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Abstract
We propose a method for inference on moderately high-dimensional, nonlinear, non-Gaussian, partially observed Markov
process models for which the transition density is not analytically tractable. Markov processes with intractable transition
densities arise in models defined implicitly by simulation algorithms. Widely used particle filter methods are applicable to
nonlinear, non-Gaussian models but suffer from the curse of dimensionality. Improved scalability is provided by ensemble
Kalman filter methods, but these are inappropriate for highly nonlinear and non-Gaussian models. We propose a particle
filter method having improved practical and theoretical scalability with respect to the model dimension. This method is
applicable to implicitly defined models having analytically intractable transition densities. Our method is developed based
on the assumption that the latent process is defined in continuous time and that a simulator of this latent process is available.
In this method, particles are propagated at intermediate time intervals between observations and are resampled based on a
forecast likelihood of future observations. We combine this particle filter with parameter estimation methodology to enable
likelihood-based inference for highly nonlinear spatiotemporal systems. We demonstrate our methodology on a stochastic
Lorenz 96 model and a model for the population dynamics of infectious diseases in a network of linked regions.

Keywords Sequential Monte Carlo · Particle filter · Spatiotemporal inference · Curse of dimensionality · Implicit models ·
Plug-and-play property

1 Introduction

In this paper,we consider inferenceonhighlynonlinear,mod-
erately high-dimensional Markov process models for which
evaluation of the transition density is not available. Data
are modeled as partial or noisy measurements of the latent
Markov process. We will first introduce in turn the three
model aspects we are concerned with, namely intractable
transition densities, high-dimensionality, and nonlinearity.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11222-020-09957-3) contains
supplementary material, which is available to authorized users.

B Joonha Park
joonhap@bu.edu

Edward L. Ionides
ionides@umich.edu

1 Department of Mathematics and Statistics, Boston University,
111 Cummington Mall, Boston, MA 02215, USA

2 Department of Statistics, University of Michigan, Ann Arbor,
MI, USA

A model that is defined using a simulator, instead of an
analytically tractable characterization, of an underlying pro-
cess is said to be implicitly defined (Diggle and Gratton
1984). Mechanistic models for complex dynamic systems
are sometimes defined implicitly by a computer simulation
algorithm, and such models often lack analytically tractable
transition densities. Inference methods that can be used
on implicitly defined models are said to possess the plug-
and-play property (Bretó et al. 2009; He et al. 2009), or
alternatively called equation-free (Kevrekidis et al. 2004;Xiu
et al. 2005) or likelihood-free (Marjoram et al. 2003; Sisson
et al. 2007).

Inference on dynamic systems sometimes requires fitting
models with high-dimensional latent processes to high-
dimensional data. For example, population dynamics in
geographically linked locations are sometimes studied in
ecology or epidemiology using partially observed Markov
process (POMP) models for which the dimension of both the
latent process and the measurement process scale linearly
with the number of spatial locations. In systems biology,
models for networks of reactions may add stochasticity to
collections of deterministic differential equations (Kitano
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2002). The model dimension typically increases with the
number of system components, but even state-of-the-art
inference methods are often not suitable for application
beyond small systems (Owen et al. 2015).

Ensemble Kalman filter (EnKF) methods have been used
for geophysical models in data assimilation due to their good
scalability to high dimensions (Houtekamer and Mitchell
2001; Evensen 1994). However, these methods can be inef-
fective for highly nonlinear and non-Gaussian systems,
because they rely on locally linear and Gaussian approxima-
tions (Ades and Van Leeuwen 2015; Lei et al. 2010; Miller
et al. 1999). For example, host-pathogen population dynam-
ics of infectious diseases in geographically coupled regions
often exhibit a long period of epidemic trough followed by
a sharp peak, which may be sparked by an invasion of the
pathogen from a different region. Strong nonlinearity of the
dynamics, as well as the inferential relevance of a small, dis-
crete, number of initial infections, makes the use of ensemble
Kalman filter methods unsuitable for these models.

We propose an approach for inference on a class of implic-
itly defined nonlinear partially observed Markov process
(POMP) models of moderately high dimensions. A POMP
model, otherwise known as a state space model or a hidden
Markov model (HMM), consists of a latent Markov process
representing the time evolution of a system andmeasurement
processes describing the randomness of observations at spec-
ified time points. Each obervation Yn provides a partial or
noisy information about the latent process state Xn at time
tn .We denote the density of Yn given Xn = xn by gn(· | xn). A
sequence of observations y1:N made at time t1:N are assumed
to be given as fixed data. Sequential Monte Carlo (SMC)
methods are recursive algorithms that enable estimation of
the likelihood of observed data and the conditional distribu-
tion of the latent process given data from a POMP model
(Doucet et al. 2001; Cappé et al. 2007; Doucet and Johansen
2011). In the context of POMP models, SMC algorithms are
known as particle filters (PFs), and the simulated random
variables used by SMC to represent conditional latent pro-
cesses are called particles. Particle filter methods are capable
of handling highly nonlinear latent processes, but they suffer
from rapid deterioration in performance as the model dimen-
sion increases (Bengtsson et al. 2008; Snyder et al. 2008).

In order to introduce our method, we briefly review some
particle filter methods. In inference on POMP models, the
conditional distribution of Xn given observations y1:n , called
the filtering distribution at time tn , often makes a distribution
of interest. Particle filters recursively represent the filter-
ing distributions using particle ensembles. A collection of
particles X1:J := {X j ; 1≤ j ≤ J } is said to represent a dis-
tributionwith density p if the sample average 1

J

∑J
j=1 f (X j )

for a class of functions f gives an estimate of
∫

f (x)p(x)dx .
Suppose that an ensemble X̃1:J

n represent the filtering density
p(xn | y1:n). The next filtering density can be expressed as

p(xn+1 | y1:n+1)

=
∫
p(xn | y1:n)p(xn+1 | xn)gn+1(yn+1 | xn+1)dxn∫

p(xn | y1:n)p(xn+1 | xn)gn+1(yn+1 | xn+1)dxndxn+1
.

(1)

Based on (1), a particle representation X̃1:J
n+1 for the next

filtering density p(xn+1 | y1:n+1) can be obtained as fol-
lows. The particle ensemble X̃1:J

n can be propagated using
the transition kernel p(xn+1 | xn). The propagated particles,
denotedby X1:J

n+1, can thenbe resampled according toweights

proportional to {gn+1(yn+1 | X j
n+1) ; j ∈ 1 : J }. The resam-

pled particles X̃1:J
n+1 represent p(xn+1 | y1:n+1). The method

of recursively updating the particle ensemble in this way
is called the bootstrap particle filter (Gordon et al. 1993).
The resampling can be carried out by, for example, taking
X̃ k
n+1 := Xak

n+1, where ak , k ∈ 1 : J , are independent and

P(ak = i) = gn+1(yn+1 | Xi
n+1)

∑J
j=1 gn+1(yn+1 | X j

n+1)
. Alternative methods of

resampling may be preferable (Douc et al. 2005).
Another method for obtaining a particle representation of

the next filtering density is based on the equation

p(xn+1 | y1:n+1)

=
∫
p(xn | y1:n)p(xn+1 | xn, yn+1)p(yn+1 | xn)dxn∫

p(xn | y1:n)p(xn+1 | xn, yn+1)p(yn+1 | xn)dxndxn+1
.

Suppose now that X1:J
n represent the distribution p(xn | y1:n).

Resampling according to weights proportional to pYn+1|Xn

(yn+1 | X j
n) leads to particles denoted by X̃1:J

n , repre-
senting p(xn | y1:n+1). Propagating X̃1:J

n with the kernel
p(xn+1 | xn, yn+1), one obtains a particle representation
X1:J
n+1 of p(xn+1 | y1:n+1). This method corresponds to the

fully adapted auxiliary particle filter (APF) (Pitt and Shep-
hard 1999). The propagation kernel p(xn+1 | xn, yn+1) in this
context is called adapted to yn+1, because it uses the infor-
mation in the next observation. A method equivalent to the
fully adapted APF, in which particles are resampled accord-
ing to weights proportional to p(yn+1 | xn) and propagated
with the adapted kernel p(xn+1 | xn, yn+1) has been consid-
ered by Kong et al. (1994), Liu and Chen (1995), and Chen
et al. (2000). The auxiliary particle filter by Pitt and Shep-
hard (1999) uses gn+1(yn+1 | ξ̄n+1(xn)) as an approximation
to p(yn+1 | xn), where ξ̄n+1(xn) is a point that can repre-
sent the conditional distribution pXn+1|Xn (· | xn), such as the
mean of the distribution pXn+1|Xn (· | xn) or an approximation
thereof. Doucet et al. (2000) called the propagation of X̃1:J

n
by the adapted kernel p(xn+1 | xn, yn+1) optimal when only
the next observation is available, since the particles X1:J

n+1
having equal weights represent p(xn+1 | y1:n+1). An advan-
tage of the fully adapted APF compared to the bootstrap PF
is that the coefficient of variation of the resampling weights
is smaller: we have
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Var
[
pYn+1|Xn (yn+1 | XAPF

n )
] ≤ Var

[
gn+1(yn+1 | XBPF

n+1)
]
,

and

E
[
pYn+1|Xn (yn+1 | XAPF

n )
] = E

[
gn+1(yn+1 | XBPF

n+1)
]
,

if XAPF
n is a draw from p(xn | y1:n) and XBPF

n+1 is a draw
from p(xn+1 | y1:n). However, as Snyder et al. (2015) showed
using counterexamples, even the fully adapted APF suf-
fers from rapid deterioration of performance as the latent
process and measurement dimension increases, because
Var

[
pYn+1|Xn (yn+1 | XAPF

n )
]
scales exponentially.

The fully adapted APF can be viewed as a particle fil-
ter operating on a twisted POMP model (Whiteley and Lee
2014; Guarniero et al. 2017). A twisted POMP model is
defined based on a given POMPmodel {(Xn,Yn) ; n ∈ 1 : N }
and a sequence of functions ψ := {ψn ; n ∈ 1 : N }. Denoting
ψ̃n(xn) := ∫

ψn+1(xn+1)p(xn+1 | xn)dxn+1, we consider a
sequence of densities

pψ(xn ; y1:n) := p(xn | y1:n)ψ̃n(xn)
∫
p(xn | y1:n)ψ̃n(xn)dxn

, n ∈ 1 : N ,

where ψ̃N ≡ 1. Algorithm 1 is motivated by the recursive
relation

pψ(xn+1 ; y1:n+1) ∝
∫

pψ(xn ; y1:n)

· p(xn+1 | xn)ψn+1(xn+1)

ψ̃n(xn)

·gn+1(yn+1 | xn+1)
ψ̃n+1(xn+1)

ψn+1(xn+1)
dxn . (2)

Algorithm 1: Particle filter on a twisted model

For a particle ensemble X̃1:J
n that represents pψ(xn ; y1:n),

(a) propagate X̃1:J
n using a kernel that is adapted with respect to

ψn+1,

f ψ
n+1(xn+1 ; xn) := p(xn+1 | xn)ψn+1(xn+1)

ψ̃n(xn)
,

(b) resample the propagated particles X1:J
n+1 according to weights

proportional to gψ
n+1(X

j
n+1), where

gψ
n+1(xn+1) := gn+1(yn+1 | xn+1)

ψ̃n+1(xn+1)

ψn+1(xn+1)
.

The case of ψn(xn) ≡ gn(yn | xn) corresponds to the fully
adapted APF. The variances of the resampling weights are
minimized when ψn(xn) = p(yn:N | xn), the forecast likeli-
hood of all future observations (Guarniero et al. 2017). In this

case, no resampling is necessary, because gn(yn | xn) ψ̃(xn)
ψ(xn)

=
gn(yn | xn) p(yn+1:N | xn)

p(yn:N | xn) ≡ 1 for all n. This ideal case targets

the smoothing distribution, that is

pψ(xn ; y1:n) = p(xn | y1:N ).

More accessible than the ideal case is the choice ψn(xn) =
p(yn:n+L−1 | xn) for some L ≥ 2. The particle filter corre-
sponding to this case looks ahead to L observations in the
future. Looking ahead for the information in future obser-
vations can lead to robust filtering estimates with regard to
outliers in observed data (Lin et al. 2013). The target density
for this ψ is given by

pψ(xn ; y1:n) = p(xn | y1:n+L),

which is knownas thefixed lag smoothingdistribution (Clapp
and Godsill 1999). In this L-lookahead approach, particles
are propagated according to

f ψ
n+1(xn+1 ; xn)
= p(xn+1 | xn)p(yn+1:n+L | xn+1)

p(yn+1:n+L | xn)
= p(xn+1 | xn, yn+1:n+L),

and the resamplingweights for the propagated particles X1:J
n+1

are given by

gn+1(yn+1 | X j
n+1)

ψ̃n+1(X
j
n+1)

ψn+1(X
j
n+1)

= gn+1(yn+1 | X j
n+1)

p(yn+2:n+L+1 | X j
n+1)

p(yn+1:n+L | X j
n+1)

= p(yn+L+1 | X j
n+1, yn+2:n+L). (3)

Particle filtering on this twisted model corresponds to an
adapted version of the block sampling method by Doucet
et al. (2006) when we look marginally at Xn+1. The block
sampling method updates a block of latent process states
Xn+1:n+L based on the observations yn+1:n+L .

The coefficient of variation of resampling weights (3)
decreases as L increases. If we denote vL := Var [p(yn |
X j
n−L , yn−L+1:n−1)

]
and eL :=E

[
p(yn|X j

n−L , yn−L+1:n−1)
]

where X j
n−L ∼ p(xn−L | y1:n−1) for 1≤ L ≤ n−1, then we

have vL1 ≤ vL2 and eL1 = eL2 for L1 > L2. Doucet
et al. (2006) considered an example where the variance vL
decreases exponentially with L .

