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For a noisy spin system, we derive a nonlocal stochastic version of the overdamped Landau-Lipshitz equation

designed to respect the underlying Hamiltonian structure and sample the canonical or Gibbs distribution while

being driven by spatially correlated (colored) noise that regularizes the dynamics, making this Stochastic partial

differential equation mathematically well-posed. We begin from a microscopic discrete-time model motivated by

the Metropolis-Hastings algorithm for a finite number of spins with periodic boundary conditions whose values

are distributed on the unit sphere. We thus propose a future state of the system by adding to each spin colored

noise projected onto the sphere, and then accept this proposed state with probability given by the ratio of the

canonical distribution at the proposed and current states. For uncorrelated (white) noise this process is guaranteed

to sample the canonical distribution. We demonstrate that for colored noise, the method used to project the noise

onto the sphere and conserve the magnitude of the spins impacts the equilibrium distribution of the system, as

coloring projected noise is not equivalent to projecting colored noise. In a specific scenario we show this break in

symmetry vanishes with vanishing proposal size; the resulting continuous-time system of Stochastic differential

equations samples the canonical distribution and preserves the magnitude of the spins while being driven by

colored noise. Taking the continuum limit of infinitely many spins we arrive at the aforementioned version of

the overdamped Landau-Lipshitz equation. Numerical simulations are included to verify convergence properties

and demonstrate the dynamics.
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I. INTRODUCTION

In order to accurately describe noise-induced phenomenon
in spatially extended systems, it is important to add fluc-
tuations to continuum models that respect some underlying
structure like a Hamiltonian and the sampling of the Gibbs
(or Boltzmann or canonical) distribution. Guaranteeing this
kind of fluctuation-dissipation relation (a.k.a. detailed bal-
ance) is not always obvious, especially in condensed matter
physics for which accurate phenomenological models are not
always built from first principles. One example is the Landau-
Lifshitz-Gilbert equation describing a single magnetic spin
requiring multiplicative noise, thereby creating an effective
electric field, rather than additive noise to ensure sampling
of the Gibbs distribution; see Ref. [1]. In effect, the noise
is projected onto the surface of the sphere representing the
configuration space of the constant magnitude spin vector.
Another example is the regularization of stochastic partial
differential equations (SPDEs) by correlating the noise in
space. While the corresponding dynamics occur at regularity
scales that allow for analysis of the evolution to be treated via
now well-understood methods for understanding stochastic
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paths in the PDE setting (see, for instance, Refs. [2,3]), en-
tirely different distributions from their un-correlated noise
counterparts may be sampled. Although white-noise solutions
to SPDEs in situations with much less regularity can be under-
stood with the introduction of regularity structures by Hairer
in Ref. [4], there are still dimensional restrictions, even in
the case where the deterministic part is parabolic and hence
strongly coercive, see for instance the recent work [5] on
stochastic harmonic map heat flows. Our goal in this work is
to combine the two considerations above related to sampling
and regularization, deriving an SPDE model for a spatially
extended magnetic spin system with spatially “colored” noise
designed to sample an invariant Gibbs measure.

We derive such a continuum model designed to sample
an invariant Gibbs measure from a microscopic Metropolis-
Hastings (MH) algorithm. The MH algorithm [6,7] allows the
random walk dynamics to be separated from the Hamiltonian
structure in the invariant measure: a simple random-walk pro-
posal, X̃i = X n

i + εwn
i with i = 1, . . . , N indexing space and

the w
n
i independent normally distributed random variables,

will sample the Gibbs measure

μ( �X ) = Z−1e−βH ( �X ), (1)

where Z is the partition function and β−1 = kBT , if an accept
probability of

α = 1 ∧ e−β[H ( �̃X )−H ( �X n )],
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where a ∧ b = min(a, b) is used for arbitrary bounded

Hamiltonian H (i.e., �X n+1 = �̃X with probability α and �X n

otherwise). The stochastic differential equation (SDE)

d �X = −∇Hdt +
√

2β−1d �W
also samples the invariant measure (1). Furthermore the MH
dynamics converge to the SDE dynamics in the limit as the
proposal size ε → 0. Thus the limiting MH dynamics can
be used to construct SDE models that preserve the invariant
measure (1) in more complex situations. For example, if the

random walk proposal is changed to �̃X = �X n + εB �wn for con-
stant matrix B, then the SDE

d �X = −BBT
∇Hdt +

√

2β−1Bd �W (2)

also samples the invariant measure (1) (but not for every
nonconstant B( �X ); cf. Ref. [8]). In Appendix B 1 we confirm
this by direct substitution into the (constant B) Fokker-Planck
equation

∂tρ(x, t ) =
3N
∑

i=1

∂i[(BBT
∇H )iρ(x, t )]

+ β−1

3N
∑

i, j=1

(BBT )i j∂i∂ jρ(x, t ). (3)

Equation (2), with symmetric, non-negative definite covari-
ance matrix BBT , has spatially correlated noise and still
samples the Gibbs distribution (1). A continuum limit of the
SDE (2) exists if the Hamiltonian H and covariance matrix
BBT are appropriately scaled with system size N .

In this work, we consider a system of N spins (with pe-
riodic boundary conditions), or vectors on S

m for some m �

1, thereby introducing a confining geometry and investigate
how this interacts with spatially correlated “colored” noise,
deriving an appropriately regularized Stochastic partial dif-
ferential equation that still samples an invariant measure of
the form (1). The spatially correlated noise coupled to the
geometric constraint will result in a proposal of the form

�̃X = �X n + εB( �X n) �wn, where unfortunately the colored noise

proposal is no longer symmetric. However, we prove that the
MH dynamics can still be approximated by an SDE system
similar to that of (2), and that for a canonical choice of the
matrix B related to the geometry, that the SDE system still
samples the correct invariant measure.

For ease of exposition and physical importance, we will
restrict ourselves to m = 2 and work only with spins defined
as vectors on S

2. We build on our recent work [9] which
showed that on a general torus in any dimension, T

d , the
MH dynamics for a system of spatially uncorrelated “white”
noise driven spins with confining geometry converged to the
dynamics of an SDE system as ε, the proposal size, went to
zero. We also considered the N → ∞ limit of the dynamics
while quenching the noise (β = Nγ for γ sufficiently large)
to arrive at the harmonic map heat flow equation

∂tσ (x, t ) = −σ × (σ × 	σ ). (4)

This could also be referred to as the overdamped Landau-
Lifshitz-Gilbert (LLG) equation. Quenching the noise was

essential in the derivation due to the known convergence is-
sues with stochastic partial differential equations (SPDE) in
spatial dimensions greater than one (cf. [10]). The conver-
gence from the SDE model to a PDE model also relied on
the regularity of the harmonic map heat flow equation, which
can fail for T

d → S
m in finite time for dimensions d > 2 due

to bubbling singularities, see [11,12].
To derive a regularized SPDE limit (β constant with N →

∞), we begin with a random walk for the MH algorithm
that projects now spatially correlated Gaussian noise onto the
tangent plane of the underlying geometry. After taking the
proposal size ε → 0 arriving at a system of SDEs, we find
that unlike the white noise case, the choice of σ× as the
projection is crucial for sampling the desired distribution (1).
Therefore, the regularized nonlocal SPDE that samples the
Gibbs distribution is

∂tσ (x, t ) = − σ (x, t ) ×
∫

T d

C(x − y)(σ × 	σ )(y, t ) dy

+
√

2β−1σ (x, t ) × ηC (x, t ), (5)

where C is a nonlocal operator to be described below in
a variety of cases that encodes the covariance structure
of the colored noise, ηC (x, t ), is colored-in-space white-
in-time noise [i.e., E[ηC (x, t )ηC (y, s)] = C(x − y)δ(t − s)],
interpreted in the Stratonovich sense.

A. Prior work

Having an appropriately regularized stochastic limit is im-
portant to studying thermal effect in ferromagnets such as
magnetization reversal [13,14]. Existing field models continue
to use spatially uncorrelated white noise in the stochastic
LLG equation so as to maintain the equilibrium distribution,
proposing for example weak formulations of the solutions and
numerical finite element schemes (cf. chap. 2 of Ref. [15]).
Equation (5) is in contrast to regularizing the LLG equation by
changing the energy functional to include a term to control the
modulus of continuity [16]. It also compliments other works
that derive equations to preserve the equilibrium distribution,
such as in the case of inhomogeneous magnitude of mag-
netic spins [17], for temporally colored noise but for finitely
many spins [18], and for the stochastic Landau-Lifshitz-Bloch
equation [19]. More generally, physical models with confining
geometries are natural generalizations of the SPDE limits
derived using colored noise for unconstrained random walks
in Ref. [20] and more recently in Ref. [21]. See also Ref. [22],
which focuses on quantum field theories, but also discusses
the effective action of a generic SPDE system through the
tools of fluctuation-dissipation and invariant measures, with
examples including reaction-diffusion-decay systems, KPZ
(noisy Burgers), and purely dissipative SPDEs.

Since our approach starts from the MH algorithm, it is
worth pointing out that the MH algorithm itself is widely
used in particle statistics and sampling algorithms; see, for
instance, Refs. [23–27]. It also arises when adopting the
Bayesian approach to inverse problems and signal processing
[28,29]. This has led to the study of optimal scalings for
the unconstrained random walk MH algorithm and diffusion
limits for certain forms of probability distributions [20,21,30–
33]. Specifically, for product measures in Ref. [30] and the
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Gibbs distribution of a lattice model in Ref. [31], the weak
convergence to Langevin diffusions has been shown by com-
paring generator functions. The pioneering work [20], based
in part upon earlier works on sampling [34,35], extended
this type of result to nonproduct form measures and demon-
strated the weak convergence to a SPDE. Subsequent works
[21,32,33] consider scaling limits of systems started away
from their equilibrium distributions.

Building on our previous work [9] that studied the limiting
dynamics of a geometric MH process with white noise in the
proposal, we fill a missing gap in the above results showing
strong convergence of trajectories started far from equilibrium
to a nonlocal SPDE in a geometric setting, with the underlying
dynamics of the process designed to sample an (non product
form) invariant measure using colored noise with a given
covariance structure. Similar to Ref. [20], we derive a drift
term that implicitly is driven by a nonlocal diffusion operator.
In the context of random walks, this is related to fractional
diffusion operators, but we are interested to see the effects of
colored noise on the geometric evolution.

B. Outline of results

The remainder of the paper is as follows. In Sec. II we lay
out the vector notation we adapt for the paper. In Sec. III we
review our results from Ref. [9] pointing out a few interesting
facts that will be in contrast to the colored noise case. We
extend these results to the case of colored noise in Sec. IV,
outlining the derivation of the limiting SDE system from
the MH dynamics in Sec. IV A (details of the proof are in
Appendix A), discussing the correct projection of the noise
onto the tangent plane of the underlying geometry to en-
sure the SDE system samples the desired distribution (1) in
Sec. IV B, proving the invariant measure of the MH dynamics
converges to this same invariant measure in Sec. IV C, and dis-
cussing the Fourier representation of the nonlocal SPDE (5)
in Sec. IV D with an outline the well-posedness in Appendix
C when the noise is trace class. We support our trajectory-
wise convergence results with direct numerical simulations in
Sec. V as well as illuminate the differences between the choice
of two different projections of the noise onto the tangent plane
of the underlying geometry. We give concluding remarks in
Sec. VI.

