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INCLUSIONS OF GENERAL SHAPES HAVING CONSTANT FIELD
INSIDE THE CORE AND NONELLIPTICAL NEUTRAL COATED

INCLUSIONS WITH ANISOTROPIC CONDUCTIVITY\ast 

MIKYOUNG LIM\dagger AND GRAEME W. MILTON\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . For certain shapes of inclusions embedded in a body, the field inside the inclusion
is uniform for some boundary condition. We provide a construction scheme for inclusions of general
shapes having such a uniformity property in two dimensions based on the conformal mapping tech-
nique for the potential problem. Using this complex analysis method, we also design nonelliptical
neutral coated inclusions with anisotropic conductivity. Neutral coated inclusions do not perturb
a background uniform field when they are inserted into a homogeneous matrix. Although coated
inclusions of various shapes are neutral to a single field, only concentric ellipses or confocal ellipsoids
can be neutral to all uniform fields. This paper presents our work relating to the construction of
nonelliptical coated inclusions with anisotropic conductivity in two dimensions that are neutral to
all uniform fields, where the assignment of the flux condition on the boundary of the core depends
on the applied background field. Using these neutral inclusions, we obtain cylindrical neutral inclu-
sions in three dimensions, with no flux applied to the boundary of the core and with the anisotropic
conductivity function of the shell given in accordance with the background uniform field.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . neutral inclusion, antiplane elasticity, anisotropic conductivity, E\Omega -inclusion

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35Q74, 35B30

\bfD \bfO \bfI . 10.1137/19M1246225

1. Introduction. Most conducting (or dielectric or magnetic) objects inserted
in a medium of constant conductivity (or permittivity or permeability) in which there
are uniform electric (or magnetic) fields have resulting fields that are generally neither
uniform inside nor outside the object. However, certain shapes of inclusions exist
inside which the resulting field is uniform for an applied uniform loading. Poisson
[45] realized that the field inside an ellipsoid must be uniform and explicit expressions
for this field were obtained by Maxwell [37, pp. 62--67]. Eshelby showed that an
ellipse or an ellipsoid satisfies this uniformity property and conjectured the following:
if an inclusion satisfies the uniformity property, then it should be an ellipse or an
ellipsoid [9, 10]. This conjecture was proved to be true within the class of simply
connected domains [25, 34, 46, 48]. Following Liu, James, and Leo [32] and Liu
[30, 31] (periodic structure), we denote an E-inclusion for an inclusion embedded
in an infinite medium of constant conductivity (or embedded in a unit cell with
periodic boundary conditions) that satisfies the Eshelby's uniformity property for
at least one applied field. We also denote, following Kang, Kim, and Milton [21]
and Bardsley et al. [5], an E\Omega -inclusion for an inclusion embedded in a body \Omega 
of constant conductivity that satisfies the uniformity property for some appropriate
boundary conditions on \partial \Omega . E-inclusions were investigated by Kang [19] and Liu [34]
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E\Omega -INCLUSIONS AND NEUTRAL INCLUSIONS 1421

in relation to the classical Newtonian potential problem. Finding E-inclusions in a
unit cell with periodic boundary conditions is important for finding microstructures
with extreme effective conductivity or extreme effective bulk modulus that attain
the Hashin--Shtrikman bounds or their anisotropic generalizations. Finding E- or
E\Omega -inclusions is also an important problem with practical applications for designing
materials which for conductivity (or antiplane elasticity) induce electric fields (or
stresses) with small variances in the inclusion phase. These inclusions, which are
tailored to the applied field, are generally less likely to breakdown (or break) than
inclusions with large variances of the electric fields (or stresses).

A powerful technique for generating nonelliptical E- or E\Omega -inclusions in two di-
mensions has been to use hodographic transformations to solve the free-boundary
problem. Then the problem is reduced to a potential problem on a set of slits. This
approach has been successfully used by Vigdergauz [52] to obtain periodic microstruc-
tures, known as Vigdergauz microstructures, which are two-dimensional E-inclusions
with periodic boundary conditions (see also the work by Grabovsky and Kohn [12]).
It has been extended to obtain two-dimensional periodic structures with multiple in-
clusions in the unit cell; see section 23.9 of [39] and [4], and see also for pairs of
E-inclusions [7, 20]. Additionally, it has been used to construct E\Omega -inclusions [5, 21].
The question arises as to whether this technique misses some inclusion shapes. In
the context of the E\Omega -inclusion problem we will see that it does. Contrary to the
analysis in [5, 21], which suggested that only a limited family of simply connected
shapes can be E\Omega -inclusions, we will see that any simply connected shape with an
analytic boundary can be an E\Omega -inclusion, for an appropriate choice of \Omega . Rather
than using hodographic transformations, we will simply use a conformal mapping
that maps the region outside the inclusion to a region outside a circular disk and then
solve the problem in the disk geometry using Laurent series. The result shows that
the hodographic approach has limitations.

We remark that an alternative variational approach for obtaining E-inclusions
was developed by Liu, James, and Leo [33, 34]. Their approach is not limited to
two dimensions and consequently they discovered three-dimensional periodic arrays
of E-inclusions that saturate the Hashin--Shtrikman bounds [16, 35] and they obtained
E-inclusions having disconnected components.