The above L-lookahead approach requires that one can
evaluate ψn(xn) = p(yn:n+L−1 | xn) and ψ̃n(xn) =
p(yn+1:n+L | xn) and can sample from the adapted kernel
p(xn+1 | xn, yn+1:n+L). When these requirements cannot be
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met, an approximate method can be used. We denote an
approximation to p(yn:n+L−1 | xn) by ψn(xn), an approx-
imation to ψ̃n(xn) = ∫

ψn+1(xn+1)p(xn+1|xn)dxn+1 by

rn(xn), and a kernel approximating f ψ
n+1(xn+1 ; xn) by

qn+1(xn+1 ; xn). A recursive relation

p(xn+1 | y1:n+1)rn+1(xn+1)

∝
∫

p(xn | y1:n)rn(xn) · qn+1(xn+1 ; xn)

·gn+1(yn+1 | xn+1)
rn+1(xn+1)

rn(xn)

× p(xn+1 | xn)
qn+1(xn+1 ; xn)dxn, (4)

which is analogous to (2), motivates an approximate L-
lookahead filter, shown in Algorithm 2.

Algorithm 2: An approximate L-lookahead filter

For X̃1:J
n that represent the density proportional to p(xn |

y1:n)rn(xn),
(a) propagate X̃1:J

n using the kernel qn+1(xn+1 ; xn), and
(b) resample the propagated particles X1:J

n+1 according to weights
proportional to

gn+1(yn+1 | X j
n+1)

rn+1(X
j
n+1)

rn(X̃
j
n )

p(X j
n+1 | X̃ j

n )

qn+1(X
j
n+1 ; X̃ j

n )
. (5)

The resampled particles X̃1:J
n+1 represent density proportional to

p(xn+1 | y1:n+1)rn+1(xn+1).

In this approximate L-lookahead approach, the function ψn

indirectly affects the algorithm via rn and qn . The propaga-
tion kernel qn+1(xn+1 ; xn) approximates

qn+1(xn+1 ; xn) ≈ p(xn+1 | xn)p(yn+1:n+L | xn+1)

p(yn+1:n+L | xn)
= p(xn+1, yn+1:n+L | xn)

p(yn+1:n+L | xn) = p(xn+1 | xn, yn+1:n+L),

and the resampling weights (5) approximates (3). We note
that the resampling weights (5) depend on the density
p(xn+1 | xn), so Algorithm 2 cannot be used when the transi-
tion density of the latentMarkov process is not evaluable. An
exception is when we use qn+1(xn+1 ; xn) = p(xn+1 | xn).
In this case, the resampling weights are given by

gn+1(yn+1 | X j
n+1)rn+1(X

j
n+1)

rn(X̃
j
n)

≈ gn+1(yn+1 | X j
n+1)p(yn+2:n+L+1 | X j

n+1)

p(yn+1:n+L | X̃ j
n)

= p(yn+1:n+L+1 | X j
n+1)

p(yn+1:n+L | X̃ j
n)

. (6)

However, in this case the variance of the resampling weights
becomes too large even for moderate dimensional models,
because the weights are lower bounded by

Var

(
p(yn+1:n+L+1 | X j

n+1)

p(yn+1:n+L | X̃ j
n)

)

≥ E

[
Var

[
p(yn+1:n+L+1 | X j

n+1)
∣
∣ X̃ j

n
]

p(yn+1:n+L | X̃ j
n)

2

]

,

and Var
[
p(yn+1:n+L+1 | X j

n+1)
∣
∣ X̃ j

n
]
grows exponentially

quickly with increasing latent process and measurement
dimension.

In this paper, we propose a method that (a) uses the
simulator of the latent process for particle propagation
and (b) has favorable scaling with respect to increasing
dimension. For this method, X1:J

n represents the density
proportional to p(xn | y1:n−1)ψn(xn) and the subsequent par-
ticle ensemble X1:J

n+1 represents the density proportional to
p(xn+1 | y1:n)ψn+1(xn+1). Here,ψn(xn) is an approximation
to p(yn:n+L−1 | xn). This method uses intermediate propaga-
tion and resampling steps, as described below. We assume
that the latent Markov process is defined in continuous time.
We further assume that the latent process, denoted by {X(t)},
can be simulated for any length of time. A connection to the
discrete time process {Xn} can be made by understanding
Xn := X(tn) where tn , n ∈ 1 : N , denote the observations
times. In the continuous-time context, dummy variables for
the latent process will be indexed by time (e.g., xtn ). We con-
sider intermediate time points tn,1 < tn,2 < · · · < tn,S−1

between tn and tn+1. We will denote tn,0 := tn and tn,S :=
tn+1. For each intermediate timepoint tn,s , s ∈ 1 : S, we define
ψtn,s (xtn,s ) to be an approximation to p(yn+1:n+L | xtn,s ). We
call ψtn,s the guide function at tn,s . At tn = tn−1,S , ψtn (xtn )
approximates p(yn:n+L−1 | xtn ).We call ourmethod a guided
intermediate resampling filter (GIRF), and it works as fol-
lows. For s ∈ 1 : S−1, suppose that X̃1:J

tn,s
represent the density

proportional to p(xtn,s | y1:n)ψtn,s (xtn,s ). These particles are
propagated using the simulator of p(xtn,s+1 | xtn,s ). The prop-
agated particles, denoted by X1:J

tn,s+1
, are resampled according

to weights proportional to

ψtn,s+1(X
j
tn,s+1

)

ψtn,s (X̃
j
tn,s

)
.

The resampled particles represent the density proportional to
p(xtn,s+1 | y1:n)ψtn,s+1(xtn,s+1) and are denoted by X̃1:J

tn,s+1
. For

s = 0, the particles X̃1:J
tn representing p(xtn | y1:n−1)ψtn (xtn )

are propagated with p(xtn,1 | xtn ), and the propagated parti-

cles X j
tn,1

are resampled according to weights proportional
to
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gn(yn | X̃ j
tn ) · ψtn,1(X

j
tn,1

)

ψtn (X̃
j
tn )

.

The resampled particles X̃1:J
tn,1

represent p(xtn,1 | y1:n)ψtn,1

(xtn,1).
This method combines the L-lookahead approach with

the intermediate propagation and resampling approach of
DelMoral andMurray (2015). The intermediate propagation
and resampling method was considered by Del Moral and
Murray (2015) mostly in the context of Markov processes
with highly informative observations, such as precisely
observed diffusion processes. Both precisely observed dif-
fusion processes and high-dimensional Markov processes
with high-dimensional measurements share the property that
each observation carries a lot of information, in the sense
that the variance of the measurement density gn(yn | Xtn )

with respect to Xtn ∼ p(xtn | y1:n−1) is large. However, in
the case of precisely observed low dimensional diffusion
processes, the observation yn can sufficiently localize Xtn ,
whereas it is often not the case for high-dimensional Markov
processes with high-dimensional measurements. The L-
lookahead strategy in theGIRF helps localize particles. Also,
compared to the L-lookahead method without the interme-
diate propagation and resampling (i.e., the case of S = 1 in
the method above), the variance of the resampling weights in
the combined approach tends to be much smaller. Interme-
diate resampling enables the method to use particles more
efficiently by focusing on regions in the state space of the
latent process that are consistent with future observations.

We consider the case where the dimension of the latent
process and the measurement dimension grow linearly with
each other. In this case, the number of intermediate steps
S can also be chosen to scale linearly with the increasing
dimension for good performance. We show in Theorem 2
that, when we can take ψtn,s (xtn,s ), n ∈ 0 : N−1, s ∈ 1 : S to
be the exact forecast likelihood p(yn+1:N | xtn,s ), a bound on

theMonte Carlo (MC) error in the estimate 1
J

∑J
j=1 f (X̃1:J

tN )

of E[ f (XtN ) | y1:N ] scales at a polynomial rate with respect
to the dimension d under certain circumstances, if we take
S = d. Due to the 1√

J
scaling rate of the MC error with

respect to the particle size J , the number of particles required
to obtain filtering results of desired accuracy also scales at a
polynomial rate. In contrast, if intermediate propagation and
resampling is not carried out, the number of particles required
for a given accuracy typically scales at an exponential rate
with respect to d even when the exact forecast likelihoods
are available (Snyder et al. 2008, 2015).

Theorem 3 explains a relationship between the quality
of the approximation ψtn,s (xtn,s ) of p(yn+1:N | xtn ,s) and the
magnitude of the MC error. When the approximation of the
forecast likelihood is not exact, a multiplicative factor in our
bound on the MC error in Theorem 3 scales exponentially

with d. This exponentially scaling factor explains a funda-
mental limitation in high-dimensional filtering. If there are
only a few particles that are consistent with future observa-
tions and they are lost in earlier time steps, the accuracies
of the sequential particle representations are damaged, until
the effect of the lost particles are diluted due to the mixing
of the latent process conditional on observed data. Never-
theless, reasonably chosen approximation ψtn,s can make
the multiplicative factor on the bound on the MC error due
to the inaccurate approximation of the forecast likelihoods
increase at a slow exponential rate. Together with another
multiplicative factor that scales polynomially when the num-
ber of intermediate propagation and resampling steps S is set
equal tod, the number of particles required for a desired accu-
racy can scale at a slowexponential rate.Our empirical results
support that the combination of intermediate propagation and
resampling approach and reasonable approximation to fore-
cast likelihoods can significantly extend the dimensionality
of the model that is practically accessible. Our theoretical
results give a practical suggestion that the number of inter-
mediate steps for propagation and resampling can be chosen
equal to the latent process and measurement dimension d.

Based on this guided intermediate resampling approach,
we also propose a parameter inference method for implicitly
defined, moderately high-dimensional POMP models. Par-
ticle filter methods can give unbiased likelihood estimates
of the observed data (Del Moral 2004). In high dimensions,
the MC errors in the likelihood estimates are typically very
high. Nonetheless, the noisy estimates can contain useful
information about the parameter. We use the noisy estimates
of profile log likelihoods to make an approximate inference
for the parameter of interest by taking into account the MC
errors in those estimates.

1.1 Related work

We review some of earlier works related to the problem we
consider and the method we propose. Since our approach
uses lookahead methods for high-dimensional filtering, we
describe the separate literatures on these two topics.

1. High-dimensional filtering. High-dimensional filtering
problems naturally occur when POMPmodels for spatiotem-
poral systems are considered. There is a class of local particle
filter approaches that use an approximation based on the
assumption that the correlation between spatial units decay
as the distance between them increases (Farchi and Bocquet
2018). These approaches build upon partitioning of the latent
variables into blocks and approximating the one step transi-
tions of the latent process as being independent between the
blocks. Rebeschini and Van Handel (2015) developed a the-
oretical bound for the filtering error, which only depends
on the size of the largest block but not on the entire space
dimension. Despite this very desirable scaling property, this
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approach has some practical limitations, because it is not
applicable to highly interdependent spatial models, and the
filter estimates are not reliable near the boundaries of the
blocks. We note that our GIRF approach does not rely on
any assumption on spatial structure and does not suffer from
any boundary effects.

Localized data assimilation has also been used with
ensemble Kalman filter methods (Hunt et al. 2007). Local
ensemble Kalman filter methods use only the observations
made near a spatial unit when updating the latent state dis-
tribution for that unit. Local implementation can be crucial
for the numerical stability of the EnKF, where the number
of the particles used J is smaller than the dimension of the
model d. We note that particle filters are used for nonlinear,
non-Gaussian models that are much lower-dimensional than
the locally near-Gaussian models for which local Ensemble
Kalman filter methods are used. In this case, the challenge
is given by the fact that J 
 ed but not J < d. Local
EnKFmethods often inflate the one-step forecast variance or
the measurement variance or both, as an additional means
to ensure numerical stability and to guard against model
misspecification (Hunt et al. 2007). The localized filtering
approach has also been combined with the ensemble trans-
port method by Reich (2013), Cheng and Reich (2015) and
Acevedo et al. (2017).

Beskos et al. (2014a, b) theoretically investigated the
approach of using the annealed importance samplingmethod
by Neal (2001) for particle filtering in high dimensions. The
annealed importance sampling method introduces a series of
bridging distributions between observations. These bridging
densities are usually set proportional to a fractional power
of the desired target density. Between two adjacent impor-
tance resampling, the particles are transformed according
to a transition kernel whose stationary distribution equals
the target bridging distribution. These transition kernels pro-
vide mixing that helps maintain the stability of the particle
approximations. The authors gave stability results for the
case where the original high-dimensional latent process is
composed ofmany copies of independent and identically dis-
tributed (IID) one dimensional processes and the number of
bridging steps is equal to the space dimension. In particular,
Beskos et al. (2014b) showed that the annealed importance
weights are non-degenerate as the dimension goes to infinity
even with fixed particle size. Beskos et al. (2014a) showed
that both the L2 error of the filter estimates and the variance
of the corresponding likelihood estimates are bounded uni-
formly in the space dimension. Their approach and our GIRF
method have a similarity in the use of intermediate propaga-
tion and resampling steps and in the fact that the number
of intermediate steps is equal to the space dimension. How-
ever, their approach is not applicable to implicitly defined
models because analytically tractable transition densities are
required.

Beskos et al. (2017) studied a high-dimensional filtering
algorithm in the case where the spatial structure of the model
can be hierarchically factorized. Specifically, they assumed
that the one step transition density is given, or can be well
approximated, by a product of functions of increasing collec-
tions of latent variables. The theoretical results they obtained
by considering a few simple IID cases show that filtering can
be stable when the number of particles increases linearly
with the space dimension. These promising results provide
insights into what might be achieved in more general cases.

