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Abstract. Energy transport in proteins is critical to a variety of physical, chemical, 

and biological processes in living organisms. While strenuous efforts have been made 

to study vibrational energy transport in proteins, thermal transport processes across the 

most fundamental building blocks of proteins, i.e. helices, are not well understood. This 

work studies energy transport in a group of “isomer” helices. The π-helix is shown to 

have the highest thermal conductivity, 110% higher than that of the α-helix and 207% 

higher than that of the 310-helix. The H-bond connectivity is found to govern thermal 

transport mechanisms including phonon spectral energy density, dispersion, mode-

specific transport, group velocity, and relaxation time. The energy transport is strongly 

correlated with H-bond strength which is also modulated by the H-bond connectivity. 

These fundamental insights provide a novel perspective for understanding energy 

transfer in proteins and guiding a rational molecule-level design of novel materials with 

configurable H-bonds. 
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Introduction 

Energy transport and atomic vibrations in biomacromolecules such as proteins are 

critical to a variety of physical, chemical and biological processes taking place in living 

organisms, from structural construction, catalysis, to molecular recognition.1-5 In 

principle, the vibrational energy flow is strongly associated with structural 

characteristics of proteins including the conformation, amino acid sequence, and 

intermolecular affinities.6-9 Due to their polymeric nature, proteins generate intricate 

macromolecular structures as they attain their biological states in the process of folding. 

Secondary structures are formed as an information bridge that links the primary 

sequence with substructures to shape the protein systems. Representative protein 

secondary structures include the β-sheet, 310-helix, α-helix and π-helix. They are stable 

and energetically favorable, primarily due to many interlocking hydrogen bonds (H-

bonds) that exist between carbonyl (C=O) and amide (N−H) groups (Fig. 1g). 

Establishing the relationship between protein structures and energy transport pathways 

is an important area of fundamental interest to better understand protein reactivity and 

functionality. Further, the molecular insights gained from the study of nanoscale 

thermal transport in proteins may also inspire the design of new materials with novel 

structures and unprecedented properties. 

Strenuous efforts have been made to probe energy transport in proteins and protein 

secondary structures such as the heme cooling cofactor,10 peptide helices,11 and the β-

sheet.12, 13 On one hand, evidences show that heat diffusion is integrated with allosteric 

communication pathways14-16 which are closely related with the cellular and 



4 
 

physiological functions of proteins.17-19 On the other hand, studies demonstrate that heat 

spreads through multiple pathways including the covalent backbone as well as the 

relatively weak inter/intra-molecular interactions in protein secondary structures. As 

such, the energy transport processes may be modulated by tuning the inter/intra-

molecular interactions,20 where the H-bond is arguably one of the most important 

factors. Although being a secondary bond, the H-bond is critical in proteins as it largely 

controls their structural stability,21, 22 catalytic properties,23-25 chemical reactivity,26, 27 

and energy transport.8 Recent studies have reported that the H-bond significantly 

enhances thermal transport in the β-sheet of spider silk proteins12 and a variety of 

polymer blends.28 

Despite the progress, vibrational energy transport in helical protein structures are 

underexplored. As biomolecular “nanowires”, protein helices differ from any other 

nanowires in that they uniquely feature tortuous covalent backbones interlocked by H-

bonds. Different H-bond connectivities lead to different types of helices in the protein 

database, which include the 310-helix, α-helix, and the π-helix. While the 310-helix 

widely exists in many biological channels and membrane proteins29 (e.g. ABC-ATPase 

SufC as shown in Fig. 1a), the α-helix is commonly found in globular proteins30 (e.g. 

T4 Lysozyme as shown in Fig. 1b) and the π-helix is usually identified near functional 

sites of proteins31 (e.g. PGRP-SA as shown in Fig. 1c). All composed of single amino 

acid chains, these helices are differentiated by the different atomic sites of forming H-

bonds. For example, Fig. 1d-f illustrates ribbon schematics of the 310-helix, α-helix and 

π-helix, respectively. In the 310-helix, H-bonds are established between the CO group 
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of the i-th residue and the NH group of the (i+3)th residue. By comparison, H-bonds of 

the -helix are formed between the i-th and the (i+4)th residues, while those of the -

helix are formed between the i-th and the (i+5)th residues. The different H-bond 

network leads to significantly different structural characteristics of the three helices 

including the number of amino acids per turn and the helical pitch. Understanding 

energy transport in such helical structures may fundamentally reveal how the H-bond, 

together with the helical backbone, dictates vibrational energy flow in proteins. A 

previous study has shown that the polymer chain conformation significantly influences 

thermal transport as a short straight chain is elongated to be a torturous long chain.32  

