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Abstract— We address the issue of safe optimal path plan-
ning under parametric uncertainties using a novel regularizer
that allows trading off optimality with safety. The proposed
regularizer leverages the notion that collisions may be modeled
as constraint violations in an optimal control setting in order to
produce open-loop trajectories with reduced risk of collisions.
The risk of constraint violation is evaluated using a state-
dependent relevance function and first-order variations in the
constraint function with respect to parametric variations. The
approach is generic and can be adapted to any optimal con-
trol formulation that deals with constraints under parametric
uncertainty. Simulations using a holonomic robot avoiding
multiple dynamic obstacles with uncertain velocities are used
to demonstrate the effectiveness of the proposed approach.
Finally, we introduce the car vs. train problem to emphasize
the dependence of the resultant risk aversion behavior on the
form of the constraint function used to derive the regularizer.

I. INTRODUCTION

The tension between optimality and safety is often ev-
ident in robotics—particularly for applications that have
stringent performance requirements—under conditions for
which uncertainties in sensing, environment models, and
control effectiveness are unavoidable [1]-[4]. For all but the
simplest applications, optimal solutions tend to bring the
robot dangerously close to the operational safety margins.
For example, it is well known that the shortest path for a
mobile robot in a polygonal environment lies in the visibility
graph which implies that the optimal path would contact the
obstacles while traversing the path [5]. While in practice it is
typical to perturb paths slightly such that they do not reach
the constraint boundaries, this safety strategy raises a number
of significant questions: How should one perform these
perturbations? How should one balance the cost of violating
constraints against reduced performance? And, perhaps most
importantly, how can one provide a principled evaluation
of the effects of uncertainty with respect to the trade-
offs between optimality and safety, and adjust the path to
optimally balance between the two? It is this latter question
that we address in the present paper.

Our approach exploits recent results in the area of de-
sensitized optimal control (DOC) [6], [7]. DOC techniques
modify the nominal optimal trajectory such that it is /ess
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sensitive with respect to uncertain parameters. This involves
constructing an appropriate sensitivity cost which, when
penalized, provides solutions that are relatively insensitive
to parametric variations. The process of constructing desen-
sitized trajectories can be also understood as a way to impose
smoothness through the regularization of the sensitivities [8].
DOC methods take a global view of parametric uncertainty,
attempting to provide robust solutions along the entire trajec-
tory [7], [9]. In contrast, in this paper we consider explicitly
the effects of parametric uncertainty for those portions of
the trajectory that approach (or touch) constraint boundaries,
essentially ignoring parametric uncertainties for states that
are inherently safe even under large parametric variations.
In this way, we focus both computation and control effort
only on those areas that are most crucial for overall system
safety.

Probabilistic methods are a popular choice to address
planning in uncertain dynamic environments [10]. In the past,
Gaussian processes have been employed to model uncertainty
and to obtain safe trajectories [11]-[14]. Techniques involv-
ing POMDPs [15], [16], occupancy grids [17], intent-based
threat estimation [18], replanning [19], [20], and feedback
coupled with estimation [21] are many variants in the class
of probabilistic methods. Alternatively, reachability analysis
[22], artificial potential fields (APFs) [23], and barrier func-
tions [24] have also been utilized. Our approach fundamen-
tally differs from the above techniques in its formulation;
while prior work widely employed probabilistic techniques,
the proposed formulation in this paper is deterministic. In
order to address planning under limited sensing and feedback
capabilities, we provide safe open-loop trajectories that have
guarantees on optimality by treating the uncertainty to be
parametric in nature, and by examining sensitivities with
respect to parameter variations.

Formally, we consider uncertainties to be parametric in
nature, where the nominal value of the uncertain parameter
is available. Using sensitivity functions [25], we first capture
the variations in the constraint function under parametric
variations, defined as constraint sensitivity. The variations
are then weighted using a relevance function to obtain
the relevant constraint sensitivity (RCS), and construct a
regularizer that captures the risk of constraint violation. The
characteristics of the regularizer are discussed by analyzing
its performance in simple path planning problems. Finally,
we evaluate the proposed technique on path planning prob-
lems in environments containing up to ten dynamic obstacles
having uncertain velocities.

