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INCLUSIONS OF GENERAL SHAPES HAVING CONSTANT FIELD
INSIDE THE CORE AND NONELLIPTICAL NEUTRAL COATED
INCLUSIONS WITH ANISOTROPIC CONDUCTIVITY*

MIKYOUNG LIM' AND GRAEME W. MILTON#

Abstract. For certain shapes of inclusions embedded in a body, the field inside the inclusion
is uniform for some boundary condition. We provide a construction scheme for inclusions of general
shapes having such a uniformity property in two dimensions based on the conformal mapping tech-
nique for the potential problem. Using this complex analysis method, we also design nonelliptical
neutral coated inclusions with anisotropic conductivity. Neutral coated inclusions do not perturb
a background uniform field when they are inserted into a homogeneous matrix. Although coated
inclusions of various shapes are neutral to a single field, only concentric ellipses or confocal ellipsoids
can be neutral to all uniform fields. This paper presents our work relating to the construction of
nonelliptical coated inclusions with anisotropic conductivity in two dimensions that are neutral to
all uniform fields, where the assignment of the flux condition on the boundary of the core depends
on the applied background field. Using these neutral inclusions, we obtain cylindrical neutral inclu-
sions in three dimensions, with no flux applied to the boundary of the core and with the anisotropic
conductivity function of the shell given in accordance with the background uniform field.
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1. Introduction. Most conducting (or dielectric or magnetic) objects inserted
in a medium of constant conductivity (or permittivity or permeability) in which there
are uniform electric (or magnetic) fields have resulting fields that are generally neither
uniform inside nor outside the object. However, certain shapes of inclusions exist
inside which the resulting field is uniform for an applied uniform loading. Poisson
[45] realized that the field inside an ellipsoid must be uniform and explicit expressions
for this field were obtained by Maxwell [37, pp. 62-67]. Eshelby showed that an
ellipse or an ellipsoid satisfies this uniformity property and conjectured the following:
if an inclusion satisfies the uniformity property, then it should be an ellipse or an
ellipsoid [9, 10]. This conjecture was proved to be true within the class of simply
connected domains [25, 34, 46, 48]. Following Liu, James, and Leo [32] and Liu
[30, 31] (periodic structure), we denote an E-inclusion for an inclusion embedded
in an infinite medium of constant conductivity (or embedded in a unit cell with
periodic boundary conditions) that satisfies the Eshelby’s uniformity property for
at least one applied field. We also denote, following Kang, Kim, and Milton [21]
and Bardsley et al. [5], an Eq-inclusion for an inclusion embedded in a body 2
of constant conductivity that satisfies the uniformity property for some appropriate
boundary conditions on 0f2. E-inclusions were investigated by Kang [19] and Liu [34]
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in relation to the classical Newtonian potential problem. Finding F-inclusions in a
unit cell with periodic boundary conditions is important for finding microstructures
with extreme effective conductivity or extreme effective bulk modulus that attain
the Hashin—Shtrikman bounds or their anisotropic generalizations. Finding FE- or
FEq-inclusions is also an important problem with practical applications for designing
materials which for conductivity (or antiplane elasticity) induce electric fields (or
stresses) with small variances in the inclusion phase. These inclusions, which are
tailored to the applied field, are generally less likely to breakdown (or break) than
inclusions with large variances of the electric fields (or stresses).

A powerful technique for generating nonelliptical E- or Fq-inclusions in two di-
mensions has been to use hodographic transformations to solve the free-boundary
problem. Then the problem is reduced to a potential problem on a set of slits. This
approach has been successfully used by Vigdergauz [52] to obtain periodic microstruc-
tures, known as Vigdergauz microstructures, which are two-dimensional E-inclusions
with periodic boundary conditions (see also the work by Grabovsky and Kohn [12]).
It has been extended to obtain two-dimensional periodic structures with multiple in-
clusions in the unit cell; see section 23.9 of [39] and [4], and see also for pairs of
E-inclusions [7, 20]. Additionally, it has been used to construct Eq-inclusions [5, 21].
The question arises as to whether this technique misses some inclusion shapes. In
the context of the Egq-inclusion problem we will see that it does. Contrary to the
analysis in [5, 21], which suggested that only a limited family of simply connected
shapes can be FEgq-inclusions, we will see that any simply connected shape with an
analytic boundary can be an Egq-inclusion, for an appropriate choice of ). Rather
than using hodographic transformations, we will simply use a conformal mapping
that maps the region outside the inclusion to a region outside a circular disk and then
solve the problem in the disk geometry using Laurent series. The result shows that
the hodographic approach has limitations.