Our approach is quite similar to the conformal mapping method used in [40] to
obtain neutral inclusions, which is the second subject of the paper. Some coated
inclusions, when placed in a medium, do not disturb the exterior uniform field, and
these are denoted as neutral inclusions. They are in a sense invisible to the applied
field [26]. Once a neutral inclusion has been found, similar inclusions, possibly of
different sizes, can be added to the background matrix without altering the exterior
uniform field [14]. In this way it becomes possible to construct a composite, consisting
of multiple inclusions and a background matrix, of which the effective property exactly
coincides with that of the matrix. Two-dimensional conductivity problems can be
equivalently considered as antiplane elasticity problems. Well-known examples of
neutral inclusions are assemblages of coated disks and spheres [14, 16]. As the field
inside the core is uniform, these inclusions retain their neutrality even if the core
material is made nonlinear (see, for example, [15, 18]). Appropriately coated ellipses
and ellipsoids, with the possibly anisotropic material parameters of the core, shell,
and matrix, are neutral to all uniform fields [11, 26, 39, 49, 50], and these are the
only shapes for which coated inclusions admit such a uniformity property [22, 23, 40].
The concept of neutral inclusion has been extensively studied, especially for designing
an invisibility cloaking structure with metamaterials. For example, Zhou and others
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1422 MIKYOUNG LIM AND GRAEME W. MILTON

constructed coated spheres or multilayer spheres that are transparent to acoustic
waves, elastic waves, or electromagnetic waves [54, 55, 56]. Luo et al. [36] and Xi
et al. [53] found neutral inclusions for the Helmholtz equation that were based on
carpet cloaks. Later, Landy and Smith [29] physically realized these neutral inclusions
with microwaves. Al\`u and Engheta [2] and Ammari et al. [3] discovered multicoated
neutral inclusions for Maxwell's equations.

Coated inclusions of nonelliptical shapes can be neutral to a single uniform field.
Milton and Serkov constructed various shapes of neutral inclusions in two dimen-
sions with cores of perfectly conducting or insulating material by using the conformal
mapping technique [40], and Jarczyk and Mityushev extended this work to cores of
finite conductivities [17]. We refer readers to [39] for more results and references.
Recently, Kang and Li constructed weakly neutral inclusions of general shapes with
imperfect interfaces [24], and Choi, Kim, and Lim provided a numerical method to
construct multicoated neutral inclusions of general shapes [8]. It is also worth men-
tioning that Kim and Lim discovered nonelliptical inclusion shapes such that with a
suitable polynomial field at infinity, the field in the inclusion is uniform [27].

In the present paper, we describe the construction of nonelliptical coated in-
clusions in two dimensions that are neutral to the uniform background fields of all
directions, where the assignment of the flux condition on the boundary of the core
depends on the applied background field. As the resulting active neutral coated in-
clusions are not detectable by outside measurements (with the given uniform applied
field), one can view this neutral inclusion problem with the flux condition as active
cloaking (see [13, 38, 43, 44, 47] for other examples of active cloaking). In addition, we
design nonelliptical cylindrical neutral inclusions in three dimensions without impos-
ing a flux on the boundary of the core, using the constructed two-dimensional neutral
inclusions. Our result for the three-dimensional neutral inclusion can be reinterpreted
as a neutral inclusion in two dimensions in which currents are applied to the bound-
ary of the core. In the special three-dimensional case where the shell has constant
anisotropic conductivity, the condition for neutrality forces the conductivity tensor of
the shell to have an eigenvector aligned with the axis of the cylinder, and then the
neutral inclusion shapes are exactly those found in a previous study [40].

The remainder of this paper is organized as follows. In section 2 we describe
the construction of E\Omega -inclusions in two dimensions. Section 3 is devoted to neutral
inclusions with the active flux condition in two dimensions. In section 4 we consider
the cylindrical neutral inclusion in three dimensions and reformulate the problem as
a two-dimensional problem. The paper ends with the conclusion.

2. \bfitE \bfOmega -inclusions of general shapes. In this section, we present a new con-
struction method for E\Omega -inclusions in two dimensions based on complex analysis.
Let \Omega and D be simply connected bounded planar domains such that D \subset \Omega . The
core D has a constant, possibly anisotropic, conductivity \bfitsigma 0, and it is surrounded
by a coating \Theta := \Omega \setminus D with a constant isotropic conductivity \sigma 1. We consider the
conductivity problem

(2.1)

\left\{               

\Delta \varphi 1 = 0 in \Theta ,

\nabla \cdot \bfitsigma 0\nabla \varphi 0 = 0 in D,

\varphi 0 = \varphi 1 on \partial D,

(\bfitsigma 0\nabla \varphi 0) \cdot n = \sigma 1\nabla \varphi 1 \cdot n on \partial D,

\sigma 1\nabla \varphi 1 \cdot n = g on \partial \Omega ,
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E\Omega -INCLUSIONS AND NEUTRAL INCLUSIONS 1423

where g is a function which will be determined later, and n denotes the unit outward
normal vector either to \partial \Omega or to \partial D. We further assume the uniformity condition

(2.2) \varphi 0(x1, x2) =  - e1x1  - e2x2 in D

for some real constants e1 and e2. The problem (2.1)--(2.2) is overdetermined, so that
in general it has no solution for an arbitrary function g. If a certain pair of domains
(\Omega , D) admits a solution for some e1, e2, and g, then we call D an E\Omega -inclusion. For
later use, we denote

(2.3) e0 = (e1, e2) =  - \nabla \varphi 0, j0 = (j1, j2) = \bfitsigma 0e0

for the uniform electric field and its associated current field inside D, respectively.
We also set the complex numbers

(2.4) e0 = e1 + ie2, j0 = j1 + ij2.

In [5, 20], E\Omega -inclusions were obtained by applying the hodograph transformation.
Roughly speaking, in the hodograph transformation method one constructs the core
D by stretching a slit in the direction orthogonal to the slit. In [5], for example, a
family of E\Omega -inclusions was constructed with \partial D parametrized by

x1 = f

\biggl( 
\pm 
\sqrt{} 

1 - x2
1 + x2

\biggr) 
,

where f is a meromorphic function without a pole on the real axis. This formula
gives rise to E\Omega -inclusions such that for all (x1, x2) \in \partial \Omega , except the extremal points
x2 = \pm 1, each x2 corresponds exactly to two x1 values. In general, the boundary
of D obtained with the hodograph transformation method requires zero, one, or two
intersecting points with any line that is orthogonal to the slit direction. In the present
paper, however, we do not have such a restriction in the construction scheme, and it
generates E\Omega -inclusions with an outer boundary of general shape as shown in Figure 1.
Furthermore, we will show in section 2.2 that any simply connected bounded domain
is an E\Omega -inclusion for some \Omega .