2. The lookahead approach. A number of particle filter
methods proposed in the literature use the information pro-
vided by future observations in order to obtain stable filtering
estimates. These methods include the auxiliary particle filter
by Pitt and Shephard (1999) and the block sampling method
by Doucet et al. (2006). Lin et al. (2013) reviewed various
lookahead strategies. Johansen (2015) proposed a method
based on both the block sampling idea and the annealed
importance sampling approach.

The resampling weights in lookahead methods are closely
related to approximations to forecast likelihoods. Lin et al.
(2010) proposed a method for estimating the optimal resam-
pling weights using backward pilots, in an intermediate
propagation and resampling approach for perfectly observed
diffusion processes. Guarniero et al. (2017) proposed a
method for estimating the exact guide function ψ∗

n (xn) =
p(yn:N | xn) in a backward direction n = N , N−1, . . . , 1,
using parametric fitting to mixtures of normals. The fil-
tering on the ψ-twisted models can be iterated to obtain
ψn functions that gradually approach ψ∗

n . Both of these
backward approaches for estimating forecast likelihoods
require analytically tractable transition densities of the latent
Markov process. In the current paper, we propose a forward-
simulation method for approximating the guide function that
does not require transition densities to be evaluated.

Serveral works in the literature developed concrete meth-
ods for propagating particles according to the adapted kernel
p(xn+1 | yn+1, xn) in an approximate manner. The implicit
particle filter approximates the optimal kernel by directly
sampling particles at the vicinity of themaximum of the opti-
mal kernel density (Chorin andTu2009;Morzfeld et al. 2012;
Chorin et al. 2013). The equivalent-weights particle filter
nudges particles toward the next observation over intermedi-
ate time steps (Van Leeuwen 2010; Ades and Van Leeuwen
2015); it was developed for applications in geosciences and
is based on local Gaussianity of the transition density and
the Gaussian measurement density. Papadakis et al. (2010)
proposed the use of the ensemble Kalman filter updates as a
propagation kernel within a particle filter. Bunch and Godsill
(2016) proposed an algorithm that moves particles according
to a Gaussian flow that approximates the optimal kernel den-
sity. The aforementioned methods assume that the transition
density is either known or locally Gaussian.
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Table 1 Notation used in the
paper and the section each
symbol is defined

Notation Description Section

Xt , t ≥ t0 Continuous-time latent process 2

yn , n ∈ 1 : N Partial observation at time tn 2

gn(yn | Xtn ), n ∈ 1 : N Measurement density at yn given Xtn 2

tn,s , s ∈ 1 : S−1 Intermediate time points between tn and tn+1 2

X̃ j
tn,s

, j ∈ 1 : J Filtered particles at tn,s 2

X j
tn,s

, j ∈ 1 : J Propagated particles at tn,s 2

�̂ Likelihood estimate from Algorithm 3 2

ψtn,s Guide function at tn,s 2

wtn,s (X
j
tn,s

, X̃ j
tn,s−1

) Resampling weight for X j
tn,s

2

L Number of lookahead observations used by the guide function 2

ψ(x; tn,s → tn+b) An approximation to the forecast likelihood p(yn+b|Xtn,s = x) 2.1

ξ(x; tn,s → tn+b) Guide simulation from Xtn,s = x to tn+b 2.1

ξ̄ (x; tn,s → tn+b) Deterministic simulation from Xtn,s = x to tn+b 2.1

�
m, j
tn,s

, j ∈ 1 : J Perturbed parameters at tn,s in the m-th iteration of Algorithm 4 5

�̃
m, j
tn,s

, j ∈ 1 : J Filtered parameters at tn,s in the m-th iteration of Algorithm 4 5

1.2 Summary of contributions

We summarize the contributions of our paper as follows.

• We develop a particle filtering algorithm for moderately
high-dimensional, nonlinear, non-Gaussian, implicitly
defined, partially observed Markov process models. In
particular, the algorithmcan be used formodelswhere the
latent Markov process has intractable transition density.
We demonstrate that our guided intermediate resam-
pling filter (GIRF, Algorithm 3) can be used to enable
likelihood-based inference in this class of models. As an
example, we make inference for the spatiotemporal cou-
pling parameter in a mechanistic, coupled Markov jump
process model describing the metapopulation dynamics
of infectious disease (Fig. 3).

• We propose approaches to constructing a guide function
using forward simulations (Sect. 2.1). A guide function
approximates the forecast likelihood of future observa-
tions. The choice of the guide function does not affect
the asymptotic consistency of the GIRF algorithm, but
does influence its scaling rate as the model dimension
increases.

• We develop theoretical results for the GIRF algorithm,
including a finite-sample bound on the Monte Carlo fil-
tering error (Theorem 3). These results explain how the
Monte Carlo filtering error is influenced by various fac-
tors such as themodel dimension, the guide function, and
the temporal mixing of the latent process conditioned on
the observed data. Our results offer insights into why our
GIRF algorithm scales more favorably than other particle

filtermethods that do not emply intermediate propagation
and resampling.

1.3 Organization of the paper

This paper is organized as follows. Section 2 explains
our intermediate propagation and resampling approach (see
Table 1). Section 3 gives empirical results on scaling of
the algorithm. Section 4 gives theoretical results. Section 5
describes a parameter estimation procedure that combines
the guided intermediate resampling approach with the iter-
ated filtering scheme of Ionides et al. (2015). Section 6 is a
concluding discussion.

2 The guided intermediate resampling filter
(GIRF)

We denote the latent continuous-timeMarkov process model
by {Xt ; t ≥ t0}, where each random variable Xt takes value
in a measurable space (X,X ). The measurement process is
defined at discrete time points tn > t0, n ∈ 1 : N and yields
an observation Yn ∈ Y that is a noisy or incomplete mea-
surement of Xtn . The measurement Yn is independent of
other observations Ym ,m 
= n, and of the latent process {Xt },
given the current state Xtn . The measurement process for
Yn conditioned on Xtn = xtn is assumed to have density
gn( · | xtn ). We will assume that the latent process space and
the measurement space are d-dimensional, X = ∏d

i=1 X
[i],

Y = ∏d
i=1 Y

[i]. We will study the scaling property of our
method with respect to d. The observations Yn = yn for
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n ∈ 1 : N are assumed to be fixed data. In what follows,
we assume that the transition kernel of the latent process
can be simulated, but we do not require its density to be
evaluated.

Algorithm 3: A guided intermediate resampling filter
(GIRF)
Input : data, y1:N ; simulator for pXt0

; simulator for
pXtn,s | Xtn,s−1

; evaluator for the measurement density,
gn(yn | xtn ); evaluator for the guide function,
ψtn,s (xtn,s ); number of particles, J

Output: filtered particle swarm, X̃1:J
tN ; likelihood estimate, �̂

Initialize: �̂ ← 1, X̃ j
t0 ∼ pXt0

(·) for j ∈ 1 : J
for n ← 0 : N−1 do

for s ← 1 : S do
X j
tn,s

∼ pXtn,s | Xtn,s−1
(· | X̃ j

tn,s−1
) for j ∈ 1 : J

w j ← wtn,s (X
j
tn,s

, X̃ j
tn,s−1

) given by equation (8) for
j ∈ 1 : J
�̂ ← �̂ × (

∑J
j=1 w j )

/
J

Draw a j with P
(
a j = i

) = wi
/∑J

i ′=1 wi ′ for j ∈ 1 : J
Set X̃ j

tn,s
= Xa j

tn,s

end
end

Pseudocode for our guided intermediate resampling filter
(GIRF) is given in Algorithm 3. The intermediate time points
between tn and tn+1 will be denoted by tn,s , s ∈ 1 : S−1, and
we write tn,0 = tn and tn,S = tn+1. The collection of filtered
particles, X̃1:J

tn,s
, provide a Monte Carlo representation of a

guided filter distribution Pψ
tn,s

given by

dPψ
tn,s

dxtn,s

∝ ψtn,s (xtn,s ) · p(xtn,s | y1:n). (7)

The filtered particles are moved according to the law of the
latent process to construct the propagated particles, X1:J

tn,s+1
.

The collection of propagated particles is resampled recur-
sively to obtain the next generation of filtered particles.
The weighting of the propagated particles is based on the
guide function ψtn,s :X→R

+ that approximates the fore-
cast likelihood p(yn+1:(n+L∧N ) | xtn,s ) for some L ≥ 1, where
n+ L∧N = min(n+ L, N ). We require thatψt0(x)= 1 and
ψtN (x)= gN (yN | x) for all x ∈ X. The assigned importance

weight for X j
tn,s

is given by:

w j ← wtn,s (X j
tn,s , X̃ j

tn,s−1
) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψtn,s (X j
tn,s )

ψtn,s−1 (X̃ j
tn,s−1

)
if s 
= 1 or n = 0

ψtn,s (X j
tn,s )gn (yn | X̃ j

tn,s−1
)

ψtn,s−1 (X̃ j
tn,s−1

)
otherwise.

(8)

If s = 1 and n ≥ 1, that is if tn,s−1 is an observation time, we
effectively divide the denominator ψtn,s−1(X̃

j
tn,s−1

) in (8) by

gn(yn | X̃ j
tn ), because at time tn,1 > tn , the past observation yn

should no longer be considered in assessing the fitness of the
particle. Particles X1:J

tn,s
are resampled with probability pro-

portional to these weights. We used systematic resampling
for our numerical implementation (Douc et al. 2005). The
likelihood of data is defined as

�1:N (y1:N ) = E

[
N∏

n=1

gn(yn | Xtn )

]

,

where the expectation is taken with respect to the law of
{Xt ; t ≥ t0}. In common with standard particle filters, Algo-
rithm 3 computes a likelihood estimate denoted by �̂:

�̂ =
N−1∏

n=0

S∏

s=1

1

J

J∑

j=1

wtn,s (X
j
tn,s

, X̃ j
tn,s−1

).

The GIRF defined by Algorithm 3 is equivalent to the
bootstrap particle filter if we take S = 1 and ψtn (xtn ) =
gn(yn | xtn ). Algorithm 3 becomes an instance of APF in
the special case where S = 1 and ψtn (xtn ) = gn(yn | xtn ) ·
gn+1{yn+1 | ξ̄tn+1(xtn )}, where ξ̄tn+1(xtn ) denotes a forecast
value for Xtn+1 given Xtn = xtn . Since APF does not include
intermediate resampling, we will find that it does not have
the favorable scaling properties that GIRF methodology can
enjoy when S ≈ d.

The computational cost of Algorithm 3 typically scales as
O(J Sd). The storage cost is O(Jd) since only the current
latent process and guide function values need to be saved for
each particle during the filtering and propagation recursions.
Our implementation of Algorithm 3 is available at https://
github.com/joonhap/GIRF.git. A critical scaling question is
the rate at which J has to grow with d in order to obtain
satisfactory Monte Carlo performance. Numerical results in
Sect. 3 show that the MC error in the likelihood estimate
and the filtering estimates is reasonably small for moderately
large dimensions with feasible number of particles. Our the-
oretical results in Sect. 4 supports the empirically observed
scaling.

2.1 Constructing a guide function

An ideal guide function is the forecast likelihood of all future
observations (Whiteley and Lee 2014). Theorem 3 in Sect. 4
will show that a bound on the MC error in filtering estimates
is minimized with this guide function. In practice, one can
consider approximations to the forecast likelihood of a cer-
tain number of future observations for the guide function: for
n ∈ 0 : N−1, s ∈ 1 : S,
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ψtn,s (x) ≈ p(yn+1:n+L | Xtn,s = x). (9)

Model dependent constructions of the guide function have
been proposed for specific latent processes, such as perfectly
observed diffusion processes (Lin et al. 2010) or stochas-
tically generated graph models (Bloem-Reddy and Orbanz
2018). Del Moral and Murray (2015) discussed construc-
tion of guide function using Gaussian processes. A general,
iterative method to construct guide functions that lead to
progressively more balanced resampling weights has been
proposed in Guarniero et al. (2017). However, supplemen-
tary regularization in the construction of the guide function
will be necessary for application to high-dimensional mod-
els, becausemethods discussed inGuarniero et al. (2017) rely
on approximations usingmixtures of normal densities, which
become problematic for high-dimensional distributions.

We propose simulation-based approaches for construct-
ing the guide function. These approaches can be used for
implicit models for which only the simulator of the latent
process is available. The method described below is used in
our numerical studies (Sects. 3 and 5.1) for non-Gaussian
examples. We will use an approximation to forecast likeli-
hood p(yn+1:n+L | Xtn,s = x) of the form

ψtn,s (x) =
min(L,N−n)∏

b=1

ψ
(
x; tn,s → tn+b

)η(tn,s → tn+b) , (10)

where

ψ(x; tn,s → tn+b) ≈ pYn+b | Xtn,s

(
yn+b

∣
∣ x

)

and 0≤ η(tn,s → tn+b)≤ 1 denotes fractional powers that
are non-decreasing as tn,s increases. If s = S and b= 1, we
set ψ(xtn,S , tn,S → tn+1) := gn+1(yn+1 | xtn,S ) and η(tn,S →
tn+1) = 1, because the measurement density at tn,S = tn+1

can be exactly evaluated. The fact that the powers η(tn,s →
tn+b) are non-decreasing as tn,s increases may reflect the
algorithm user’s increasing confidence in the accuracy of
the approximated forecast likelihood as the forecast interval
becomes shorter. Increasing powers η(tn,s → tn+b) as time
progresses can also be understood as gradually introducing
the information provided by yn+L to the filtering algorithm
over the time interval [tn,1, tn+L ]. We propose a sequence of
powers defined as

η(tn,s → tn+b) := 1 − tn+b − tn,s

max{tn+b − tmax(n+b−L,0), 2(tn+1 − tn)} .