II. NOTATION

We present our results for the case of one periodic spatial
dimension, T , and spins that live on S

2, although this can be
extended to other dimensions for both the periodic domain and
the spherical target. It becomes convenient to adopt different
notation in different contexts, which we summarize here. The
torus with unit length is subdivided with xi = (i − 1)/N for
i = 1, . . . , N with a spin located at each xi. We take σn

i for
i = 1, . . . , N as the collection of the N spins of the MH
dynamics at time step n, each a three-dimensional vector, with
components

σn
i =

〈

σ n
i,x, σ

n
i,y, σ

n
i,z

〉

(6)

satisfying (σ n
i,x )2 + (σ n

i,y)2 + (σ n
i,z )2 = 1 for each i = 1, . . . , N

and each integer n � 0. The 3N-dimensional vector

�σ n =
〈

σ n
1,x . . . σ n

N,x σ n
1,y . . . σ n

N,y σ n
1,z . . . σ n

N,z

〉

(7)

contains all the components of all the spins. We similarly
define �̃σ n, σ̃n

i and σ̃ n
i,q q ∈ {x, y, z} for the MH proposal at time

step n; �wn, wn
i ∈ R

3, and w
n
i,q for the independent standard

Gaussian random variables used to generate the proposal at
time step n; �s(t ), si(t ), si,q(t ) for the solution to the limiting
SDE system at time t . Since the noise will be correlated in
each component, it will also be useful to represent it as

�wn =
〈

wn
x wn

y wn
z

〉

with each N × 1 vector

wn
q = 〈w1,q . . . wN,q〉 for q ∈ {x, y, z}.

III. WHITE NOISE

Here we present an overview of our previous work [9],
pointing out a few interesting facts that will be in contrast to
the colored noise case. We remind the reader that though we
limit our discussion here to the cases d = 1, m = 2 for ease of
exposition, all results here extend to d � 1, m � 1 with small
modifications.

To arrive at an appropriate continuum limit, we begin
with the standard MH algorithm using independent Gaussian
(“white”) noise to propose a new state. The proposed new con-
figuration of the N spins σ̃n

i , i = 1, 2, . . . , N requires picking
a random direction in the tangent plane, moving along that
direction, and projecting back onto the sphere,

σ̃n
i = σn

i + ενW
i

∥

∥σn
i + ενW

i

∥

∥

, (8)

with νW
i = P⊥

σn
i
(wn

i ) is a projection of the three-dimensional

normal random vector wn
i into the tangent plane of σn

i ,
P⊥

x (y) = y − (x · y)x or in matrix form (I − xxT )y. Defining
Hamiltonian

H (�σ ) = 1

N

N
∑

i=1

N2

2
‖σ i+1 − σ i‖2 (9)

with σN+1 = σ1 for periodic boundary conditions, the accept
probability

α = 1 ∧ e−β[H ( �̃σ n )−H (�σ n )] (10)

ensures sampling of the Gibbs distribution (1), where �̃σ n and

�σ n are the 3N vectors of the proposal components and current
spin components, respectively. Symmetry in the proposal is
crucial for (10) to be the correct accept probability to sample
the Gibbs distribution. We discuss this in more detail, pointing
out that symmetry is lacking when νW

i in the proposal is
replaced with its correlated noise version next in Sec. IV.

By taking the lowest order term in ε of the mean and added
noise, the MH step is approximately equivalent to the Euler-
like step

σn+1
i − σn

i ≈ −1

2
βε2P⊥

σn
i

(

∂H

∂σn
i

)

− ε2σn
i + εP⊥

σn
i

(

wn
i

)

.

Our previous work showed the trajectory-wise convergence as
ε → 0 of the MH dynamics to the corresponding Itô SDE

dsi =
[

P⊥
si

(	N si ) − 2N

β
si

]

dt +
√

2β−1NP⊥
si

(dW i ) (11)
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under the time rescaling δt = βε2/2N where W i are three-
dimensional Brownian motions and

	Nσ i = N2(σ i+1 − 2σ i + σ i−1)

is the discretized Laplace operator.
In the case of white noise, we point out that other projection

operators could be used in place of P⊥
x (y) above. The only re-

quirement in the MH algorithm is that white noise is projected
onto the tangent plane of σn

i . Two other natural choices would
be σn

i × wn
i and −σn

i × (σn
i × wn

i ), the later being equivalent
to P⊥

σn
i
(wn

i ) defined above; both produce white noise in the

tangent plane. We will observe in Sec. IV B that this freedom
is strongly related to the white noise setting and that care must
be taken when moving to the colored noise case.

To see the equivalence of the two natural projection choices
of the cross- and cross-cross-product in the white-noise case,
we show that the limiting SDE systems for the MH dynam-
ics produce the exact same Fokker-Planck equation in either
case, so using either is justified. Define the 3N × 1 vector of
independent noises as

d �W = 〈dW x dW y dW z〉 (12)

with each N × 1 vector

dW q = 〈dW 1,q . . . dW N,q〉 for q ∈ {x, y, z}

so that the 3N (Itô ) equations analogous to (11) are

d�s = PPT 	N�s dt − 2N

β
�s dt +

√

2β−1NPd �W . (13)

We consider two choices for the block-defined projection
matrix P next. Note that both these projection matrices con-
tributes the same factor −2�s to the Itô correction term,
−2Nβ−1�s, in the above SDE. For the single-spin projection
σ i × dW i, the block-defined projection matrix is

P1 =

⎛

⎜

⎝

0 −Z Y

Z 0 −X

−Y X 0

⎞

⎟

⎠
(14)

and the block-defined projection matrix for −σ i × (σ i ×
dW i ) is

P2 =

⎛

⎜

⎝

I − X 2 −XY −XZ

−XY I − Y 2 −Y Z

−XZ −Y Z I − Z2

⎞

⎟

⎠
, (15)

where each N × N block matrix X,Y or Z are the diagonal
matrices

Q =

⎛

⎜

⎜

⎜

⎜

⎝

σ1,q 0 . . . 0

0 σ2,q . . . 0

...
...

. . .
...

0 0 . . . σN,q

⎞

⎟

⎟

⎟

⎟

⎠

for Q ∈ {X,Y, Z} with corresponding q ∈ {x, y, z}. The
Fokker-Planck equation for (13) is

∂tρ(�s, t ) =
3N
∑

i=1

∂i[(PPT 	N�s)iρ(�s, t )] + 2N

β

3N
∑

i=1

∂i[�siρ(�s, t )]

+ N

β

3N
∑

i, j=1

∂i∂ j[(PPT )i jρ(�s, t )]. (16)

Notice that this equation depends only on PPT , which is
identical for both P1 and P2,

P1PT
1 = P2PT

2 = P2, (17)

after using that σ 2
i,x + σ 2

i,y + σ 2
i,z = 1 for each i. Thus, both

projections produce statistically equivalent trajectories in the
white noise setting, and direct substitution can verify that (1)
is an invariant measure for both (see Appendix B 2). The
key point when taking colored noise instead of white noise
that we will see in Sec. IV B is that the covariance matrix

for the noise and the projection matrix do not commute and
therefore PPT does not appear isolated in the colored noise
Fokker-Planck equation. The two projection matrices P1 and
P2 produce statistically different ensembles.

We also point out that the Itô correction term in (13),
−2Nβ−1�s, is completely independent of choice of projection,
the Stratonovich form of (13) being

d�s = PPT 	N�s dt +
√

2β−1NP ◦ d �W . (18)

This fact remains true in the case of colored noise, that the Itô
correction term depends only on the covariance matrix of the
noise but not the choice of projection (see Sec. IV with details
in Appendix A 1 c).

Our previous work also considered the continuum limit of
the SDE system (11). Defining a lattice spacing δx = N−1

and taking a scaling of β = Nγ for γ sufficiently large to
quench the noise (numerical simulations verified convergence
for β ∼ N3/2), we showed convergence to the (local, deter-
ministic) PDE (4) under some regularity assumptions of the
solution to the harmonic map heat flow equation. This conver-
gence holds regardless of the number of spatial dimensions
considered, provided we assume regularity of the solution
to the corresponding harmonic map heat flow with domain
T

d , d > 2. As mentioned in the Introduction, the regularity
of the solution for d > 2 is a delicate issue when considering
the fixed β continuum limit to an SPDE, and one may not be
guaranteed convergence in the case of white noise.

IV. COLORED NOISE

Using spatially correlated noise in the proposal of the MH
algorithm to lead to regularized SPDEs in the continuum limit
intuitively accounts for the fact that at smaller atomic scales,
the true physical system cannot be further subdivided into
infinity small units with independent fluctuations. A natural
way to introduce correlations in the noise that decay with
distance is to “color” the noise, requiring the power in the
Fourier representation to decay with frequency. In the discrete
setting, to form various covariance matrices satisfying our
periodic boundary conditions, we use a periodic Fourier basis
with power in each frequency mode that decays with rate κ .
We again remind the reader that for ease of exposition we have
set d = 1 in this section, but extending to higher dimensions
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is just a matter of using higher dimensional discrete Fourier
transform machinery. However, in Sec. IV D below about
SPDE limits, we will state the limiting equations for general
dimension d .

Specifically we decompose an N × N covariance matrix

C̄N = φD̄2φT (19a)

with diagonal matrix D̄ j j = λ j = d−κ
j with frequencies d j

defined as

d j =

⎧

⎪

⎨

⎪

⎩

1 j = 1

2π ( j − 1) 2 � j � N
2

+ 1

2π
(

j − N
2

− 1
)

N
2

+ 2 � j � N

(19b)

and the matrix of Fourier eigenvectors given by

φi j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 j = 1
√

2 cos
[

1
N

d j (i − 1)
]

2 � j � N
2

cos
[

1
N

d j (i − 1)
]

j = N
2

+ 1
√

2 sin
[

1
N

d j (i − 1)
]

N
2

+ 2 � j � N

(19c)

with
∑

i φ
2
i j = N for each j. With this scaling, the eigen-

vectors φi j converge to the discrete set of Fourier func-

tions 1,
√

2 cos(2πx),
√

2 cos(4πx), . . . and
√

2 sin(2πx),√
2 sin(4πx) . . . as N → ∞, forming an orthonormal set,

with inner product of two functions defined as
∫ 1

0
f (x)g(x) dx.

Also due to this scaling Tr(C̄N ) = N
∑N

j=1 λ2
j . Note that tak-

ing κ = 0 creates equal power in all modes, reducing C̄N

to a diagonal matrix with N on the diagonal representing
uncorrelated “white” noise. Increasing κ increases the length
scale of the covariance, broadening C̄N which is peaked along
the diagonal.

For use in the MH algorithm, at time step n, we form three

vectors C̄
1/2
N wn

q for q ∈ {x, y, z} with the wn
q a set of vectors

of independent uncorrelated standard Gaussian random vari-

ables. The vectors C̄
1/2
N wn

q are independent for different q but

spatially correlated with covariance matrices given by C̄N .
This correlated noise is projected into the tangent plane of the
corresponding spin, defining

νn
i = P⊥

σn
i

[(

C̄
1/2
N wn

x

)

i
,
(

C̄
1/2
N wn

y

)

i
,
(

C̄
1/2
N wn

z

)

i

]

.