The rest of the paper is organized as follows. Section II



introduces sensitivity functions and the framework of DOC.
Section III presents the main idea of the paper, involving the
construction of an appropriate regularizer that provides open-
loop trajectories with lower chance of constraint violation un-
der parametric uncertainties. In Section IV, we first analyze
the proposed approach by applying it on simple path planning
problems with one dynamic obstacle, and then present the
results obtained from experiments on environments with
multiple uncertain dynamic obstacles. Section V concludes
the paper.

II. PRELIMINARIES

A. Standard Optimal Control Framework
Consider the standard optimal control problem of mini-
mizing the cost

J(u):¢(x(tf),tf)+/fL(x(t),u(t),t)dt, 0

to

subject to

‘T(t) = f(z(t),p,u(t),t), x(tO) = To, (2)
g(z(t),p,t) <0, 3)
Y(z(ty),tr) =0, 4)

where t € [to, t] denotes time, with ¢y being the fixed
initial time and t; being the final time, z(t) € R" de-
notes the state, with xy being the fixed state at ¢y, and
p € P C R’ are model parameters. The control u €
U = {u: [to,ts] = U is Piecewise Continuous, u(t) € U,
t € [to,ty]} with U C R™, the set of allowable values of
u(t), ¢ : R™ x [to,ty] — R is the terminal cost function,
and L : R™ x R™ X [to,t;] — R is the running cost. Here
g : R" x R® x [tg,tf] — R is a function denoting k state
inequality constraints. Finally, ¢ (z(ts),t;) = 0 denotes the
terminal condition at time ¢ = t;.

The aforementioned optimal control problem (1)-(4) is
to be solved by finding the optimal control v* € U that
minimizes the cost function in (1), given the constraints (2)-
(4). The solution defines the optimal state trajectory z*(t),
t € [to, ty], satisfying £*(t) = f(z*(t), p, u*(t),t) subject to
x*(tp) = xo. The system dynamics f(z,p,u,t) contains the
model parameters, p € P, which are assumed to be constant.
In general, the optimal solution (x*(¢),u*(t)) is sensitive to
modeling errors and, if changes in the parameters p occur at
any time ¢ € [to, t], satisfaction of the constraints (3) or (4)
is not guaranteed.

In the case of path planning with dynamic obstacles
collision avoidance is of paramount importance. Obtaining
safe trajectories under parametric uncertainties in the obsta-
cles’ motion is therefore a necessity. In the optimal control
framework discussed above, the constraint function in (3)
can be used to enforce collision avoidance for the path
planning problem. Consequently, penalizing a risk measure
that captures the possibility of constraint violation under
parametric variations may provide the desired safe (e.g.,
lower chance of constraint violation) trajectories.

With the motivation to minimize the dispersion in the op-
timal trajectory under parameter uncertainties, an augmented

cost function using sensitivity functions has been constructed
in [7]. In that paper, sensitivity functions were used to impose
the desired risk measure for constraint violation. To this end,
we first discuss the approach in [7] along with the theory
behind sensitivity functions.
B. Sensitivity Functions and DOC

Consider the dynamics in (2), and assume variations in
the model parameters p € P, with p = pg being the nominal
value of the parameter vector. Furthermore, assume that
f(z,p,u,t) is continuous in (x,p,u,t), and continuously
differentiable with respect to x and p for all (z,p,u,t) €
R™xP xU x [to, t7]. The solution to the differential equation
from the initial condition xy with control input v € U is
given by

t
(p.t) = z0 + / f@(p.7) pou(r),T)dr. (5

Since f(x,p,u,t) is differentiable with respect to p, it
follows that

dz(p,t) _ /t [5f(x(p,7),p,U(T),T) 9z(p,T)

ox Op
L 0 (@p,7).pu(r).7)
op
Taking the derivative with respect to ¢, we obtain
d [9xz(p,t)| _ Of(w,p,u(t),t) Ox(p,1)
dt Op N ox Op
0 t),t
L Of(,pu(®),t)
op
Evaluating (7) at the nominal conditions (p = pg), the

dynamics for the parameter sensitivity function S : [0, 00) —
Rnxf

dp

dr. (6)

)

Ox(p, t)

S(t)="=7

®)

z=xz(po,t)

can be obtained as

S(t)=A®)SEt) + B(t), S(to) =Onxe, (9

where
p z=x(po,t), P=po

Since the initial state is given (fixed), the initial condition
for the sensitivity function is the zero matrix, and (9) is
called the senmsitivity equation in the literature [25]. To
compute the sensitivity function over time, the state x has
to be propagated using the dynamics in (2) under nominal
conditions,

‘,I"‘:f(xapOauat% l‘(to) = Zo- (12)

From the properties of continuous dependence with respect
to the parameters and the differentiability of solutions of
ordinary differential equations, and for sufficiently small



variations in py, the solution x(p,t) can be approximated
by

x(p,t) = x(po, t) + S(t)(p — po)- (13)

This is a first-order approximation of z(p,t) about the
nominal solution z(py, t).