We remark that an alternative variational approach for obtaining FE-inclusions
was developed by Liu, James, and Leo [33, 34]. Their approach is not limited to
two dimensions and consequently they discovered three-dimensional periodic arrays
of E-inclusions that saturate the Hashin—Shtrikman bounds [16, 35] and they obtained
E-inclusions having disconnected components.

Our approach is quite similar to the conformal mapping method used in [40] to
obtain neutral inclusions, which is the second subject of the paper. Some coated
inclusions, when placed in a medium, do not disturb the exterior uniform field, and
these are denoted as neutral inclusions. They are in a sense invisible to the applied
field [26]. Once a neutral inclusion has been found, similar inclusions, possibly of
different sizes, can be added to the background matrix without altering the exterior
uniform field [14]. In this way it becomes possible to construct a composite, consisting
of multiple inclusions and a background matrix, of which the effective property exactly
coincides with that of the matrix. Two-dimensional conductivity problems can be
equivalently considered as antiplane elasticity problems. Well-known examples of
neutral inclusions are assemblages of coated disks and spheres [14, 16]. As the field
inside the core is uniform, these inclusions retain their neutrality even if the core
material is made nonlinear (see, for example, [15, 18]). Appropriately coated ellipses
and ellipsoids, with the possibly anisotropic material parameters of the core, shell,
and matrix, are neutral to all uniform fields [11, 26, 39, 49, 50], and these are the
only shapes for which coated inclusions admit such a uniformity property [22, 23, 40].
The concept of neutral inclusion has been extensively studied, especially for designing
an invisibility cloaking structure with metamaterials. For example, Zhou and others
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constructed coated spheres or multilayer spheres that are transparent to acoustic
waves, elastic waves, or electromagnetic waves [54, 55, 56]. Luo et al. [36] and Xi
et al. [53] found neutral inclusions for the Helmholtz equation that were based on
carpet cloaks. Later, Landy and Smith [29] physically realized these neutral inclusions
with microwaves. Al and Engheta [2] and Ammari et al. [3] discovered multicoated
neutral inclusions for Maxwell’s equations.

Coated inclusions of nonelliptical shapes can be neutral to a single uniform field.
Milton and Serkov constructed various shapes of neutral inclusions in two dimen-
sions with cores of perfectly conducting or insulating material by using the conformal
mapping technique [40], and Jarczyk and Mityushev extended this work to cores of
finite conductivities [17]. We refer readers to [39] for more results and references.
Recently, Kang and Li constructed weakly neutral inclusions of general shapes with
imperfect interfaces [24], and Choi, Kim, and Lim provided a numerical method to
construct multicoated neutral inclusions of general shapes [8]. It is also worth men-
tioning that Kim and Lim discovered nonelliptical inclusion shapes such that with a
suitable polynomial field at infinity, the field in the inclusion is uniform [27].

In the present paper, we describe the construction of nonelliptical coated in-
clusions in two dimensions that are neutral to the uniform background fields of all
directions, where the assignment of the flux condition on the boundary of the core
depends on the applied background field. As the resulting active neutral coated in-
clusions are not detectable by outside measurements (with the given uniform applied
field), one can view this neutral inclusion problem with the flux condition as active
cloaking (see [13, 38, 43, 44, 47] for other examples of active cloaking). In addition, we
design nonelliptical cylindrical neutral inclusions in three dimensions without impos-
ing a flux on the boundary of the core, using the constructed two-dimensional neutral
inclusions. Our result for the three-dimensional neutral inclusion can be reinterpreted
as a neutral inclusion in two dimensions in which currents are applied to the bound-
ary of the core. In the special three-dimensional case where the shell has constant
anisotropic conductivity, the condition for neutrality forces the conductivity tensor of
the shell to have an eigenvector aligned with the axis of the cylinder, and then the
neutral inclusion shapes are exactly those found in a previous study [40].

The remainder of this paper is organized as follows. In section 2 we describe
the construction of Eq-inclusions in two dimensions. Section 3 is devoted to neutral
inclusions with the active flux condition in two dimensions. In section 4 we consider
the cylindrical neutral inclusion in three dimensions and reformulate the problem as
a two-dimensional problem. The paper ends with the conclusion.