The analogous proposal to (8) is

σ̃n
i = σn

i + ενn
i

∥

∥σn
i + ενn

i

∥

∥

. (20)

The first thing to note is that using νn
i in place of νW

i in the
proposal creates a nonsymmetric proposal and therefore using
the accept probability (10) no longer guarantees sampling of
the Gibbs distribution (1). In particular, since our noise is now
spatially correlated but our projections are completely local,
the probability of undoing a particular rotation is not equal to
the probability of doing it. In the white noise case, the tangent
vector ν̃W

i to get σn
i back from the proposal σ̃n

i is unique and
has the same magnitude as νW

i . Then P (σn
i |σ̃n

i ) = P (σ̃n
i |σn

i )
and since the tangent vectors νW

i are independent for dif-
ferent spins i, the entire proposal in the white noise case is
symmetric,

P (�σ n| �̃σ n) = P ( �̃σ n|�σ n).

In the colored noise case, the tangent vectors are correlated
and the above symmetry requirement is no longer true. How-
ever, as the sphere is locally close to flat, intuitively the
projected tangent vectors from σn

i and back from the pro-
posal σ̃n

i should be almost symmetric, though we observe
that it depends upon the projection chosen as to how this
asymmetric proposal manifests in the limit of ε → 0. For
the cross-product projection corresponding to P1, the nonsym-
metric terms appear in higher orders of ε and we conjecture
they vanish taking similar limits of the (wrongly defined) MH
algorithm as we did previously. We revisit this conjecture in
Sec. IV C.

We discuss this limit of ε → 0, arriving at the (Itô) SDE

d�s = P1

CN

N
PT

1 	N�s dt − 2β−1 Tr(C̄N )

N
�s dt

+
√

2β−1P1C
1/2
N d �W (21)

next in Sec. IV A with details appearing in Appendix A. Then
in Sec. IV B we discuss why the P1 projection matrix, corre-
sponding to σ×, has been selected. In Appendix B 2 we verify
that the Gibbs distribution is the invariant measure of (21)
by considering the Fokker-Planck equation for the equivalent
Stratonovich SDE

d�s = P1

CN

N
PT

1 	N�s dt +
√

2β−1P1C
1/2
N ◦ d �W . (22)

Notice that for the case of uncorrelated noise, κ = 0, the
matrix CN reduces to a diagonal matrix with N on the diag-
onal. The SDE (21) therefore reduces to the white noise SDE
(11) as 1

N
CN reduces to the identity matrix, 1

N
Tr(C̄n) = N and

C
1/2
N d �W =

√
Nd �W .

A. Limiting dynamics of Metropolis-Hastings

The idea behind the convergence is to equate one MH
step to one Euler-Maruyama numerical integration step of
the Itô SDE (21). Following [9,20] we consider the leading
order in proposal size ε terms for the drift and diffusion of
one MH step. At various points we drop higher order terms
that are random variables, which are capable of taking on
arbitrarily large values, but with small probability. To ensure a
true asymptotic convergence, we bound the average pathwise
error between MH and SDE trajectories themselves, not the
probability distribution governed by a master equation, thus
we have a strong, trajectory-wise, convergence result. In what
follows, we heuristically explain obtaining the leading order
terms for the drift and the diffusion. Expectations, En[·], are
conditioned on knowing the current MH spin configuration,

�σ n. The details of properly bounding the error between the
piecewise interpolated MH trajectory and the SDE trajectory
are left to Appendix A.

The drift term of the SDE comes from the expectation of
one MH step,

En[�σ n+1 − �σ n] = En

[

( �̃σ n − �σ n)
(

1 ∧ e−β[H ( �̃σ n )−H (�σ n )]
)]

,

(23)

where the elements of the proposal �̃σ n are each given by (20).
Expanding this proposal for small ε, we obtain

σ̃n
i − σn

i ≈ ενn
i − 1

2
ε2
∥

∥νn
i

∥

∥

2
σn

i . (24)
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We evaluate the expectation in (23) for the first term on the
right-hand side of (24) first, then the second term.

For the expectation over the first term in the expansion
(24), we have

�̃σ n − �σ n ≈ εPC
1/2
N �wn

and proceed to compute

En

[

εPC
1/2
N �wn

(

1 ∧ e−β[H ( �̃σ n )−H (�σ n )]
)]

using the first order expansion of H ( �̃σ n) − H (�σ n), which is

δH ≈ ε(∇H )T PC
1/2
N �wn. (25)

The first order term in the expansion of (1 ∧ e−βδH ) is one,
resulting in the expectation of �wn which is zero. The next
order term comes from using the Lemma 2.4 in Ref. [20],
which we state here for convenience.

Lemma 1 ([20]). For z ∼ N (0, 1),

E[z(1 ∧ eaz+b)] = ae
a2

2
+b�

(

− b

|a| − |a|
)

for any real constants a, b, and �(·) is the CDF for the stan-
dard normal random variable.

We apply this lemma on the expectation for a single com-
ponent of �wn and corresponding coefficient of δH and then
take the expectation over the remaining components of �wn

with further approximations detailed in Appendix A 1 b. The
result is the same as taking 1 ∧ e−βδH ≈ 1 − βδH when δH <

0 and 1 otherwise while also assuming δH is mean zero so that
each case happens with probability 1/2. Thus,

En

[

�wn
(

1 ∧ e−β[H ( �̃σ n )−H (�σ n )]
)]

≈ En

[

�wn
(

1
2
δH
)]

and the only expectation that remains is En[ �wn( �wn)T ] = I , the
identity matrix. Therefore,

En[ �wn(1 ∧ e−βδH )] ≈ −ε
β

2

[

(∇H )T PC
1/2
N

]T
(26)

and

En

[

εPC
1/2
N �wn(1 ∧ e−βδH )

]

≈ −ε2 β

2
PCN PT

∇H. (27)

Returning to (23), we consider the second term in the
expansion (24), and compute

En

[

1
2
ε2
∥

∥νn
i

∥

∥

2
σn

i (1 ∧ e−βδH )
]

.

Here it is convenient to take νn
i = P⊥

σn
i
ui and write the three

components of ui in terms of the decomposition of the matrix
C̄N defined in (19) as

ui,q =
N
∑

j=1

λ jφ jiw
n
j,q for q ∈ {x, y, z}. (28)

Unlike above, the first term in the expansion of (1 ∧ e−βδH )
gives nonzero expectation, which is

En

[

1

2
ε2
∥

∥νn
i

∥

∥

2
σn

i

]

= ε2σn
i

N
∑

j=1

λ2
jφ

2
ji.

We further notice that
∑N

j=1 λ2
jφ

2
ji is equivalent to 1

N
Tr(C̄N )

for each i as a result of the chosen Fourier basis to represent
C̄N . Therefore,

En

[

−1

2
ε2
∥

∥νn
i

∥

∥

2
σn

i

]

= −ε2 1

N
Tr(C̄N )σn

i . (29)

In vector form, combining the above with (27), we have that
(23) to leading order in ε is

En[�σ n+1 − �σ n] ≈ −ε2 β

2
PCN PT

∇H − ε2 1

N
Tr(C̄N )�σ n. (30)

The diffusion part of the SDE is the leading-order in ε term
of the mean-zero noise,

�σ n+1 − �σ n − En[�σ n+1 − �σ n] ≈ εPC
1/2
N �wn. (31)

Recall from above, that the expectation of PC
1/2
N �wn was zero;

this is the leading order noise term. Combining with the drift,
we have that one step of the MH algorithm to leading order is

�σ n+1 − �σ n ≈ − ε2 β

2
PCN PT

∇H

− ε2 1

N
Tr(C̄N )�σ n + εPC

1/2
N �wn. (32)

Defining a rescaling of time as δt = ε2β/2 the above is

�σ n+1 − �σ n ≈ − δtP
1

N
CN PT 	N �σ n

− δt
2

Nβ
Tr(C̄N )�σ n +

√

2δt

β
PC

1/2
N �wn, (33)

where we have used that for Hamiltonian (9),

∇H = 1
N
	N �σ n. (34)

Equation (33) is one step of the the Euler-Maruyama method
for the Stratonovich SDE (22).

The trajectory-wise convergence of the MH dynamics to
the solution of (22) is summarized in the following statement
and proved in Appendix A 3.

Theorem 1. Define the piecewise constant interpolation of
the MH dynamics as �σ (t ),

�σ (t ) = �σ n for nδt � t < (n + 1)δt, (35)

where δt = βε2

2
is the time step size of the MH dynamics,

and �s(t ) is the solution to the SDE system (22) with initial
conditions �s(0) = �σ (0) and ‖σ i(0)‖ = 1, 1 � i � N . If the
proposal noise in the MH step is generated by the same 3N

Weiner processes in (22) as

εwn
i =

√

2β−1[W i((n + 1)δt ) − W i(nδt )],

for i = 1 . . . N , then we have the following strong conver-
gence result:

E

[

sup
0�τ�T

‖�s(τ ) − �σ (τ )‖2

]

� c1

√
δt exp(c2T ) (36)

for any T ∈ (0,∞), where c1 and c2 are functions of
N, β, T, Tr(CN ) and independent of the choice of δt .

This convergence result holds regardless of the projection
matrix P. What remains to be determined is if the SDE (22)
has the Gibbs distribution (1) as its invariant measure.

052112-6



SPATIALLY CORRELATED NOISE-DRIVEN SPIN SYSTEMS PHYSICAL REVIEW E 102, 052112 (2020)

B. Choosing a projection

Having established convergence of the MH dynamics, we
are left to show that the system of SDEs (22) has the Gibbs
distribution (1) as its invariant measure. This SDE is in the
form of (2) with the matrix B = PC

1/2
N being nonconstant. For

generic nonconstant B in (2), the Gibbs distribution (1) is no
longer an invariant measure, however in a few special cases it
is. For example, in the case of the white noise SDE (11) using
either σ i × dW i or −σ i × (σ i × dW i ), so that B = P1 or B =
P2, it is, as we show by direct computation in Appendix B 2.
However, when considering colored noise, only the projection

of the form σ i × (·) corresponding to B = P1C
1/2
N , and not

B = P2C
1/2
N , has (1) as an invariant measure, as we show by

direct computation in Appendix B 2. Unlike the white noise
case, since the colored noise matrix and projection matrix do
not commute, P1CN PT

1 �= P2CN PT
2 , and the two projections

of the noise into the tangent plane produce statistically dif-
ferent trajectories. We explore this idea further numerically
in Sec. V, showing that the cross-cross-projection samples
something further and further from the Gibbs distribution as
the noise becomes more correlated.

C. Convergence of the invariant measure

In this section, we justify a statement said earlier in Sec. IV
that the nonsymmetric terms in the MH proposal (20) appear
in higher orders of the proposal size ε. In particular, we show
that the invariant measure of the MH dynamics with colored
noise in the proposal and cross-product projection is close to
the desired invariant Gibbs distribution, converging to it in
the ε → 0 limit. We apply similar ideas to those of Ref. [36]
which consider invariant measures of numerical approxima-
tions of SDE solutions. We start with Dynkin’s formula over
one time step of the SDE, and then replace the integral over the
SDE solution with the MH solution, bounding the difference.
Summing over multiple time steps and noticing a telescoping
series, we show the long-time average over the MH solu-
tion converges to the average over the invariant measure of
the SDE, which is the Gibbs distribution. Therefore, as in
Ref. [36], we find that the difference between the invariant
measures is the same order of magnitude as the error between
the MH dynamics and the solution to the SDE (22) on a finite
time interval, given by (36).

