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Abstract

We consider a quasilinear KdV equation that admits compactly supported travel-

ing wave solutions (compactons). This model is one of the most straightforward

instances of degenerate dispersion, a phenomenon that appears in a variety of

physical settings as diverse as sedimentation, magma dynamics and shallow wa-

ter waves. We prove the existence and uniqueness of solutions with sufficiently

smooth, spatially localized initial data. © 2019 Wiley Periodicals, Inc.

1 Introduction

1.1 The Equation

In this article we consider the existence and uniqueness of real-valued solutions

uW Rt � Rx ! R of the quasilinear Korteweg–de Vries (KdV) equation,

(1.1)

(
ut C .u.uux/x C �u3/x D 0;

u.0/ D u0:

Here, the parameter � can take the values C1 (focusing case), �1 (defocusing

case), or 0 (neutral case). This model appeared in [17] as a variation of the degen-

erate dispersive models of Rosenau and Hyman [53]. The Hamiltonian structure of

these models was investigated in [51, 62].

The equation (1.1) may be formally derived from the Hamiltonian,

(1.2) H.u/ WD 1

2

Z
juuxj2 dx � �

4

Z
u4 dx;
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given the symplectic form !.u; v/ D
R
u � @�1

x v dx. In addition to the usual trans-

lation and reflection symmetries, the equation (1.1) enjoys the scaling symmetry,

(1.3) u.t; x/ 7!
p
�u.�t; x/; � > 0;

which makes it L2-subcritical.

Formally, the flow of the equation (1.1) conserves, besides the Hamiltonian, the

mass M and the momentum J defined by

M.u/ WD
Z
u2 dx; J.u/ WD

Z
udx:

Finally, denoting uC D max.0; u/, the positive momentum

JC.u/ WD
Z
uC dx;

is also conserved for smooth solutions: indeed,

d

dt

Z
uC dx D �

Z
uC
u

�
u.uux/x C �u3

�
x
dx

D
Z
ı.u/ ux

�
u.uux/x C �u3

�
dx D 0:

1.2 Degenerate Dispersive Equations

Equation (1.1) is one of the simplest instances of degenerate dispersive equa-

tions: the dispersive term is superlinear, so the dispersive effect degenerates as

u ! 0.

Degenerate dispersive equations occur in the description of a number of physi-

cal phenomena. To name a few: sedimentation [10, 57]; dynamics of magma [58,

59]; granular media [45, 48]; shallow water waves with the Camassa-Holm equa-

tion [12, 14] and Green-Naghdi equations [40]; liquid crystals with the Hunter-

Saxton equation [30]; elasticity [21]; nonlinear chains dynamics [2, 3, 46, 54, 61];

cosmology [1]. More recently degenerate dispersive equations were found to de-

scribe waves propagating on interfaces [11, 29] and even to provide a model for

weak turbulence [15, 16].

Similar types of degenerate behavior occur in other PDE contexts: gradient

flows such as the porous medium equation or the parabolic p-Laplacian flow (see,

for example, the monographs [22,60]); higher-order diffusion such as the thin film

equation [24, 26, 36–38]; and weakly hyperbolic equations [20, 41], in particular

the compressible Euler equations near vacuum [18, 31]. Indeed, many of the tech-

niques in this paper were inspired by previous work on degenerate parabolic and

hyperbolic equations.

1.3 Compactons

A feature of many degenerate dispersive equations is that they support com-
pactons: traveling waves with compact support. This was first emphasized by
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Rosenau and Hyman [49, 53], who introduced the model K.m; n/ equations,

(1.4) ut C .um/x C .un/xxx D 0:

Subsequently, numerous classes of degenerate dispersive equations exhibiting an

array of remarkable traveling wave solutions have been introduced and studied. We

refer the reader to the forthcoming review article of Rosenau and Zilburg [56] and

the papers [49–53, 55, 62] for a more detailed history of these problems and some

recent results.