2.1. Analytic function formulation. We can reformulate the overdetermined
problem (2.1)--(2.2) in terms of complex analytic functions by using the fact that \varphi 1 is
a two-dimensional harmonic function. In the following, we apply the existing complex
potential approach [40], where a free-boundary problem similar to (2.1) was solved to
construct neutral coated inclusions.

As \varphi 1 has a mean-zero normal flux on \partial D, it admits a single-valued harmonic
conjugate, namely \psi 1, in \Theta such that the complex function

w(z) = \varphi 1(z) + i\psi 1(z)

is analytic. Hereafter, we identify x = (x1, x2) with z = x1 + ix2. From the Cauchy--
Riemann equations for complex analytic functions, we have

(2.5)
\partial \psi 1

\partial t
=
\partial \varphi 1

\partial n
on \partial \Omega , \partial D,

where t is the positively oriented unit tangent vector either on \partial \Omega or on \partial D. It is
then straightforward to obtain from (2.1) that
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1424 MIKYOUNG LIM AND GRAEME W. MILTON

(a) (b)

(c) (d)

Fig. 1. Various E\Omega -inclusions (solid curve) with a possible boundary of \Omega (dotted curve) that
can be generated from the formula (2.12).

\partial \psi 1

\partial t
=

1

\sigma 1
g on \partial \Omega .(2.6)

The uniformity condition (2.2) is essential for defining an E\Omega -inclusion. Using
(2.2) together with (2.5) and the flux condition on \partial D in (2.1), we can show that

(2.7) w(z) = kz + h\=z on \partial D

with the complex constants k and h determined by the uniform electric field e0 via
the relations

(2.8) k =  - 1

2

\bigl( 
e0 + \sigma  - 1

1 j0
\bigr) 
, h =

1

2

\bigl( 
 - e0 + \sigma  - 1

1 j0
\bigr) 
.

Indeed, we have from (2.1), (2.3), and (2.5) that

\partial \psi 1

\partial t
=
\partial \varphi 1

\partial n
=

1

\sigma 1
(\bfitsigma 0\nabla \varphi 0) \cdot n =

1

\sigma 1
( - j0) \cdot n =

1

\sigma 1
(j2, - j1) \cdot t on \partial D.

This implies (the constant term is neglected)

\psi 1(z) =
1

\sigma 1
(j2x1  - j1x2) on \partial D.

Hence, we can show (2.7)--(2.8) by using (2.2). It is worth mentioning that h and k
can inversely determine e0 and j0 as

e0 =  - h - k, j0 = \sigma 1(h - k).
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E\Omega -INCLUSIONS AND NEUTRAL INCLUSIONS 1425

Because \Theta is a doubly connected domain, it is conformally equivalent to an an-
nulus \{ p : r < | p| < R\} for some 0 < r < R. In other words, there is a conformal
mapping, namely z(p), from the annulus onto \Theta . As z(p) is analytic on the annulus
that is centered at zero, it admits a Laurent series expansion

(2.9) z(p) =
\infty \sum 

n= - \infty 
anp

n, r < | p| < R,

with some complex coefficients an. The composition w(p) := w(z(p)) is also analytic
in the annulus and, hence, admits a Laurent series expansion

(2.10) w(p) =
\infty \sum 

n= - \infty 
bnp

n, r < | p| < R,

where the coefficients bn should be given for w to satisfy the boundary constraint
(2.7). The condition (2.7) is equivalent to

(2.11) bn = kan + hr - 2na - n for all n \in Z,

and it uniquely determines bn for given an, k, and h.
We can now construct E\Omega -inclusions by specifying the coefficients an, which

should be chosen such that the resulting Laurent series z(p) converges to a conformal
mapping from an annulus to a doubly connected domain, and such that the series
(2.10) for w(p) with coefficients bn given by (2.11) converges in this annulus. We set
the pair of domains (\Omega , D) as

(2.12) \partial \Omega = \{ z(p) : | p| = R\} , \partial D = \{ z(p) : | p| = r\} 

and define w(p) by using the formula (2.11), with h and k given by (2.8), for a given
uniform field \varphi 0. Given that the resulting series function w(p) also converges to an
analytic function in the annulus, the function

(2.13) \varphi 1(z) = \Re \{ w(z)\} , z \in \Omega \setminus D,

satisfies the overdetermined problem (2.1)--(2.2) with

(2.14) g = \sigma 1
\partial \Im \{ w\} 
\partial t

on \partial \Omega .

The series w(p) converges if the two series z(p) =
\sum 
anp

n and
\sum 
r - 2na - n p

n converge.
Hence, the convergence of w(p) is independent of the direction of the uniform field \varphi 0.
In other words, the constructed E\Omega -inclusions admit an arbitrary uniform field inside
the core D, where the assignment of the flux function g depends on the direction of
the uniform field.