For the optimal control problem (1)-(4) in the previous
subsection, an approach to construct a desensitized optimal
control (DOC) scheme that reduces the dispersion of the opti-
mal trajectories under parametric uncertainties is to minimize
the augmented cost function

ty

Ts(u) = T (u) + / || vec S(t)[|3) dt, (14)

to
with an augmented state [z (vecS)']", whose dynamics
are obtained from (12), (9), and the constraints (3), (4).
Here, vec S € R™ denotes vectorization of the matrix 5.
Equation (14) minimizes the original cost function in (1),
while penalizing the sensitivity of the state with respect to
the parameters along the optimal trajectory. The weighting
factor for the sensitivity cost, () > 0, can be tuned to balance
between minimizing the original cost and minimizing the
sensitivity cost. In the next section, we develop a scheme to
generate constraint desensitized trajectories by penalizing a
risk measure that is defined using sensitivity functions.

III. CONSTRAINT DESENSITIZED PATH PLANNING

For the optimal control problem (1)-(4), assuming the
constraint function g(x,p,t) is a smooth function in z, a
naive approach to obtain conservative trajectories to address
constraint violation under parametric uncertainties would be
to penalize the constraint sensitivity matrix, defined as

dg(x(p,t),p,t
sy - 20t
pP=Po
t t
Oz 9p z=x(po,t),p=po
by constructing the augmented cost
ty
Ty =T+ [ vecs, 0l o)
to

where ( > 0.

By minimizing the cost in (16), one attempts to minimize
the variation in the constraint value with respect to variations
in the parameter for all times. However, it is clear that the
variation in the constraint value when the system is far from
the constraint boundary is not as important as when the
system is close to the constraint boundary. For example,
in the path planning problem with a dynamic obstacle, a
larger variation in the constraint value may be acceptable
when the agent is far from the obstacle, but a collision may
result due to even relatively small variations when the agent
is near the constraint boundary. Weighting the sensitivity of
the constraint value equally in both cases using a running
cost function may therefore lead to solutions that are highly
sensitive near the constraint boundary.

To account for the fact that the constraint variations are
more likely to cause constraint violations when the system is
closer to the constraint boundary, we introduce a relevance
function p : R — [0, 00) of the form

NN LE!
ple) {ﬁ(ox

where p : R — [0,00) is a continuous function that is
monotonically increasing over the interval (—oo, 0], that is,
p(z) > p(y), if z > y for all z,y < 0. Examples of
p(z) include e=*" (Gaussian), max (0, 1—|z|) (Hat function),
1/(1 + 2?), etc.

Next, we define the relevant constraint sensitivity (RCS)
matrix S, : [0,00) — R¥** as

S (t) = RS, (1), (18)

where R = diag (p(g1(z(p, 1), p, 1)), - -, p(gr(x(p, 1), p, 1))).
Henceforth for the purpose of the analysis, and unless

stated otherwise, the derivative of the logistic function
s(z) = 1/(1 4+ e~#) is chosen as the candidate relevance
function, that is,

if z <0,
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if 2> 0, an

p(z) = s(2)(1 — s(2)). (19)
Note that the derivative of the logistic function has a
symmetric “bell-shape” with the maximum at z = 0, and
decaying tails. The relevance function allows one to penalize
sensitivities according to their relevance with respect to
potential constraint violation. The impact of the choice of
the relevance function on constraint desensitization is briefly
discussed in Section IV.A. The sensitivity matrix .S, captures
the idea of giving more importance to variations near the
constraint boundary.
Finally, we propose to solve the optimal control problem
with the augmented cost function

Ja(u>:j(u>+/f [ vee S, (1) 13 dt,

to
the dynamics in (12) and (9), and the constraints (3) and
(4) to construct trajectories that address constraint vio-
lation under parametric uncertainties. Hereafter, the term
j;tof [| vec S,.(t)[|3 dt in (20) will be referred to as the RCS
cost.