2. Eq-inclusions of general shapes. In this section, we present a new con-
struction method for Fg-inclusions in two dimensions based on complex analysis.
Let Q and D be simply connected bounded planar domains such that D C 2. The
core D has a constant, possibly anisotropic, conductivity o, and it is surrounded
by a coating © := Q\ D with a constant isotropic conductivity o;. We consider the
conductivity problem

Ap; =0 in ©,
V.-ooVpy =0 in D,
(2.1) Yo = ¢1 on 0D,

(O’ovgﬁo) 'n:qugal n on 8D,
o1Vp1r-n=g on 99,
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where g is a function which will be determined later, and n denotes the unit outward
normal vector either to 99 or to dD. We further assume the uniformity condition

(2.2) wo(x1,x2) = —€121 — egxy  in D

for some real constants e; and es. The problem (2.1)—(2.2) is overdetermined, so that
in general it has no solution for an arbitrary function g. If a certain pair of domains
(©2, D) admits a solution for some ej, ea, and g, then we call D an Eq-inclusion. For
later use, we denote

(2.3) ey = (e1,e2) = =Vo, jo = (J1,J2) = ooeo

for the uniform electric field and its associated current field inside D, respectively.
We also set the complex numbers

(2.4) eo = €1 +1iez, Jo =Jj1+1ije.

In [5, 20], Eq-inclusions were obtained by applying the hodograph transformation.
Roughly speaking, in the hodograph transformation method one constructs the core
D by stretching a slit in the direction orthogonal to the slit. In [5], for example, a
family of Fq-inclusions was constructed with 9D parametrized by

1— i)
1 = f (i 1+ l'2> ’

where f is a meromorphic function without a pole on the real axis. This formula
gives rise to Eq-inclusions such that for all (z1,x2) € 0, except the extremal points
ro = £1, each x5 corresponds exactly to two x; values. In general, the boundary
of D obtained with the hodograph transformation method requires zero, one, or two
intersecting points with any line that is orthogonal to the slit direction. In the present
paper, however, we do not have such a restriction in the construction scheme, and it
generates Fq-inclusions with an outer boundary of general shape as shown in Figure 1.
Furthermore, we will show in section 2.2 that any simply connected bounded domain
is an Eq-inclusion for some 2.

2.1. Analytic function formulation. We can reformulate the overdetermined
problem (2.1)—(2.2) in terms of complex analytic functions by using the fact that ¢ is
a two-dimensional harmonic function. In the following, we apply the existing complex
potential approach [40], where a free-boundary problem similar to (2.1) was solved to
construct neutral coated inclusions.

As 1 has a mean-zero normal flux on 0D, it admits a single-valued harmonic
conjugate, namely 1, in © such that the complex function

w(z) = ¢1(2) + i (2)

is analytic. Hereafter, we identify x = (21, x2) with z = 21 + ize. From the Cauchy—
Riemann equations for complex analytic functions, we have

0Yr _ 9o
(2.5) 5% = B Om02,0D,

where t is the positively oriented unit tangent vector either on 92 or on 9D. It is
then straightforward to obtain from (2.1) that
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() (d)

Fic. 1. Various Eq-inclusions (solid curve) with a possible boundary of Q (dotted curve) that
can be generated from the formula (2.12).

oy 1
(2.6) Bt = 01g on ON.

The uniformity condition (2.2) is essential for defining an FEq-inclusion. Using
(2.2) together with (2.5) and the flux condition on 9D in (2.1), we can show that

(2.7) w(z) =kz+hz ondD

with the complex constants & and h determined by the uniform electric field ey via
the relations

1 g 1 1.
(2.8) k=-5(@+or"h0), h=g(-eo+oi o).
Indeed, we have from (2.1), (2.3), and (2.5) that
oY1 O0pr 1

L. L.
Bt on a(aovwo)'nz (71(_30)'“_ ;1(]27—31) 't ondD.

This implies (the constant term is neglected)

1. .
P1(2) = o1 (jox1 — j1x2) on OD.

Hence, we can show (2.7)—(2.8) by using (2.2). It is worth mentioning that h and k
can inversely determine ey and jj as

60:7}17E, j():O'l(hfk).
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Because © is a doubly connected domain, it is conformally equivalent to an an-
nulus {p:r < |p| < R} for some 0 < r < R. In other words, there is a conformal
mapping, namely z(p), from the annulus onto ©. As z(p) is analytic on the annulus
that is centered at zero, it admits a Laurent series expansion

(2.9) z(p) = Z app”, r<|p| <R,

n=—oo

with some complex coefficients a,,. The composition w(p) := w(z(p)) is also analytic
in the annulus and, hence, admits a Laurent series expansion

(2.10) w(p)= > bup", r<|p| <R,

n=-—oo

where the coefficients b,, should be given for w to satisfy the boundary constraint
(2.7). The condition (2.7) is equivalent to

(2.11) b, = ka,, + hr~—2"a=,, for all n € Z,

and it uniquely determines b,, for given a,, k, and h.