(11)

The variance of the resampling weights (8) under (10) and
(11) can be O(1) in d, the model dimension. In cases where

n + b− L ≥ 0 and tn+b − tn+b−L ≥ 2(tn+1 − tn), the resam-
pling weight for s 
= 1 is given by

ψtn,s+1 (X
j
tn,s+1

)

ψtn,s (X̃
j
tn,s

)
=

L∏

b=1

ψ(X j
tn,s+1

; tn,s+1 → tn+b)
1− tn+b−tn,s+1

tn+b−tn+b−L

ψ(X̃ j
tn,s

; tn,s → tn+b)
1− tn+b−tn,s

tn+b−tn+b−L

.

(12)

If the difference between ψ(X̃ j
tn,s

; tn,s → tn+b) and

ψ(X j
tn,s+1

; tn,s+1 → tn+b) is small, (12) is close to

L∏

b=1

ψ(X̃ j
tn,s

; tn,s → tn+b)
1− tn+b−tn,s+1

tn+b−tn+b−L

ψ(X̃ j
tn,s

; tn,s → tn+b)
1− tn+b−tn,s

tn+b−tn+b−L

=
L∏

b=1

ψ(X̃ j
tn,s

; tn,s → tn+b)

tn,s+1−tn,s
tn+b−tn+b−L . (13)

If all observation interval is of equal length and the inter-
mediate time points tn,s for s ∈ 1 : S−1 are equally spaced
between tn and tn+1, then (13) is equal to

L∏

b=1

ψ(X̃ j
tn,s

; tn,s → tn+b)
1
LS ,

which is approximately on the order of

⎡

⎢
⎣

{
L∏

b=1

pYn+b|Xtn,s
(yn+b | X̃ j

tn,s
)

} 1
L

⎤

⎥
⎦

1
d

if S = d. Since the predictive likelihoods pYn+b|Xtn,s
typi-

cally scale exponentially in d, raising them to a power of
1
d can make the resampling weights (12), and consequently
their variance, O(1) in d. We also found that the powers
given by (11) led to good numerical performance of GIRF
on the examples we considered. On the contrary, if we set
η(tn,s → tn+b) = 1 for all tn,s ≤ tn+b, the variance of
the resampling weights at s = 1 can be noticeably larger
than at other intermediate time points because a new term
ψ(x; tn,1 → tn+L) is suddenly multiplied to the resampling
weights at tn,1. Setting the denominator in (11) to be at least
twice the observation interval, 2(tn+1 − tn), ensures that
for L = 1 and s small, the power η(tn,s → tn+1) is at least
1
2 . Otherwise, if η(tn,s → tn+1) is too small and L = 1, the
guide function ψtn,s (x) = ψ(x ; tn,s → tn+1)

η(tn,s → tn+1) can
become too uninformative to guide particles to the regions
of the sample space that are consistent with the future obser-
vation. In this case, the particles that are not properly guided
mayhave large resamplingweight variance at later time steps.
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2.1.1 Approximating the forecast likelihood using guide
simulations

We propose two ways of obtaining an approximate forecast
likelihoodψ(x ; tn,s → tn+b) in the absence of a closed-form
transition density for the latent process.

(i) A moment matching method. We will assume that the
measurement density gn+b( · | Xtn+b ) belongs to a family of
densities {ǧ( · | μ,�) ; μ,�} that are parameterized by the
mean μ and the variance �. We denote the mean and the
variance by μn+b(Xtn+b ) and �n+b(Xtn+b ):

gn+b( · | Xtn+b ) ≡ ǧ
[ · | μn+b(Xtn+b ),�n+b(Xtn+b )

]
.

We make a forecast from the current state Xtn,s = x to time
tn+b using a deterministic skeleton of {Xt }. A determin-
istic skeleton is a deterministic process that approximates
the conditional mean of the latent process

{
Xt ; t ≥ tn,s

}

given Xtn,s = x . This deterministic forecast will be denoted
by ξ̄ (x; tn,s → tn+b). We next approximate the forecast vari-
ance of Yn+b given Xtn,s = x , which can be expressed as

Var(Yn+b|Xtn,s = x) = Var
(
E[Yn+b|Xtn+b ]

∣
∣Xtn,s = x

)

+E
[
Var(Yn+b|Xtn+b )

∣
∣Xtn,s = x

]
, (14)

using a collection of JG random forecast simulations for
Xtn+b from Xtn,s = x , which we call guide simulations and
denote by ξ jG(x; tn,s → tn+b), jG ∈ 1 : JG. The sample vari-
ance of E[Yn+b|Xtn+b ] = μn+b(Xtn+b ) evaluated at these
guide simulations approximates the first term on the right
hand side of (14). We denote this sample variance by
�(x; tn,s → tn+b). The second termon the right of (14) canbe
approximated by �n+b

(
ξ̄ (x; tn,s → tn+b)

)
. We then approx-

imate the forecast likelihood of Yn+b = yn+b given Xtn,s = x
by

ψ(x; tn,s → tn+b) = ǧ
[
yn+b

∣
∣μn+b

(
ξ̄ (x; tn,s → tn+b)

)
,

�n+b
(
ξ̄ (x; tn,s → tn+b)

) + �(x; tn,s → tn+b)
]
. (15)

One may use (15) for measurement processes without well-
defined first and second moments, if the measurement noise
is additive and the measurement process belongs to a family
that is closed under independent sums, such as the Cauchy
distribution. We view the parameters μ and � of the family
{ǧ( · | μ,�)} as representing the center and the variability
of the distributions respectively. For two independent ran-
dom variables X1 and X2 with densities ǧ( · | μ,�) and
ǧ( · | 0, �′) respectively, we suppose that X1+X2 has density
ǧ( · | μ,� + �′). The forecast variability �(x; tn,s → tn+b)

may be approximated by, for example, a value for which
the distribution with density ǧ

( · | 0, �(x; tn,s → tn+b)
)
has

the same inter-quantile distance as the sample inter-quantile
distance of the random forecasts.

Often times, the measurement process of a spatiotemporal
POMP model is local, in the sense that the measurement in
the i-th spatial unit depends only on the state of the same unit.
In such cases, the measurement density can be expressed as

gn(yn | xtn ) =
d∏

i=1

g[i]
n (y[i]

n | x [i]
tn ). (16)

If each local measurement density g[i]
n belongs to a family

{ǧ[i]( · | μ[i], �[i])}, we may take

ψ(x; tn,s → tn+b)

=
d∏

i=1

ǧ[i] [y[i]
n+b

∣
∣μ[i]

n+b

{
ξ̄ [i](x; tn,s → tn+b)

}
,

�
[i]
n+b

{
ξ̄ (x; tn,s → tn+b)

} + �[i](x; tn,s → tn+b)
]
,(17)

where ξ̄ [i](x; tn,s → tn+b) is the i-th component of the
deterministic forecast and �[i](x; tn,s → tn+b) is the sam-
ple variance of μ

[i]
n+b evaluated at the guide simulations. We

note that ξ̄ [i](x; tn,s → tn+b) is obtained by simulating the
deterministic skeleton jointly for all dimensions, and also
�[i](x; tn,s → tn+b) by simulating the joint random latent
process. Thus ψ(x; tn,s → tn+b) constructed by (17) makes
some allowance for the correlation of the latent process
between dimensions. The forecast likelihood approximated
thisway can be reasonably accuratewhen the variances of the
independent measurement processes in (16) are larger than
the covariance of the guide simulations between the spatial
components.

We note that one can save computational effort by using
locally linear approximations for the forecast variability.
Suppose that for t ∈ (tn,s, tn+b) the ancestor of a particle

X j
t is X j ′

tn,s
. One may approximate the forecast variability

from t to tn+b for particle X j
t as

�(X j
t ; t → tn+b)

≈ �(X j ′
tn,s

; tn,s → tn+b) · tn+b − t

tn+b − tn,s
. (18)

The forecast variability can be re-estimated using new ran-
dom forecasts at each tn,1, n ∈ 1 : N−1, or more often if the
locally linear approximation becomes unreliable.

(ii) A quantile-based method. The second method uses the
sample quantiles of the guide simulations. For some K > 1
and for k ∈ 1 : K , let q̂[i]

k (x; tn,s → tn+b) denote the sample
quantile corresponding to the cumulative probability of k−0.5

K
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for the i-th component of the guide simulations for Xtn+b

given Xtn,s = x . We then define the guide function as

ψ(x; tn,s → tn+b)

=
d∏

i=1

1

K

K∑

k=1

g[i]
n+b

[
y[i]
n+b

∣
∣q̂[i]

k (x; tn,s → tn+b)
]
. (19)

The number K of sample quantile values can be chosen
such that at least one of the sample quantiles belong to
the effective support of the measurement likelihood function
g[i]
n+b(y

[i]
n+b| · ). Similarly to the moment-matching method,

the guide simulations can be made only at a small frac-
tion of the intermediate time points. Suppose again that

for t ∈ (tn,s, tn+b) the ancestor of X j
t is X j ′

tn,s
. Under the

same assumption that the forecast variance increases approx-
imately linearly in the forecast time length, we can approx-
imate the k-th quantile of the forecast distribution of X [i]

tn+b

given X j
t as

q̂[i]
k (X j

t ; t → tn+b)

≈ ξ̄ [i](X j
t ; t → tn+b) +

(
q̂[i]
k (X j ′

tn,s
; tn,s → tn+b)

−ξ̄ [i](X j ′
tn,s

; tn,s → tn+b)
)

·
√

tn+b − t

tn+b − tn,s
, (20)

where ξ̄ [i](x; t → tn+b) is the i-th component of the deter-
ministic forecast for Xtn+b given Xt = x . We point out
the case of using all guide simulations, that is, letting K
equal to the number of guide simulations JG and replacing
q̂[i]
k (x; tn,s → tn+b) in (19) and (20) by

ξ̃ jG(X j
t ; t → tn+b)

= ξ̄ (X j
t ; t → tn+b) +

(
ξ jG(X j ′

tn,s
; tn,s → tn+b)

−ξ̄ (X j ′
tn,s

; tn,s → tn+b)
)

·
√

tn+b − t

tn+b − tn,s
(21)

for jG ∈ 1 : JG. This can be particularly useful in the case
where each local latent process {X [i]

t } is multi-dimensional.
In this case, ordering the vectors ξ

[i]
jG

(X j
tn,s

; tn,s → tn+b),
jG ∈ 1 : JG, to compute sample quantiles may not be straight-
forward, but using all guide simulations in (19) removes the
need for ordering.

2.1.2 Dealing with the correlation between spatial units

The two approaches discussed in Sect. 2.1.1 approximates
the forecast likelihood pYn+b|Xtn,s

(yn+b | x) by the product of
terms approximating pY [i]

n+b|Xtn,s
(y[i]

n+b | x) for i ∈ 1 : d under

the assumption of spatially local, independent measurements

(16). We now consider the case where (16) is not satisfied.
Specifically, we address two sources of correlation between
{Y [i]

n+b ; , i ∈ 1 : d} conditional on Xtn,s . First, Y
[i]
n+b may not

depend only on X [i]
tn+b

but also the other components X [i ′]
tn+b

,

i ′ 
= i . Second, themeasurement processes for Y [i]
n+b, i ∈ 1 : d,

conditional on Xtn+b may not be independent of each other.
We propose a Monte Carlo approximation of the forecast
likelihood using guide simulations in the the case where the
measurement density can be expressed as

gn+b(yn+b | Xtn+b )=EZ

d∏

i=1

g̃[i]
n+b

[
y[i]
n+b ; h(Xtn+b , Z), X [i]

tn+b

]
,

(22)

where Z is a random variable that induces correlation between
local measurement processes and h and g̃[i]

n+b, i ∈ 1 : d are
some functions. We assume that the random variable Z
can be simulated and that it is independent of {Xt }. Given
X j
tn,s

, we make JG guide simulations ξ jG(X j
tn,s

; tn,s → tn+b)

for jG ∈ 1 : JG and simulate Z jZ for jZ ∈ 1 : JZ accord-
ing to the law of Z . We order the values h(ξ jG , Z jZ) for
jG ∈ 1 : JG and jZ ∈ 1 : JZ and partition (1 : JG) × (1 : JZ)

into Kk , k ∈ 1 : K , such that each Kk has the same size
and that h(ξ jG , Z jZ) ≤ h(ξ j ′G , Z j ′Z) whenever ( jG, jZ)∈Kk ,
( j ′G, j ′Z)∈Kk′ , and k < k′. We can then approximate the

forecast likelihood pyn+b|Xtn,s
(yn+b | X j

tn,s
) by

1

K

K∑

k=1

d∏

i=1

⎧
⎨

⎩

1

|Kk |
∑

( jG, jZ)∈Kk

g̃[i]
n+b

[
y[i]
n+b; h(ξ jG , Z jZ ), ξ

[i]
jG

]
⎫
⎬

⎭
,

(23)

where |Kk |denotes the size ofKk .Wenote that at the interme-
diate time points where the guide simulations are not made,
the ξ jG in (23) can be replaced by the approximations ξ̃ jG in
(21). The approximation (23) is motivated by the expression

pYn+b |Xtn,s
(yn+b | X j

tn,s
)

= E

⎡

⎣E

⎧
⎨

⎩

d∏

i=1

g̃[i]
n+b

[
y[i]
n+b ; h(Xtn+b , Z), X [i]

tn+b

] ∣
∣h(Xtn+b , Z)

⎫
⎬

⎭

∣
∣Xtn,s = X j

tn,s

]
. (24)

There is a bias-variance tradeoff associated with the choice
of K . Since (23) is an average of products of d terms, its value
will likely be determined by one of the partitions giving the
largest product. Therefore the Monte Carlo variance of (23)
can scale linearly with K , because effectively only 1

K of the
simulations are used. On the other hand, if K is small, the
values of h(ξ jG , Z jZ) within each partition can have a large
range, and the average over the partition can have a large bias
with respect to inner conditional expectation in (24).
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We show two examples that belong to the class of mea-
surement models described in (22).

