MD simulation shown in Fig. 1k. Using the mode-based thermal
conductivity results, the overall thermal conductivity can be calculated via k, =
>,k (x,v) which sums up the contributions made by all phonon branches. By
using this approach, the overall thermal conductivity is found to be 5.84 W m™ K! for
the 310-helix, 8.47 W m™! K™! for the a-helix, and 18.43 W m™! K! for the n-helix. These
results are in good agreement with the conductivities calculated using MD directly.
Both show profound effects of the H-bond configuration on energy transport.

Phonon Relaxation Time. The different H-bond connectivity in helices also influences
phonon-phonon scattering. Fig. 3a plots full-mode relaxation time (7) within the first
Brillouin zone as a function of phonon frequency (f) for the 310-, a- and n-helices. On
the one hand, relaxation time is in general shortened with increasing f in the low-
frequency range where phonons carry most of the heat. The largest 7 in this regime is
about 10.93 ps for the 310-helix, 13.98 ps for the a-helix, and 20.20 ps for the n-helix.
On the other hand, at higher frequencies, t is well below a threshold that is frequency-
independent. The threshold is about 4.45 ps, 7.04 ps and 11.06 ps for the 310-, a-, ©-
helices, respectively. In both frequency regimes, the isomer helices show different
upper bounds of 7 as a result of their different H-bond networks. The n-helix is shown
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to have the longest 7, indicating the weakest phonon scattering. By contrast, the 310-
helix is found to have the shortest 7 and the strongest phonon scattering, mainly due
to its slender helical structure with more frequent H-bonds along the backbone.

Fig. 3b further plots 7 for selected phonon branches that contribute the most to
energy transport, including three acoustic branches and two semi-optical branches
indicated by arrows in Fig. 2a. All of these branches are in the low-frequency regime,
and an approximately linear relationship is found between log(r) and log (f).
Among the five branches, the acoustic branches are found to have the most significant
frequency dependence of 7. As f increases, T in these three branches descends
quickly and almost monotonically indicating increasing phonon scattering. For all three
isomer helices, the rate of descendance is the highest in LA with 7 « f~177 very close
to the well-known Klemens scaling relationship.>® The descendance is slower in the
other two acoustic branches, with 7 o« f7%6¢ for TAl and 7 o< 7973 for TAZ2.
Compared with the acoustic branches, the two semi-optical branches show much slower
descendance with approximately 7 oc f~%19,

Interestingly, in the vicinity of Brillouin zone center, the 7 — f data points for the
LA branch show a tendency to diverge from the relationship of 7 o< f~177. When
phonons are populated at small wave vectors, it has been previously discovered for a
single polymer chain that Umklapp scattering is “frozen out” and Normal scattering
dominates phonon interactions in the LA branch.?® Hence, near the Brillouin zone center,
LA phonon scattering is fundamentally different from that in the other regions governed
by a mixture of Umklapp and Normal scattering. Since the predominant Normal
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scattering is known to usually have high relaxation rates, T of the LA branch drops at
low K and low f, leading to the downwards divergence as shown in Fig. 3b.
H-bonding Strength. Given the structure-governed thermal transport mechanisms
discovered above, the H-bonding as a structural linker of helices is important to the
energy transport processes. For quantitative understanding, the H-bonding is analyzed
using two DFT-based methods, namely, the core-valence bifurcation index (CVBI) and
the H-bond energy. Provided by equilibrium MD simulations, the initial structures of
helices were intercepted into minimum sizes that each contains a H-bond (with four
residues for the 310-helix, five for the a-helix, and six for the n-helix), as shown in Fig.
S4. The structures were geometrically optimized by DFT, feeding wave functions into
subsequent H-bond analyses.