We can now construct FEqg-inclusions by specifying the coefficients a,, which
should be chosen such that the resulting Laurent series z(p) converges to a conformal
mapping from an annulus to a doubly connected domain, and such that the series
(2.10) for w(p) with coeflicients b, given by (2.11) converges in this annulus. We set
the pair of domains (2, D) as

(2.12) 00 ={z(p) : lp| = R}, 90D ={z(p): |p| =}

and define w(p) by using the formula (2.11), with A and k given by (2.8), for a given
uniform field pg. Given that the resulting series function w(p) also converges to an
analytic function in the annulus, the function

(2.13) 01(2) = R{w(2)}, 2€Q\D,

satisfies the overdetermined problem (2.1)—(2.2) with

(2.14) g=o01 n 0N2.

O{w}
ot

The series w(p) converges if the two series z(p) = 3 a,p" and > r~2"a_,, p" converge.
Hence, the convergence of w(p) is independent of the direction of the uniform field ¢y.
In other words, the constructed Eq-inclusions admit an arbitrary uniform field inside
the core D, where the assignment of the flux function g depends on the direction of
the uniform field.

2.2. Eg-inclusions with a core of arbitrary shape. The proposed construc-
tion scheme enables us to find an Fq-inclusion with a core of arbitrary analytic shape.
Let D be an arbitrary simply connected domain. Then consider the conformal map-
ping of the form

0
p)=p+ Y anp”

n=—oo
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Fic. 2. An Eq-inclusion D (blue solid curve), with the black dotted curves being possible
boundaries of Q2. Here, an has only a finite number of nonzero entries and, hence, w(p) given by
(2.15) is convergent; thus Q can be taken to be any region that encloses the inclusion.

that takes the exterior of the unit disk centered at the origin onto the exterior of D
in a bijective fashion. We give an additional regularity assumption on D that z(p) is
univalent analytic outside a smaller disk {p : |p| > p*} for some p* < 1, the associated
Laurent series (with » = 1) for the potential

0 9]
(2.15) w(p) =kp+h/p+ Z kanp™ + Z ha_—,p"

n=-—o0 n=0

is analytic in {p: 1/p* > |p| > p*}. The domain of analyticity of w(p) is almost cer-
tainly larger than this, and given any Jordan curve 7 enclosing the unit disk such
that w(p) is analytic in the annular region between ~ and the unit disk, we see that
D is an Eg-inclusion with the boundary of € given by

o= {z(p) :p e}

Figure 2 shows several possible boundaries of ().
It is worth remarking that we can interpret (2.1)—(2.2) as a Cauchy problem: for
given g of the form (2.2), find ¢; such that

Ap; =0 in ©,
(2.16) ©1 = ¥o on 0D,
8<p1 1

I e (o0Vo) - n on 0D.
We then assign ¢ in (2.1) in terms of the solution ¢; to (2.16). The well-known
Cauchy—Kovalevskaya theorem ensures the local solvability of the general Cauchy
problem for partial differential equations. Cauchy problems for elliptic problems have
been extensively studied; for example, see [1, 28, 41, 42, 51]. The analysis in this
subsection enables us to explicitly find the possible regions © beyond the vicinity of
0D in which the Cauchy condition extends to a solution for the uniform field case

2.3. Numerical examples. Figure 1 shows FEq-inclusions of various shapes.
We emphasize that the star-shaped domain D in Figure 1(d) cannot be achieved
by applying the hodograph transformation (which is used in [5, 20]). As previously
explained, for the Eqg-inclusions constructed with the hodograph transformation, the
outer boundary of D requires zero, one, or two intersecting points with any line that
is orthogonal to the slit direction.
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Figures 3 and 5 show Eq-inclusions obtained from the construction method de-
scribed in section 2.1; the corresponding boundary flux g on 912 is drawn in Figures 4
and 6, respectively. The pairs (€2, D) and ¢ are given by (2.12) and (2.14). These two
examples clearly indicate that the same pair of regions (€2, D) can induce an interior
uniform field of multiple directions by choosing g according to the direction of the
uniform field. While most coefficients a,, are zero for the examples in Figure 3, the
coefficients a,, in Figure 5 decay relatively slowly as n increases. The corresponding
boundary flux g in Figure 6 is more oscillatory than that in Figure 4.

Examples in Figure 5 are created using the so-called Appell hypergeometric
function

Fi(a,bV,c;z,y)
e 1 Fa+m+n) Lb+m)T +n) ['(c) m, n
- Z Z mln! T(a) I'(b) ry) F(c—&—m—i—n)x v

m=0n=0

It is well known that W(z) := 2Fy(1/5,4/5,—2/5,6/5, —2, 2°) maps the unit disc to
a five-pointed star [6]. For the examples in Figure 5, we set

9" % ¢y for 1 <n <101,
(2.17) an:{OQ *C or1<n<10

0 otherwise,

where ¢, is the z"-component coefficient of ¥(z). The coefficients a,, exponentially
decrease as n increases (differently from ¢,) so that the corresponding conformal
mapping sends the unit disk to a smooth domain. Hence, 2 has the shape of a
polygon with rounded corners.