(i) Correlated measurement noise. The first example is a
measurement model with correlated noise given by

Y [i]
n+b = X [i]

tn+b
+ Z + ε[i], i ∈ 1 : d,

where Z is a common noise term and ε[i] are independent
measurement noises specific to the i-th spatial unit. This cor-
responds to the case of h(Xtn+b , Z) = Z in (22). In this case,
each partitionKk consists of the values of Z jZ within a certain
range paired with all guide simulations.

(ii) A global latent process parameterizing themeasurement
process. The second example concerns the case where there
is a component in the latent process, {X [i0]

t }, which affects
all local measurement processes that are independent of one
another:

gn(yn | Xtn ) =
d∏

i=1

g̃[i]
n (y[i]

n ; X [i0]
tn , X [i]

tn ).

This corresponds to the case where h(Xtn+b , Z) = X [i0]
tn+b

in
(22). Being a global process parameterizing all local mea-
surement processes, X [i0]

t may have no local measurement
process for itself, but we may formally write the measure-
ment density for the i0-th component as g[i0]

n (y∗ | Xtn ) ≡ 1
for an arbitrary observation value y∗. The approximation of
forecast likelihood by (23) involves the partitioning of ξ

[i0]
jG

,
with no Z component.

3 Numerical examples

In this section,we apply theGIRF to two examples.We inves-
tigate the empirical scaling properties of an implementation
of GIRF compared to alternative methods. More numeri-
cal results that demonstrate the practical utility of the GIRF
approach in parameter estimation are given in Sect. 5.1. In
all our examples, the number of intermediate sub-intervals S
is set equal to the space dimension d.

3.1 Correlated Brownianmotion

We first applied our algorithm to a multi-dimensional cor-
related Brownian motion. Each component of the Brownian
motion was identically distributed with increments per unit
time having mean zero and unit variance. The correlation
coefficient matrix A for the increments was chosen such that

its all off-diagonal entries equaled α. The initial latent dis-
tribution at time t0 = 0 was given by the point mass at the
origin of Rd . Measurements were made at positive integer
time points t1:50 = 1 : 50, with independent Gaussian noises
of mean zero and unit variance. The POMP model can be
expressed as follows, where I denotes the d dimensional
identity matrix:

Xt+δ = Xt + N (0, δA),

Yn = Xtn + N (0, I ).

The guide function ψtn,s was defined as in (10), where L = 2
or 3, and ηtn,s ,tn+b were taken as in (11). Since the process had
zero drift, the forward state projection by the deterministic
mean process was given by μtn+b (xtn,s )= xtn,s . The variance
of Xtn+b conditioned on Xtn,s = xtn,s was equal to (tn+b −
tn,s) · A, so the guide function was defined as

ψtn,s

(
xtn,s

) =
L∏

b=1

φd
[
ytn+b ; xtn,s , (tn+b − tn,s ) · A + I

]η(tn,s → tn+b)
,

(25)

where φd( · ; μ,�) denotes the density of the d-dimensional
Gaussian distribution with mean μ and variance �. Evaluat-
ing (25) typically requires procedures such as the Cholesky
decomposition and takes O

(
d3

)
computations. Since this

could be demanding for large d, we also used an approxima-
tion of (25) obtained by ignoring the off-diagonal elements
of A,

ψtn,s

(
xtn,s

) =
L∏

b=1

φd
[
ytn+b ; xtn,s , (tn+b − tn,s ) · I + I

]η(tn,s → tn+b)
.

(26)

We first compared the filtering performance of the aux-
iliary particle filter (APF), 2-lookahead filter, and the GIRF
with L = 2 and 3 for varying dimensions d = 5, 20, 50, 100,
200, and 500. The correlation coefficient was fixed at α = 0.
The APF was implemented by setting S = 1 and L = 2 in
Algorithm 3, and the 2-lookahead filter by setting S = 1 and
L = 3. The GIRF method used two thousand particles for all
models. The APF and the 2-lookahead filter used d times
as many particles, so that the computation time would be
similar for all methods. For the APF and the 2-lookahead fil-
ter, we used a parallelized version of Algorithm 3, following
the island particle filter approach of Vergé et al. (2015), for
models with d ≥ 50 in order to avoid memory deficiency. In
these cases, the particles were divided into d/10 islands. For
d = 500, we could not run the APF and the 2-lookahead filter
with 2000d particles even after parallelization, due to insuffi-
cient memory. Each experiment was independently repeated
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for twenty times. All experiments were carried out using our
C++ implementation. The computational resources used and
the numerical results averaged over twenty repetitions are
shown in Table 2. The exact likelihood of the data and the
exact filtering distributions were computed using theKalman
filter. We compared the log likelihood estimates (log �̂) and
the mean squared errors of the estimated filter means at the
terminal time t50 averaged over all d components (MSFE).
All experiments in Sect. 3.1 were conducted on the Boston
University Shared Computing Cluster.

The numerical results showed that the performance of
the methods that did not use intermediate propagation and
resampling steps, namely the APF and the 2-lookahead filter,
decayed rapidly with dimension beyond d = 20. In contrast,
GIRF produced relatively accurate estimates of the likeli-
hoods and the filter means in much higher dimensions. In
particular, the error in theMonteCarlo likelihood estimate for
d = 200 was only 23 log units for L = 3. The mean squared
filter errors by GIRF were also relatively small compared to
the marginal variance of the filtering distribution at the ter-
minal time, Var(X [1]

t50 | y1:50), which was equal to 0.62 for all
models with different dimensions. The mean squared filter
errors by GIRF scaled roughly at a polynomial rate up to
d = 500. In contrast, the mean squared filter errors by the
APF and the 2-lookahead filter were much greater than the
filter variances beyond d = 20. Snyder et al. (2008) reported
that a standard bootstrap particle filter would require at least
1011 particles for the same filtering problem in two hundred
dimension in order to obtain filter mean estimates that are
even less accurate than our GIRF estimates shown in Table 2.
In contrast, ourGIRF estimateswere obtained using only two
thousand particles. We remark that we also tried taking all
ηtn,s ,tn+b in (10) equal to the unity regardless of b; in this
case the GIRF also scaled substantially better than the APF,
but the performance of the GIRF was somewhat worse than
when we took ηtn,s ,tn+b as in (11) (results not shown).

Next, we investigated varying the correlation coefficient
α of the Brownian motion. The dimension was fixed at
d = 100, and the correlation coefficient varied from 0 to 0.5.
We used GIRF with S = 100, L = 3, and two thousand parti-
cles. Twenty independent filter runs were carried out for each
value of correlation coefficient. Table 3 shows the errors in
the log of the estimated likelihoods and the mean squared fil-
ter errors at the terminal time averaged over d components.
All resultswere averaged over twenty independent filter runs.
We used both the guide function with the exact covariance as
in (25) and the guide function with diagonal covariance as in
(26). When the exact covariance was used, the Monte Carlo
errors in both the likelihood estimates and the filter means
were relatively constant or slowly increased as the correla-
tion coefficient α increased. When the diagonal covariance
was used, the Monte Carlo errors increased more rapidly as
α increased, due to inaccurate approximation of the fore-

cast likelihood by the guide function. However, the GIRF
runs still produced reasonable MC estimates using only two
thousand particles in one hundred dimension even when the
diagonal covariance approximation was used for α = 0.5: the
mean squared filter errors were about 0.14, which was less
than the marginal variance of the filtering distribution at the
terminal time, which was 0.50. Considering that the diago-
nal covariance approximation differs significantly from the
exact covariance in the case of α = 0.5 and the fact that a
one hundred dimensional model is well beyond the practi-
cally accessible range by the standard particle filters, we see
that the GIRF method can be relatively robust with respect
to inaccurate approximation to forecast likelihoods even in
moderately high dimensions.

3.2 Stochastic Lorenz 96model

The Lorenz 96 model is a nonlinear chaotic system which
provides a simplified representation of global atmospheric
circulation (Lorenz 1996). Stochastic versions of this model
have been used to support the increased use of non-
deterministic models for atmospheric science (Wilks 2005;
Palmer 2012). We considered a stochastic Lorenz 96 model
with added Gaussian process noise, defined as follows:

dX [i]
t = {(X [i+1]

t − X [i−2]
t ) · X [i−1]

t

−X [i]
t + F}dt + σpdB

[i]
t , i ∈ 1 : d. (27)

In the equation above, we understand that X [0] = X [d],
X [−1] = X [d−1], and X [d+1] = X [1]. The terms {B[i]

t ; i ∈
1 : d} denote d independent standard Brownian motions, and
σp the process noise magnitude. F is a forcing constant,
with F = 8 considered by Lorenz (1996) to induce chaotic
behavior. The system is started at the initial state X [i]

0 = 0

for i ∈ 1 : d−1 and X [d]
0 = 0.01. Observations are inde-

pendently made for each spatial unit at tn = �obs · n for
n ∈ 1 : 200, where�obs is either 0.1 or 0.5. Themeasurement
noise is normally distributed with mean zero and standard
deviation σm . We generated data for d = 4 and d = 50 with
F = 8 and σp = σm = 1, using the Euler-Maruyama method
for numerical approximation of the sample paths of Xt with
time increments of 0.01.

Wecompared our implementation ofGIRFwith an ensem-
ble Kalman filter (EnKF) for the generated data. Our GIRF
implementation used the guide function constructed via forty
guide simulations, according to the quantile-based method
(19) and (20) with L = 2 and K = 8. The guide simulations
were made at every observation time when �obs was 0.1
and at every time interval of 0.25 when �obs was 0.5. The
likelihood of data was also estimated from EnKF using the
Gaussian approximation to the empirical distribution of the
particle swarm using the sample mean and the sample vari-
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Table 2 : Comparison between the auxiliary particle filter, 2-lookahead method, and the GIRF with L = 2 and L = 3 for the correlated Brownian motion

Method Total no. of particles S L CPU time (sec)

d = 5 d = 20 d = 50 d = 100 d = 200 d = 500

(a) Computational costs

APF 2000 × d 1 2 1 13 102 382 1397 –

2-lookahead 2000 × d 1 3 1 15 139 474 1874 –

GIRF (L = 2) 2000 d 2 1 10 55 206 814 4990

GIRF (L = 3) 2000 d 3 1 12 68 294 1060 6416

APF 2-lookahead GIRF GIRF Kalman filter
(S = 1, L = 2) (S = 1, L = 3) (S = d, L = 2) (S = d, L = 3) log �

(b) Difference between the log of the average of twenty likelihood estimates and the exact log likelihood (log �̂ − log �), the standard deviation of twenty log likelihood estimates
(s.d.(log �̂)), and the mean squared filter error (MSFE) calculated as the squared error of the estimated filter means at terminal time averaged over d components and over twenty
repetitions. The exact log likelihoods (log �) and filter means were computed using the Kalman filter.

d = 5 log �̂ − log � −0.001 −0.07 −0.32 −0.06 −485.6

s.d.(log �̂) (0.53) (0.46) (0.49) (0.62)

MSFE 0.0003 0.0002 0.0008 0.0008

d = 20 log �̂ − log � −37.3 −24.8 −1.1 +0.26 −1904.0

s.d.(log �̂) (9.1) (8.6) (1.1) (0.86)

MSFE 0.15 0.17 0.007 0.006

d = 50 log �̂ − log � −1366 −1146 −5.6 −0.6 −4790.2

s.d.(log �̂) (144) (119) (5.4) (1.8)

MSFE 1.9 1.7 0.033 0.018

d = 100 log �̂ − log � −7096 −6717 −73 −7.7 −9499.1

s.d.(log �̂) (424) (366) (10) (3.4)

MSFE 4.0 3.8 0.08 0.04

d = 200 log �̂ − log � −30688 −29544 −277 −23 −18909

s.d.(log �̂) (1323) (1333) (27) (7.2)

MSFE 8.8 8.2 0.15 0.10

d = 500 log �̂ − log � – – −1282 −162 − 47415

s.d.(log �̂) – – (56) (16)

MSFE – – 0.31 0.22

1
23
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Table 3 Difference between the
log of averaged likelihood
estimates and the exact
likelihood, the standard
deviation of log likelihood
estimates, and the mean squared
filter errors for d = 100
dimensional models with
varying degrees of correlation

Correlation coefficient 0.0 0.1 0.2 0.3 0.4 0.5

Kalman log � −9499 −9431 −9322 −9198 −9059 −8905

GIRF log �̂ − log � −7.7 −1.8 −4.0 −7.7 −15 −20

[exact covariance] s.d.(log �̂) (3.4) (4.7) (6.0) (5.3) (6.1) (6.6)

MSFE 0.04 0.03 0.03 0.03 0.04 0.04

GIRF log �̂ − log � −7.7 −36 −99 −183 −273 −373

[diag covariance] s.d.(log �̂) (3.4) (6.4) (9.2) (12) (16) (28)

MSFE 0.04 0.05 0.08 0.13 0.13 0.14

Exact log likelihoods of data are shown in the first row. Results for both the guide function using the exact
covariance (25) and that using the diagonal covariance (26) are shown

ance. For a model with d = 4, we also ran the bootstrap
particle filter (BPF). We ran each method using 400, 2000,
and 10,000 particles. The experiments with 10,000 particles
for the BPF and for the GIRF ran five particle islands each
comprising 2000 particles. We used our C++ implementa-
tion for GIRF, and the BPF was implemented as a GIRF with
S = 1 and L = 1. For the EnKF, we used the enkf function
in R package pomp, which speeds up computations using
C snippet declarations (King et al. 2016, 2019).