2.2. \bfitE \bfOmega -inclusions with a core of arbitrary shape. The proposed construc-
tion scheme enables us to find an E\Omega -inclusion with a core of arbitrary analytic shape.
Let D be an arbitrary simply connected domain. Then consider the conformal map-
ping of the form

z(p) = p+
0\sum 

n= - \infty 
anp

n
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1426 MIKYOUNG LIM AND GRAEME W. MILTON

Fig. 2. An E\Omega -inclusion D (blue solid curve), with the black dotted curves being possible
boundaries of \Omega . Here, an has only a finite number of nonzero entries and, hence, w(p) given by
(2.15) is convergent; thus \Omega can be taken to be any region that encloses the inclusion.

that takes the exterior of the unit disk centered at the origin onto the exterior of D
in a bijective fashion. We give an additional regularity assumption on D that z(p) is
univalent analytic outside a smaller disk \{ p : | p| > \rho \ast \} for some \rho \ast < 1, the associated
Laurent series (with r = 1) for the potential

(2.15) w(p) = kp+ h/p+
0\sum 

n= - \infty 
kanp

n +
\infty \sum 

n=0

ha - np
n

is analytic in \{ p : 1/\rho \ast > | p| > \rho \ast \} . The domain of analyticity of w(p) is almost cer-
tainly larger than this, and given any Jordan curve \gamma enclosing the unit disk such
that w(p) is analytic in the annular region between \gamma and the unit disk, we see that
D is an E\Omega -inclusion with the boundary of \Omega given by

\partial \Omega := \{ z(p) : p \in \gamma \} .

Figure 2 shows several possible boundaries of \Omega .
It is worth remarking that we can interpret (2.1)--(2.2) as a Cauchy problem: for

given \varphi 0 of the form (2.2), find \varphi 1 such that

(2.16)

\left\{       
\Delta \varphi 1 = 0 in \Theta ,

\varphi 1 = \varphi 0 on \partial D,
\partial \varphi 1

\partial n
=

1

\sigma 1
(\bfitsigma 0\nabla \varphi 0) \cdot n on \partial D.

We then assign g in (2.1) in terms of the solution \varphi 1 to (2.16). The well-known
Cauchy--Kovalevskaya theorem ensures the local solvability of the general Cauchy
problem for partial differential equations. Cauchy problems for elliptic problems have
been extensively studied; for example, see [1, 28, 41, 42, 51]. The analysis in this
subsection enables us to explicitly find the possible regions \Theta beyond the vicinity of
\partial D in which the Cauchy condition extends to a solution for the uniform field case

2.3. Numerical examples. Figure 1 shows E\Omega -inclusions of various shapes.
We emphasize that the star-shaped domain D in Figure 1(d) cannot be achieved
by applying the hodograph transformation (which is used in [5, 20]). As previously
explained, for the E\Omega -inclusions constructed with the hodograph transformation, the
outer boundary of D requires zero, one, or two intersecting points with any line that
is orthogonal to the slit direction.
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E\Omega -INCLUSIONS AND NEUTRAL INCLUSIONS 1427

Figures 3 and 5 show E\Omega -inclusions obtained from the construction method de-
scribed in section 2.1; the corresponding boundary flux g on \partial \Omega is drawn in Figures 4
and 6, respectively. The pairs (\Omega , D) and g are given by (2.12) and (2.14). These two
examples clearly indicate that the same pair of regions (\Omega , D) can induce an interior
uniform field of multiple directions by choosing g according to the direction of the
uniform field. While most coefficients an are zero for the examples in Figure 3, the
coefficients an in Figure 5 decay relatively slowly as n increases. The corresponding
boundary flux g in Figure 6 is more oscillatory than that in Figure 4.

Examples in Figure 5 are created using the so-called Appell hypergeometric
function

F1(a, b, b
\prime , c;x, y)

=
\infty \sum 

m=0

\infty \sum 
n=0

1

m!n!

\Gamma (a+m+ n)

\Gamma (a)

\Gamma (b+m)

\Gamma (b)

\Gamma (b\prime + n)

\Gamma (b\prime )

\Gamma (c)

\Gamma (c+m+ n)
xmyn.

It is well known that \Psi (z) := zF1(1/5, 4/5, - 2/5, 6/5, - z5, z5) maps the unit disc to
a five-pointed star [6]. For the examples in Figure 5, we set

(2.17) an =

\Biggl\{ 
0.9n \ast cn for 1 \leq n \leq 101,

0 otherwise,

where cn is the zn-component coefficient of \Psi (z). The coefficients an exponentially
decrease as n increases (differently from cn) so that the corresponding conformal
mapping sends the unit disk to a smooth domain. Hence, \Omega has the shape of a
polygon with rounded corners.

3. Nonelliptical neutral coated inclusions in two dimensions. In this
section, we present the construction of neutral coated inclusions in two dimensions
by using an approach similar to that used in section 2 and [40]. We now assume
that the flux on the boundary of the core can be actively assigned. Previously [40],
neutral coated inclusions were constructed when the core was either a hole or a perfect
conductor. We will see in section 4 that the analysis presented here is also relevant
to the three-dimensional case where one seeks neutral coated inclusions having a
geometry independent of x3 and a coating that is anisotropic and with none of the
crystal axes being aligned parallel to the x3-axis. This provides additional motivation
for studying it.

As in section 2, \Omega and D are simply connected bounded planar domains such
that D \subset \Omega . Let the coating phase \Theta = \Omega \setminus D have a constant isotropic conductivity
\sigma 1. The exterior region R2 \setminus \Omega is now occupied by a homogeneous material, possibly
anisotropic, with the conductivity

\bfitsigma 0 =

\biggl( 
\sigma 11 \sigma 12
\sigma 12 \sigma 22

\biggr) 
.