Fig. 4a plots normalized electron density ranging from 0 to 1 for the three helices
in the vicinity of four atoms forming the H-bond which include N (donor), H, O
(acceptor), and C. Due to the different H-bond connectivities, geometry of the H-bond
varies in the isomer helices despite the same type of H-bond in nature. Two important
measures of a H-bond, i.e. the H-bond length (H---O) and the H-bond angle (N—H---O)
are found to be 2.12A and 21.36°, 1.96 A and 17.33°, and 1.83 A and 15.69° for the
310-, a-, m-helices, respectively. Fig. 4b further plots the ELF distributions along the
N—H covalent bond and the H---O H-bond, respectively, for the three helices. Their
(3,—1) critical points are identified as the local minimum. Interestingly, while both
ELF(C-V, D) and ELF(C—V, A) are close among the helices (variations < 4.32% and <
3.54%, respectively), ELF(D—H, A) as one of the most important quantities of H-
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bonding is found to vary significantly, i.e. 0.057 for the 310-helix, 0.0681 for the a-helix
and 0.0839 for the n-helix. Based on the ELF values, CVBI is calculated to be 0.0378,
0.0226 and 0.0071 for the 310-, a-, m-helices, respectively. On the one hand, the positive
CVBIs indicate that the H-bonds in all helices under investigation are primarily of the
electrostatic nature. On the other hand, the m-helix is found to have the lowest CVBI,
suggesting the strongest H-bond among the three isomers.

Further, the H-bond energy is evaluated based on the QTAIM theory using the
electron density at the H-bond critical point (pgcp). ppcp 1s found to increase from
0.0176 to 0.0235 and 0.0341 for the 310-, a- and m-helices, respectively. The H-bond
energy is the strongest in the n-helix with -6.86 Kcal mol™!, followed by the a-helix with
-4.50 Kcal mol™! and the 31¢-helix with -3.18 Kcal mol™'. The results of H-bond energy
agree well with the CVBI results. Importantly, the isomer helices demonstrate different
H-bond strengths despite the same type of H-bond in nature, which contribute directly
to the differences in energy transport mechanisms and the overall thermal conductivities

as revealed in previous sections.

Conclusion

To summarize, this work provides a novel perspective on vibrational energy transport
in proteins by studying three isomer helices. The isomers are specially designed to have
the same simplest all-Glycine amino acid sequence interlocked by different H-bond
networks representing three important types of helices that widely exist in proteins as
building blocks. This design allows for an in-depth analysis of the role of H-bond

connectivity on the thermal conductivity and associated phonon transport mechanisms,
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while neglecting other factors including the amino acid sequence and side chains. The
MBD simulation predicts that the n-helix has the highest thermal conductivity of 19.54
W m! K1 in the diffusive limit, which is 109.88% higher than that of the a-helix and
207.23% higher than that of the 310-helix. The thermal conductivities are highly length-
dependent in the ballistic-to-diffusive transition regime, with a phonon mean free path
of about 140-160 nm. The important contributions made by the H-bond to energy
transport is underpinned by transport mechanisms including phonon spectral energy
density, dispersion, mode-specific transport, group velocity, and relaxation time. The
three acoustic branches together account for about 57.7-60% of the overall thermal
conductivity, in which the LA branch contributes about two thirds. Additionally, semi-
optical branches in the 5-10 THz range also contribute about 30.3-31.3%. The different
H-bond connectivities cause an increase in group velocities and a blueshift in key
frequencies defining the group velocity from the 310-helix to the n-helix. The unique H-
bond connectivity in the n-helix also raises the phonon relaxation time indicating lower
phonon scattering. Particularly, the LA branch diverges from the relationship of 7 «
f~177 at small wave vectors indicating predominant Normal scattering. Finally,
calculations based on DFT and QTAIM reveal that the n-helix has the strongest H-
bonds among the isomers, despite the fact that all these H-bonds are of the same type.
The stronger H-bonds in the n-helix, together with the unique helical structure enabled
by its H-bond connectivity, reduce scattering and increase group velocities of low-
frequency acoustic and semi-optical phonons, drastically enhancing energy transport.
The insights provided by this study not only enrich the fundamental understanding of
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energy transport in proteins, but may also stimulate a rational design of helical
molecular structures with configurable H-bond networks to enable new energy

transport mechanisms and desired thermal properties.

Method Section

Models: Three “isomer” helices were created with the same amino acid sequence
of poly-Glycine, where Glycine has a composition of —-HN-HC,H—C=0-. The three
helices include a 310-helix, a a-helix and a n-helix. They feature different atomic sites
to form H-bonds (Fig. 1d-f): the 310-helix has H-bonds formed between the CO group
at the i-th residue and the NH group at the (i+3)th residue; the a-helix has H-bonds
between the i-th and (i+4)th residues; and the n-helix has H-bonds between the i-th and
(i+5)th residues. The different sites of H-bonding vary the structural properties of
helices. The 310-helix has 3 amino acids per turn, a helical pitch of 0.60 nm per turn,
and a rise per helical residue of 0.20 nm. The a-helix has 3.6 residues per turn, a helical
pitch of 0.54 nm per turn, and a rise per helical residue of 0.15 nm. The n-helix has 4.4
residues per turn, a helical pitch of 0.48 nm per turn, and a rise per helical residue of
0.12 nm.