(20)

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we apply the proposed approach on simple
test examples to analyze the optimal trajectories obtained by
penalizing RCS. First, we analyze the claim of penalizing
RCS over constraint sensitivity using a 2D path planning
problem involving a dynamic obstacle with uncertainty in its
speed. Subsequently, the effect of various constraint forms
that represent the collision avoidance condition, chosen from
a set of valid ones, is studied. We then stress upon the
need to select an appropriate constraint function to con-
struct RCS wusing the car vs. train problem, and finally,
the trade-off studies with multiple obstacles are presented.
The videos demonstrating the optimal trajectories for the
example problems discussed in this section can be found
in the supplementary material.



A. 2D Time-Optimal Problem
Consider the following 2D time-optimal path planning
problem with the agent dynamics and initial conditions

Za(t) = vgcos(0(t)), x4(0) = ao,
ya(t) = Ua Sin(e(t))a ya(o) = bo,

where (z,,y,) denotes the agent’s position, v, is the agent’s
speed, and 0(t) € [0,27) is the agent’s heading (control).
The agent intends to reach (ay,by) in minimum time, while
avoiding a dynamic circular obstacle that is moving parallel
to the y-axis with a constant speed v,, and dynamics given
by

2n
(22)

Yo (0) =

where (x,,y,) denotes the obstacle’s position. With z =
[TasYasYo] T as the state vector, the constraint for collision
avoidance can be expressed as

yo(t) = —o, (23)

9(@) = 10— [(Ta — 70)2 + (Yo —1)2] 2 <0, (24)

where r, is the safe distance. For this problem, we assume
that the obstacle’s speed v, is the uncertain parameter.
Henceforth, the time and parameter dependency of the el-
ements in the state vector are dropped for brevity. Since the
problem has simple dynamics, a closed form expression to
the sensitivity of the constraint function g(z) with respect to
the uncertain parameter v, is given by

_ dg(x) _ (Ya — Yot
Sy(t) = = ; e (29)
Yo [(Z‘a - J?O) + (ya - yo) ]
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Fig. 1. Absolute values of Sy and S;- as a function of the agent’s position.

The effect of incorporating the relevance function into the
proposed scheme is analyzed by comparing the constraint
sensitivity and RCS. In this regard, the obstacle’s position
is fixed at (0,1) with r, = 0.6, and since the constraint
sensitivity varies linearly with time, ¢ = 1 is chosen. Figure 1
presents the absolute values of the sensitivities (S, and S,.)
over the mesh generated to represent the agent’s position.
The white circular area in the middle represents the infeasible
region. It can be observed that RCS (S,) is activated when
the agent gets closer to the obstacle, as opposed to the
constraint sensitivity, which only captures the sensitivity in
the constraint value. Furthermore, it has also been observed
(though not presented here for the sake of brevity) that by just
penalizing the constraint sensitivity using the cost in (16),

conservative trajectories cannot be obtained as the sensitivity
profile over-constrains the problem (see Figure 1(a)). In the
case of penalizing RCS, the agent has sufficient incentive
to move away from the obstacle as the variations closer
to the constraint boundary now incur a higher penalty (see
Figure 1(b)).

Figure 2 shows the results obtained for the time-optimal
path planning problem with (ag,bo) = (0,0), (as,by) =
(0,10), z, = 5, ¢ = 2, and v, = 1. The nominal value
of the uncertain parameter v, is chosen to be 0.25. The
cost function in (20) is minimized with ¢(xz(tf),tf) = ty,
L(z(t),u(t),t) = 0, given the dynamics (21)-(23), and the
constraint (24). The optimal control package GPOPS-II [26]
is used to numerically solve the optimal control problem.
From Figure 2(a), it can be observed that as the weighting
factor @) for the RCS term in the cost function increases, the
optimal trajectory becomes more conservative (the distance
to the obstacle is greater), and the magnitude of the RCS
reduces along the trajectory (see Figure 2(b)). Figure 2(c)
suggests that the conservative trajectories have higher con-
straint sensitivity, and further corroborates the underlying
intuition behind introducing the relevance function.

For this pa2rticular example, five different relevance func-
tions: 1) e™*" (Gaussian); 2) max(0, 1 — |z|) (Hat function);
3) s(z) (Logistic function); 4) 1/(1 + 22); and 5) 1/(1 +
|2])2; were also evaluated to observe the behavior of the
constraint desensitized trajectories. All the aforementioned
functions provide conservative trajectories similar to the ones
in Figure 2(a), with slight differences in curvature. The
results are not presented in the interest of brevity. Analyzing
different relevance functions and their impact on constraint
desensitization in general optimal control problems is a
separate study meant for future work.