We consider the potential problem

(3.1)

\left\{         
\nabla \cdot \bfitsigma 0\nabla \varphi 0 = 0 in R2 \setminus \Omega ,
\Delta \varphi 1 = 0 in \Theta ,

(\bfitsigma 0\nabla \varphi 0) \cdot n = (\sigma 1\nabla \varphi 1) \cdot n on \partial \Omega ,

\varphi 0 = \varphi 1 on \partial \Omega 

with the flux condition on the boundary of the core

(3.2) (\sigma 1\nabla \varphi 1) \cdot n = g on \partial D.
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(a) (b)

(c) (d)

Fig. 3. E\Omega -inclusions. The figures illustrate \partial D, \partial \Omega , and the current flow (equipotential lines
of \varphi 1). The pairs (\Omega , D) and the boundary flux g are given by (2.12) and (2.14). The nonzero
geometric parameters are a - 2 =  - 0.03 - 0.03i, a - 1 = 0.06+ 0.06i, a1 = 1 - i, and a2 = 0.3 - 0.3i.
We fix \sigma 1/\sigma 0 = 4, R = 1 and set r as follows: (a), (b) r = 0.5; (c), (d) r = 0.8.
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Fig. 4. Flux function g corresponding to the examples in Figure 3.
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(a) (b)

(c) (d)

Fig. 5. E\Omega -inclusions. The figures illustrate \partial D, \partial \Omega , and the current flow (equipotential lines
of \varphi 1). The pairs (\Omega , D) and the boundary flux g are given by (2.12) and (2.14) with an in (2.17).
We fix \sigma 1/\sigma 0 = 4, R = 1 and set r as follows: (a), (b) r = 0.8; (c), (d) r = 0.95.
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Fig. 6. Flux function g corresponding to the examples in Figure 5.
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Here, g is a function whose integral over \partial D vanishes, and we assume it can be actively
assigned depending on the exterior field. We further assume the uniformity condition

(3.3) \varphi 0(x1, x2) =  - e1x1  - e2x2 in R2 \setminus \Omega 

for some real constants e1 and e2. We keep the notation (2.3) and (2.4). Note that,
differently from section 2, we set the uniformity condition exterior to \Omega .

The problem (3.1)--(3.3) is overdetermined, so that in general it has no solution.
For a given \Omega , we construct the core D and the flux function g in the following
subsections such that the problem (3.1)--(3.3) admits a solution. For such a case, the
coated inclusion \Omega does not perturb the exterior uniform field \varphi 0. In other words, it
is neutral to \varphi 0.

3.1. Analytic function formulation. As in section 2, we reformulate the over-
determined problem (3.1)--(3.3) by following the complex potential approach in [40].

As \varphi 1 is harmonic in the doubly connected domain \Theta and has a mean-zero normal
flux on \partial D, it admits a complex analytic function

w(z) = \varphi 1(z) + i\psi 1(z) in \Theta .

From the Cauchy--Riemann equations, we have

(3.4)
\partial \psi 1

\partial t
=
\partial \varphi 1

\partial n
on \partial \Omega , \partial D.

We then obtain from (3.2) that

(3.5)
\partial \psi 1

\partial t
=

1

\sigma 1
g on \partial D.

The relations (3.1), (3.3), and (3.4) imply

(3.6)
\partial \psi 1

\partial t
=
\partial \varphi 1

\partial n
=

1

\sigma 1
(\bfitsigma 0\nabla \varphi 0) \cdot n =

1

\sigma 1
( - j0) \cdot n =

1

\sigma 1
(j2, - j1) \cdot t on \partial \Omega .

Hence, we have (the constant term is neglected)

(3.7) \psi 1(z) =
1

\sigma 1
(j2x1  - j1x2) on \partial \Omega .

Using this relation together with (3.3), one can easily derive the relation

(3.8) w(z) = kz + h\=z on \partial \Omega 

with the complex constants k and h given by (2.8).
As discussed in section 2, there is a conformal mapping, namely z(p), from an

annulus \{ p : r < | p| < R\} to \Theta for some 0 < r < R and the functions z(p) and
w(p) := w(z(p)) admit the Laurent series expansions

z(p) =
\infty \sum 

n= - \infty 
anp

n,(3.9)

w(p) =
\infty \sum 

n= - \infty 
bnp

n(3.10)
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for r < | p| < R with some complex coefficients an and bn. The coefficients an are
associated with \Theta , and the coefficients bn should be determined by an and \varphi 0 such
that the boundary relation (3.8) holds. In other words,

(3.11) bn = kan + hR - 2na - n for all n \in Z.

We can construct active neutral inclusions by specifying the coefficients an as
follows. We first choose the geometric coefficients an and set the pair of domains
(\Omega , D) such that

(3.12) \partial \Omega = \{ z(p) : | p| = R\} , \partial D = \{ z(p) : | p| = r\} .

We then determine bn by (3.11), for a given arbitrary uniform field \varphi 0. Given that
w(p) converges to an analytic function in \{ p : r < | p| < R\} , the function

(3.13) \varphi 1(z) = \Re \{ w(z)\} , z \in \Omega \setminus D,

satisfies the overdetermined problem (3.1)--(3.3) with

(3.14) g = \sigma 1
\partial \Im \{ w\} 
\partial t

on \partial D.

As discussed in section 2, the convergence of w(p) is independent of the direction of
the uniform field \varphi 0. Therefore, the constructed pair of domains (\Omega , D) is neutral to
the arbitrary uniform field \varphi 0, where the flux on \partial D is actively assigned depending
on \varphi 0.

3.2. Neutral coated inclusion with an outer domain \Omega of arbitrary
shape. The proposed construction scheme makes it possible to find a neutral coated
inclusion with an outer domain \Omega of arbitrary shape. Let \Omega be an arbitrary simply
connected domain and denote

z(p) =
+\infty \sum 
n=0

anp
n

a conformal mapping from the unit disk to \Omega . We give an additional regularity
assumption on D that z(p) is analytic and univalent in \{ p : | p| < \rho \ast \} for some \rho \ast > 1.
Let us fix an arbitrary number r satisfying 1/\rho \ast < r < 1 and R = 1. We set D by
(3.12). Then, for a given arbitrary uniform potential \varphi 0, the resulting Laurent series

w(p) =
+\infty \sum 
n=0

kanp
n +

0\sum 
n= - \infty 

ha - np
n

is analytic in \{ p \in C : 1/\rho \ast < | p| < \rho \ast \} . Then, \varphi 1(z) := \Re \{ w(z)\} satisfies the over-
determined problem (3.1)--(3.3) with g given by (3.14). In other words, the coated
inclusion (\Omega , D) with the flux condition g on \partial D is neutral to \varphi 0.