In a recent article [23] the authors considered the equation (1.1) in the focusing

case� > 0 and established the variational properties of several families of traveling

wave solutions. They actually worked in a more general framework, where u4 is

replaced by jujp, with p � 2, in the Hamiltonian H.u/; for simplicity, we restrict

our attention in this paper to the case p D 4. The explicit compacton solutions are

then given by

u.t; x/ D ˆB;c.x � ct/;
where either B D 0, c > 0 or B > 0, c 2 R, and we define

(1.5) ˆB;c.x/ WD
q
c C

p
4B C c2 cos.

p
2x/; x 2 .�xB;c ; xB;c/;

where xB;c > 0 is the smallest positive solution to cos.
p
2x/ D � cp

4BCc2
. We

note that in contrast to the usual KdV equation, the compactons may travel in

either the positive or negative direction (or even remain stationary). Further, the

B D 0 compactons are the minimizers of the Hamiltonian for fixed mass (see [23,

theorem 1.2]).

1.4 Degenerate Initial Data

Local well-posedness for nondegenerate initial data (say, perturbations of a con-

stant or of strictly positive traveling wave solutions) may be obtained from the

result of Akhunov [4], building on the work of Kenig-Ponce-Vega [32–34] (see

also [8,13,27,28,35,42,43,47]). Thus, we now restrict our attention to degenerate

initial data.

One motivation for considering degenerate initial data is the stability of com-

pactons: we saw that they are variationally stable if B D 0, but it seems to be very

difficult to construct solutions to the equation (1.1) (in any sense) for perturbations

(in any topology) of the compactons. In other words, this leads to the question:

Do there exist finite mass / energy solutions to (1.1) for initial data

in an open neighborhood of the compacton solutions (in a suitable

topology)?

The main goal of this article is to take a first step towards answering this question

by proving local existence and uniqueness of solutions to equation (1.1) for suitable

initial data, although we note that our initial data does not include the compacton

solutions themselves.
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In a recent article [63] Zilburg and Rosenau show that classical solutions to (1.1)

in the focusing case must lose regularity in finite time, and that sufficiently smooth

solutions obey a “waiting time” effect analogously to solutions of degenerate par-

abolic problems outlined in [22]. In Section 5 we briefly sketch their argument

and show that it may be adapted to the cases � D 0;�1. As a consequence, the

solutions constructed in the present article, which have fixed support, will either

develop a singularity or start moving in finite time.

The existence of global weak solutions for a degenerate KdV equation sim-

ilar to (1.1) admitting compactons was previously considered by Ambrose and

Wright [9]. The same authors considered the existence of classical solutions to

another related model [7]. However, previous existence proofs have relied on the

presence of higher-order conservation laws for solutions, giving a priori control of

higher-order Sobolev norms. In this article we use the toy model (1.1) to develop

a rather more robust proof of the existence of solutions. Indeed, our proof does

not explicitly use the Hamiltonian structure of (1.1), but rather the existence of a

hydrodynamic formulation (see (1.10)), and hence we expect it may be applied to

a much broader class of degenerate dispersive equations. In particular, we expect

that our argument can be applied to obtain existence and uniqueness of solutions

to the K.m; n/ equations (defined as in (1.4)) whenever m � 1 and n � 3.

1.5 Endpoint Decay Rates

We will subsequently assume that the initial data u0 for (1.1) is the positive

square root of a continuous nonnegative function � D u2
0 with a simply connected

set of positivity

I WD fx 2 RW �.x/ > 0g:
In this subsection, it is a bounded open interval, I D .x�; xC/.

In order to understand the effect of the endpoint decay on the solution, we con-

sider the leading-order part of the linearization of (1.1) about the initial data,

(1.6) ut C �uxxx D 0:

As in [19], in the semiclassical regime, if u0 is initially localized in phase space

around .x0; �0/, the solution u to the equation (1.6) will be localized on the bichar-

acteristics of the symbol a.x; �/ D ��.x/�3, given by the classical Hamiltonian

flow

(1.7)

(
Px D a�.x; �/ D �3�.x/�2;

P� D �ax.x; �/ D �x.x/�
3:

Suppose that I D RC and �.x/ D xk for 0 < x � 1. We may then explicitly

solve the equation (1.7) with initial data .x0; �0/ for some 0 < x0 � 1 to obtain

x.t/ D
(
x0

�
1C .k � 3/xk�1

0 �2
0 t
� 3

3�k ; k ¤ 3;

x0e
�3x2

0
�2

0
t ; k D 3;



A QUASILINEAR KDV EQUATION WITH DEGENERATE DISPERSION 2453

�.t/ D
(
�0
�
1C .k � 3/xk�1

0 �2
0 t
� k

k�3 ; k ¤ 3;

�0e
3x2

0
�2

0
t ; k D 3:

In particular, whenever k < 3 the frequency will blow up in finite time, whereas

when k � 3 the frequency blows up in infinite time.