This work investigates vibrational energy transfer and thermal transport 

mechanisms in the three key building blocks of proteins including the 310-, α-, and π-

helices. To focus on the important effects of H-bond connectivity, three model helices 

are assumed which have the same amino acid sequence of poly-Glycine. The molecular 

structures of these helix “isomers” are shown in Fig. 1h-i. These “isomer” helices 

feature different H-bond connectivities as illustrated in Fig. 1d-f for the 310-, α-, and π-

helices, respectively. Using the molecular dynamic (MD) simulation and vibrational 

energy transfer analysis, we demonstrate that the π-helix has the largest thermal 

conductivity, followed by the α-helix and then the 310-helix. Energy transfer 

mechanisms are explored via the analysis of phonon dispersion, spectral thermal 

conductivity, relaxation time, and group velocity. Results show that the different H-

bond networks that form the “isomer” helices fundamentally change the behavior of 

both low-frequency acoustic and semi-optical phonons. The energy transport properties 
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of the three types of helices are strongly correlated with the different strengths of 

intramolecular H-bonds as revealed by quantum-chemical analyses based on the density 

functional theory (DFT) calculations. The results enrich our fundamental understanding 

of the energy transfer in protein structures and the critical role of interlocking H-bonds. 

The understanding may open new avenues to design novel biomacromolecules, e.g. 

synthetic spider silk with designed “blueprints” of amino acid sequences,33 with 

extraordinary energy transfer properties for a wide range of applications. 

Results and Discussion 

Thermal Conductivity. Vibrational energy transport in “isomer” protein helices is first 

studied by quantifying and comparing how fast energy is conducted in these structures. 

Fig. 1k plots the thermal conductivity calculated by MD simulation for the 310-, α- and 

π-helices with various lengths including 2 nm, 3 nm, 5 nm, 10 nm, 20 nm, and 40 nm. 

Since helical segments in proteins are usually short with only a few nanometers in 

length, vibrational energy carriers, i.e. phonons, are not relaxed and their transport is 

constrained by and sensitive to the geometry. As shown in Fig. 1k, the thermal 

conductivity (𝑘𝑥) of the helices increases nonlinearly with the length (𝐿), conforming 

to the ballistic-diffusive empirical formula, 𝑘𝑥 = 𝑘𝑥,∞ (1 − 𝑒−𝐿/𝐿𝑐) , where 𝑘𝑥,∞   is 

the thermal conductivity in the diffusive limit and 𝐿𝑐 denotes a characteristic length 

of the ballistic-to-diffusive transition. Another ballistic-diffusive characteristic is 

demonstrated in Fig. S2, which shows that 1 𝑘𝑥⁄   and 1 𝐿⁄   are almost linearly 

correlated except when the helix length is extremely short. When the characteristic 

length is very short, thermal transport is strongly influenced by multiple scattering 
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mechanisms such as phonon-phonon scattering, multi-phonons scattering, and phonon-

boundary scattering. These multi-scattering mechanisms are not mutually independent, 

leading to nonlinearity at large 1/L or short helix lengths. By fitting computational 

results of 𝑘𝑥 with the empirical formula, thermal conductivity in the diffusive limit 

(𝑘𝑥,∞) is predicted to be 6.36 W m-1 K-1 for the 310-helix, 9.31 W m-1 K-1 for the α-helix, 

and 19.54 W m-1 K-1 for the π-helix. Among the three helical “isomers”, the π-helix is 

the most thermally conductive, followed by the α-helix (52.35% lower 𝑘𝑥,∞) and 310-

helix (67.45% lower 𝑘𝑥,∞ ). The phonon mean free path that corresponds to fully 

diffusive phonon transport is approximated by 𝐿0.99 , namely, the length at which 

thermal conductivity 𝑘𝑥 = 0.99𝑘𝑥,∞. Based on the empirical formula with predicted 

𝑘𝑥,∞, the phonon mean free path is approximated as 139.39 nm, 148.10 nm and 160.02 

nm for the 310-, - and π-helices, respectively. The π-helix, which has the higher thermal 

conductivity, is also found to have longer phonon mean free path. The empirical 

equation is important because nearly all helix segments in proteins are short in length 

so they are in the ballistic-to-diffusive transition regime. 

Phonon Vibrational Spectra. Effects of H-bond connectivity on phonon vibrational 

spectra can be found in the phonon dispersion curves plotted for the three isomer helices 

(Fig. 2a). The calculations are thermodynamically stable as no imaginary frequency is 

found in the curves. Only the regime with frequency < 30 THz is displayed. Phonons 

with higher frequencies are associated with localized interactions so they have low 

group velocities and short relaxation times.34-37 Each helix shows three lowest-lying 

phonon branches including two transverse acoustic branches (TA1 and TA2) and one 
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longitudinal acoustic branch (LA). The two TA branches show almost linear dispersion, 

whereas the LA branch is nearly quadratic. Among the three acoustic branches, the LA 

branch has the largest slope, followed by the TA1 branch and then the TA2 branch. 