We would like to emphasize that the values of k and h can be assigned such that
they are appropriate for a given \varphi 0. In other words, the pair of domains (\Omega , D) is
neutral to any external uniform field, where the flux condition on the boundary of the
core is suitably chosen depending on the direction of the uniform field.

3.3. Numerical examples. Figures 7 and 9 illustrate active neutral inclusions.
The pair (\Omega , D) and the boundary flux g are constructed based on the conformal
mapping expression (3.12) and (3.14). The corresponding boundary flux g on \partial D is
shown in Figures 8 and 10, respectively. Although the pairs (\Omega , D) are exactly the
same in Figures 7 and 9, the background potential generates a horizontal current flow
in Figure 7 and a vertical current flow in Figure 9; furthermore, the flux g is defined
in accordance with the exterior field.
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1432 MIKYOUNG LIM AND GRAEME W. MILTON

(a) (b)

(c) (d)

Fig. 7. Nonelliptical active neutral inclusions. The figures illustrate \partial D, \partial \Omega , and the current
flow in R2 \setminus D (equipotential lines of \varphi 1). The nonzero geometric parameters are a1 = 1 - i, a2 =
0.3 - 0.3i. We set R = 1. The conductivity \sigma 1 of the coating and the parameter r are as follows: (a)
\sigma 1/\sigma 0 = 4, r = 0.5; (b) \sigma 1/\sigma 0 = 1.22, r = 0.5; (c) \sigma 1/\sigma 0 = 4, r = 0.7; (d) \sigma 1/\sigma 0 = 1.22, r = 0.7.
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Fig. 8. Boundary flux g on \partial D that corresponds to the examples in Figure 7.
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(a) (b)

(c) (d)

Fig. 9. Nonelliptical active neutral inclusions. The figures illustrate \partial D, \partial \Omega , and the current
flow in R2\setminus D (equipotential lines of \varphi 1). The geometry and material parameters (an, r, and \sigma 1/\sigma 0)
are the same as in Figure 7; however, the direction of the current flow differs from that in Figure 7.
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Fig. 10. Boundary flux g on \partial D that corresponds to the examples in Figure 9.
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4. Neutral cylindrical inclusions in three dimensions. We now consider a
cylindrical region (\Omega \setminus D)\times R, where \Omega and D are simply connected planar domains
satisfying D \subset \Omega . We set \Theta = \Omega \setminus D as in the previous sections and denote the
conductivity in the coating phase \Theta \times R by

\bfitsigma = \bfitsigma (x1, x2, x3) =

\left(  \sigma 11 \sigma 12 \sigma 13
\sigma 12 \sigma 22 \sigma 23
\sigma 13 \sigma 23 \sigma 33

\right)  .

The matrix \bfitsigma is assumed to be real symmetric and positive definite, where \sigma 11, \sigma 12,
\sigma 22 are constants. The coefficients \sigma 13, \sigma 23, \sigma 33 are functions depending only on
x1, x2 that are determined later. The core D\times R is insulated, and the exterior region
R3 \setminus (\Omega \times R) is occupied by a homogeneous material with conductivity \bfitsigma 0 which is
possibly anisotropic and of the form

\bfitsigma 0 =

\left(  \sigma 0,11 \sigma 0,12 0
\sigma 0,12 \sigma 0,22 0
0 0 \sigma 0,33

\right)  .

The electric potential associated with the described conductivity profile is governed
by the equation

(4.1)

\left\{               

\nabla \cdot \bfitsigma 0\nabla \varphi 0 = 0 in R3 \setminus (\Omega \times R),
\nabla \cdot \bfitsigma \nabla \varphi = 0 in \Theta \times R,
(\bfitsigma 0\nabla \varphi 0) \cdot (n1, n2, 0) = (\bfitsigma \nabla \varphi ) \cdot (n1, n2, 0) on \partial \Omega \times R,
\varphi 0 = \varphi on \partial \Omega \times R,
(\bfitsigma \nabla \varphi ) \cdot (n1, n2, 0) = 0 on \partial D \times R,

where \varphi 0 and \varphi are potential functions in R3 \setminus (\Omega \times R) and in \Theta \times R, respectively,
and n = (n1, n2) is the unit outward normal vector either to \partial \Omega or to \partial D. We set
e = (e1, e2, e3) and j = (j1, j2, j3) to be the electric field and its associated current
field in the coating phase \Theta \times R. The constitutive relation between them is

(4.2) \nabla \cdot j = 0, j = \bfitsigma e, e =  - \nabla \varphi .

Our aim is to construct a pair of simply connected domains (\Omega , D) and the coating
phase conductivity \bfitsigma such that (\Omega , D) is neutral to an applied linear potential \varphi 0,
i.e., (4.1) admits a solution of which \varphi 0 is a linear function. We write, for ease of
notation,

\varphi 0(x1, x2, x3) = \psi 0(x1, x2) + d3x3(4.3)

= d1x1 + d2x2 + d3x3.(4.4)

In view of the cylindrical structure of the coating phase, we assume

(4.5) \varphi (x1, x2, x3) = \psi (x1, x2) + d3x3 for some function \psi .

Let us now apply a linear transformation to simplify the problem.
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4.1. Simplification via a linear transformation. LetM denote the first 2\times 2
submatrix of a 3 \times 3 matrix M. From the assumption on \bfitsigma , the submatrix \bfitsigma is a
constant real symmetric positive-definite matrix. Hence, it admits a singular value
decomposition

\bfitsigma = UDUT , D =

\biggl( 
\lambda 1 0
0 \lambda 2

\biggr) 
, UTU = UUT = I2

for some constants \lambda 1, \lambda 2 > 0 and a constant orthogonal matrix U. Here, I2 denotes
the 2\times 2 identity matrix. We define a linear transformation F : R3 \rightarrow R3 as F (x) =
Fx, where the Jacobian matrix F is

(4.6) F =

\biggl( 
F 0
0 1

\biggr) 
with F =

\Biggl( 
1\surd 
\lambda 1

0

0 1\surd 
\lambda 2

\Biggr) 
UT .