Our goal is to show that the long-time average of a C∞ test
function ϕ

lim
n→∞

E

[

1

n

n−1
∑

k=0

ϕ(�σ k )

]

,

where �σ k is the kth MH step with the inaccurate accept rate
(10) and any projection to form νn

i in (20), converges to the
stationary average ϕ̄ with respect to the invariant measure μ

of the SDE (22) with corresponding projection,

ϕ̄ =
∫

ϕ(�σ )μ(�σ )d �σ . (37)

We build on the fact that the MH algorithm has a unique
stationary distribution, that is not the Gibbs distribution, and
that the SDE has a unique stationary measure μ because the
generator L of the SDE (22) is hypoelliptic; its second-order

term is
∑

i, j

(PCN PT )i j∂i∂ j = (PT D)T CN (PT D)−
∑

i, j

∂i(PCN PT )i j∂ j,

where D is the diagonal matrix with D̄ repeated three
times along the diagonal and the system of vector fields
(PT D)T CN (PT D) covers T (S2)N as in Ref. [15] and the sec-
ond term on the right hand side is first order. In the special
case that the cross-product projection matrix P1 in (14) is
used, then the SDE has the known invariant measure of the
Gibbs measure μ in (1). Our argument will therefore show
that the MH algorithm with cross-product projection samples
a distribution that converges to the Gibbs measure as the
proposal size ε → 0.

We start with Dynkin’s formula [37] for the SDE (22), with
generator L, over a time step δt ,

E[ψ (�s((k + 1)δt ))] − E[ψ (�s(kδt ))]

= E

[∫ (k+1)δt

kδt

Lψ (�s(t ))dt

]

. (38)

Consider that ψ solves a Poisson equation for C∞ test func-
tion ϕ,

Lψ = ϕ − ϕ̄, (39)

where the stationary average ϕ̄ is defined in (37). Using (39)
in the right-hand side of (38), we have that

E[ψ (�s((k + 1)δt ))] − E[ψ (�s(kδt ))]

= E

[∫ (k+1)δt

kδt

ϕ(�s(t ))dt

]

− ϕ̄δt . (40)

The integral term can be bounded by

∣

∣

∣

∣

E

[∫ (k+1)δt

kδt

ϕ(�s(t ))dt − ϕ(�s(kδt ))δt

]∣

∣

∣

∣

� cδt2 (41)

for some constant c independent of δt by Riemann sum ap-
proximations of integrals. From Theorem 1, the difference
between the SDE solution �s(kδt ) and the MH step �σ k is
bounded by

E[‖�σ k − �s(kδt )‖] � c3δt1/4,

and therefore for smooth test functions

|E[ϕ(�s(kδt ))] − E[ϕ(�σ k )]| � c4δt1/4. (42)

Using bounds (41) and then (42) we have that (40) can written
as

E[ψ (�s((k + 1)δt ))] − E[ψ (�s(kδt ))]

= E[ϕ(�σ k )]δt − ϕ̄δt + e1,

where |e1| � cδtδt1/4 for some constant c independent of δt .
Rearranging and dividing by δt we have that

E[ϕ(�σ k )] − ϕ̄ = 1

δt
E[ψ (�s((k + 1)δt )) − ψ (�s(kδt ))] + e2,

where |e2| � cδt1/4 for some constant c independent of
δt . Summing over n values of k and dividing by n we
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have that

1

n

n−1
∑

k=0

E[ϕ(�σ k )] − ϕ̄

= 1

nδt

n−1
∑

k=0

E[ψ (�s((k + 1)δt )) − ψ (�s(kδt ))] + e2, (43)

which has a telescoping sum on the right-hand side. By defin-
ing T = nδt the above is equivalent to

1

n

n−1
∑

k=0

E[ϕ(�σ k )] − ϕ̄ = 1

T
E[ψ (�s(T )) − ψ (�s(0))] + e2.

(44)

Recall that ψ is the unique solution to the Poisson equation
(39) therefore it is smooth because ϕ is smooth. Indeed,
the theory of hypoelliptic operators is precisely such that
Lu ∈ C∞ implies u ∈ C∞; see Ref. [38] or chap. XI of
Ref. [39]. Since we are operating on a compact space over-
all, ψ is thus bounded and the convergence result follows.
Thus, the 1/T term goes to zero as T → ∞ (n → ∞). We
therefore conclude that the MH long-time average converges
to the stationary average with respect to the SDE invariant
measure ϕ̄ as δt → 0 (ε → 0) with order δt1/4 and as n → ∞,
and the following convergence results holds:

Theorem 2. Define �σ n as the nth step of the MH dynamics
with colored noise proposal given in (20), either the cross- or
cross-cross-projection, accept rate given in (10), and let μ(�s)
be the invariant measure of the corresponding SDE (22) with
the same projection. Then

∣

∣

∣

∣

∣

1

n

n−1
∑

k=0

E[ϕ(�σ k )] −
∫

ϕ(�s)μ(�s)d�s
∣

∣

∣

∣

∣

�
c1

nδt
+ c2δt1/4

for time step δt = ε2β/2 and constants c1 and c2 independent
of n, and δt .

Remark 1. A nearly identical argument can be used to
show that the invariant measure for the SDE with the P2 pro-
jection will converge to that of the SDE with the P1 projection
as the colored noise converges to white noise, thus both SDEs
sample the Gibbs measure. In other words, as κ → 0 the
covariance matrix C → I in a uniform sense in our definition
of (19) as an operator on �2 (and hence smooth) functions
(S2)N .

D. A new nonlocal SPDE limit

In this section, we discuss the extension of the nonlocal
SPDE (5) to the case T

d → S
2 with d > 2 obtained by taking

the limit as N → ∞ (with β constant) of the SDE (22) and
remark briefly on properties of the corresponding solutions.
In particular, formally taking the limit of (22), we arrive at
a nonlocal stochastic version of the harmonic map heat flow
equation given by

dσ = {−σ × [Mκ (D)](σ × 	σ )}dt + σ

× {F−1[m(k)]−κ ◦ dW (k)}, (45)

where we let m(k) = 2πk if |k| �= 0, and m(k) = 1 for k =
0, F is the Fourier transform on T

d , Mκ (D) is the Fourier

multiplier such that

Mκ (D) f = F
−1[|m(k)|]−2κ

F f

and dW (k) are a set of independent standard Gaussian noises
for each corresponding Fourier mode in frequency space. Note
that many other forms of the covariance structure could easily

work here, such as m(k) = 〈k〉 =
√

1 + |2πk|2. Also note that
we can write

[(I − 	)−κ f ](x) =
∫

Kκ (x, y) f (y) dy

with the integral kernel given by

Kκ (x, y) = 1

(2π )d

∑

k∈Zd

∫

e−i2πk (x−y)〈k〉κ .

Then, if κ is chosen such that Mκ (D) is trace class
with a weight relating to the regularity required
(
∫

K (x, y) dx,
∫

K (x, y) dy < ∞ as well as integrals of
derivatives of K), we can use canonical results on stochastic
PDEs coupled with existence arguments for quasilinear heat
equations. We will follow somewhat the ideas in Refs. [2,40]
for stochastic PDEs with multiplicative noise (mostly in the
context of motivating the Itô formulation in the former and for
using energy estimates to handle degenerate SPDE models in
the latter). For the key energy estimates on the deterministic
piece, we cite the general theory of well-posedness for
quasilinear heat equations developed in Chap. 15 of Ref. [41].
For possible extensions to nontrace class covariance structure,
see the recent work of Ref. [5] where a renormalization is
proposed. It will be a topic of further work to explore the
place of our colored noise model within this context.

Using the regularity of the colored noise, we provide a
brief outline of existence for solutions to (45) in Appendix C.
However, as the results are fairly standard with sufficiently
regular noise, we proceed with a detailed numerical study of
convergence of the MH model and dynamics.

V. NUMERICAL RESULTS

In this section, we perform numerical simulations to sup-
port our convergence results and demonstrate the discussed
differences when using different projections. All the simula-
tions are from the one-dimensional periodic lattice T

1 to the
unit sphere S

2. The MH dynamics are simulated as explained
in Sec. IV. To numerically solve the SDE (21), written in the
Itô form, we use the stochastic Euler’s method combined with
a normalizing step to project the spins back onto the sphere
after each time step.

We start by showing a trajectory-wise comparison in
Fig. 1(a) of the MH dynamics and the SDE dynamics gen-
erated utilizing the same random noise for the proposal in the
MH as the diffusion term in the SDE. Each spin is plotted
on the same sphere, with lines connecting nearest neighbors.
Figures 1(b) and 1(c) show the strong order of convergence
for the error between the MH algorithm and the SDE (22)
with respect to the time step size δt , for which the equivalent
MH proposal size is ε = √

2δt/β. The error is calculated at
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FIG. 1. (a) Dynamics of MH algorithm and SDE (22) at the indicated values of time, t (recall the relationship between SDE time step and

MH proposal size: δt = 2βε2). Parameters: number of spins N = 32, inverse temperature β = 10, order of eigenvalues κ = 1, time step size

δt = 10−5. (b) Strong order of convergence with respect to time step size for the error between the MH algorithm and SDE (22), both using the

cross-projection matrix (14). The solid black line with slope 1/2 indicates the order is approximately that given in Theorem 1. (c) The same as

(b) but using the cross-cross-projection matrix (15). (b) and (c) parameters: N = 16, β = 5, error calculated at time T = 0.05, and averaged

over 400 simulations.

fixed time T as

E

[

1

N

N
∑

i=1

∥

∥σn
i − si(nδt )

∥

∥

2

]

, (46)

where the expectation is taken over multiple realizations. The
numerical convergence order is approximately 1

2
, supporting

Theorem 1 as a tight bound on the error regardless of choosing
the cross-projection matrix (14) or the cross-cross-projection
matrix (15).

Next we show the effect of the different projection matrices
on the invariant measure of the SDE system (22). Since the
desired invariant measure is high-dimensional, we instead plot
the empirical cumulative distribution function (cdf) of the
energy over time. Figure 2(a) shows that for the case of white
noise, κ = 0, utilizing either the cross-projection matrix (14)
or the cross-cross-projection matrix (15) results in indistin-
guishable invariant distributions of the energy; both versions
have the Gibbs distribution as an invariant measure. However,
when coloring the noise by increasing κ , it is only the cross-
projection matrix (14) that maintains an energy distribution
indistinguishable from the white noise case. Figure 2(b) sup-
ports that the color noise SDE (22) with the cross-projection
matrix (14) is ergodic with respect to the correct Gibbs dis-
tribution, despite being the limit of our incorrect MH scheme
in Sec. IV. Figure 2(c) shows that the SDE system with the
cross-cross-projection matrix (15) has lower energy on av-
erage as the correlations in the colored noise increase with
increasing κ .