3. Nonelliptical neutral coated inclusions in two dimensions. In this
section, we present the construction of neutral coated inclusions in two dimensions
by using an approach similar to that used in section 2 and [40]. We now assume
that the flux on the boundary of the core can be actively assigned. Previously [40],
neutral coated inclusions were constructed when the core was either a hole or a perfect
conductor. We will see in section 4 that the analysis presented here is also relevant
to the three-dimensional case where one seeks neutral coated inclusions having a
geometry independent of x3 and a coating that is anisotropic and with none of the
crystal axes being aligned parallel to the xs-axis. This provides additional motivation
for studying it.

As in section 2, Q and D are simply connected bounded planar domains such
that D C €. Let the coating phase © = Q\ D have a constant isotropic conductivity
o1. The exterior region R? \ Q is now occupied by a homogeneous material, possibly
anisotropic, with the conductivity

o o
o0 = 11 12 )
012 022

We consider the potential problem

V'O'ovgﬂ():() il’le\ﬁ,
Ap; = i

(3.1) p1 =0 in O,
(o0Veg) -n=(01Vp1) - n on 01,
$o = ¥P1 on 0f)

with the flux condition on the boundary of the core

(3.2) (61Vp1) -n=g on dD.
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~
L

(d)

Fia. 3. Eq-inclusions. The figures illustrate 0D, 02, and the current flow (equipotential lines
of v1). The pairs (2, D) and the boundary flux g are given by (2.12) and (2.14). The nonzero
geometric parameters are a_s = —0.03 — 0.03i, a—_1 = 0.06 + 0.06i, a; =1 —1i, and az = 0.3 —0.3i.
We fix o1/00 =4, R=1 and set r as follows: (a), (b) r =10.5; (c), (d) »r =0.8.

0.5 0.5
-0.5 -0.5

arg(p)

(a)

glo
o

g/o1
o

0.5 0.5

g/o
o
g/
o
{ )

-0.5 -0.5

™ ™
arg(p) arg(p)

() (d)

F1G. 4. Fluz function g corresponding to the examples in Figure 3.
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q

(a) (b)

::EQN
/A
K \
1]
N\
oaz-2d g

(c) (d)

y/,

TR

F1G. 5. Eq-inclusions. The figures illustrate 0D, 02, and the current flow (equipotential lines
of v1). The pairs (2, D) and the boundary fluz g are given by (2.12) and (2.14) with an in (2.17).
We fiz o1/00 =4, R =1 and set r as follows: (a), (b) r =0.8; (c), (d) » = 0.95.

0.5 0.5
g ’ M
j=70) g
-0.5 -0.5

27 0 T 27
arg(p)

g/o
o

™
arg(p)

(a) (b)

1 1

0.5 0.5

& OM Q )
©0 o0

-0.5 -0.5

-1 1

0 m 27 0 I 27
arg(p) arg(p)

() (d)

FiG. 6. Flux function g corresponding to the examples in Figure 5.
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Here, g is a function whose integral over D vanishes, and we assume it can be actively
assigned depending on the exterior field. We further assume the uniformity condition

(3.3) wo(x1,x2) = —€1x1 — e2x9  in R? \Q

for some real constants e; and ez. We keep the notation (2.3) and (2.4). Note that,
differently from section 2, we set the uniformity condition exterior to (2.

The problem (3.1)—(3.3) is overdetermined, so that in general it has no solution.
For a given (2, we construct the core D and the flux function ¢ in the following
subsections such that the problem (3.1)—(3.3) admits a solution. For such a case, the
coated inclusion 2 does not perturb the exterior uniform field g. In other words, it
is neutral to ¢q.

3.1. Analytic function formulation. As in section 2, we reformulate the over-
determined problem (3.1)—(3.3) by following the complex potential approach in [40].

As 1 is harmonic in the doubly connected domain © and has a mean-zero normal
flux on OD, it admits a complex analytic function

w(z) = p1(z) +i1(2) in ©.

From the Cauchy—-Riemann equations, we have

o1 Op1
We then obtain from (3.2) that
o1
The relations (3.1), (3.3), and (3.4) imply
o 01 1 1 1
(3.6) Bt n oy (60Vipo) -n = 01( Jjo) = o (J2,—j1) -t on 9.

Hence, we have (the constant term is neglected)

(3.7) ¥ (z) = Jil (o1 — juws)  on 0.

Using this relation together with (3.3), one can easily derive the relation
(3.8) w(z) =kz+hZ on IN

with the complex constants k and h given by (2.8).