We assume det(U) = 1 and, thus, det(F) = 1/
\surd 
\lambda 1\lambda 2.

We set \widetilde \Theta = \{ Fy : y \in \Theta \} so that F (\Theta \times R) = \widetilde \Theta \times R, and similarly define \widetilde \Omega and\widetilde D, and write

(4.7) \widetilde \varphi 0 := \varphi 0 \circ F - 1 and \widetilde \varphi := \varphi \circ F - 1.

Here, the symbol \circ denotes the composition of functions and F - 1 is the inverse
function of F . Then, by changing variables \bfiteta = F (x), (4.1) becomes

(4.8)

\left\{                 

\nabla \cdot \widetilde \bfitsigma 0\nabla \widetilde \varphi 0 = 0 in R3 \setminus (\widetilde \Omega \times R),
\nabla \cdot \widetilde \bfitsigma \nabla \widetilde \varphi = 0 in \widetilde \Theta \times R,
(\widetilde \bfitsigma 0\nabla \widetilde \varphi 0) \cdot (\widetilde n1, \widetilde n2, 0) = (\widetilde \bfitsigma \nabla \widetilde \varphi ) \cdot (\widetilde n1, \widetilde n2, 0) on \partial \widetilde \Omega \times R,\widetilde \varphi 0 = \widetilde \varphi on \partial \widetilde \Omega \times R,
(\widetilde \bfitsigma \nabla \widetilde \varphi ) \cdot (\widetilde n1, \widetilde n2, 0) = 0 on \partial \widetilde D \times R

with

\widetilde \bfitsigma (\bfiteta ) = F\bfitsigma FT

det(F)

\bigm| \bigm| \bigm| \bigm| 
\bfx =\bfF  - 1\bfiteta 

and \widetilde \bfitsigma 0(\bfiteta ) =
F\bfitsigma 0F

T

det(F)

\bigm| \bigm| \bigm| \bigm| 
\bfx =\bfF  - 1\bfiteta 

.

Here, \widetilde n = (\widetilde n1, \widetilde n2) denotes the unit outward normal vector either to \partial \widetilde \Omega or to \partial \widetilde D. We

then set \widetilde e = (\widetilde e1, \widetilde e2, \widetilde e3) and \widetilde j = (\widetilde j1,\widetilde j2,\widetilde j3) to be the electric field and its associated

current field in the coating phase \widetilde \Theta \times R. The constitutive relation between them is

(4.9) \nabla \cdot \widetilde j = 0, \widetilde j = \widetilde \bfitsigma \widetilde e, \widetilde e =  - \nabla \widetilde \varphi .
One can easily derive that

\widetilde \bfitsigma =
\sqrt{} 
\lambda 1\lambda 2

\left(  1 0 h1
0 1 h2
h1 h2 \sigma 33

\right)  with

\biggl( 
h1
h2

\biggr) 
= F

\biggl( 
\sigma 13
\sigma 23

\biggr) 
,(4.10)

\widetilde \bfitsigma 0 =
\sqrt{} 
\lambda 1\lambda 2

\Biggl( 
\bfitsigma aniso
0 0

0 \sigma 0,33

\Biggr) 
with \bfitsigma aniso

0 = F\bfitsigma 0 F
T .(4.11)
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1436 MIKYOUNG LIM AND GRAEME W. MILTON

4.2. Two-dimensional formulation. By defining \widetilde \psi 0 and \widetilde \psi similarly to (4.7),
we have

\widetilde \varphi 0(\eta 1, \eta 2, \eta 3) = \widetilde \psi 0(\eta 1, \eta 2) + d3\eta 3(4.12)

= (d1 d2)F
 - 1(\eta 1 \eta 2)

T + d3\eta 3,(4.13) \widetilde \varphi (\eta 1, \eta 2, \eta 3) = \widetilde \psi (\eta 1, \eta 2) + d3\eta 3.(4.14)

Then, it is straightforward to see from (4.9) that the electric field and the current
field in the coating phase satisfy

(\widetilde e1, \widetilde e2) =  - \nabla \widetilde \psi , \widetilde e3 =  - d3

and

(\widetilde j1,\widetilde j2) =\sqrt{} \lambda 1\lambda 2 \Bigl[ (\widetilde e1, \widetilde e2) - d3(h1, h2)
\Bigr] 
,(4.15)

\widetilde j3 =
\sqrt{} 
\lambda 1\lambda 2

\Bigl[ 
(h1, h2) \cdot (\widetilde e1, \widetilde e2) - d3\sigma 33

\Bigr] 
.(4.16)

On the basis of (4.8) and (4.9), it can easily be derived that\left\{                 

\nabla \cdot 
\Bigl( 
\bfitsigma aniso
0 \nabla \widetilde \psi 0

\Bigr) 
= 0 in R2 \setminus \widetilde \Omega ,

\Delta \widetilde \psi + d3\nabla \cdot (h1, h2) = 0 in \widetilde \Theta ,\widetilde \psi 0 = \widetilde \psi on \partial \widetilde \Omega ,\Bigl( 
\bfitsigma aniso
0 \nabla \widetilde \psi 0

\Bigr) 
\cdot \widetilde n = \nabla \widetilde \psi \cdot \widetilde n+ d3(h1, h2) \cdot \widetilde n on \partial \widetilde \Omega ,

\nabla \widetilde \psi \cdot \widetilde n+ d3(h1, h2) \cdot \widetilde n = 0 on \partial \widetilde D.
(4.17)