To further illuminate this interaction of the projection ma-
trix and the correlated noise, we look how each term in the
SDE effects the energy of system when in equilibrium. The

energy, H given by (9), evolves according to the Itô SDE

dH = 1

N

N
∑

i=1

N2(si+1 − si ) · (dsi+1 − dsi )

+ Nβ−1Tr
(

C
1/2
N PT APC

1/2
N

)

dt, (47)

where A is the tridiagonal matrix with 2 on the diagonal
and −1 on the sub- and superdiagonals (taking into account
periodicity), dsi is given by (21), and sN+1 = s1. Note that
since Tr(XY ) = Tr(Y X ) for two n × n matrices X and Y , the
trace term

Tr
(

PC
1/2
N C

1/2
N PT A

)

= Tr(PPT CN A)

= Tr(PPT φD̄2φT A) = Tr(PPT φφT D̄2A)

= Tr(PD̄2A) = 4N

N
∑

i=1

λ2
i

is a constant independent of the choice of projection matrix.
We therefore ignore this term and proceed to decompose dsi

given by (21) over one δt time step of numerical integration
as

sn+1
i − sn

i = pn
i δt − 2β−1 Tr(C̄N )

N
sn

i δt + qn
i

√
δt, (48)

where we define

�p n = P
1

N
CN PT 	N�s n and �q n = PC

1/2
N �w n

as well as take sn
N+1 = sn

1, pn
N+1 = pn

1, and qn
N+1 = qn

1 for the
periodic boundary conditions. The trace term in (48) is also of
a form independent of the choice of projection matrix. There-
fore, to illuminate the interaction of the projection matrix and
the correlated noise we consider only the contributions to (47),
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FIG. 2. (a) Energy distribution in equilibrium for the indicated

values of β when “white noise” κ = 0 is used. The solid lines are

for the cross-product projection, the yellow dashed lines are for the

cross-cross-product projection. They agree entirely; Gibbs is being

sampled in all cases. (b) For the cross-product, at the indicated values

of κ , the same distribution is being sampled at each of the three

values of β = 5, 10, and 20. (c) For the cross-cross-product, different

distributions are being sampled for different values of κ , consistent

with Gibbs not being the invariant measure of the SDE when κ �= 0.

Parameters: N = 16, δt = 10−4, and 105 different time points.

the change in energy, given by the �p n and �q n terms over each
time step of the numerical integration of the SDE, calculated
as

δHn
drift =

N
∑

i=1

(

sn
i+1 − sn

i

)

·
(

pn
i+1 − pn

i

)

δt (49)

and

δHn
noise = N

√

2

β

N
∑

i=1

(

sn
i+1 − sn

i

)

·
(

qn
i+1 − qn

i

)
√

δt . (50)

In Fig. 3 we plot the distribution of δHn
drift and δHn

noise

for both the P1 (cross-product) and P2 (cross-cross-product)
projections over the course of one simulation using each
of the indicated values of κ to form C̄N . We see that as
κ increases, the differences between these distributions in-
creases, consistent with Fig. 2(c) showing more deviation
from the Gibbs distribution with increasing κ . This difference
is more pronounced in the deterministic drift contribution to
the energy, δHn

drift, than the diffusion contribution, δHn
noise. It

suggests the random-walk nature of the dynamics remains
relatively unaffected by the choice of projection, while the
cross-cross-projection produces long tails to lower values of
δHn

drift possibly explaining the shift in average energy to lower
energies seen in Fig. 2(c).

In Fig. 4 we verify convergence of the SDE system to the
SPDE (5). First, in Fig. 4(a), for just the deterministic drift
part of this system, we show convergence of the finite differ-
ence ODE approximation of the nonlocal PDE (β−1 = 0). We
compute the error at fixed time T between each coarser scale,
N = Nc, with the finest scale, N = N f , as

1

Nc

Nc
∑

i=1

∥

∥

∥

∥

sCoarse
i (T ) − sFine

1+(i−1)
N f

Nc

(T )

∥

∥

∥

∥

2

. (51)

Then, in Fig. 4(b) we shown the strong convergence of the
SDE, taking the expectation of the above error over realiza-
tions. Note the convergence rate even for the white noise case
of κ = 0, which is not guaranteed if more than one spatial
dimension of this SPDE was considered due to the potential
breakdown of regularity of the deterministic solution in that
case. The deterministic convergence of order 4 is twice that of
the noisy system, which is approximately order 2.

Last, we look at some of the behavior of the new nonlo-
cal (deterministic) PDE. In Fig. 5(a) we show the evolution
toward equilibrium of the spins for different values of κ

highlighting the different time scales. By considering the co-
variance operator as a fractional Laplacian, acting similarly
to the harmonic map heat flow equation, we conjecture the
time rescaling being related to the diffusion time scaling of
the underlying nonlocal heat equation

ut = Mκ (D)	u,

which decays to its equilibrium on the timescale e−λ
2(1−κ )
1 for

λ1 the first nontrivial eigenvalue of the Laplacian on T
d .

The nonlocal form of the operator we consider here does not
immediately present a leading order linear operator of this
form as occurs in the cross-cross-projection, however we will
see that this timescale still arises in Fig. 5. Figures 5(c) and
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FIG. 3. Comparison of the effect on the energy for the cross- and the cross-cross-projection matrix in SDE (22). (a) The empirical histogram

of δH n
drift from (49) taken at each time point of one simulation of the SDE in equilibrium for the indicated value of κ . (b) Same as (a) but for

δHn
noise from (50). Parameters: N = 16, δt = 10−4, β = 10, and 105 different time points.

5(d) also show the effect of this time rescaling when looking
at the evolution of the energy of the system.

VI. CONCLUSIONS AND DISCUSSION

We establish here a new stochastic partial differential
equation as the limit of a set of sampling algorithms where
the proposal is taken with spatially correlated colored noise,
thereby deriving a mesoscopic model of fluctuations for spin
systems in a principled way. The geometric nature of our
system means that the nonlocal form of the drift arises in a
manner that we have not seen before in the literature. In order
to ensure that the system samples the desired Gibbs measure,
we have to be careful with the manner by which we project
the noise into the geometric setting. Specifically, we show
using a cross-product projection samples the Gibbs measure
while a cross-cross-product projection samples an invariant
measure that is shifted to lower energy than the Gibbs mea-
sure. This shift increases as the correlation length scale of
the noise is increased, and is shown numerically to be related
to the deterministic effect on the energy of the system rather
than fluctuations in the energy. In addition to finding conver-
gence rates, numerical simulations are also used to show that
the nonlocal drift term of the new SPDE exhibits the same
timescales for relaxation to equilibrium as a fractional Lapla-
cian, thereby acting similarly to the harmonic map heat flow
equation. Future work will involve considering other geome-
tries beyond the sphere, performing a more careful analysis of
the resulting SDE and SPDE systems following for instance

the recent developments on geometric renormalization tools
in Ref. [5].
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APPENDIX A: CONVERGENCE PROOF OF MH TO SDE

This Appendix compliments Sec. IV A, containing the de-
tails of the derivation and proof of Theorem 1. In Sec. A 1
we derive the expansion of the mean drift of one MH step,
(30), and bound the remainder terms. In Sec. A 2 we bound
the error of the diffusion approximation of one MH step, (31).
Then in Sec. A 3 we argue the existence and uniqueness of the
solution to SDE (22) and complete the proof of Theorem 1
giving the ideas for bounding the error between the MH and
SDE dynamics. Throughout this Appendix we use c or c(·)
to indicate a positive constant, potentially different constant
every time the symbol is used, independent of the parameters
we are bounding quantities in, either ε or δt . The functional
representation c(·) indicates precisely which model parame-
ters the constant is dependent on.
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FIG. 4. (a) Convergence plot for the deterministic finite dif-

ference approximation of the nonlocal PDE (22) with β−1 = 0.

(b) Convergence plot for the stochastic finite difference approxi-

mation of the nonlocal SPDE (22) with β = 5, averaged over 100

simulations. In both panels, dynamics are simulated until T = 0.125

with δt = 1
2
δx2.

1. Expectation of one MH step

In this section, we calculate the leading order in ε terms
of the expectation of one MH step, Eq. (30), and bound the
expectation of the error of each expansion and approximation
we utilize. The leading terms which determine the dynamics
are of size ε2 while the mean-squared error is bounded by
the next order terms of size ε6. For brevity, throughout this
section we drop the superscript n on all terms. The first error
term, denoted �r1 and defined coordinatewise as (r1)i ∈ R

3, i =
1, . . . , N , arises from utilizing the expansion (24) of the MH
proposal as

(r1)i = En

[

d i

(

1 ∧ e−β[H ( �̃σ )−H (�σ )]
)]

, (A1)

where

d i ≡ σ̃ i −
(

σ i + ενi − ε2

2
‖νi‖2σ i

)

(A2)

is the difference between the true proposal and its approx-
imation. Other error terms will come from computing the
expectations of the two terms of the expansion of the proposal.
Namely, by writing

En

[

(σ̃ i − σ i )
(

1 ∧ e−β[H ( �̃σ )−H (�σ )]
)]

= En

[

ενi

(

1 ∧ e−β[H ( �̃σ )−H (�σ )]
)]

− En

[

1
2
ε2‖νi‖2σ i

(

1 ∧ e−β[H ( �̃σ )−H (�σ )]
)]

+ (r1)i, (A3)

we now can move to defining the error term denoted �r2, which
bounds the difference of the expectations of the νi term above
when using the actual difference in the Hamiltonians of the
proposal and current step verses its leading order approxima-
tion (25). Namely, we have

�r2 = En

[

εPC
1/2
N �w

(

1 ∧ e−β[H ( �̃σ )−H (σ )]
)]

−En

[

εPC
1/2
N �w

(

1 ∧ e−βε(PC
1/2
N �w)T

∇H
)]

. (A4)

This error term �r2 is bound in Sec. A 1 b. We further bound the
error of the approximation (27) in the main text by bounding
the term denoted by �r3

En

[

εPC
1/2
N �w(1 ∧ e−βδH )

]

= − 1
2
ε2βPCN PT

∇H + �r3 (A5)

to be specifically defined later but that results from approxi-
mations applying Lemma 1. A similar bound on the second,
order ε2, term in (A3) is handled in Sec. A 1 c, defining

(r4)i ≡ En

[

− 1
2
ε2‖νi‖2σ i

(

1 ∧ e−β[H ( �̃σ )−H (�σ )]
)]

−En

[

− 1
2
ε2‖νi‖2σ i

]

. (A6)

We also show in Sec. A 1 c that this term is the Itô correction
term to the drift between the Stratonovich and Itô representa-
tions of the SDE, Eqs. (22) and (29), respectively.

Combining the to be presented error bounds in Eqs. (A11),
(A16), (A25), and (A28) below, we arrive at the global bound
of Eq. (30), namely, by defining

En

[

(σ̃ n − σ n)
(

1 ∧ e−β[H (σ̃ n )−H (σ n )]
)]

= −1

2
βε2PCN PT ∇H − ε2 1

N
Tr(C̄N )σ +

4
∑

k=1

�rk,

the error is bounded by

E

[

∥

∥

∥

∥

4
∑

k=1

�rk

∥

∥

∥

∥

2
]

� cN13β6[Tr(CN )]3ε6, (A7)

where we will repeatedly use the very crude bound

‖∇H‖ � N2

from (34).
Remark 2. Intuitively the term ∇H should have a better

bound in some probability sense, but the current bound might
be the best we could hope for so far since we are not able to
specify a probability distribution for H with the wrong MH
step setting.

a. Bounding the proposal expansion remainder

In this section we bound the error of the remainder terms,
(r1)i, defined in (A1).
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FIG. 5. (a) Dynamics of the nonlocal PDE [Eq. (5) with β−1 = 0] at the indicated values of time, t , with original timescale and (b) with

rescaled time t̃ = (2π )2κt for κ ∈ {0, 0.5, 1, 1.5}. (c) Evolution of the energy with the original timescale and (d) with rescaled time. Legend

applies to all panels. Parameters: number of spins N = 32, original time step size δt = 10−5.