Figure 1 shows the log likelihood estimates by each
method. When the observations were made at intervals of
�obs = 0.5, the likelihood estimates by GIRF were higher
than those by theEnKF.Thiswas due to the fact that theEnKF
made Gaussian approximations to one-step forecast distribu-
tions p(Xtn |y1:n−1), which were moderately non-Gaussian.
The likelihood estimates for the d = 50 dimensional model
by GIRF using 400 particles, which took 27 min, was higher
than those by the EnKF using 10,000 particles, which took
5.5 min. The likelihood estimates by the EnKF showed a bias
that did not go away as the number of particles increased.
For d = 4, the likelihood estimate by GIRF agreed with
those by the BPF, which may be considered as a benchmark
when filtering for low dimensional models. The results for
�obs = 0.5 show that the GIRF can give better numerical
results than the EnKF for nonlinear, non-Gaussian models
for which one can construct a guide function that reasonably
approximates forecast likelihoods.

When �obs was 0.1 instead, the EnKF produced good
results relative to the GIRF. This was because our stochastic
Lorenz 96 model behaved like a linear Gaussian model for
this shorter observation time interval and the one-step fore-
cast distribution p(xtn |y1:n−1) could bewell approximated by
a Gaussian distribution. For d = 4, the GIRF, the BPF, and
the EnKF gave likelihood estimates that were close to each
other, but the EnKF scaled better to d = 50 than the GIRF.
We remark that a longer observation time interval posed dif-
ference challenges for GIRF and the EnKF. For the GIRF, the
deterministic forecast simulations became less reliable as the
forecast time length increased due to the chaotic property of

the Lorenz 96 model. For the EnKF, the one-step forecast
distribution became increasingly non-Gaussian as the obser-
vation time interval increased due to the nonlinearity of the
model. This made local data assimilation, which was based
on the assumption that the one-step forecast distribution was
Gaussian, less accurate.

For the d = 50 dimensional model, we also ran a local
ensemble Kalman filter (LEnKF) (Hunt et al. 2007). Our
implementation of the LEnKF used the observations at three
neighboring spatial units on each side for a total of seven
observations y[i−3:i+3]

n to update the i-th coordinate of the
particles. It also inflated the sample variance of the proposed
particles by a factor of 1.1 by linearly perturbing the particles
away from their sample mean. Local implementation of the
EnKF is commonly used to improve the numerical results
in geophysical models where the dimension can be much
higher than the number of particles. In our relatively low-
dimensional examples, however, both local implementation
and variance inflation did not improve the numerical results.

4 Theoretical results

We first show that the standard results for SMC apply to
the GIRF defined in Algorithm 3. GIRF can be cast into
the standard framework of particle filters by extending the
latent space to X

2 where the new latent variable is the
pair (Xtn,s , Xtn,s−1). This extension is necessary because the

resampling weights (8) depend on both X j
tn,s

and X̃ j
tn,s−1

.
Likelihood estimates obtained from the standard particle fil-
ter are unbiased (Del Moral and Jacod 2001). It follows that
the likelihood estimates fromGIRF are also unbiased for any
guide function ψtn,s : X → R

+.

Theorem 1 The likelihood estimate �̂ of Algorithm 3 is unbi-
ased for �1:N (y1:N ).

Proof See Section S1 in the supplementary material. ��
The consistency and the asymptotic normality of the filter
estimates from GIRF also follow naturally from the stan-
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Fig. 1 : Log likelihood estimates per spatial unit per time ( �̂
N×d ) by GIRF, EnKF, a local ensemble Kalman filter (LEnKF), and the bootstrap particle

filter (BPF) for stochastic Lorenz 96 examples with various dimensions and observation time intervals

dard particle filter theory (Chopin 2004; Del Moral 2004).
The results of the unbiasedness of likelihood estimates and
the consistency of filtering distribution have been given for
methods with intermediate resampling, but the scaling prop-
erties with respect to increasing dimension have not been
established (Del Moral and Murray 2015; Bloem-Reddy and
Orbanz 2018). In what follows, we examine the scaling prop-
erties of GIRF.

GIRF converts a filtering problemwith highly informative
observations into one that deals with a slower rate of incom-
ing information, at the expense of operating on a refined time
scale. There are many results in the literature which concern
the stability of particle filters (see for example, Del Moral
and Guionnet 2001; Del Moral 2004; Le Gland and Oudjane
2004;Whiteley 2013;Giraud andDelMoral 2017).However,
these results do not directly address the scaling with respect
to increasing dimension. Another major issue in applying
these results to the “infill” scenario we study in which the

number of intermediate time steps S is increasing is that the
number of time steps needed for the mixing of the latent pro-
cess conditional on data increases proportionally with S. We
provide a novel theoretical analysis of the scaling rate when
the number of intermediate time steps grow linearly with the
amount of information eachobservation carries,which in turn
increaseswith themodel dimension. In particular, we provide
a finite sample bound on the filtering error (Theorem 3) and
asymptotic bounds on the variance of the likelihood estimate
(Theorem4) andfilter estimates (Theorem5) forGIRF.These
bounds show how intermediate propagation and resampling
and the guide function can remedy the otherwise problematic
dimensional scaling properties of particle filters.
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4.1 Scaling properties when the guide function is
exact

Given the observations y1:N and for tn < t ≤ tn+1, we initially
consider the situation where the guide function matches the
forecast likelihood of all future observations:

ψ∗
t (xt ) := pYn+1:N |Xt (yn+1:N | xt ). (28)

This is called the exact guide function. We will show that the
number of particles required for accurate filtering can scale
polynomially in dimension d under some assumptions if the
exact guide function is used and S = d. Since the exact guide
function is not generally computationally tractable, a theory
for inexact guide functions will be developed in Sect. 4.2.

Assumption 1* There exists C∗
1 ≥ 1 such that for every

s ∈ 1 : S, n ∈ 0 : N−1, and x ∈X,

Var
[
p(yn+1:N | Xtn,s )

∣
∣ Xtn,s−1 = x

]

p(yn+1:N | Xtn,s−1 = x)2
≤ C∗

1
2 − 1. (29)

In (29), the distribution of Xtn,s given Xtn,s−1 = x is under-
stood as given by the law of the latent Markov process,
unconditional on data. Assumption 1* asserts that the fore-
cast likelihood of all future observations given Xtn,s does not
deviate too much from the forecast likelihood given the value
Xtn,s−1 = x . Note that C∗

1 depends on the length of the time
interval [tn,s−1, tn,s], and thus on the number of intermedi-
ate steps S. Assumption 1* is related to the rate at which the
information provided by future observations are processed
by the filtering algorithm.

In what follows, we will assume that multinomial resam-
pling is used. Under multinomial resampling, the indices a j

in Algorithm 3 are drawn independently of each other, given{
w j ; j ∈ 1 : J}.
Theorem 2 Suppose multinomial resampling and the exact
guide function (28) are used in Algorithm 3. Also suppose
that Assumption 1* holds. If f is a measurable function such
that ‖ f ‖∞ ≤ 1 and a > 1 is an arbitrary constant, then we
have

∣
∣
∣
∣
∣
∣

1

J

J∑

j=1

f (X̃ j
tN

) − E[ f (XtN )|Y1:N = y1:N ]
∣
∣
∣
∣
∣
∣
≤ 4a(C∗

1 + 1)√
J

(NS + 1)

(30)

with probability at least 1− (2NS+1)(NS+1)
a2

, given that
√
J ≥

8a(C∗
1 + 1)NS.

Proof See Section S2 in the supplementary material. ��
Theorem 2 gives a bound on the MC error in filtering esti-
mates when the GIRF approach is used with the exact guide

function. If we are to keep the probability (2NS+1)(NS+1)
a2

with which the bound is violated at a fixed level, the number
a needs to increase linearly with S, and thus the error bound
increases at a rate of at most O(S2). We will show below that
if we take S = d, C∗

1 can be uniformly bounded (i.e., O(1))
as the dimension d increases, under certain circumstances.
Theorem 2 implies that if S = d and C∗

1 = O(1) in d, the
MC error will scale at most polynomially in d.We note that if
there are no intermediate propagation and resampling steps,
that is if S = 1, C∗

1 typically scales exponentially in d.

Proposition 1 Consider a POMPmodel consisting of d inde-
pendent one dimensional latent process {Xt } = {X [1:d]

t } and
measurement processes {Yn} = {Y [1:d]

n }. Let each observa-
tion be denoted by yn = y[1:d]

n . Suppose that there exists
d positive real numbers ζ [1:d] such that for every i ∈ 1 : d,
s ∈ 1 : S, n ∈ 0 : N−1, τ ∈ [tn,s−1, tn,s], and x ∈X,

d

dτ
logVar

[
p(y[i]

n+1:N | X [i]
τ )

∣
∣ X [i]

tn,s−1
= x [i]] ≤ 2ζ [i]. (31)

Suppose further that

tn,s − tn,s−1 ≤ �

d

for some �> 0 and all s ∈ 1 : S and n ∈ 0 : N−1. Then in
Assumption 1*, we can set

C∗
1 = exp

{
1

d

d∑

i=1

ζ [i] · �

}

. (32)

Thus if
∑d

i=1 ζ [i] = O(d), C∗
1 in (32) is O(1).

Proof See supplementary section S4. ��
If we set S = d such that |tn,s − tn,s−1| = O( 1d ), Proposi-

tion 1 says that the MC error bound in Theorem 2 scales
polynomially in d for independent models. However, we
note that the independence assumption is not crucial; see
a correlated Brownian motion example in the supplemenary
section S5.

Assumption 1* takes explicit advantage of the require-
ment for the GIRF method that the latent process operates in
continuous time. The latent process transition kernel that is
non-deterministic over intermediate time intervals provides
the randomness necessary for gradually guiding the particles
to the next guided filter distribution. As a counterexample,
consider a case where the latent process is deterministic
except for making random jumps at fixed observation times
t1:N . We suppose that the sample paths are right-continuous
at t1:N . Due to the deterministic evolution of the latent pro-
cess in the interval [tn, tn+1), we have

Var
[
p(yn+1:N | Xtn,s )

∣
∣ Xtn,s−1

] = 0
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for s ∈ 1 : S−1. However, for a POMP model consisting of d
independent processes and for s = S, we have

Var
[
p(yn+1:N | Xtn+1)

∣
∣ Xtn,S−1 = xtn,S−1

]

p(yn+1:N | Xtn,S−1 = xtn,S−1)
2

= Var
[
p(yn+1:N | Xtn+1)

∣
∣ Xtn = xtn

]

p(yn+1:N | Xtn = xtn )
2

=
d∏

i=1

E

[
p(y[i]

n+1:N | X [i]
tn+1

)2
∣
∣ X [i]

tn = x [i]
tn

]

p(y[i]
n+1:N | X [i]

tn = x [i]
tn )2

− 1,

where xtn is a value of the latent process at tn from which
the deterministic evolution leads to xtn,S−1 at tn,S−1. Since
the product of d terms in the right hand side generally scales
exponentially in d, the bound C∗

1
2 also scales exponentially.

We see that the continuously random property of the latent
process is necessary for Algorithm 3 to be able to scale favor-
ably.

4.2 Scaling properties when the guide function is
not exact

Wenow consider the casewhenψt is not exact. TheMC error
is affected by the inaccurate approximation of the forecast
likelihoods p(yn+1:N | xtn,s ) by ψtn,s (xtn,s ). In order to derive
a bound on the MC error similar to that in Theorem 2, we
introduce two technical assumptions. The first assumption is
analogous to Assumption 1* in Sect. 4.1.

Assumption 1 There existsC1 ≥ 1 such that for all s, s′ ∈ 1 : S
and n, n′ ∈ 0 : N−1 such that tn,s ≤ tn′,s′ and for every x ∈X,

Var
[
E

(
ψtn′ ,s′ (Xtn′ ,s′ )

∏n′
m=n+1 gm(ym | Xtm )

∣
∣ Xtn,s

) ∣
∣ Xtn,s−1 = x

]

E

(
ψtn′ ,s′ (Xtn′ ,s′ )

∏n′
m=n+1 gm(ym | Xtm )

∣
∣ Xtn,s−1 = x

)2 ≤ C2
1 − 1.

If ψ = ψ∗, we have

E

[
ψtn′,s′ (Xtn′,s′ )

∏n′
m=n+1 gm(ym | Xtm )

∣
∣ Xtn,s = x

]

= p(yn+1:N | Xtn,s = x) = ψ∗
tn,s

(x), (33)

and Assumption 1 simplifies to Assumption 1*. If ψtn′,s′ (x)
approximates the forecast likelihood p(yn′+1:n′+L | Xtn′,s′

= x), the quantity E

[
ψtn′,s′ (Xtn′,s′ )

∏n′
m=n+1 gm(ym | Xtm )

∣
∣ Xtn,s = x

]
in turn gives an approximation to p(yn+1:n′+L

| Xtn,s = x).
The second assumption concerns how closely the guide

function ψt approximates the forecast likelihood of future
observations. For a constant c≥ 1 and a subset C of X, we
define Osc(c ; C) to be a class of positive functions f on X

such that

c · inf
x∈C

f (x) ≥ sup
x∈X

f (x).

Assumption 2 There exist constants C2 ≥ 1, ρ ∈ (0, 1], and
a collection of regions Ctn,s ∈X for s ∈ 1 : S and n ∈ 0 : N−1
such that the following hold:

(i) For all s ∈ 1 : S and n ∈ 0 : N−1,

Pψ
tn,s

(Ctn,s ) ≥ ρ.