Although most optical phonon branches are relatively flat indicating negligible 

contributions to energy transport, all three helices show some optical branches that have 

significant slopes especially in the frequency range of 5-10 THz. 

The group velocity for three acoustic branches and two selected optical branches 

are plotted in Fig. 2b. The two chosen optical branches (indicated by arrows in Fig. 2a) 

contribute significantly to energy transport as discussed in the following section using 

the mode-based thermal conductivity analysis. All branches except LA show bell-

shaped group velocity curves that peak approximately in the middle. By comparison, 

the LA branch uniquely features an unsymmetrical curve with curve branching at the 

high frequency end. Comparing the curves, it is readily seen that the LA branch has the 

highest group velocity followed by the TA2 and TA1 branches, echoing the findings 

relating to the slope of dispersion curves. The two optical branches show similar group 

velocities as the TA1 and TA2 branches. 

Importantly, the three isomer helices show critical differences as a result of their 

different H-bond connectivities. On the one hand, the π-helix exhibits the highest group 

velocity in all shown branches, followed by the α- and 310-helices. These results agree 

well with the ranking of the isomers in terms of their overall thermal conductivities. On 

the other hand, an interesting “redshift” is identified among the isomers. For example, 

the frequency at which the LA branch’s group velocity peaks is found to redshift from 
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1.50 THz for the π-helix to 0.97 THz for the -helix, and then further redshift to 0.71 

THz for the 310-helix. The same trend persists in the other acoustic and optical phonon 

modes of importance to the energy transport processes. 

Mode-Specific Contribution to Energy Transport. Based on the PSED analysis (Fig. 

S3), Fig. 2a uses the line color to plot the contribution to energy transport made by 

phonons of particular wave vector and frequency, i.e. 𝑘𝑥̃(𝜿, 𝜈). It is apparent that the 

LA branch, especially when ξ = 0.05 ~ 0.4, makes the most prominent contribution to 

energy transport. The TA1 and TA2 branches in similar frequency ranges also contribute 

significantly. Summing up 𝑘𝑥̃(𝜿, 𝜈) for the three branches, the LA branch is found to 

contribute about 38-40% thermal conductivity for all of the three helices, followed by 

the TA2 and TA1 branches which contribute about 13% and about 5-7%, respectively. 

The three acoustic branches together account for 57.70%, 58.21% and 59.99% of the 

overall thermal conductivity for the 310-, α- and π-helices, respectively. Therefore, heat 

is mainly carried by acoustic phonons in biomolecular helices. 

In addition to acoustic phonons, some optical branches especially the two indicated 

by arrows in Fig. 2a also make important contributions as determined by their values 

of 𝑘𝑥̃(𝜿, 𝜈). According to the mode-based thermal conductivity results shown in Fig. 

2c, semi-optical branches in the range of 5-10 THz contribute 31.32%, 30.35% and 

31.24% to the overall thermal conductivity for the 310-, α- and π-helices, respectively. 

Fig. 2d further shows that, for all helix isomers, the cumulative thermal conductivity 

increases significantly only in the frequency ranges of acoustic phonons and low-

frequency semi-optical phonons. The cumulative thermal conductivity curve almost 
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plateaus after 30 THz. Therefore, acoustic phonons and semi-optical phonons with low 

frequencies make the most important contributions to energy transfer in biomolecular 

helices. They together account for about 90% of the overall thermal conductivity of the 

helix isomers under investigation. 

The mode-based analysis also provides a means to verify the thermal conductivities 

calculated by MD simulation shown in Fig. 1k. Using the mode-based thermal 

conductivity results, the overall thermal conductivity can be calculated via 𝑘𝑥 =

∑ ∑ 𝑘𝑥̃(𝜿, 𝜈)𝜈𝜿   which sums up the contributions made by all phonon branches. By 

using this approach, the overall thermal conductivity is found to be 5.84 W m-1 K-1 for 

the 310-helix, 8.47 W m-1 K-1 for the α-helix, and 18.43 W m-1 K-1 for the π-helix. These 

results are in good agreement with the conductivities calculated using MD directly. 

Both show profound effects of the H-bond configuration on energy transport. 

Phonon Relaxation Time. The different H-bond connectivity in helices also influences 

phonon-phonon scattering. Fig. 3a plots full-mode relaxation time (𝜏) within the first 

Brillouin zone as a function of phonon frequency (𝑓) for the 310-, α- and π-helices. On 

the one hand, relaxation time is in general shortened with increasing 𝑓 in the low-

frequency range where phonons carry most of the heat. The largest 𝜏 in this regime is 

about 10.93 ps for the 310-helix, 13.98 ps for the α-helix, and 20.20 ps for the π-helix. 