We further specify the material parameters (\sigma 13, \sigma 23, \sigma 33) with which the problem
(4.8) admits the two-dimensional formulation in section 3. Briefly, our assumptions

on the parameters relate to the first 2 \times 2 submatrix of \bfitsigma and the flux of \widetilde \psi on \partial \widetilde D.
First, we impose the restriction that (\sigma 13, \sigma 23) is given by

(4.18)

\biggl( 
\sigma 13
\sigma 23

\biggr) 
= F - 1

\biggl( 
h1
h2

\biggr) 
, (h1, h2) = \nabla V,

where V = V (\eta 1, \eta 2) is a solution to\left\{     
\Delta V = 0 in \widetilde \Theta ,
\nabla V \cdot \widetilde n = 0 on \partial \widetilde \Omega ,
\nabla V \cdot \widetilde n =  - 1

d3
g on \partial \widetilde D(4.19)

for some function g whose integral over \partial \widetilde D vanishes (zero net flux). This restriction
ensures that we can still solve the problem using conformal mappings. We assume
d3 \not = 0. Given h = (h1, h2) satisfying h = \nabla V with \Delta V = 0 in \widetilde \Theta and h \cdot \widetilde n = 0 on \partial \widetilde \Omega ,
one can define g as the value of  - d3h \cdot \widetilde n on \partial \widetilde D. Conversely, given a flux g such that
there is no net flux through \partial \widetilde D, a unique potential V (neglecting the constant term)
exists that satisfies (4.19), which determines h. Thus, determining g is equivalent to
determining (h1, h2). The zero net flux condition on g is necessary for the problem
(4.19) to admit a solution. Then, we choose \sigma 33(x1, x2) so that

(4.20) \sigma 33 > h21 + h22,
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which implies positiveness for \bfitsigma . Note that the defined parameters \sigma 13, \sigma 23, \sigma 33 are
independent of the variable \eta 3.

Assuming (4.18)--(4.20), ( \widetilde \psi , \widetilde \psi 0) satisfies\left\{                 

\nabla \cdot 
\Bigl( 
\bfitsigma aniso
0 \nabla \widetilde \psi 0

\Bigr) 
= 0 in R2 \setminus \widetilde \Omega ,

\Delta \widetilde \psi = 0 in \widetilde \Theta ,\widetilde \psi 0 = \widetilde \psi on \partial \widetilde \Omega ,\Bigl( 
\bfitsigma aniso
0 \nabla \widetilde \psi 0

\Bigr) 
\cdot \widetilde n = \nabla \widetilde \psi \cdot \widetilde n on \partial \widetilde \Omega ,

\nabla \widetilde \psi \cdot \widetilde n = g on \partial \widetilde D,
(4.21)

where \widetilde \psi 0 is a linear function given by (4.13). The problem (4.21) with the uniformity
condition (4.13) is overdetermined such that there exists a solution only for certain

pairs of regions (\widetilde \Omega , \widetilde D) and g. As shown in section 3.2, for a given 2\times 2 constant real

symmetric positive-definite matrix \bfitsigma aniso
0 and a simply connected domain \widetilde \Omega , we can

construct \widetilde D such that (\widetilde \Omega , \widetilde D) is neutral to a given uniform field of arbitrary direction
with the choice of g depending on the direction of the uniform field. After determining
g, we can determine (h1, h2), or equivalently (\sigma 13, \sigma 23), and then choose \sigma 33 such that
it satisfies (4.20). As a result, we obtain cylindrical inclusions of nonelliptical shapes in
three dimensions: for a given \Omega , \bfitsigma , \bfitsigma \bfzero , and \varphi 0 (satisfying the appropriate conditions
assumed in the derivation), we can construct a cylindrical inclusion (\Omega \times R, D \times R)
with the conductivity \bfitsigma . This inclusion is neutral to the uniform field \varphi 0, where the
entries (\sigma 13, \sigma 23, \sigma 33) of \bfitsigma are functions of x1, x2 determined to satisfy (4.18)--(4.20).

The parameters (\sigma 13, \sigma 23, \sigma 33) defined by (4.18)--(4.20) with an arbitrary function

g are in general functions depending on the x1, x2 variables. In the case when (\widetilde \Omega , \widetilde D)
admits a solution for the two-dimensional problem (4.21) with g \equiv 0, then V as deter-
mined by (4.19) is a constant. Hence, (\sigma 13, \sigma 23) given by (4.18) are zero. Therefore,
apart from a possible variation in \sigma 33(x1, x2), the corresponding neutral cylindrical
inclusion has a shell of constant conductivity. Conversely, if the shell (\Omega \setminus D)\times R has
constant conductivity, then V given by (4.18) is a linear function of x1 and x2. In fact,

the function V has to be constant to satisfy the zero flux condition on \partial \widetilde \Omega in (4.19)

and hence g = 0. The solution shapes (\widetilde \Omega , \widetilde D) to (4.21) with g \equiv 0 were previously
found [40]. In other words, the three-dimensional cylindrical neutral inclusions with
constant shell conductivities are those obtained by applying affine transformations to
those in [40].

5. Conclusions. This paper presents our constructions of E\Omega -inclusions D in
two dimensions based on complex analysis and a conformal mapping from a circular
annulus to the domain \Omega \setminus D. Our method does not impose a restriction on the shape
of D but generates E\Omega -inclusions D with an outer boundary of general analytic shape.
The region \Omega needs to be tailored to avoid singularities in the extended field. By using
a similar conformal mapping technique, we also obtain nonelliptical coated inclusions
in two dimensions that are neutral if an appropriate flux is applied at the boundary
of D, and we obtain cylindrical neutral inclusions in three dimensions.

Acknowledgment. The authors thank Hoai-Minh Nguyen for drawing their at-
tention to relevant references.
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