Molecular dynamics (MD): MD simulation was conducted with LAMMPS.*
Interatomic interactions were described by the CHARMM?22 force field*! that is widely
used for peptide and protein simulations. Several studies have investigated thermal
transport properties and vibrational modes of proteins using MD with the CHARMM
force field; and their results are in excellent agreement with experimental measurements

and theoretical models.***® Although every force field is different, the choice of the
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force field should not fundamentally change key conclusions drawn from this study (e.g.
effects of hydrogen bond on thermal conductivities, group velocities, relaxation times,
etc.) The particle-particle particle-mesh method (PPPM) was used to describe long
range Coulomb interactions with a root mean square accuracy of 10°. Time step was
set to be 0.25 fs, small enough to capture most vibrational modes. Periodic boundary
conditions were imposed to the helices along all directions. Large spaces were left along
transverse directions to prevent the model from interacting with its periodic images.
Angular momentum was zeroed out at every step to eliminate potential rigid-body
rotations. Initial molecular structures were optimized at 300 K to ensure the formation
of H-bonds at selected sites leading to the 310-helix, a-helix and n-helix. The structures
were then equilibrated at 300 K for 20 ns under the NVT ensemble. Identification of
the H-bond was based on a geometric rule: (1) distance between the donor (D) atom
and the acceptor (A) atom is < 3.5 A; and (2) the angle of D-H-A is < 30°.

Thermal conductivity calculation: Nonequilibrium molecular dynamics (NEMD)
simulations were performed to calculate thermal conductivities. The NEMD simulation
setup is shown in Fig. S1a-c for the 31¢-, a- and n-helices, respectively. Each simulation
system was divided into N slabs along the length direction. Atoms in the two end slabs
were fixed to avoid an entropic state of helical chains. Thermal gradient was established
by imposing Langevin thermostats of 325 K and 285 K in two slabs next to the fixed
slabs, respectively, leading to a system temperature difference of AT = 40°C. The
system was equilibrated for 20 ns under the NVE ensemble, leading to a smooth thermal
gradient between the heat source and heat sink slabs. Production runs were then
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performed for a duration of 10 ns. At every time step, the energy needed to keep AT a
constant was evaluated and denoted by AE. Heat flow in the system, J, was calculated
by J = AE/(AAtf), where At is the time step, and A4 is the effective cross sectional area of
the helices as shown in Fig. S1d-f. Outside and inside radii of the helical tubes were
determined by spatially and temporally averaging atomic positions during 2000 steps
of MD calculations at equilibrium. The cross-sectional area, 4, is calculated to be 20.36
A2, 22.82 A? and 26.26 A? for the 310-, a-, and m-helices, respectively. The thermal
conductivity, k, was calculated by k = J/(dT/dX). Here, dT/dX is the thermal gradient
which is obtained by fitting a linear region of the temperature profile as shown in Fig.
1j.

Phonon spectral energy density (PSED): The PSED analysis was performed to
obtain phonon properties including the dispersion curve, group velocity, relaxation time,
and the mode-based thermal conductivity. The approach has been verified and applied
for various materials systems.>* 36 47-30 The PSED analysis uses atomic velocities from
the MD simulation which naturally includes anharmonic effects, phonon-phonon
scattering, and Normal and Umklapp scattering. To calculate PSED, the smallest atomic
group that represents a helical structure is defined as the unit cell, and each helix model
has multiple unit cells along the length direction. The unit cell has the length of 13.37
A, 12.08 A and 10.38 A, respectively, for the 310-, a- and m-helix. Based on lattice

dynamic and Parseval’s theorem,’!" >

atomic trajectories in the real space are mapped
to normal vibration modes in the frequency space, q(: ; t). Here, Kk is the wave vector,

v labels the polarization branch, and ¢ is time. The PSED is a weighted average of the
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contributions made by all atoms to the amplitude of normal modes, i.e. ®(k, w) =