On the other hand, at higher frequencies, 𝜏 is well below a threshold that is frequency-

independent. The threshold is about 4.45 ps, 7.04 ps and 11.06 ps for the 310-, -, π-

helices, respectively. In both frequency regimes, the isomer helices show different 

upper bounds of 𝜏 as a result of their different H-bond networks. The π-helix is shown 
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to have the longest 𝜏, indicating the weakest phonon scattering. By contrast, the 310-

helix is found to have the shortest 𝜏 and the strongest phonon scattering, mainly due 

to its slender helical structure with more frequent H-bonds along the backbone. 

Fig. 3b further plots 𝜏 for selected phonon branches that contribute the most to 

energy transport, including three acoustic branches and two semi-optical branches 

indicated by arrows in Fig. 2a. All of these branches are in the low-frequency regime, 

and an approximately linear relationship is found between log(𝜏)  and log (𝑓) . 

Among the five branches, the acoustic branches are found to have the most significant 

frequency dependence of 𝜏 . As 𝑓  increases, 𝜏  in these three branches descends 

quickly and almost monotonically indicating increasing phonon scattering. For all three 

isomer helices, the rate of descendance is the highest in LA with 𝜏 ∝ 𝑓−1.77, very close 

to the well-known Klemens scaling relationship.38 The descendance is slower in the 

other two acoustic branches, with 𝜏 ∝ 𝑓−0.66  for TA1 and 𝜏 ∝ 𝑓−0.73  for TA2. 

Compared with the acoustic branches, the two semi-optical branches show much slower 

descendance with approximately 𝜏 ∝ 𝑓−0.19. 

Interestingly, in the vicinity of Brillouin zone center, the 𝜏 − 𝑓 data points for the 

LA branch show a tendency to diverge from the relationship of 𝜏 ∝ 𝑓−1.77 . When 

phonons are populated at small wave vectors, it has been previously discovered for a 

single polymer chain that Umklapp scattering is “frozen out” and Normal scattering 

dominates phonon interactions in the LA branch.39 Hence, near the Brillouin zone center, 

LA phonon scattering is fundamentally different from that in the other regions governed 

by a mixture of Umklapp and Normal scattering. Since the predominant Normal 
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scattering is known to usually have high relaxation rates, 𝜏 of the LA branch drops at 

low 𝜿 and low 𝑓, leading to the downwards divergence as shown in Fig. 3b. 

H-bonding Strength. Given the structure-governed thermal transport mechanisms 

discovered above, the H-bonding as a structural linker of helices is important to the 

energy transport processes. For quantitative understanding, the H-bonding is analyzed 

using two DFT-based methods, namely, the core-valence bifurcation index (CVBI) and 

the H-bond energy. Provided by equilibrium MD simulations, the initial structures of 

helices were intercepted into minimum sizes that each contains a H-bond (with four 

residues for the 310-helix, five for the α-helix, and six for the π-helix), as shown in Fig. 

S4. The structures were geometrically optimized by DFT, feeding wave functions into 

subsequent H-bond analyses. 

Fig. 4a plots normalized electron density ranging from 0 to 1 for the three helices 

in the vicinity of four atoms forming the H-bond which include N (donor), H, O 

(acceptor), and C. Due to the different H-bond connectivities, geometry of the H-bond 

varies in the isomer helices despite the same type of H-bond in nature. Two important 

measures of a H-bond, i.e. the H-bond length (H⋯O) and the H-bond angle (N−H⋯O) 

are found to be 2.12Å and 21.36°, 1.96 Å and 17.33°, and 1.83 Å and 15.69° for the 

310-, -, π-helices, respectively. Fig. 4b further plots the ELF distributions along the 

N−H covalent bond and the H⋯O H-bond, respectively, for the three helices. Their 

(3,−1) critical points are identified as the local minimum. Interestingly, while both 

ELF(C−V, D) and ELF(C−V, A) are close among the helices (variations < 4.32% and < 

3.54%, respectively), ELF(D−H, A) as one of the most important quantities of H-
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bonding is found to vary significantly, i.e. 0.057 for the 310-helix, 0.0681 for the α-helix 

and 0.0839 for the π-helix. Based on the ELF values, CVBI is calculated to be 0.0378, 

0.0226 and 0.0071 for the 310-, -, π-helices, respectively. On the one hand, the positive 

CVBIs indicate that the H-bonds in all helices under investigation are primarily of the 

electrostatic nature. On the other hand, the π-helix is found to have the lowest CVBI, 

suggesting the strongest H-bond among the three isomers. 

Further, the H-bond energy is evaluated based on the QTAIM theory using the 

electron density at the H-bond critical point (𝜌BCP). 𝜌BCP is found to increase from 

0.0176 to 0.0235 and 0.0341 for the 310-, α- and π-helices, respectively. The H-bond 

energy is the strongest in the π-helix with -6.86 Kcal mol-1, followed by the α-helix with 

-4.50 Kcal mol-1 and the 310-helix with -3.18 Kcal mol-1. The results of H-bond energy 

agree well with the CVBI results. Importantly, the isomer helices demonstrate different 

H-bond strengths despite the same type of H-bond in nature, which contribute directly 

to the differences in energy transport mechanisms and the overall thermal conductivities 

as revealed in previous sections. 