As discussed in section 2, there is a conformal mapping, namely z(p), from an
annulus {p : r < |p| < R} to © for some 0 < r < R and the functions z(p) and
w(p) := w(z(p)) admit the Laurent series expansions

(3.9) 2p)= ) ap”

(3.10) wp) = > bup”
n=-—oo
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for r < |p| < R with some complex coefficients a,, and b,,. The coefficients a,, are
associated with ©, and the coefficients b,, should be determined by a, and ¢y such
that the boundary relation (3.8) holds. In other words,

(3.11) b, = ka, + hR™?"a—, for all n € Z.

We can construct active neutral inclusions by specifying the coeflicients a,, as
follows. We first choose the geometric coefficients a, and set the pair of domains
(©, D) such that

(3.12) o ={z(p) : Ipl = R}, 9D ={z(p):[pl=r}.

We then determine b,, by (3.11), for a given arbitrary uniform field pg. Given that
w(p) converges to an analytic function in {p : r < |p| < R}, the function

(3.13) 01(2) = R{w(2)}, 2€Q\D,
satisfies the overdetermined problem (3.1)—(3.3) with

IS
(3.14) g=o01 3\Sa{tw} n 0D.

As discussed in section 2, the convergence of w(p) is independent of the direction of
the uniform field ¢g. Therefore, the constructed pair of domains (€2, D) is neutral to
the arbitrary uniform field ¢g, where the flux on 9D is actively assigned depending
on .

3.2. Neutral coated inclusion with an outer domain 2 of arbitrary
shape. The proposed construction scheme makes it possible to find a neutral coated
inclusion with an outer domain 2 of arbitrary shape. Let 2 be an arbitrary simply
connected domain and denote

“+oo
z(p) = Z a,p"
n=0

a conformal mapping from the unit disk to 2. We give an additional regularity
assumption on D that z(p) is analytic and univalent in {p : |p| < p*} for some p* > 1.
Let us fix an arbitrary number r satisfying 1/p* < r < 1 and R = 1. We set D by
(3.12). Then, for a given arbitrary uniform potential ¢p, the resulting Laurent series

“+o0 0
w(p) =Y kanp"+ Y ha—p"
n=0 n=—oo
is analytic in {p € C: 1/p* < |p| < p*}. Then, p1(z) := R{w(z)} satisfies the over-
determined problem (3.1)—(3.3) with g given by (3.14). In other words, the coated
inclusion (€2, D) with the flux condition g on 9D is neutral to ¢g.

We would like to emphasize that the values of k£ and i can be assigned such that
they are appropriate for a given ¢g. In other words, the pair of domains (2, D) is
neutral to any external uniform field, where the flux condition on the boundary of the
core is suitably chosen depending on the direction of the uniform field.

3.3. Numerical examples. Figures 7 and 9 illustrate active neutral inclusions.
The pair (©, D) and the boundary flux g are constructed based on the conformal
mapping expression (3.12) and (3.14). The corresponding boundary flux g on 9D is
shown in Figures 8 and 10, respectively. Although the pairs (2, D) are exactly the
same in Figures 7 and 9, the background potential generates a horizontal current flow
in Figure 7 and a vertical current flow in Figure 9; furthermore, the flux g is defined
in accordance with the exterior field.
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e

(a)

>

()

,l
i

(b)

(d)

Fic. 7. Nomnelliptical active neutral inclusions. The figures illustrate 0D, 0X), and the current
flow in R? \E (equipotential lines of ¢1). The nonzero geometric parameters are a1 =1 —1i, ag =
0.3—0.3i. We set R =1. The conductivity o1 of the coating and the parameter r are as follows: (a)
o1/oo =4, r=0.5; (b) o1/00 =1.22, r =0.5; (¢) o1/o0 =4, r=0.7; (d) 01/00 =1.22, r=0.7.

2

W

=
arg(p)

(a)

I~

arf;(p)

()

=
arg(p)

(b)

™
arg(p)

(c)

F1G. 8. Boundary flur g on D that corresponds to the examples in Figure 7.
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7= N
0 O

(c) (d)

1433

FiG. 9. Nonelliptical active neutral inclusions. The figures illustrate D, OS2, and the current

flow in R2\ D (equipotential lines of p1). The geometry and material parameters (an,

r, and 01/00)

are the same as in Figure 7; however, the direction of the current flow differs from that in Figure 7.