1
2nTtogNT

ZaZ?IA m; fOTo ?’Tlla (]l.;t) x explik - ro(é) - iwt]dt|2. Here, ®(k, w) is

the PSED as a function of k and the angular frequency w, t, is the simulation time,
N7 is the total number of unit cells, N4 is the total number of atoms in an unit cell,
m; is mass of the j-th atom, 1, (]l ; t) denotes the velocity of the j-th atom in the /-th
unit cell along the a-th direction at simulation time ¢, 7 ( é) is the equilibrium position
of the /-th unit cell. For one-dimensional helices, the wave vector is limited to k, =
2nn,/a, Ny, where a, is the unit cell length along the x-direction, and n, is an
integer ranging from O to Ny — 1. Then, k, is mapped into N, /2 points ranging
from 0 to 2m/a,, which correspond to the first Brillouin zone in the real space from I’
to K point. Atomic velocities were collected from MD simulations of 7, =1 ns under
the NVE ensemble at 298 K.

Phonon dispersion: Based on the PSED profile, phono dispersion can be obtained
by identifying peaks of the degenerate branches and connecting the peaks into
continuous curves along the wave vector direction. The dispersion curves correlate
phonon frequency (f = w/2m, in the unit of THz) with the reduced wave vector (§ =
K,/(2m/a,), dimensionless). Dispersion curves in this work were obtained at a
resolution of 0.001 THz x 0.01.

Mode-based thermal conductivity: By solving the Boltzmann transport equation
with phonon relaxation time approximation,** the overall thermal conductivity is k, =
Y2k (x,v), where k,(k,v) is the thermal conductivity contributed by each
phonon mode that belongs to a phonon branch, v, with a wave number of k,. The
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mode-based thermal conductivity has an expression of k,(k,v) =
cphvgz,x (r,v)T(x,Vv), where cp,p, is the volumetric phonon specific heat, v, ,(k,v) is
the group velocity, and 7(x,v) is the phonon relaxation time. In classical systems,
cpn = kg/V, where kg is Boltzmann constant and V' is the system volume. The group
velocity v, (I, v) = 0w/0k,, which can be calculated based on the PSED result by
using numerical differentiation.

Relaxation time: PSED can be reconstructed into a different form which is in terms
of the phonon relaxation time, ie. (K, f) =
¥3nc(k, v)/([47'[‘r(lc, v)(f — fo(x, v))]z + 1), where f is the phonon frequency,
C(x,v) is a mode-dependent constant, and f,(x,Vv) is the frequency at which PSED
reaches a localized peak. At each K, the PSED data is converted into a single-variable
data series in terms of f. The data series has 3n local peaks where n is the number
of atoms and 3n is the number of phonon branches in the system. The data series is
fitted using multiple Lorentzian functions, ® = I/(1 + [(f — f.)/y]?), near local
peaks. Here, [ is the peak magnitude, f. is the frequency at the peak, and y is the half-
width at the half-peak. Fitting was done by using the Fityk software with the Levenberg-
Marquarde algorithm.>> The reconstructed PSED function can be described as a
superposition of the Lorentzian functions identified for all phonon branches at a given
wave vector. Finally, relaxation time associated with all phonon modes, t(x,Vv), and
the corresponding frequency, f,(k, V), can be determined based on the parameters of
the Lorentzian functions.

DFT calculation: Quantum-chemical calculations were conducted to
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quantitatively study the H-bonds using Gaussian.>® The calculations were based on the
hybrid B3LYP exchange-correlation functional with Grimme’s DFT-GD3(BJ)
empirical dispersion correction. The B3LYP-GD3(BJ) theory has been widely used for
studying H-bonds.>” The ma-TZVPP basis set was employed. It is the “minimally
augmented” version of the def2-TZVPP basis set,® > for which s and p type diffuse
basis functions are added to non-H atoms. Using this theory, equilibrium geometries of
the 310-, 0- and m-helices were obtained by geometric optimization. Frequency
calculations were performed to confirm structural stabilization. Wave functions were
output for subsequent calculations of the H-bond chemistry.