Conclusion 

To summarize, this work provides a novel perspective on vibrational energy transport 

in proteins by studying three isomer helices. The isomers are specially designed to have 

the same simplest all-Glycine amino acid sequence interlocked by different H-bond 

networks representing three important types of helices that widely exist in proteins as 

building blocks. This design allows for an in-depth analysis of the role of H-bond 

connectivity on the thermal conductivity and associated phonon transport mechanisms, 
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while neglecting other factors including the amino acid sequence and side chains. The 

MD simulation predicts that the π-helix has the highest thermal conductivity of 19.54 

W m-1 K-1 in the diffusive limit, which is 109.88% higher than that of the α-helix and 

207.23% higher than that of the 310-helix. The thermal conductivities are highly length-

dependent in the ballistic-to-diffusive transition regime, with a phonon mean free path 

of about 140-160 nm. The important contributions made by the H-bond to energy 

transport is underpinned by transport mechanisms including phonon spectral energy 

density, dispersion, mode-specific transport, group velocity, and relaxation time. The 

three acoustic branches together account for about 57.7-60% of the overall thermal 

conductivity, in which the LA branch contributes about two thirds. Additionally, semi-

optical branches in the 5-10 THz range also contribute about 30.3-31.3%. The different 

H-bond connectivities cause an increase in group velocities and a blueshift in key 

frequencies defining the group velocity from the 310-helix to the π-helix. The unique H-

bond connectivity in the π-helix also raises the phonon relaxation time indicating lower 

phonon scattering. Particularly, the LA branch diverges from the relationship of 𝜏 ∝

𝑓−1.77  at small wave vectors indicating predominant Normal scattering. Finally, 

calculations based on DFT and QTAIM reveal that the π-helix has the strongest H-

bonds among the isomers, despite the fact that all these H-bonds are of the same type. 

The stronger H-bonds in the π-helix, together with the unique helical structure enabled 

by its H-bond connectivity, reduce scattering and increase group velocities of low-

frequency acoustic and semi-optical phonons, drastically enhancing energy transport. 

The insights provided by this study not only enrich the fundamental understanding of 
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energy transport in proteins, but may also stimulate a rational design of helical 

molecular structures with configurable H-bond networks to enable new energy 

transport mechanisms and desired thermal properties. 

Method Section 

Models: Three “isomer” helices were created with the same amino acid sequence 

of poly-Glycine, where Glycine has a composition of –HN–HCαH–C=O–. The three 

helices include a 310-helix, a α-helix and a π-helix. They feature different atomic sites 

to form H-bonds (Fig. 1d-f): the 310-helix has H-bonds formed between the CO group 

at the i-th residue and the NH group at the (i+3)th residue; the α-helix has H-bonds 

between the i-th and (i+4)th residues; and the -helix has H-bonds between the i-th and 

(i+5)th residues. The different sites of H-bonding vary the structural properties of 

helices. The 310-helix has 3 amino acids per turn, a helical pitch of 0.60 nm per turn, 

and a rise per helical residue of 0.20 nm. The α-helix has 3.6 residues per turn, a helical 

pitch of 0.54 nm per turn, and a rise per helical residue of 0.15 nm. The -helix has 4.4 

residues per turn, a helical pitch of 0.48 nm per turn, and a rise per helical residue of 

0.12 nm. 

Molecular dynamics (MD): MD simulation was conducted with LAMMPS.40 

Interatomic interactions were described by the CHARMM22 force field41 that is widely 

used for peptide and protein simulations. Several studies have investigated thermal 

transport properties and vibrational modes of proteins using MD with the CHARMM 

force field; and their results are in excellent agreement with experimental measurements 

and theoretical models.42-46 Although every force field is different, the choice of the 
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force field should not fundamentally change key conclusions drawn from this study (e.g. 

effects of hydrogen bond on thermal conductivities, group velocities, relaxation times, 

etc.) The particle-particle particle-mesh method (PPPM) was used to describe long 

range Coulomb interactions with a root mean square accuracy of 10-6. Time step was 

set to be 0.25 fs, small enough to capture most vibrational modes. Periodic boundary 

conditions were imposed to the helices along all directions. Large spaces were left along 

transverse directions to prevent the model from interacting with its periodic images. 

Angular momentum was zeroed out at every step to eliminate potential rigid-body 

rotations. Initial molecular structures were optimized at 300 K to ensure the formation 

of H-bonds at selected sites leading to the 310-helix, α-helix and π-helix. The structures 

were then equilibrated at 300 K for 20 ns under the NVT ensemble. Identification of 

the H-bond was based on a geometric rule: (1) distance between the donor (D) atom 

and the acceptor (A) atom is < 3.5 Å; and (2) the angle of D-H-A is < 30°. 