(ii) For all s, s′ ∈ 1 : S and n, n′ ∈ 0 : N−1,

E

[
ψtn′,s′ (Xtn′,s′ )

∏n′
m=n+1 gm (ym | Xtm )

∣
∣ Xtn,s = x

]

ψtn,s (x)
∈ Osc(C2 ;Ctn,s ).

(34)

A value ofC2 that is close to unity indicates thatψtn,s (x) is

approximately proportional to the quantity E
[
ψtn′,s′ (Xtn′,s′ )

∏n′
m=n+1 gm(ym | Xtm )

∣
∣ Xtn,s = x

]
. If ψ = ψ∗, due to (33),

one can take C2 = 1, Ctn,s = X for all tn,s , and ρ = 1. The
fact that a constantmultiple of the infimumof the ratio in (34)
over Ctn,s is lower bounded by the global supremum indicates
that the guide function ψtn,s can overestimate the forecast
likelihood outside Ctn,s . For instance, if we consider the case
where the regionCtn,s is defined as {x ∈X ; ψtn,s > c} for some
value c> 0, then Assumption 2 (ii) might be interpreted as
that ψtn,s has tails at least as thick as those of the numerator
in (34). Assumption 2 (i) says that the region Ctn,s has to carry

a probability mass of at least ρ with respect to Pψ
tn,s

.
Under Assumptions 1 and 2, the MC error in filtering

estimates can be bounded as follows.

Theorem 3 Supposemultinomial resampling is used in Algo-
rithm 3. Also suppose that Assumptions 1 and 2 hold. If f is
a measurable function such that ‖ f ‖∞ ≤ 1 and a > 1 is an
arbitrary constant, then we have

∣
∣
∣
∣
∣
∣

1

J

J∑

j=1

f (X̃ j
tN ) − E[ f (XtN )|Y1:N = y1:N ]

∣
∣
∣
∣
∣
∣

≤ 4aC2(C1 + 1)

ρ
√
J

(NS + 1) (35)

with probability at least 1− (2NS+1)(NS+1)
a2

, given that
√
J ≥

8ρ−2aC2(C1 + 1)NS.

Proof See supplementary section S2. ��
When ψ = ψ∗, Theorem 3 reduces to Theorem 2. When

ψ 
= ψ∗, it is possible to showa result similar toProposition1
and claim that C1 is uniformly bounded in d for independent
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models under certain conditions, provided that S = d. Unfor-
tunately, C2 scales exponentially in d. Nevertheless, taking
ψtn,s to be an approximation to p(yn+1:n+L | Xtn,s = x) can
greatly reduce the rate of exponential growth ofC2 compared
to the case

ψtn,s (x) =
{
1 for s ∈ 1 : S−1
gn+1(yn+1 | Xtn,S = x) for s = S,

which corresponds to the bootstrap particle filter.As shown in
Sect. 3, even rough approximations forψ , such as thosemade
by ignoring the correlation between components (Table 3 for
the correlated Brownian motion example) or by simulation-
basedmomentmatching (stochastic Lorenz 96 example), can
extend the dimensionality of themodels forwhich reasonably
good filtering estimates can be obtained.

A sufficient condition for Assumption 2 can be obtained
based on the mixing property of the latent process con-
ditional on data. We say that the latent process mixes
well over the interval [tn,s, tn+L ] conditional on data if the
conditional expectation E

[
f (Xt ′)

∣
∣yn+1:n+L , Xtn,s = x

]
for

t ′ ≥ tn+L does not vary substantially across the space as a
function of x . Loosely speaking, this condition implies that
the state Xtn,s does not influence the future state Xt ′ much,
given the observations yn+1:n+L . This condition is related to
the ϕ-mixing of the conditional law of the latent process
{Xt } given yn+1:n+L between the two σ -algebras gener-
ated by {Xt ; t ≥ tn+L} and {Xt ; t ≤ tn,s} (Billingsley 1999,
p. 260). The following proposition supports taking ψtn,s as
an approximation to p(yn+1:n+L), provided that the latent
process mixes over [tn,s, tn+L ] conditional on data.

Proposition 2 Let s, s′ ∈ 1 : S and n, n′ ∈ 0 : N−1 be such
that n′ ≥ n+L and let Ctn,s ∈X be given. Suppose
that the following two conditions hold for some constants
C2,a,C2,b ≥ 1:

E

[
ψtn′,s′ (Xtn′,s′ )

∏n′
m=n+L+1 gm (ym | Xtm )

∣
∣ yn+1:n+L , Xtn,s = x

]

∈ Osc(C2,a ;Ctn,s ), (36)

p(yn+1:n+L | Xtn,s = x)

ψtn,s (x)
∈ Osc(C2,b ; Ctn,s ). (37)

Then we have

E

[
ψtn′,s′ (Xtn′,s′ )

∏n′
m=n+1 gm(ym | Xtm )

∣
∣ Xtn,s = x

]

ψtn,s (x) ∈ Osc(C2,aC2,b ; Ctn,s ). (38)

Proof See supplementary section S4. ��
The condition (37) states that the latent process mixes
over [tn,s, tn+L ] conditional on data, with respect to a

specific function ψtn′,s′ (Xtn′,s′ )
∏n′

m=n+L+1 gm(ym | Xtm ) of
future states. The condition (37) says ψtn,s approximates the
forecast likelihood of L future observations. Provided these
two conditions, (38) says the condition (34) in Assumption 2
(ii) holds for C2 = C2,aC2,b. Proposition 2 implies that if
the latent processmixes slowly conditional on data, the guide
function will need to approximate the forecast likelihood of
a large number of future observations. Since the approxima-
tion of the forecast likelihood of a large number of future
observations can be practically difficult, the MC error in fil-
tering estimates is likely to increase. This situation can be
intuitively understood as that if the latent process has long
memory, it is difficult to know early enough which particles
will be consistent with distant future observations.

The implications of the theoretical results in this section
may be summarized as follows. Assumption 1 concerns the
source of filtering error coming from the MC randomness
in propagation steps. This source of error can be controlled
by carrying out intermediate propagation and resampling
with S = d. By contrast, the auxiliary particle filter, which
is equivalent to Algorithm 3 with S = 1, scales poorly even
when equipped with a good guide function, as indicated by
both theory and practice (Snyder et al. 2015). Assumption 2
bounds the source of filtering error originating from target-
ing the guided filter distribution Pψ

t instead of the smoothing
distribution p(xt | y1:N ). The filtering error can be reduced
by making accurate approximations to forecast likelihoods,
reducing C2. If mixing of the latent process conditional on
data happens fast, it may be practically feasible to use ψ

that approximates the forecast likelihood of a few number of
future observations.

We present two results on the asymptotic normality of
the MC error in the likelihood estimate (Theorem 4) and
the filtering estimates (Theorem 5). Under Assumptions 1
and 2, we derive upper bounds on the asymptotic variances
of these quantities. The connectionwithAssumptions 1 and 2
is the novel contribution of these results, since the asymptotic
normality itself follows directly from existing results in the
literature (e.g., Section 9 in, Del Moral 2004). The proofs are
given in supplementary section S3.

Theorem 4 In the limit where the particle size J tends to
infinity, the likelihood estimate �̂ from GIRF (Algorithm 3)
converges in distribution to a normal distribution:

√
J

(
�̂

�1:N (y1:N )
− 1

)

�⇒ N (0,V).

Under Assumptions 1 and 2, the asymptotic variance is
bounded above by

V < NS

(
C2
1C

2
2

ρ2 − 1

)

.
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An application of the delta method leads to the asymptotic
normality of the log likelihood estimate (Bickel and Doksum
2015):

√
J
(
log �̂ − log �1:N (y1:N )

)
�⇒ N (0,V).

Theorem 5 In the limit where the particle size J tends to
infinity, the following asymptotic normality holds for every
measurable function f : X → R such that ‖ f ‖∞ ≤ 1:

√
J

⎛

⎝ 1

J

J∑

j=1

f (X̃ j
tN ) − E[ f | Y1:N = y1:N ]

⎞

⎠ �⇒ N (0,W( f )).

Under Assumptions 1 and 2, the asymptotic variance is
bounded above by

W( f ) < 1 + 4NS
C2
1C

2
2

ρ2 .

5 Parameter inference using the GIRF

Being a Monte Carlo algorithm that yields unbiased esti-
mates of the likelihood of data, GIRF (Algorithm 3) can be
easily combined with existing parameter inference methods
that build upon the particle filter. These parameter estima-
tion methods include particle Markov chain Monte Carlo
(PMCMC) (Andrieu et al. 2010), SMC2 (Chopin et al.
2013), and iterated filtering (Ionides et al. 2015). For high-
dimensional POMP models, likelihood estimates often have
large amount of Monte Carlo error, for any feasible amount
of Monte Carlo effort, even when filtering is successful. This
prevents the use of PMCMC, which requires a standard devi-
ation order of 1 log unit (Doucet et al. 2015). In this paper,
we will focus on parameter estimation carried out by iter-
ated filtering. We will show that iterated filtering, together
with Monte Carlo adjusted profile methodology by Ionides
et al. (2017), is able to operate successfully in the presence
of relatively high levels of Monte Carlo error.

The iterated filtering approach of Ionides et al. (2015) is a
plug-and-play parameter estimation algorithm that finds the
maximum likelihood estimate (MLE) of multi-dimensional
parameters via an SMC approximation to an iterated, per-
turbed Bayes map. This algorithm, when implemented via
a plug-and-play SMC filtering approach, provides plug-
and-play inference on unknown model parameters. Iterated
filtering runs a sequence of particle filter on the augmented
space comprising the latent variable and the parameter,where
the parameters are subject to random perturbations at each
time point. The size of perturbations decrease over iterations
to induce convergence. In the limit where the perturbation
size approaches zero, Ionides et al. (2015) showed that the

distribution of filtered parameters approaches a point mass
at the MLE under regularity conditions.

Algorithm 4: An iterated guided intermediate resam-
pling filter (iGIRF)
Input : data, y1:N ; simulator for p(xt0 ; θ); simulator for

p(xtn,s | xtn,s−1 ; θ); evaluator for gn(yn | xtn , θ);
evaluator for ψtn,s (xtn,s , θ); number of particles, J ;
initial parameter swarm, �0,1:J ; perturbation kernel for
initial value parameter, κ0(dθ ; φ, σ); perturbation
kernel, κn,s(dθ ; φ, σ); number of iterations, M ;
sequence of perturbation sizes, σ1 : M

Output: final parameter swarm �M,1:J

for m ← 1 : M do
Run Algorithm 3 on the extended latent space (Xtn,s ,�

m
tn,s

)

with initial draws from (39) and subsequent draws from (40)
Set �m, j = �̃

m, j
tN for j ∈ 1 : J

end

Algorithm 4 presents an iterated guided intermediate
resampling filter (iGIRF). The algorithm starts with an ini-
tial set of parameters

{
�0, j ; j ∈ 1 : J}. At the beginning of

the m-th iteration, the parameter component of each parti-
cle is perturbed from its current position �m−1, j with kernel
κ0 independently for each j ∈ 1 : J . A pre-set decreasing
sequence (σm)m=1:M determines the size of perturbation.
The initial latent variables X̃1:J

t0 are drawn from the initial
latent distributions parameterized by the perturbed parame-
ters �̃

m,1:J
t0 , as follows:

�̃
m, j
t0 ∼ κ0(· ; �m−1, j , σm),

X̃ j
t0 ∼ pXt0

(· ; �̃
m, j
t0 ), j ∈ 1 : J . (39)

Parameters are perturbed at each intermediate time tn,s with
kernel κn,s , and the states are then drawn from the parame-
terized transition kernel:

�
m, j
tn,s

∼ κn,s(· ; �̃
m, j
tn,s−1

, σm),

X j
tn,s

∼ pXtn,s | Xtn,s−1
(· | X̃ j

tn,s−1
,�

m, j
tn,s

), j ∈ 1 : J . (40)

These perturbations define an extended POMP model for
(Xtn,s ,�

m
tn,s

), and the weighting and resampling steps are
carried out on this extended model following GIRF (Algo-
rithm 3). At the end of filtering, the parameter swarm �̃

m, j
tN

are set as�m, j . AfterM iterations, the final parameter swarm
�M, j is considered to be a collection of numerical approxi-
mations of the MLE.

Our implementation of iGIRF uses Gaussian parameter
perturbations. For parameters with interval constraints, we
apply certain transformations beforehand such as taking the
logarithm for positive parameters to ensure that Gaussian
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perturbations do not violate the constraints. Our examples
require us to consider two forms for the kernel κn,s . Initial
value parameters (IVPs) are perturbed only by κ0, and all
other κn,s have a point mass at the identity for the IVPs.
IVPs are parameters which encode the value of Xt0 but play
no subsequent role in the dynamics of the system. For our
examples of iGIRF, all parameters other than IVPs use a non-
singular kernel which does not depend on n and s, and we
call these regular parameters. Intuitively, treating parameters
as regular is appropriate in iGIRF if information about the
parameters arrives at a steady rate through the time series.

5.1 Numerical results

5.1.1 Stochastic Lorenz 96 model

In order to test the parameter estimation capability of iGIRF,
we made inference on F with or without the knowledge of
σp and σm from the data for the fifty dimensional stochastic
Lorenz 96 model considered in Sect. 3.2. The likelihoods of
data were estimated at values of F between 6.0 and 10.0 with
intervals of 0.5 (Fig. 2). The guide function was constructed
according to (17) and (18) using forty guide simulations. The
likelihoods estimated at σp = σm = 1 were used to estimate
the slice likelihood curve. We also estimated the MLEs for
σp and σm using iGIRF (Algorithm 4) and estimated the like-
lihoods at the obtainedMonte Carlo MLE using Algorithm 3
to approximate the profile likelihood curve. TheMonte Carlo
MLEwas taken to be the mean value of the parameter swarm
at the end of the twentieth iteration in Algorithm 4 (i.e.,
M = 20). The estimation at each value of F was repeated
twice independently. Five particle islands with two thousand
particles each were used to estimate the slice and the profile
likelihood estimates. We used S = 50 intermediate steps per
observation interval and L = 2 future observations for the
guide function.