2 2
1 1
Lo Lo
20 20
-1 -1
-2 -2
0 T 27 0 ki 27
arg(p) arg(p)
(a) (b)
2 2
1 1
Q 0/\/—\/ Q °
20 20
-1 -1
-2 -2
0 T 27 0 T 27
arg(p) arg(p)

(c) (d)

Fic. 10. Boundary fluz g on 0D that corresponds to the examples in Figure 9.
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4. Neutral cylindrical inclusions in three dimensions. We now consider a
cylindrical region (2 \ D) x R, where 2 and D are simply connected planar domains
satisfying D C €. We set © = Q\ D as in the previous sections and denote the
conductivity in the coating phase © x R by

011 012 013
UZU($1,$2,$3) = 012 022 023
013 023 033

The matrix o is assumed to be real symmetric and positive definite, where o171, 012,
099 are constants. The coefficients o413, 023, 033 are functions depending only on
1, Ty that are determined later. The core D x R is insulated, and the exterior region
R3\ (2 x R) is occupied by a homogeneous material with conductivity oy which is
possibly anisotropic and of the form

00,11 00,12 0
og=| 0012 0g22 O
0 0 00,33

The electric potential associated with the described conductivity profile is governed
by the equation

V-ooVpy =0 in R?\ (Q x R),
V-oVp=0 in © xR,

(4.1) (ooVo) - (n1,n2,0) = (6Vp) - (n1,n2,0) on 00 x R,
Yo =¥ on 0N x R,
(aVe) - (n1,n2,0) =0 on D x R,

where ¢o and ¢ are potential functions in R? \ (2 x R) and in © x R, respectively,
and n = (ny,ns) is the unit outward normal vector either to 9 or to dD. We set
e = (e1,e9,e3) and j = (J1,j2,73) to be the electric field and its associated current
field in the coating phase © x R. The constitutive relation between them is
(4.2) V-j=0, j=oce, e=—-Vop.

Our aim is to construct a pair of simply connected domains (£2, D) and the coating
phase conductivity o such that (€2, D) is neutral to an applied linear potential ¢y,

ie., (4.1) admits a solution of which g is a linear function. We write, for ease of
notation,

(4.3) o(x1, 2, 3) = Yo(T1,22) + daxs
(44) = dix1 + doxo + d3xs.

In view of the cylindrical structure of the coating phase, we assume
(4.5) o(z1, T2, 3) = Y(x1,22) + d3zs for some function .

Let us now apply a linear transformation to simplify the problem.
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4.1. Simplification via a linear transformation. Let M denote the first 2 x 2
submatrix of a 3 x 3 matrix M. From the assumption on o, the submatrix o is a
constant real symmetric positive-definite matrix. Hence, it admits a singular value
decomposition

M0

_ T _
o =UDU ,D( 0

>, vifu=vuutr =1,

for some constants A1, Ao > 0 and a constant orthogonal matrix U. Here, Is denotes
the 2 x 2 identity matrix. We define a linear transformation F : R3 — R3 as F(x) =
Fx, where the Jacobian matrix F is

L 0
(4.6) F:(f; ?) with F = VST A N S
Vs

2

We assume det(U) = 1 and, thus, det(F) = 1/v/ A1 As.
We set © = {Fy :y € O} so that F(6 x R) = O x R, and similarly define  and
D, and write

(4.7) Po:=wooF7' and $:=¢poF L

Here, the symbol o denotes the composition of functions and F~! is the inverse
function of F. Then, by changing variables n = F'(x), (4.1) becomes

V50V, =0 in R3\ (2 x R),
V-aVp=0 in © xR,
(4.8) (FoV@0) - (7i1,72,0) = (V) - (7i1,712,0)  on O x R,
o =¢ on 9Q x R,
(6VY) - (n1,n2,0) =0 on D x R
with
~ FoFT . FO'()FT
a(n) = and  Go(n) = .
det(F) x=F-1n det(F) X=F-1n

Here, i1 = (711, 712) denotes the unit outward normal vector either to 8 or to dD. We
then set € = (€1, €2,¢e3) and j = (j1, j=2,j3) to be the electric field and its associated
current field in the coating phase © x R. The constitutive relation between them is

(4.9) V.j=0, j=o&6 &=-V§.
One can easily derive that

1 0 m b 5
(4.10) g=vVM| 0 1 hy with ( hl > :F< 13 )
2

023
hi hy o33

aniso 0

(4.11) &0 = VA he < 70

with o"*° = Fo,F’.
0 00,33 -

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/04/21 to 128.110.184.55. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1436 MIKYOUNG LIM AND GRAEME W. MILTON

4.2. Two-dimensional formulation. By defining ¢ and 1 similarly to (4.7),

we have

(4.12) Go(m1,1m2,m3) = o (n1,m2) + dans

(4.13) = (d1 d2)F " (1 m2)" + dans,
(4.14) (1, m2,m3) = Y (11, m2) + dans.