Thermal conductivity calculation: Nonequilibrium molecular dynamics (NEMD) 

simulations were performed to calculate thermal conductivities. The NEMD simulation 

setup is shown in Fig. S1a-c for the 310-, α- and π-helices, respectively. Each simulation 

system was divided into N slabs along the length direction. Atoms in the two end slabs 

were fixed to avoid an entropic state of helical chains. Thermal gradient was established 

by imposing Langevin thermostats of 325 K and 285 K in two slabs next to the fixed 

slabs, respectively, leading to a system temperature difference of T = 40°C. The 

system was equilibrated for 20 ns under the NVE ensemble, leading to a smooth thermal 

gradient between the heat source and heat sink slabs. Production runs were then 
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performed for a duration of 10 ns. At every time step, the energy needed to keep T a 

constant was evaluated and denoted by E. Heat flow in the system, J, was calculated 

by J = E/(At), where t is the time step, and A is the effective cross sectional area of 

the helices as shown in Fig. S1d-f. Outside and inside radii of the helical tubes were 

determined by spatially and temporally averaging atomic positions during 2000 steps 

of MD calculations at equilibrium. The cross-sectional area, A, is calculated to be 20.36 

Å2, 22.82 Å2 and 26.26 Å2 for the 310-, -, and -helices, respectively. The thermal 

conductivity, k, was calculated by k = J/(dT/dX). Here, dT/dX is the thermal gradient 

which is obtained by fitting a linear region of the temperature profile as shown in Fig. 

1j. 

Phonon spectral energy density (PSED): The PSED analysis was performed to 

obtain phonon properties including the dispersion curve, group velocity, relaxation time, 

and the mode-based thermal conductivity. The approach has been verified and applied 

for various materials systems.34, 36, 47-50 The PSED analysis uses atomic velocities from 

the MD simulation which naturally includes anharmonic effects, phonon-phonon 

scattering, and Normal and Umklapp scattering. To calculate PSED, the smallest atomic 

group that represents a helical structure is defined as the unit cell, and each helix model 

has multiple unit cells along the length direction. The unit cell has the length of 13.37 

Å, 12.08 Å and 10.38 Å, respectively, for the 310-, α- and π-helix. Based on lattice 

dynamic and Parseval’s theorem,51, 52 atomic trajectories in the real space are mapped 

to normal vibration modes in the frequency space, 𝑞(𝜿
𝜈
; 𝑡). Here, 𝜿 is the wave vector, 

𝜈 labels the polarization branch, and t is time. The PSED is a weighted average of the 
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contributions made by all atoms to the amplitude of normal modes, i.e. Φ(𝜿,𝜔) =

1

2𝜋𝜏0𝑁𝑇
 ∑ ∑ 𝑚𝑗 |∫ ∑ 𝑢̇𝛼 (

𝑙
𝑗
; 𝑡)

𝑁𝑇
𝑙 × exp[𝑖𝜿 ∙  𝒓0(

𝑙
0
) − 𝑖𝜔𝑡]𝑑𝑡

𝜏0
0

|
2

𝑁𝐴
𝑗𝛼  . Here, Φ(𝜿,𝜔)  is 

the PSED as a function of  𝜿 and the angular frequency 𝜔, 𝜏0 is the simulation time, 

𝑁𝑇 is the total number of unit cells, 𝑁𝐴 is the total number of atoms in an unit cell, 

𝑚𝑗 is mass of the j-th atom, 𝑢̇𝛼 (
𝑙
𝑗
; 𝑡) denotes the velocity of the j-th atom in the l-th 

unit cell along the -th direction at simulation time t, 𝒓0(
𝑙
0
) is the equilibrium position 

of the l-th unit cell. For one-dimensional helices, the wave vector is limited to 𝜅𝑥 =

2𝜋𝑛𝑥/𝑎𝑥𝑁𝑇 , where 𝑎𝑥  is the unit cell length along the x-direction, and 𝑛𝑥  is an 

integer ranging from 0 to 𝑁𝑇 − 1 . Then, 𝜅𝑥  is mapped into 𝑁𝑥/2  points ranging 

from 0 to 2𝜋/𝑎𝑥, which correspond to the first Brillouin zone in the real space from 𝛤 

to 𝛫 point. Atomic velocities were collected from MD simulations of 𝜏0 = 1 ns under 

the NVE ensemble at 298 K. 