Quantum-chemical H-bond calculation: Based on the wave functions calculated
by DFT, strength of the H-bond was quantified using two numeric indices: (1) the core-
valence bifurcation index (CVBI), and (2) the H-bond energy evaluated at the bond
critical point. On the one hand, the CVBI is a widely used approach based on the
electron localization function (ELF) theory. ¢! The ELF takes the form of n(r) =
1/{1 4+ [D(r)/Dy(r)]?}, where D(r) is the Pauli kinetic energy density and D (r)
is the Thomas-Fermi kinetic energy density. For a H-bond taking the general form of
D—H--- A, bifurcation points of the ELF are first identified through a topological
analysis, based on which the (3,—1) critical points are located. The CVBI is calculated
by CVBI = ELF(C-V, D) — ELF(DH---A),%* % where ELF(C—V, D) is the core-valence
bifurcation value at donor (D), and ELF(DH---A) stands for the valence-valence
bifurcation value at the H-bond. The CVBI is a numeric indicator of the strength of the
H-bond; the lower CVBI, the stronger H-bond. A negative CVBI suggests that the H-

20



bond has a covalence characteristic, whereas a positive CVBI means that the H-bond
has an electrostatic nature. On the other hand, the H-bond strength can be evaluated
directly based on the electron density at the bond critical point, i.e. the (3,—1) critical
point associated with DH:--A, on the basis of the quantum theory of atoms in molecules
(QTAIM). The equation takes the form of Eyg = Apgcp + B, where Eyp is the H-
bond energy, pgcp is the electron density at the bond critical point,and A and B are
parameters depending on the H-bond type and the level of quantum chemical
calculation.®**” In this work, 4 = —223.08 and B = 0.7423 were adopted,®® which were
optimized and proven to effectively characterize the H-bond strength in biologically
important substances. The calculation was performed by using the MULTIWFN

program at the same level of theory.*
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helix (in green box), b) T4 Lysozyme’ with the a-helix (in cyan box), and c) PGRP-
SA” with the n-helix (in red box). Different types of helices are interlocked by different
H-bond networks: d) the 310-helix has H-bonds connecting residues i and i + 3; ) the
a-helix has H-bonds connecting residues i and i + 4; and f) the n-helix has H-bonds
connecting residues i and i + 5. g) [llustration of a H-bond between the carbonyl (C=0)
and amide (N—H) groups. Three isomer helices with the same amino acid sequence of
poly-Glycine but different H-bond connectivities to form three types of helices: h) side
and 1) cross-sectional views. j) Temperature profiles of the helices in NEMD simulation.
k) Thermal conductivity of the 310-, a- and m-helices with varying lengths. Curves are
fitted against an empirical equation of the length-dependent thermal conductivity.

Dashed lines show thermal conductivities in the diffusive limit.
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Fig. 2. a) Phonon dispersion curves of three isomer helices in the first Brillouin zone.
Colors show mode-by-mode contributions to the thermal conductivity, i.e. k (i, V).
Arrows indicate two semi-optical branches with significant k,(k,v). b) Frequency-
dependent group velocities for three acoustic branches and two selected optical
branches of the 310-helix (green), a-helix (blue), and n-helix (red). c) Spectral thermal

conductivity and d) cumulative thermal conductivity of the three isomer helices.
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Figures below can be found in the Supplementary Information document

Fig. S1. Setup of the NEMD simulation for predicting thermal conductivities of the a)
310-, b) a-, and c) m-helices. Heat flow is generated by adding energy into the heat source
(red region) and removing the same amount of energy from the heat sink (blue region).
L is the characteristic length. The simulation cell is divided into N slabs. The two end
slabs are fixed for heat insulation. Periodic boundary conditions are applied along all
three directions. Cross-sectional view of the d) 31¢-, €) a-, and f) n-helix models. The

cross-sectional area is calculated using averaged inner and outer radii of the helices.

Fig. S2. Inverse of thermal conductivity versus inverse of length for the isomer helices.

Fig. S3. Phonon spectral energy density for the three isomer helices at 7 = 298 K.
Shading on these plots represents the magnitude of phonon spectral energy density for

different phonon mode combining specific k and w.

Fig. S4. Intercepted helices for DFT-based quantum-chemical analysis of H-bond: a)
the 310-helix segment has four residues; b) the a-helix segment has five residues; and

c) the m-helix segment has six residues.
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