B. Dependency on the Constraint Form

In this section, the effect of the form of the constraint func-
tion over the behavior of the optimal trajectories obtained
from constraint desensitized planning is investigated. To this
end, the constraint function in (24) is expressed alternatively
as

o (@) =12 = [0 — 20)% + (e —10)2]/* <0, (26)

where A > 0. We first analyze the RCS plots shown
in Figures 3(a), 3(c), and 3(e). The simulation parameters
remain the same as the ones used for the results in Figure 1.
The general expression for RCS, for any A > 0, is given by

S’I" = - p(g)\(l'))
—_——

relevance term
X )‘(ya - yo)t [(xa - xo)2 + (ya - yo)z]

constraint sensitivity

A/2—1 @7

Note that, for A > 0, the relevance term (see (27)) decays
exponentially as the agent moves away from the obstacle.
For A > 2, the constraint sensitivity term increases super-
linearly with separation between the agent and the obstacle.
Consequently, RCS decays with Euclidean distance and
becomes prominent as the agent gets closer to the obstacle.
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Fig. 3. Absolute values of the RCS (a, c, e) and the optimal trajectories
(b, d, f) for different constraint forms.

Also, as A increases, the decay (logistic) term overpowers
the constraint sensitivity term and the penalty region around
the obstacle shrinks.

The optimal trajectories given the constraint (26), for A =
0.5, 2, 4, and with different weights (Q)) in the RCS cost
can be seen in Figures 3(b), 3(d), and 3(f), respectively. The
simulation parameters are the same as the ones used for the
results in Figure 2. Similar to the results obtained for A = 1,
the optimal trajectories become conservative for all values of
A, as @ increases. However, it is noted that the behavior of

Time

(b) RCS - S2(t)

10 0 5 10

Time

(c) Constraint sensitivity - SS ()

Results for constraint desensitized 2D path planning

these optimal trajectories vary. As A increases (for A > 1),
the curvature of the desensitized trajectories reduces. For
this particular example, under turn radius constraints, the
designer can alternatively tune the value of A to obtain the
desired trajectory shape.
C. The Car vs. Train Problem

Consider the 1D version of the problem described in
Section IV-A, where an agent (car) is restricted to move
along the x-axis, and the obstacle (train) is moving along
the y-axis. Note that the dynamics for the obstacle remain
the same, given in (23), while the agent dynamics takes the
form

where u(t) € [0,v2*], and y,(¢t) = 0, t € [0,¢/]. In this
case, the state vector x = [x,,¥,]  is two-dimensional.

Similar to the previous experiments, we assume that
the agent’s primary task is to minimize travel time whilst
reducing risk of collision under uncertainty in the obstacle’s
speed. It is intuitive to expect that the desensitized solution
will ensure that the distance between the train and the car is
sufficiently large during the event of crossing the rail track.
Computing an RCS cost using the constraint (24) is found
to provide a desensitized solution that drives the agent to
reach the target point in minimum time, regardless of the
distance between the agent and the obstacle (i.e, beyond the
safe distance 7,).

The discrepancy between the desensitized solution for the
RCS, obtained using the constraint in (24) and the intuitive
solution can be understood by considering the behavior of a
real-world driver. The expression in (24), although a valid
constraint, does not capture a driver’s perception of the
collision constraint in this problem. Effectively, the train’s
motion along the rail track is of no consequence to the driver,
except when he is crossing the track. It is during this crossing
phase that the driver would ensure sufficient separation (at
least the safe distance r,) between the train and the car to
prevent collision.

This motivates us to propose a constraint of the form,

L|za(t) — o] < wo] [r2 — (Ya — yo(1))?] <0, (28)

9y (Yo)

zq(0) = ag,
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Fig. 4. The car vs. train problem

where 1[-] is the indicator function, and 2w, is the width of
the track. Note that [z, (¢) —2,| < w,] is a boxcar function
which makes the constraint function in (28) non-smooth. To
this end, we suggest to use the so-called super-Gaussian [27]

~

(24 (1); 20, w,) = exp < [x(t)w_ﬂ > . (9
where v € 27Z% (set of positive even numbers), as an
approximation to the boxcar function. From Figure 4(a), it
can be observed that as v — 0o, (¢ converges to a boxcar
function. Subsequently, the RCS for (28) with a super-
Gaussian approximation can be obtained as