Phonon dispersion: Based on the PSED profile, phono dispersion can be obtained 

by identifying peaks of the degenerate branches and connecting the peaks into 

continuous curves along the wave vector direction. The dispersion curves correlate 

phonon frequency (𝑓 = 𝜔/2𝜋, in the unit of THz) with the reduced wave vector (𝜉 =

𝜅𝑥/(2𝜋/𝑎𝑥) , dimensionless). Dispersion curves in this work were obtained at a 

resolution of 0.001 THz × 0.01. 

Mode-based thermal conductivity: By solving the Boltzmann transport equation53 

with phonon relaxation time approximation,54 the overall thermal conductivity is 𝑘𝑥 =

∑ ∑ 𝑘𝑥̃(𝜿, 𝜈)𝜈𝜿  , where 𝑘𝑥̃(𝜿, 𝜈)  is the thermal conductivity contributed by each 

phonon mode that belongs to a phonon branch, 𝜈, with a wave number of 𝜅𝑥. The 
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mode-based thermal conductivity has an expression of 𝑘𝑥̃(𝜿, 𝜈) =

𝑐𝑝ℎ𝑣𝑔,𝑥
2 (𝜿, 𝜈)𝜏(𝜿, 𝜈), where 𝑐𝑝ℎ is the volumetric phonon specific heat, 𝑣𝑔,𝑥(𝜿, 𝜈) is 

the group velocity, and 𝜏(𝜿, 𝜈)  is the phonon relaxation time. In classical systems, 

𝑐𝑝ℎ = 𝑘𝐵/𝑉, where 𝑘𝐵 is Boltzmann constant and V is the system volume. The group 

velocity 𝑣𝑔,𝑥(𝜿, 𝜈) =  𝜕𝜔/𝜕𝜅𝑥, which can be calculated based on the PSED result by 

using numerical differentiation. 

Relaxation time: PSED can be reconstructed into a different form which is in terms 

of the phonon relaxation time, i.e. Φ(𝜿, 𝑓) =

 ∑ 𝐶(𝜿, 𝜈) ([4𝜋𝜏(𝜿, 𝜈)(𝑓 − 𝑓0(𝜿, 𝜈))]
2
+ 1)⁄3𝑛

𝜈  , where f is the phonon frequency, 

𝐶(𝜿, 𝜈) is a mode-dependent constant, and 𝑓0(𝜿, 𝜈) is the frequency at which PSED 

reaches a localized peak. At each 𝜿, the PSED data is converted into a single-variable 

data series in terms of 𝑓. The data series has 3𝑛 local peaks where 𝑛 is the number 

of atoms and 3𝑛 is the number of phonon branches in the system. The data series is 

fitted using multiple Lorentzian functions, Φ = 𝐼 (1 + [(𝑓 − 𝑓𝑐) 𝛾⁄ ]2)⁄  , near local 

peaks. Here, I is the peak magnitude, 𝑓𝑐 is the frequency at the peak, and 𝛾 is the half-

width at the half-peak. Fitting was done by using the Fityk software with the Levenberg-

Marquarde algorithm.55 The reconstructed PSED function can be described as a 

superposition of the Lorentzian functions identified for all phonon branches at a given 

wave vector. Finally, relaxation time associated with all phonon modes, 𝜏(𝜿, 𝜈), and 

the corresponding frequency, 𝑓0(𝛋, ν), can be determined based on the parameters of 

the Lorentzian functions. 

DFT calculation: Quantum-chemical calculations were conducted to 
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quantitatively study the H-bonds using Gaussian.56 The calculations were based on the 

hybrid B3LYP exchange-correlation functional with Grimme’s DFT-GD3(BJ) 

empirical dispersion correction. The B3LYP-GD3(BJ) theory has been widely used for 

studying H-bonds.57 The ma-TZVPP basis set was employed. It is the “minimally 

augmented” version of the def2-TZVPP basis set,58, 59 for which s and p type diffuse 

basis functions are added to non-H atoms. Using this theory, equilibrium geometries of 

the 310-, α- and π-helices were obtained by geometric optimization. Frequency 

calculations were performed to confirm structural stabilization. Wave functions were 

output for subsequent calculations of the H-bond chemistry. 

Quantum-chemical H-bond calculation: Based on the wave functions calculated 

by DFT, strength of the H-bond was quantified using two numeric indices: (1) the core-

valence bifurcation index (CVBI), and (2) the H-bond energy evaluated at the bond 

critical point. On the one hand, the CVBI is a widely used approach based on the 

electron localization function (ELF) theory.60, 61 The ELF takes the form of 𝜂(𝑟) =

 1/{1 + [𝐷(𝑟) 𝐷0(𝑟)⁄ ]2}, where 𝐷(𝑟) is the Pauli kinetic energy density and 𝐷0(𝑟) 

is the Thomas-Fermi kinetic energy density. For a H-bond taking the general form of 