Then, it is straightforward to see from (4.9) that the electric field and the current
field in the coating phase satisfy

(61,8) = =V, & = —ds
and
(4.15) (d2) = V/Aha [ (@1,72) — da(h. o).
(4.16) G = N/XIX;[(hl,hQ)-(ea,ag)-dgags}.

On the basis of (4.8) and (4.9), it can easily be derived that

v. (Ugmsoquo) ~0 in R2\ Q,
A +dsV - (hy, hy) =0 in O,
(4.17) o =1 on 98,
(a_(()znisov,(z;o) D= qu. n+ds(hy,hy) -1 on 0@,
Vi -1+ ds(hy, he) -T=0 on 0D.

We further specify the material parameters (013, 023, 033) with which the problem
(4.8) admits the two-dimensional formulation in section 3. Briefly, our assumptions

on the parameters relate to the first 2 x 2 submatrix of o and the flux of @Z on 0D.
First, we impose the restriction that (013, 093) is given by

(4.18) o ) gt (M) ey = vy,
023 ha

where V = V(n1,72) is a solution to

AV =0 in O,
(4.19) VV.-n=0 on 81,
VV-ﬁ:—%g on &D

for some function g whose integral over dD vanishes (zero net flux). This restriction
ensures that we can still solve the problem using conformal mappings. We assume
ds # 0. Given h = (hq, ha) satisfying h = VV with AV =0in © and h-n = 0 on 012,
one can define g as the value of —dsh-n on aD. Conversely, given a flux g such that
there is no net flux through 9D, a unique potential V' (neglecting the constant term)
exists that satisfies (4.19), which determines h. Thus, determining ¢ is equivalent to
determining (hy, he). The zero net flux condition on ¢ is necessary for the problem
(4.19) to admit a solution. Then, we choose o33(x1,z2) so that

(4.20) o33 > hi + h3,
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which implies positiveness for o. Note that the defined parameters oi3, 023,033 are
independent of the variable ns.

Assuming (4.18)-(4.20), (¢, ¢) satisfies

V- (a5 Vi) =0 in R2\ Q,
Ay =0 in ©,
(4.21) Vo =1 on 91,
(ag"isov{/?o) ‘n = V{/}v~ n on 99,
Vi -n=g on 0D,

where 1)y is a linear function given by (4.13). The problem (4.21) with the uniformity
condition (4.13) is overdetermined such that there exists a solution only for certain
pairs of regions (&72, ﬁ) and g. As shown in section 3.2, for a given 2 x 2 constant real
symmetric positive-definite matrix o§™**° and a simply connected domain (~2, we can
construct D such that (S~2, 5) is neutral to a given uniform field of arbitrary direction
with the choice of g depending on the direction of the uniform field. After determining
g, we can determine (hy, ha), or equivalently (013, 023), and then choose o33 such that
it satisfies (4.20). As a result, we obtain cylindrical inclusions of nonelliptical shapes in
three dimensions: for a given 2, o, a9, and g (satisfying the appropriate conditions
assumed in the derivation), we can construct a cylindrical inclusion (2 x R; D x R)
with the conductivity o. This inclusion is neutral to the uniform field g, where the
entries (013,023, 033) of o are functions of 21, x5 determined to satisfy (4.18)—(4.20).

The parameters (013, 023, 033) defined by (4.18)—(4.20) with an arbitrary function
g are in general functions depending on the x1, x5 variables. In the case when (ﬁ, l~))
admits a solution for the two-dimensional problem (4.21) with g = 0, then V' as deter-
mined by (4.19) is a constant. Hence, (013, 023) given by (4.18) are zero. Therefore,
apart from a possible variation in o33(z1,22), the corresponding neutral cylindrical
inclusion has a shell of constant conductivity. Conversely, if the shell (2 \ D) x R has
constant conductivity, then V given by (4.18) is a linear function of x; and xs. In fact,
the function V has to be constant to satisfy the zero flux condition on € in (4.19)
and hence g = 0. The solution shapes (€, D) to (4.21) with g = 0 were previously
found [40]. In other words, the three-dimensional cylindrical neutral inclusions with
constant shell conductivities are those obtained by applying affine transformations to
those in [40].

5. Conclusions. This paper presents our constructions of Fq-inclusions D in
two dimensions based on complex analysis and a conformal mapping from a circular
annulus to the domain 2\ D. Our method does not impose a restriction on the shape
of D but generates Eqg-inclusions D with an outer boundary of general analytic shape.
The region 2 needs to be tailored to avoid singularities in the extended field. By using
a similar conformal mapping technique, we also obtain nonelliptical coated inclusions
in two dimensions that are neutral if an appropriate flux is applied at the boundary
of D, and we obtain cylindrical neutral inclusions in three dimensions.
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