O(p(xa(t); o, wo) gy (o))
ov, ’

Sr = p((2a(t); o, wo) gy (Yo))
(30

Figure 4(b) shows the optimal control for different levels
of constraint desensitization, while employing RCS in (30)
with the same simulation parameters as before, except now
v = 20, v2*** = 1. It is observed that when there is no
penalty on RCS, the car is dangerously close to the train at
the crossing. The result further confirms that the RCS in (30),
when penalized appropriately, allows the car to maintain
a safe distance while crossing the track to avoid collision
under uncertainty in the speed of the train. This example
indicates that an appropriate constraint function is crucial
for the success of the proposed approach.
D. Trade-off Studies with Multiple Obstacles

In this section, the proposed approach is evaluated in
instances involving multiple dynamic obstacles moving with
uncertain velocities. The dynamics of the agent follow (21),
(22). In addition to the agent’s heading 6, its speed v, € [0, 1]
is included as a control input. Starting at location (0, 0), the
agent is tasked with reaching the target location (30,0) in
minimum time while avoiding the obstacles. We consider
four different instances with the number of obstacles N &
{2,3,5,10}. The obstacles are all assumed to be identical
and their movement is restricted to be parallel to the y-
axis with their speed v, being the uncertain parameter. The
nominal value of v, is 0.25. A schematic of the environment,
containing the initial positions of the agent and the obstacles,
and the directions of the obstacles’ nominal velocity vectors
for the case of N = 10, is shown in Figure 5.

Note that at each instance, there are N constraints en-
forcing collision avoidance, and the speed of the associated
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Fig. 5. Schematic of an uncertain multi-obstacle environment
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obstacle is the uncertain parameter. Ignoring the zeros in the
matrix S,.(t), all the sensitivity terms are weighted equally
by choosing the @ in the RCS cost in (20) to be of form
@ = aly. Each instance involves four levels of penalization
of the RCS cost with a = 0 (blue, no penalty), 0.1 (magenta),
0.33 (green), 1 (black). From Figure 6(b), and for different
instances (N = 2,3,5,10), it can be observed that as «
increases, the agent takes longer paths, essentially trying to
avoid obstacles while maintaining some safety buffer. To
characterize safety, collision probabilities were computed by
running Monte Carlo simulations on the optimal trajectory,
obtained from GPOPS-II, while propagating the dynamics
in an open-loop fashion for 1000 samples. In the Monte
Carlo simulations the variation in each of the obstacle’s speed
Awv, is obtained by sampling from a normal distribution
N(0,02) with 02 = 0.1. The trade-off between travel times
(ty) and collision probabilities (F) for the four instances
are shown in Figure 6. From Figure 6, it is seen that



penalizing RCS (for higher « values) yields safer trajectories,
which mitigate the chance of constraint violation in uncertain
environments while trading off optimality (travel time). For
instances with N = 2,3, a 95% reduction in collision
probability is achieved for a 10% trade-off in travel time. Due
to the cumulative effect of increasing the number of obstacles
obstacles and the number of uncertain parameters on the RCS
cost (that measures the risk of constraint violation), the travel
times for safer trajectories are seen to increase with V.

It is observed that the computation times for the tested
instances are of the same order of magnitude (a few millisec-
onds). The approach is limited by the efficiency of the chosen
optimal control solver. The regularizer has no guarantees in
terms of convexity, and consequently the optimizer may con-
verge to a local minimum. Depending on the initialization,
the homotopy class of the obtained trajectories may vary.
For the above simulations, we report the optimal trajectory
among the ones obtained from different initializations. While
in the above simulations the obstacles are restricted to follow
simple paths parallel to the y axis, it is important to note that
the regularizer can be derived for arbitrary obstacle motion as
long as its dynamics are known and the uncertain parameters
are identified.

V. CONCLUSION

A sensitivity function-based regularizer is introduced to
obtain conservative solutions that avoid constraint violation
under parametric uncertainties in optimal control problems.
Using the fact that collision avoidance can be expressed as
a state constraint, the approach is applied for path plan-
ning problems involving dynamic uncertain obstacles. The
proposed regularizer is first analyzed on simple problems
to study its characteristics and to identify its limitations.
It is observed that the form of the constraint function
used to construct the regularizer affects the behavior of the
trajectories. The results on environments with as many as ten
dynamic obstacles indicate that safety can be enhanced with
an acceptable trade-off in optimality.
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