We begin by bounding d i in (A2) by first bounding the size

of the tangent vector �ν = PC
1/2
N �w. Since the projection matrix

P acts either as the cross-product, or the cross-cross-product,
the magnitude ‖Px‖ is smaller than ‖x‖ for each single spin
vector, and we have that

‖�ν‖2 =
∥

∥PC
1/2
N �w

∥

∥

2
�
∥

∥C
1/2
N �w

∥

∥

2 = ( �w)T CN �w. (A8)

The expectation of ( �w)T CN �w is equivalent to the expectation
of N

∑

q∈{x,y,z}(wq)T D̄2wq with the way we have defined C̄N

in (19). Since each component of w is independent and iden-
tically distributed,

E

[

∑

q∈{x,y,z}
(wq)T D̄2wq

]

= E

[

3

N
∑

i=1

λ2
i w

2
ix

]

.

Bounding the expectation of ‖�ν‖2k for any positive integer
k, we have that

E[‖�ν‖2k] � E

⎡

⎣

(

3N

N
∑

i=1

λ2
i w

2
i,x

)k
⎤

⎦

= E

[

N
∑

i=1

Nk3kλ2k
i w

2k
i,x + cross-terms with w

2l
i,xw

2(k−l )
j,x

]

� E
[

w
2k
i,x

]

(

3N

N
∑

i=1

λ2
i

)k

= [(2k − 1)!!]

(

3N

N
∑

i=1

λ2
i

)k

since E[w2l
i,xw

2(k−l )
j,x ] = (2l − 1)!!(2k − 2l − 1)!! � E[w2k

i,x]
= (2k − 1)!!. Therefore

E[‖�ν‖2k] � [(2k − 1)!!]

(

3

N
∑

i=1

Nλ2
i

)k

� c[Tr(C̄N )]
k
. (A9)

Now d i can be bounded as a function of νi and the re-
mainder from the Taylor expansion of f (x) = (1 + x)−1/2 =
1 − x

2
+ 3

8
(1 + ξ )−5/2x2 for some ξ ∈ [0,∞). Writing

(

1 + ε2
∥

∥νn
i

∥

∥

2)−1/2 = 1 − ε2

2

∥

∥νn
i

∥

∥

2 + ηn
i

we see that

∥

∥ηn
i

∥

∥ �
3
8
ε4
∥

∥νn
i

∥

∥

4

and

dn
i = −ε3

2

∥

∥νn
i

∥

∥

2
νn

i +
(

σ n
i + ενn

i

)

ηn
i . (A10)

We bound

N
∑

i=1

E[‖d i‖2k] �

N
∑

i=1

4k
E

[

∥

∥

∥

∥

−ε3

2
‖νi‖2νi

∥

∥

∥

∥

2k
]

+ 4k
E
[

‖
(

σ i + ενn
i

)

ηi

∥

∥

2k]

,

then bound the first term

N
∑

i=1

4k
E

[

∥

∥

∥

∥

−ε3

2
‖νi‖2νi

∥

∥

∥

∥

2k
]

�

N
∑

i=1

ε6k
E[‖νi‖6k]
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and the second term

4k
E
[∥

∥

(

σ i + ενn
i

)

ηi

∥

∥

2k]

� 4k (E[‖σ i + ενi‖4k])1/2{E[(ηi )
4k]}1/2

to see that

N
∑

i=1

E[‖d i‖2k] �

N
∑

i=1

ε6kE [‖νi‖6k]

+ 4k (E[4k + 4kε4k‖νi‖4k])1/2

×
{(

3

8

)4k

ε16k
E[‖νi‖16k]

}1/2

� c(k)[Tr(CN )]3kε6k .

Together with the fact that (1 ∧ e−β[H ( �̃σ )−H (σ )]) � 1 we
have that

E[‖�r1‖2] �

N
∑

i=1

E[‖d i‖2] � cN[Tr(CN )]3ε6. (A11)

b. The drift term

Here we bound �r2 defined in (A4), bounding the error of
approximating the change in the Hamiltonian between the
current step and the proposal as in Eq. (25). This further
allows us to establish the leading order approximation (26).
We bound the errors �r3 and �r4

We start with the approximation (25), a combination of a
Taylor expansion in ε and the approximation of �̃σ ≈ �σ + ε�ν,
the error of which is

g ≡
N
∑

i=1

∂H

∂σ i

· f i + N

N
∑

i=1

(σ̃ i − σ i ) · (σ̃ i − σ i )

−1

2
N

N
∑

i=1

(σ̃ i − σ i ) · (σ̃ i+1 − σ i+1 + σ̃ i−1 − σ i−1),

(A12)

where the error f i is from the first-order Taylor expansion of
the proposal,

f i ≡ σ̃ i − (σ i + ενi ). (A13)

To bound f i, note that f i = d i − ε2

2
‖νi‖2σ i, and therefore for

positive integer k,

N
∑

i=1

E[‖ f i‖2k]

�

N
∑

i=1

4k

{

(

ε2

2

)2k

E[‖νi‖4k] + E[‖d i‖2k]

}

� c(k)
{

[Tr(CN )]2kε4k + [Tr(CN )]3kε6k
}

� c(k)[Tr(CN )]2kε4k . (A14)

With the bound (A14), we proceed to bound g in (A12) by
bounding its three summations,

E[|g|4]

� c

⎧

⎨

⎩

E

⎡

⎣

∣

∣

∣

∣

∣

N
∑

i=1

∂H

∂σ i

· f i

∣

∣

∣

∣

∣

4
⎤

⎦

+ E

⎡

⎣

∣

∣

∣

∣

∣

N

2

N
∑

i=1

(σ̃ i−σ i ) · (σ̃ i+1−σ i+1+σ̃ i−1−σ i−1)

∣

∣

∣

∣

∣

4
⎤

⎦

+E

⎡

⎣

∣

∣

∣

∣

∣

N

N
∑

i=1

(σ̃ i − σ i ) · (σ̃ i − σ i )

∣

∣

∣

∣

∣

4
⎤

⎦

⎫

⎬

⎭

� c(k, N )N8

N
∑

i

(E[‖ f i‖4] + E[‖σ̃ i − σ i‖8]).

We then conclude that

E[|g|4] � cN9ε8{2[Tr(CN )]4 + ε8[Tr(CN )]8}. (A15)

Together with the fact that 1 ∧ x is 1-Lipschitz, we can now
bound the remainder �r2 appearing in (A4) as

E[‖�r2‖2] � E
[∥

∥εPC
1/2
N �wg

∥

∥

2]

� ε2
{

E
[∥

∥PC
1/2
N �w

∥

∥

4]}1/2{E[‖g‖4]}1/2

� cε2Tr(C̄N )N9/2ε4[Tr(C̄N )]2. (A16)

We now proceed to compute the leading order term of

En[ε�ν(1 ∧ e−βδH )] = εPC
1/2
N En[ �w(1 ∧ e−βδH )].

Specifically, we derive the approximation (26) and bound the
error of each approximation used. The calculation utilizes
Lemma 2.4 in Ref. [20] as stated in Lemma 1.

For each component of the noise wi,q with i = 1, . . . , N

and q ∈ {x, y, z}, we compute the expectation in two steps,

En[wi,q(1 ∧ e−βδH )] = En[En[wi,q(1 ∧ e−βδH )| �w\wi,q]],

first taking the expectation over wi,q using the above lemma,
then over the remainder of the components of �w. To apply
Lemma 1 for the first expectation, take

a = ai,q = −βε
(

(∇H )T PC
1/2
N

)

i,q
,

(A17)

b = bi,q = −βε
(

PC
1/2
N �w

)T
∇H − ai,qwi,q,

leaving the need to calculate the error denoted

�r3 = εPC
1
2

N
�̃r3 (A18)

with

(r̃3)i,q = ai,qEn

[

e
a2

i,q

2
+bi,q�

(

− bi,q

|ai,q|
− |ai,q|

)]

. (A19)

We approximate

e
a2

i,q

2
+bi,q ≈ 1 (A20)
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and bound the error of this approximation,

(r̃3,1)i,q ≡ En

[(

e
a2

i,q

2
+bi,q − 1

)

�

(

− bi,q

|ai,q|
− |ai,q|

)]

,

(A21)

next.
To bound (r̃3,1)i,q, we use that for z ∼ N (μ, ς2),

E[|ez − 1|k]=E[|ez − 1|k1(z � 2)]+E[|ez − 1|k1(z > 2)],

(A22)

where the indicator function 1 return one if the statement is
true and zero otherwise. To bound the first term in (A22), since
|ez − 1| � e2z for z � 2, we have that

E[|ez − 1|k1(z � 2)|] � e2k
E[zk].

To bound the second term in (A22), we note that |ez − 1|k �

ekz when z > 2, and if 2 + μ + kς2 � 1 then we have that

E[ekz
1(z > 2)] =

∫ ∞

2

1
√

2πς2
ekze

− (z−μ)2

2ς2 dz

= ekμ+ k2ς2

2

∫ ∞

2+μ+kς2

1
√

2πς2
e
− x2

2ς2 dx

under the change of variables x = z − μ − kς2. This
Gaussian integral is bounded by the exponential integral as

∫ ∞

2+μ+kς2

e
− x2

2ς2 dx �

∫ ∞

2+μ+kς2

e
− x

2ς2 dx = 2ς2e
− 2+μ+kς2

2ς2

and e−(2+μ+kς2 )/2ς2

� e−1/2ς2

. Therefore, we arrive at the
bound

E[ekz
1(z > 2)] � ekμ+ k2ς2

2

√

2

π
ςe

− 1

2ς2 .

Notice that
a2

i,q

2
+ bi,q ∼ N (g1ε

2, g2ε
2), where

g1 = 1
2
β2
[

(∇H )T PC
1/2
N

]2

i,q

g2 = (∇H )T PCN PT
∇H − a2

i,q.

Therefore the condition 2 + μ + kς2 = 2 + g1ε
2 + kg2ε

2 �

1 is met when we take ε small enough, and applying the above
derived bounds for the two terms in (A22), noting that for k =
2, E[zk] = μ2 + ς2, we arrive at

E

[

(

e
a2

i,q

2
+bi,q − 1

)2
]

� e8g2ε
2 +

√

2g2

π
εe

− 1

2g2ε2

� cε2(∇H )T PCN PT
∇H

as the term e
− 1

2g2ε2 decays faster than any polynomial of ε as
ε → 0. The bound

|(r̃3,1)i,q|2 � cε2(∇H )T PCN PT
∇H (A23)

follows.

We return to bounding (A19) using approximation (A20)
and consider

En

[

�

(

− bi,q

|ai,q|
− |ai,q|

)]

.

Since both ai,q and bi,q are both proportional to ε, the ratio
bi,q/|ai,q| is large relative to |ai,q| and we approximate

En

[

�

(

− bi,q

|ai,q|
− |ai,q|

)]

≈ En

[

�

(

− bi,q

|ai,q|

)]

.

We bound the error of this approximation,

(r̃3,2)i,q = En

[

�

(

− bi,q

|ai,q|
− |ai,q|

)]

− En

[

�

(

− bi,q

|ai,q|

)]

by noting that
∣

∣

∣

∣

�

(

− bi,q

|ai,q|
− |ai,q|

)

− �

(

− bi,q

|ai,q|

)∣

∣

∣

∣

�
1√
2π

|ai,q|,

therefore

|(r̃3,2)i,q|2 � cβ2ε2. (A24)

We calculate

En

[

�

(

− bi,q

|ai,q|

)]

= 1

2

by noting that for z ∼ N (0, ς2),

E[�(z)] = E

[(

�(z) − 1

2

)

+ 1

2

]

= 1

2
.