D−H⋯ A, bifurcation points of the ELF are first identified through a topological 

analysis, based on which the (3,−1) critical points are located. The CVBI is calculated 

by CVBI = ELF(C−V, D) − ELF(DH⋯A),62, 63 where ELF(C−V, D) is the core-valence 

bifurcation value at donor (D), and ELF(DH⋯ A) stands for the valence-valence 

bifurcation value at the H-bond. The CVBI is a numeric indicator of the strength of the 

H-bond; the lower CVBI, the stronger H-bond. A negative CVBI suggests that the H-
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bond has a covalence characteristic, whereas a positive CVBI means that the H-bond 

has an electrostatic nature. On the other hand, the H-bond strength can be evaluated 

directly based on the electron density at the bond critical point, i.e. the (3,−1) critical 

point associated with DH⋯A, on the basis of the quantum theory of atoms in molecules 

(QTAIM). The equation takes the form of 𝐸HB = 𝐴𝜌BCP + 𝐵, where 𝐸HB is the H-

bond energy, 𝜌BCP is the electron density at the bond critical point, and 𝐴 and 𝐵 are 

parameters depending on the H-bond type and the level of quantum chemical 

calculation.64-67 In this work, A = –223.08 and B = 0.7423 were adopted,68 which were 

optimized and proven to effectively characterize the H-bond strength in biologically 

important substances. The calculation was performed by using the MULTIWFN 

program at the same level of theory.69 
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Fig. 1. Helix segments in example proteins:70-72 a) ABC-ATPase SufC73 with the 310-

helix (in green box), b) T4 Lysozyme74 with the α-helix (in cyan box), and c) PGRP-

SA75 with the π-helix (in red box). Different types of helices are interlocked by different 

H-bond networks: d) the 310-helix has H-bonds connecting residues i and i + 3; e) the 

α-helix has H-bonds connecting residues i and i + 4; and f) the π-helix has H-bonds 

connecting residues i and i + 5. g) Illustration of a H-bond between the carbonyl (C=O) 

and amide (N−H) groups. Three isomer helices with the same amino acid sequence of 

poly-Glycine but different H-bond connectivities to form three types of helices: h) side 

and i) cross-sectional views. j) Temperature profiles of the helices in NEMD simulation. 

k) Thermal conductivity of the 310-, α- and π-helices with varying lengths. Curves are 

fitted against an empirical equation of the length-dependent thermal conductivity. 

Dashed lines show thermal conductivities in the diffusive limit. 
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Fig. 2. a) Phonon dispersion curves of three isomer helices in the first Brillouin zone. 

Colors show mode-by-mode contributions to the thermal conductivity, i.e. 𝑘𝑥̃(𝜿, 𝜈). 

Arrows indicate two semi-optical branches with significant 𝑘𝑥̃(𝜿, 𝜈). b) Frequency-

dependent group velocities for three acoustic branches and two selected optical 

branches of the 310-helix (green), α-helix (blue), and π-helix (red). c) Spectral thermal 

conductivity and d) cumulative thermal conductivity of the three isomer helices. 
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Fig. 3. a) Frequency-dependent relaxation time of three isomer helices. b) Relaxation 

time for three acoustic branches and two selected optical branches of the 310-helix 

(green), α-helix (blue), and π-helix (red). Back dashed lines are fitted against a 

relationship of 𝜏 ∝ 𝑓−𝛼. 
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Fig. 4. a) Normalized electron density for the three isomer helices in the vicinity of four 

atoms forming the H-bond. b) The electron localization function (ELF) distributions 

along the N−H covalent bond and the H⋯O H-bond. Local minimum of these curves 

define ELF(C−V, D), ELF(DH⋯A), and ELF(C−V, A). Spheres on the horizontal axis 

indicate atomic locations. 
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Figures below can be found in the Supplementary Information document 

 

Fig. S1. Setup of the NEMD simulation for predicting thermal conductivities of the a) 

310-, b) α-, and c) π-helices. Heat flow is generated by adding energy into the heat source 

(red region) and removing the same amount of energy from the heat sink (blue region). 

L is the characteristic length. The simulation cell is divided into N slabs. The two end 

slabs are fixed for heat insulation. Periodic boundary conditions are applied along all 

three directions. Cross-sectional view of the d) 310-, e) α-, and f) π-helix models. The 

cross-sectional area is calculated using averaged inner and outer radii of the helices. 

 

 

Fig. S2. Inverse of thermal conductivity versus inverse of length for the isomer helices. 

 

 

Fig. S3. Phonon spectral energy density for the three isomer helices at T = 298 K. 

Shading on these plots represents the magnitude of phonon spectral energy density for 

different phonon mode combining specific 𝜿 and 𝜔. 

 

 

Fig. S4. Intercepted helices for DFT-based quantum-chemical analysis of H-bond: a) 

the 310-helix segment has four residues; b) the α-helix segment has five residues; and 

c) the π-helix segment has six residues. 

 

 

 

 

 

 

 