We fit smooth curves through the estimated likelihoods
using a non-parametric local regression procedure. We fur-
ther constructed approximate 95% confidence intervals for
F based on locally quadratic fits through the likelihood esti-
mates around the maximum of the smoothed fits, following
the procedure proposed in Ionides et al. (2017). This pro-
cedure further developed methods proposed by Diggle and
Gratton (1984) that enable parameter inference from models
that are implicitly defined by simulation algorithms. We give
more details here in order to make the explanation of this
procedure self-contained. When the likelihood of data from
a one-parameter model can be exactly evaluated, the 95%-
confidence interval for the maximum likelihood estimate of
the parameter can be obtained by a cut-off on the likelihood

curve at
z20.975
2 = 1.92,where z0.975 is the 0.975quantile of the

standard normal distribution. In large and complex models

where the likelihoods of data are estimated withMonte Carlo
methodswith non-negligible amount of error, the uncertainty
in the likelihood estimates has to be taken into account in
computing the cut-off. The procedure for constructing the
Monte Carlo adjusted profile (MCAP) confidence intervals
are as follows.We assume that theMonte Carlo profile points
�̆P1:K are evaluated at ϑ1:K . We fit a smooth curve �̆S(ϑ)

through the profile points using a local smoother, such as the
R function loess (Cleveland et al. (1992), implemented in
R-3.4.1). The loess function locally fits polynomial curves
by giving less weights to points farther away from the point
being estimated. The point ϑ̆ at which the maximum of the
smoothed curve �̆S is attained can be taken as theMLE of the
parameter ϑ . In order to quantify the Monte Carlo error in
the estimated maximum likelihood �̆S(ϑ̆), we make a local
quadratic fit near the maximum, using the weights that were
used in evaluating the smoothed curve �̆S at ϑ̆ . Write the fit-
ted quadratic equation as −ăϑ2 + b̆ϑ + c̆. The variance and
covariance of the coefficients V̆ar[ă], V̆ar[b̆], and ˘Cov[ă, b̆]
can be obtained as usual.Using the deltamethod, the standard

error of the maximum b̆
2ă can be estimated as

SE2
mc = 1

4ă2

(

V̆ar[b̆] − 2b̆

ă
˘Cov[ă, b̆] + b̆2

ă2
V̆ar[ă]

)

(Bickel and Doksum 2015). On the other hand, the statis-
tical error originating from the randomness in data can be
estimated with the usual formula

SEstat = 1√
2ă

.

Assuming that the size of the Monte Carlo error is roughly
the same across the possible realizations of the data, we can
reasonably approximate the total standard error of theMonte
Carlo maximum likelihood estimate as

SEtotal =
√

SE2
stat + SE2

mc.

It follows that the cut-off for an approximate (1 − α) confi-
dence interval can be obtained as

δ = ă · SE2
total · χα =

(

ă · SE2
mc + 1

2

)

· χα,

where χα is the (1−α) quantile of the χ -square distribution
on one degree of freedom.

The estimated Monte Carlo adjusted confidence intervals
from the slice and the profile likelihood estimates, indicated
by two blue and red vertical lines in Fig. 2a, were given by
(7.90, 7.99) and (7.85, 8.01) respectively. The upper ends of
both confidence intervals were located near the true value
of F = 8. We remark that the log likelihood estimates with
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Fig. 2 : Inference on the fifty dimensional stochastic Lorenz 96 model. a Estimated slice and profile likelihood curves and Monte Carlo confidence
intervals for F . bMonte Carlo MLE for σp and σm

known σp and σm dropped rapidly to around −4.7 × 104 at
F = 10, and for this reason the log likelihood estimates at
this value of F was excluded from fitting a locally quadratic
slice likelihood curve to compute the Monte Carlo adjusted
confidence interval. In contrast, the profile likelihood esti-
mates at F = 10 did not drop suddenly, thanks to the inflated
Monte Carlo MLE for the process noise σp (Fig. 2b). Inac-
curate values of the forcing constant F were compensated by
the process noise estimates larger than the truth. The Monte
Carlo MLE for the process noise tended to increase as the
value of F deviated from the truth.

5.1.2 Coupled spatiotemporal measles epidemics model

Spatiotemporal inference for epidemiological and ecolog-
ical systems is arguably the last remaining open problem
from the six challenges in time series analysis of nonlinear
systems posed by Bjørnstad and Grenfell (2001). Plug-and-
play SMC techniques have been central to solving the other
five challenges of Bjørnstad and Grenfell (2001), all of
which can be represented in the framework of inference
for low-dimensional nonlinear non-Gaussian POMP mod-
els. Population dynamics of ecological and epidemiological
systems can exhibit highly nonlinear stochastic behavior,
leading to computational challenges even in low dimensions.
Likelihoodmaximization via iteratedfiltering has emerged as
a practical inference tool for such systems (e.g., Blackwood
et al. 2013; Blake et al. 2014; Bakker et al. 2016; Becker et al.
2016; Ranjeva et al. 2017; Pons-Salort and Grassly 2018).

We demonstrate that the GIRF methodology can enable
likelihood-based inference on a spatiotemporal mechanis-
tic model addressing a scientific application. We studied the
epidemic dynamics of measles, which is well understood
compared to other infectious diseases and is characterized

by patterns that are closely replicable using a mechanistic
model. The study of measles has motivated previous statis-
tical methodology for spatiotemporal population dynamics
based on a log-linearization as in Xia et al. (2004) and other
approximations as in Eggo et al. (2010), but full likelihood-
based fitting using spatially coupled versions of city-level
measles transmission models has not previously been carried
out. We built on the model of He et al. (2009), adding spa-
tial interaction between multiple cities. We implemented our
algorithmswith the parameter estimation approach described
inSect. 5 tomake inference on the spatial coupling parameter.
We used the data collated and studied byDalziel et al. (2016).
The data consisted of biweekly reported case counts in the
prevaccination era from year 1949 to 1964 for forty largest
cities in England and Wales. Likelihood-based inference for
the nonlinear coupled stochastic dynamics of infectious dis-
ease in forty cities has not previously been demonstrated and
opens the possiblity of various scientific investigations in
epidemiological systems and beyond.

The model compartmentalized the population of each city
into susceptible (S), exposed (E), infectious (I ), and recov-
ered/removed (R) categories. Their sizes for the k-city were
denoted by Sk , Ek , Ik , and Rk . The population dynamics
was described by the following set of stochastic differential
equations:

dSk(t) = rk(t)dt − dNSE,k(t) − μSk(t)dt
dEk(t) = dNSE,k(t) − dNEI ,k(t) − μEk(t)dt
dIk(t) = dNEI ,k(t) − dNI R,k(t) − μIk(t)dt

k ∈ 1 : d.

Here, NSE,k(t), NE I ,k(t), and NI R,k(t) denote the cumu-
lative number of transitions between the corresponding
compartments up to time t in city k, μ denotes per-capita
mortality rate, and rk the recruitment rate of susceptible pop-
ulation. The total population Pk(t) was assumed known and
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Fig. 3 : Estimated profile likelihood points for various values ofG in our
spatiotemporalmeasles dynamicsmodel and the estimated approximate
95% confidence interval (between red vertical lines)

we let Rk(t) = Pk(t) − Sk(t) − Ek(t) − Ik(t). The cumu-
lative transitions were modelled as counting processes with
overdispersion relative to Poisson processes, following the
construction of Bretó et al. (2009). The term NSE,k(t), rep-
resenting the cumulative number of infections in the k-th city,
has the expected increment of

E
[
NSE,k(t + dt) − NSE,k(t)

] = β(t) · Sk(t) ·
[(

Ik
Pk

)α

+
∑

l 
=k

vkl

Pk

{(
Il
Pl

)α

−
(
Ik
Pk

)α}
⎤

⎦ dt + o(dt),

where β(t) denotes the seasonal transmission coefficient and
α the mixing exponent (He et al. 2009). The population of
city k was denoted by Pk , and the number of travelers from
city k to l by vkl . We used the gravity model of Xia et al.
(2004) that describes the number of travelers by

vkl = G · d̄

P̄2
· Pk · Pl

dkl
, (41)

where dkl denotes the distance between city k and city l.
The gravitation constant G in (41) was scaled with respect
to the average population of all forty cities P̄ and their aver-
age distance d̄ . The data consisted of the biweekly reported
case numbers in each city. The model assumed that a certain
fraction ρk , called the reporting probability, of the tran-
sitions from the infectious compartment to the recovered
compartment were, on average, counted as reported cases.
The measurement model was chosen to allow for overdis-
persion relative to the binomial distribution with success
probability ρk . More details on the model and the inference
procedure are given in the supplementary text S6.

Wemade inference on the gravitation constantG, based on
an estimated profile likelihood curve. Ability to infer about

the spatial coupling parameter G implies that the filter can
recover the full joint distribution for all spatial locations.
We fixed G at various levels and estimated other parameters
using Algorithm 4. The reporting probabilities ρk were esti-
mated by dividing the total case reports by the total births
for the corresponding periods in each city, due to the mod-
elling assumption that individuals who once contracted to
measles attain lifelong immunity. The estimated ρk closely
matched thevalues estimated inHeet al. (2009) separately for
each city using a mechanistic model. We evaluated the guide
function ψt using the approach described in Eqs. (10)–(18)
in Sect. 2.1 to approximate the forecast likelihood of L = 3
future data points. The forecast variability was estimated by
making forty random forecasts at every first intermediate
time point after observation time (i.e., tn,1).

All parameters except G and ρk were estimated using
iGIRF (Algorithm 4). The IVPs and the regular parameters
were estimated alternatingly. For IVP estimation we only
used the first three data points, because the information about
the initial states was concentrated on the early data points.
We iterated fifty times the filtering over the three data points
using fifty particle islands comprising sixty particles each.
Since the IVPs were only perturbed at the start of each filter-
ing, the particle swarm tended to quickly collapse to a single
point. Using many particle islands helped maintain diversity
among particles. The regular parameters were estimated by
filtering through the whole data once starting from the esti-
mated IVP values. Five islands of six hundred particles each
were used for regular parameter estimation. The estimation
of IVPs and regular parameters in total took about thirty hours
on average using 5 cores. We iterated the alternating estima-
tion ten times. The parameter perturbation size decreased at
a geometric factor of 0.92 for each subsequent iteration. The
mean of the final swarm of regular parameters was taken as
the Monte Carlo MLE. We estimated the IVP correspond-
ing to the Monte Carlo MLE and estimated the likelihood of
data usingAlgorithm3with ten islands of one thousand parti-
cles each. The obtained likelihood estimate was considered a
Monte Carlo profile likelihood for the specified G value. We
independently repeated the estimation of profile likelihood
six times for each value of G.

We constructed an approximate 95% confidence interval
based on the obtained profile likelihood estimates. We used
three points of highest profile likelihood estimates among six
points for each value of G. Figure 3 shows the estimates of
profile log likelihoods and the approximate 95% confidence
interval for G. The procedure for obtaining the Monte Carlo
adjusted confidence interval was carried out on a transformed
scale of

√
G for a better quadratic fit. The approximate con-

fidence interval was found to be (79, 108), indicated by two
vertical lines, using a Monte Carlo adjusted profile cut-off of
35.1 log units. All experiments in Sects. 3.2 and 5.1.2 were
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conducted on the Olympus cluster at the Pittsburgh Super-
computing Center.

6 Discussion

Our guided intermediate resampling filter (GIRF) approach
enables likelihood-based inference on relatively high-dimen-
sional, nonlinear, implicitly defined dynamic models. Alter-
native approaches based on information reduction, such as
approximate Bayesian computation (ABC), can fail to cap-
ture full complexities in the model or result in inaccurate
parameter estimates (Fasiolo et al. 2016). There is also a risk
of subconscious bias when the scientist’s expert knowledge
is used to select criteria used to fit a model. In comparison,
inference based on the likelihood of data can add to the reli-
ability of scientific conclusions, since the likelihood of data,
uniquely defined by the model, provides a common measure
of fit. In addition, the statistical efficiency of likelihood-based
inference leads to inferences that might be unobtainable for
methods requiring information reduction.

Our intermediate propagation and resampling approach
can be used when the transition density of the latent process
is not evaluable, provided that the latent process is defined
in continuous time and a simulator for the process is avail-
able. Empirically, we have demonstrated that GIRF can scale
up to dimensions substantially larger than the capabilities of
alternative algorithms such as the APF or a L-lookahead fil-
ter. GIRF can be successfully applied to highly nonlinear
models for which the ensemble Kalman filter fails. We also
showed that the method enables inference on a scientifically
challenging spatiotemporal epidemiological model. Further
potential applications may be found in areas such as ecol-
ogy, behavioral sciences, or epidemiology, when the data are
collected at linked spatial locations or structured into many
categories. An R package spatPomp (a pre-release version
available at https://github.com/kidusasfaw/spatPomp) pro-
vides a general realization of spatiotemporal POMP models,
where the user can define a model by specifying the latent
and the measurement processes and analyze data using the
GIRF and other algorithms. Many scientific and statistical
challenges remain involving analysis of partially observed,
highly nonlinear, coupled stochastic systems, and we have
shown that the GIRF approach can provide a framework for
progress in this enterprise.
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