Retracing our steps, we see that

E
[

wi,q

(

1 ∧ e−β[H ( �̃σ )−H (�σ )]
)]

≈ ai,q

2

and (26) follows.
Thus, �r3, the error of the approximation in (26), is bounded

as

En

[

εPC
1/2
N w

(

1 ∧ e−βε(PC
1/2
N w)T

∇H
)]

−
(

− ε2 β

2
PCN PT

∇H

)

,

then

En[‖�r3‖2] � cNε6β6Tr(CN )(‖∇H‖4 + ‖∇H‖6) (A25)

so that its components involve ai,q, a term of size ε, times the
error accumulated in the approximations bounded by (r̃3,1)i,q

in (A23) and (r̃3,2)i,q in (A24).

c. The Itô correction term

Here we consider the approximation

En

[

1
2
ε2‖νi‖2σ i

(

1 ∧ e−β[H ( �̃σ )−H (�σ )]
)]

≈ En

[

1
2
ε2‖νi‖2σ i

]

of the second term on the right-hand side of Eq. (A3), bound-
ing the error term given in (A6). This includes computing the
right-hand side of (29) and showing that it corresponds to the
Itô correction of the Stratonovich SDE (22).

First we approximate H ( �̃σ ) − H (�σ ) by δH given in (25)
and then compute

En

[

−1

2
ε2‖νi‖2σ i(1 ∧ e−βδH

)

]

≈ En

[

−1

2
ε2‖νi‖2σ i

]

,

(A26)
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finding it has the same value regardless if the cross-product
projection or the cross-cross-product projection is used to
obtain νi. With ui,q defined in (28), consider the cross-product
projection, νi = σ i × ui, then

En

[

− 1
2
ε2‖νi‖2σ i

]

= − 1
2
ε2

En[(σi,zui,y)2 + (σi,yui,z )2 + (σi,xui,z )2

+ (σi,zui,x )2 + (σi,yui,x )2 + (σi,xui,y )2]σ i,

where we have used that ui,x, ui,y, and ui,z are independent and
mean zero. For the expectation of one (ui,q )2 we have that

En[(ui,q )2] =
N
∑

j=1

En

[

λ2
jφ

2
ji(w j,q)2

]

=
N
∑

j=1

λ2
jφ

2
ji,

where we have used that the w j,x,w j,y, and w j,z are indepen-
dent and mean zero for each j = 1, . . . , N . Together,

En

[

−1

2
ε2‖νi‖2σ i

]

= −ε2

N
∑

j=1

λ2
jφ

2
jiσ i, (A27)

where we have used the identity σ 2
i,x + σ 2

i,y + σ 2
i,z = 1.

Now consider the cross-cross-product projection νi =
−σ i × (σ i × ui ). Note that

‖νi‖2 = ‖ − σ i × (σ i × ui )‖2 = ‖σ i × ui‖2

under the assumption that ‖σ i‖2 = 1. Therefore, for νi =
−σ i × (σ i × ui ) Eq. (A27) also holds.

Returning to (A6), we bound the error by

E[‖(r4)i‖2] �

{

E

[(

−1

2
ε2‖νi‖2σ i

)4]}1/2

{E[(−βδH )4]}1/2

� cε6{E[‖νi‖8]}1/2[(∇H )T PCN P∇H]2.

Bounding the magnitude of this vector, we have that

E[‖�r4‖2] � cε6Tr(C̄N )[(∇H )T PCN P∇H]2 (A28)

regardless of the block projection matrix used, P.
Last, we will calculate the Itô correction for (22) and

show it is equivalent to the right-hand side of (29). For the
Stratonovich SDE of the form dXt = μ(t, Xt )dt + B(t, Xt ) ◦
dWt , the corresponding Itô SDE is [37]

dXt = μ̃(t, Xt )dt + B(t, Xt )dWt ,

where

μ̃i(t, x) = μi(t, x) + 1

2

∑

j

∑

k

∂Bi j

∂xk

Bk j .

Ignoring the constant coefficient
√

2/β for now, the
Stratonovich SDE for a single spin taken from (22) can be
written as

dσi,x = μi,xdt + σi,ydUi,z − σi,zdUiz,

dσi,z = μi,zdt + σi,xdUi,y − σi,ydUix,
(A29)

where dUi,q = ∑N
j=1 λ jφ jidWj,q for q ∈ {x, y, z}. Consider

first σi,x

Bix, jx = 0, Bix, jy = −σi,zλ jφ ji, Bix, jz = σi,yλ jφ ji.

Since Bix, jx = 0, all the partial derivatives in the Itô correction

are zero. For Bix, jy, only
∂Bix, jy

∂σi,z
= −λ jφ ji �= 0 and the corre-

sponding Biz, jy are σi,xλ jφ ji. Therefore, we have that

N
∑

j=1

∂Bix, jy

∂σ z
i

Biz, jy = −
N
∑

j=1

λ2
jφ

2
jiσi,x.

Similarly, for Bix, jz, only
∂Bix, jz

∂σi,y
= λ jφ ji �= 0 and the corre-

sponding Biy, jz = −σi,xλ jφ ji. Therefore, we have that

N
∑

j=1

∂Bix, jz

∂σi,y

Biy, jz = −
N
∑

j=1

λ2
jφ

2
jiσi,x.

The above is for the cross-product. For the cross-cross-
product,

Bix, jx =
(

1 − σ 2
ix

)

λ jφ ji,

Bix, jy = −σixσiyλ jφ ji,

Bix, jz = −σix,izλ jφ ji,

and Biy, jq, Biz, jq follow similarly. For σix,

∂Bix, jx

∂σix

Bix, jx = −2σix

(

1 − σ 2
ix

)

λ2
jφ

2
ji,

∂Bix, jy

∂σix

Bix, jy = −σiy(−σixσiy)λ2
jφ

2
ji,

∂Bix, jy

∂σiy

Biy, jy = −σix

(

1 − σ 2
iy

)

λ2
jφ

2
ji,

∂Bix, jz

∂σix

Bix, jz = −σiz(−σixσiz )λ2
jφ

2
ji,

∂Bix, jz

∂σiz

Biz, jz = −σix

(

1 − σ 2
iz

)

λ2
jφ

2
ji.

Summing the above, we have for σix the Itô correction is

1

2

∑

j

λ2
jφ

2
ji(−σix )

×
[

2
(

1 − σ 2
ix

)

+
(

1 − σ 2
iy

)

+
(

1 − σ 2
iz

)

− σ 2
iy − σ 2

iz

]

= −
∑

j

λ2
jφ

2
jiσix.

The above shows that the Itô form of the SDE has drift
coefficient

μ̃ix = μix −
N
∑

j=1

λ2
jφ

2
jiσi,x. (A30)

The calculations for μ̃i,y and μ̃i,z follow similarly.

With
∑N

j=1 λ2
jφ

2
ji = 1

N
Tr(C̄N ) for each i, and adding in the

coefficient
√

2/β, the Itô drift for the equivalent equation to
(22) is

μ̃ = μ − 2

β

1

N
Tr(C̄N )�σ . (A31)

Recall the time change to arrive at the SDE, δt = βε2/2, with
which we see that the above addition to the drift is equivalent
to the calculated term in (A27).
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2. The diffusion of one MH step

In this section, we bound the error of approximating the
diffusion part of one step of the MH algorithm as in Eq. (31),

ζn
i ≡ σn+1

i − σn
i − En

[

σn+1
i − σn

i

]

− ενn
i . (A32)

This random variable ζn
i takes the values

ζn
i =

{

f i − En

[

σn+1
i − σn

i

]

with prob. ᾱ

−En

[

σn+1
i − σn

i

]

− ενn
i with prob. 1 − ᾱ

,

where ᾱ = 1 ∧ e−βδH , f i is defined in Eq. (A13) and δH is
given in Eq. (25). This error can be bounded by

E[‖ζn
i ‖2] = E

[∥

∥ f n
i − En

[

σn+1
i − σn

i

]∥

∥(1 ∧ e−βδH )
]

+ E
[∥

∥En

[

σn+1
i − σn

i

]

− ενn
i

∥

∥

2
[1 − (1 ∧ e−βδH )]

]

� E
[∥

∥ f n
i

∥

∥

2]+
{

E
[(

En

[

σn+1
i − σn

i

]

− ενn
i

)4]}1/2

{E[(−βδH )2]}1/2
� cε3. (A33)

The covariance of the error at different time steps n > m when
is

E
[

ζ n
i,pζ

m
i,q

]

= E
[

En

[

ζ n
i,pζ

m
i,q

]]

= E
[

ζ m
i,pEn

[

ζ n
i,q

]]

= E
[

ζ m
i,p · 0

]

= 0 (A34)

for any i = 1, . . . , N and p, q ∈ {x, y, z}.

3. Completion of the proof

The Itô SDE (21) has a unique solution before proceed-
ing in the next section to bound the error between the MH
dynamics and this unique SDE solution. We apply Theorem
5.2.1 in Ref. [37] for an (Itô) SDE of the form dx = μ(x)dt +
B(x)dW by showing the SDE coefficients

μ(x) = 1

N
PxCN PT

x 	N x − 2β−1 1

N
Tr(C̄N )x,

B(x) =
√

2

β
PxC

1/2
N (A35)

are Lipschitz continuous, which is a relatively straightforward
calculation. There is an analogous argument in Sec. 3 of
Ref. [9].

Following further the convergence results in Sec. 3 of
Ref. [9], we can complete the proof of Theorem 1. The proof
is similar to the proof of the stochastic Euler method. We will
first prove a bound for the strong error

ẽ(t ) = E[‖�s(t ) − �σ (t )‖2] (A36)

at a fixed time t , where �σ (t ) is the piecewise constant interpo-
lation of the MH dynamics and �s(t ) is the solution to the SDE
(21). Then ẽ(t ) and Doob’s martingale inequality are used to
obtain a uniform bound on

e(t ) = E
[

sup
0�τ�t

‖�s(τ ) − �σ (τ )‖2
]

. (A37)

One must use the Itô isometry and Hölder’s inequality to
prove the following Grönwall inequality:

ẽ(t ) � (c1t + c2)

∫ t

0

e(τ )dτ + c3

√
δt, (A38)

where c1, c2, c3 are functions of J, N, β, Tr(CN ), and this
gives the bound

ẽ(t ) � c3

√
δtec1t+c2 . (A39)

For a fixed t , take n = � t
δt

�, then

�s(t ) − �σ (t ) =
∫ nδt

0

{μ[�s(τ )] − μ[�σ (τ )]}dτ

+
∫ nδt

0

{B[�s(τ )] − B[�σ (τ )]}dWτ

+
∫ t

nδt

μ[�s(τ )]dτ

+
∫ t

nδt

B[�s(τ )] dWτ +
n
∑

k=1

�r k +
n
∑

k=1

�ζ k,

(A40)

where the drift and diffusion coefficients, μ(x) and B(x) are
given in (A35) and the errors �r and �ζ are bounded in (A7)
and (A33). The remaining details are almost identical to those
in [9], Section 3.4 and we refer the reader there for further
details.

APPENDIX B: INVARIANCE OF THE GIBBS

DISTRIBUTION

In this Appendix, we present some direct calculations
showing the invariance of the Gibbs distribution. In Sec. B 1,
we present the well-known case of SDE (2) with additive
noise. In Sec. B 2, we present the cases of the spin-system
SDE (13) with white multiplicative noise using either the
σ × · or the −σ × (σ × ·) projection, as well as the case of
the SDE (22) with colored multiplicative noise, for which
only the σ× projection results in the invariance of the Gibbs
distribution.

1. Additive noise

For the N-dimensional SDE (2) with constant matrix B, we
show the invariance of the Gibbs distribution ρ(x) = e−βH (x)

by direct substitution into the Fokker-Planck equation (3). As
∂ jρ = −β(∂ jH )ρ, we have that

0 =
∑

i

∑

k

∑

j

BikB jk[(∂i∂ jH )ρ − β(∂ jH )(∂iH )ρ]

+β−1
∑

i

∑

j

∑

k

BikB jk∂i[∂ j (−βH )ρ]

=
∑

i

∑

k

∑

j

BikB jk[(∂i∂ jH )ρ − β(∂ jH )(∂iH )ρ]

−
∑

i

∑

j

∑

k

BikB jk[(∂i∂ jH )ρ − β(∂ jH )(∂iH )ρ]

and the terms on the right-hand side clearly cancel.

2. Multiplicative noise

Consider the following Stratonovich SDE with multiplica-
tive noise

dX = −B(X )BT (X )∇H (X ) +
√

2β−1B(X ) ◦ dW, (B1)
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where B could be, for example, the block projection matrices
P1 or P2. It could also be the combination of PC1/2. For the
Fokker-Planck equation

∂tρ(x, t ) =
∑

i

∂i{(BBT
∇H )iρ(x, t )}

+β−1
∑

k

∑

i

∂i

{

Bik

∑

j

∂ j[B jkρ(x, t )]

}

=
∑

i

∂i

{

∑

k

∑

j

BikB jk (∇H ) jρ(x, t )

}

+β−1
∑

k

∑

i

∂i

{

Bik

∑

j

∂ j[B jkρ(x, t )]

}

, (B2)

we consider the invariance of the Gibbs distribution ρ(x) =
e−βH (x) by direct substitution. The third line (drift terms) of
the above equation leads to the terms

∂i(BikB jk )(∂ jH )ρ + BikB jk (∂i∂ jH )ρ + BikB jk (∂ jH )(∂iρ)

= ∂i(BikB jk )(∂ jH )ρ + BikB jk (∂i∂ jH )ρ

− βBikB jk (∂ jH )(∂iH )ρ (B3)

that are summed over i, j, and k. The fourth line (diffusion
terms) of Eq. (B2) leads to the terms

∂i[Bik (∂ jB jk )ρ] + ∂i[BikB jk∂ jρ] = (∂iBik )(∂ jB jk )ρ + Bik (∂i∂ jB jk )ρ + Bik (∂ jB jk )(∂iρ) + ∂i(BikB jk )(∂ jρ) + BikB jk (∂i∂ jρ)

= (∂iBik )(∂ jB jk )ρ + Bik (∂i∂ jB jk )ρ − βBik (∂ jB jk )(∂iH )ρ

−β∂i(BikB jk )(∂ jH )ρ − βBikB jk (∂i∂ jH )ρ + β2BikB jk (∂iH )(∂ jH )ρ (B4)

multiplied by β−1 and summed over i, j and k. Combining the
terms in (B3) and (B4), the following terms, summed over i, j,
and k are left over:

β−1{(∂iBik )(∂ jB jk )ρ + Bik (∂i∂ jB jk )ρ} − Bik (∂ jB jk )(∂iH )ρ.

(B5)

For a generic multiplicative noise in the SDE of the form (B1),
the Gibbs distribution is not guaranteed to be an invariant
measure. Next, we consider specific cases for the matrix B.

We first consider the case of a single spin, X ∈ S
2, and the

matrix B as either the 3 × 3 projection matrix P1 in Eq. (14)
or P2 in Eq. (15). For the case of P1, the terms in (B5) are all
zero,

∑

i, j,k

(∂iBik )(∂ jB jk ) = 0,

∑

i, j,k

Bik (∂i∂ jB jk ) = 0,

∑

i, j,k

Bik (∂ jB jk )(∂iH ) = 0,

and we conclude that the Gibbs distribution is invariant. For
the case of P2, the terms in (B5) are

∑

i, j,k

(∂iBik )(∂ jB jk ) = 4
(

σ 2
x + σ 2

y + σ 2
z

)

= 4,

∑

i, j,k

Bik (∂i∂ jB jk ) = −4
(

σ 2
x + σ 2

y + σ 2
z

)

= −4,

∑

i, j,k

Bik (∂ jB jk )(∂iH ) = 0.

The order β−1 terms cancel while the order one term is zero,
thus for the case of P2, the Gibbs distribution is also invariant.
This direct calculation easily extends to the case of N spins

with white noise, and we conclude that with either projection
in the SDE (13), the Gibbs distribution (1) is invariant.

We now consider the case of the colored noise SDE (22).
Taking B = P1C

1/2
N and indexing the vector X as Xix = xi,

Xiy = yi and Xiz = zi, for i = 1, . . . , N with the ith spin vector
being denoted as 〈xi, yi, zi〉, we have that

Bix, jx = 0, Bix, jy = −ziλ jφ ji, Bix, jz = yiλ jφ ji,

Biy, jx = −ziλ jφ ji, Biy, jy = 0, Biy, jz = xiλ jφ ji,

Biz, jx = yiλ jφ ji, Biz, jy = −xiλ jφ ji, Biz, jz = 0,

where
∑N

k=1 C̄ikφk j = λ2
jφi j for i, j = 1, . . . , N . By inspec-

tion we see that

∂iqBiq, j p = 0

for all p, q ∈ x, y, z, and therefore all the terms in (B5) are
zero. For the case of colored noise and the σ× projection
matrix P1, the Gibbs distribution is an invariant measure for
the SDE (22).

Taking B = P2C
1/2
N with P2 given by (15),

Bix, jx = (1 − x2
i )λ jφ ji, Bix, jy = −xiyiλ jφ ji,

Bix, jz = −xiziλ jφ ji, Biy, jx = −xiyiλ jφ ji,

Biy, jy = (1 − y2
i )λ jφ ji, Biy, jz = −yiziλ jφ ji,

Biz, jx = −xiziλ jφ ji, Biz, jy = −yiziλ jφ ji,

Biz, jz = (1 − z2
i )λ jφ ji

and noting that

∂iqBiq, jq = −2qiλ jφ ji,

∂iqBiq, j p = −piλ jφ ji,

∂ jqH = −N (q j+1 − 2q j + q j−1),

further algebra leads to the conclusion that the third term in
(B5),

N
∑

i, j,k=1

∑

p,q,r∈{x,y,z}
Bip,kr (∂ jqB jq,kr )∂ipH �= 0.
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Since this term can never cancel with the order β−1 terms
for arbitrary β, we conclude that the Gibbs distribution is not
an invariant measure for the colored noise SDE (22) with the
−σ × (σ × ·) projection matrix P2.

APPENDIX C: WELL-POSEDNESS OF THE COLORED

NOISE SPDE MODEL FOR TRACE CLASS MULTIPLIERS

IN SOBOLEV SPACES

To establish the local well-posedness of (45) result in the
case that Mκ (D) is trace class (κ sufficiently large), we may
write the SPDE in the Itô formulation

dσ =
[

−σ × [Mκ (D)](σ × 	σ ) +
∫

Kκ (x, y) dyσ (x)

]

dt

+ σ × [F−1m(|k|)]−κdW (k). (C1)

Note that the lack of any geometric projection in the Itô
correction term follows from a cancellation that arises from
direct computation very similar to that in Sec. A 1 c. To prove
local well-posedness of (C1), we establish some baseline en-
ergy estimates by first mollifying the equation, then proving a
priori bounds in a high enough Sobolev space.

To proceed, let us record a few useful facts. First, H s(T d )
is an algebra for s > d/2, namely, ‖uv‖H s � ‖u‖H s‖v‖H s for
s sufficiently large. Second, [∂x, (I − 	)κ/2] = 0. Last, we
observe that

∫

	σ · {−σ × [Mα (D)](σ × 	σ )} dx

=
∫

(σ × 	σ ) · [Mα (D)](σ × 	σ ) dx > 0, (C2)

which allows us to generate a priori bounds on ‖σ‖H s uni-
formly bounded in ε for s > d

2
. Note, this also shows that a

classical solution will have decaying H1 norm, as would be
expected from the structure of the Gibbs measure.

Remark 3. We can easily see that were we using the cross-
cross-projection on the drift term, then we could write the
deterministic flow generated by the drift as

∂tσ = Mκ (D)	σ + Mκ (D)(|∇σ |2σ )

suggesting that the dynamics of this nonlocal PDE should
have a different diffusion time scale roughly given by
Mα (λ1)λ2

1. Numerically we observe a similar diffusion scaling
for the cross-projection, which is explored in Sec. V.

The outline of the local well-posedness argument proof as
in Ref. [41], Chap. 15, proceeds as follows:

(1) Define σε = χ (D/ε)σ , a frequency cutoff version of
the equation.

(2) By the (C2) adapted to this setting, this ODE system
has global existence for each ε

(3) For s > d
2

+ 2, computing ∂t E[‖σε‖2
Ḣ s ] in a similar

fashion to (C2) gives a signed quantity on the highest deriva-
tives and using the algebra property gives uniform a uniform
existence time bound using a simple Gronwall inequality ar-
gument in ε on E[‖σε‖H s ] provided s is sufficiently large
provided the initial data are sufficiently regular. We use the
Itô formula

E
[∥

∥σε

∥

∥

2

Ḣ s

]

= E
[∥

∥σε

∥

∥

2

Ḣ s (0)
]

+ E

{∫ t

0

〈σε (r), σε × [Mκ (D)](σε × 	σε )(r)〉Ḣ s dr

}

+ E

{∫ t

0

〈σε (r),

∫

Kκ (x, y) dyσε (x, r)〉Ḣ s dr

}

+ E

{∫ t

0

‖σε × (F−1[m(|k|)]−κ‖2
L2(L2,Ḣ s )

dr

}

,

where L2(H1, H2) is the space of linear Hilbert-Schmidt oper-
ators from Hilbert space H1 to Hilbert space H2.

(4) Since balls in the H s norm are compact, the process is
tight, and hence taking the weak limit in ε gives the solution
σ ∈ H s.

(5) This can be bootstrapped into supremum over time.
(6) Uniqueness and continuity follow from energy esti-

mates once the classical solution has been constructed.
(7) Note, in all of this, there is an Itô correction term to be

controlled in each energy estimate. However, as it carries no
derivatives, it is lower order and can be absorbed in the energy
estimate without much difficulty.

Remark 4. This rather crude treatment of (45) is by no
means the state of the art. However, as we are more concerned
here with the microscopic to macroscopic convergence to such
an equation, it suffices for our purposes. The recent work of
Ref. [5] handles the white noise case of (45) and gives an
appropriate renormalization technique adapted to a general
geometric setting. It would be interesting to extend this to
the range of covariance matrices given here between identity
(white) and κ > 1

2
(trace class), but this pursuit goes beyond

the focus of the present work.
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