These heuristics suggest that solutions to (1.6) may form singularities instan-

taneously whenever k < 3, whereas one can hope for well-defined solutions on

sufficiently short time intervals whenever k � 3. As a consequence, we make the

following definition:

DEFINITION 1.1. After translation, assume that 0 2 I . We say that u0 has super-
critical left endpoint decay if � D u2

0 satisfies

Z 0

x�

1

�.s/1=3
ds < 1:

Similarly, we say that � has supercritical right endpoint decay if

Z xC

0

1

�.s/1=3
ds < 1:

Unfortunately our existence result will not hold for all data without supercritical

left endpoint decay, but rather initial conditions for which the frequency grows at a

subexponential rate. As a consequence, we make a further definition:

DEFINITION 1.2. After translation, assume that 0 2 I . We say that u0 has a

subcritical left endpoint decay if x� D �1 or � D u2
0 satisfies

(1.8) �.x/ D o.dist.x; x�/3/; x # x�:

Similarly, we say that u0 has a subcritical right endpoint decay if xC D 1 or

� D u2
0 satisfies

(1.9) �.x/ D o.dist.x; xC/3/; x " xC:

If � has neither subcritical nor supercritical left (respectively, right) endpoint decay,

we say it has critical left (respectively, right) endpoint decay.

We note that, provided � is sufficiently smooth, the bicharacteristics will leave

a small neighborhood of the right endpoint eventually, leading to a smoothing ef-

fect near xC. Consequently, we do not expect the right endpoint decay to signif-

icantly affect the existence of solutions, only the left endpoint decay. However,

in this article we restrict our attention to the case of subcritical right endpoint de-

cay. The more involved case of critical or supercritical right endpoint decay will

be addressed in a future article.
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1.6 Hydrodynamic Solutions and the Main Result

We observe that the equation (1.1) may be written in the hydrodynamic form

(1.10) ut C .bu/x D 0 where b D 1

2
.u2/xx C �u2:

The equation (1.10) makes sense whenever

u 2 C 1.Œ0; T � � R/ and b 2 C.Œ0; T �IC 1.R//:

This motivates the following definition:

DEFINITION 1.3. Given T > 0we say that a nonnegative function u 2 C 1.Œ0; T ��
R/ is a hydrodynamic solution of (1.1) if u2 2 C.Œ0; T �IC 3.R// and u satisfies the

equation (1.10) for all .t; x/ 2 Œ0; T � � R.

Evidently, classical solutions to (1.1), i.e.,

u 2 C.Œ0; T �WC 3.R// \ C 1.Œ0; T �IC.R//;
are hydrodynamic solutions. However, if either endpoint is finite, this definition

allows for the case that u.t; x/ D o.dist.x; x˙/3=2/ as x ! x˙, which is sub-

critical endpoint decay in the sense of Definition 1.2, but not a classical solution.

We note that this definition is not restricted to solutions that vanish at infinity and

hence includes nondegenerate solutions.

To further motivate this definition, we have the following uniqueness result, the

proof of which is delayed to Section 4.2:

THEOREM 1.4. Given nonnegative initial data u0 2 C 1
b
.R/ so that u2

0 2 C 3
b
.R/

and u4=3
0 2 C 2

b
.R/ there exists at most one hydrodynamic solution of (1.1) so that

u2 2 C.Œ0; T �IC 3
b
.R// and u4=3 2 C.Œ0; T �IC 2

b
.R//.

Here we write C k
b

D C k \W k;1. The restriction that u.t/4=3 2 C 2
b

is required

to rule out the possibility that u2 vanishes quadratically at an isolated zero, and it

seems reasonable to expect this may be replaced by assuming that u2
0 2 C 3

b
.R/ has

simply connected set of positivity.

Our main result is then (roughly) the following:

THEOREM 1.5 (Rough statement). Let u0 be sufficiently smooth and with simply
connected set of positivity. Assume further that

� either u0 is compactly supported with subcritical left and right endpoint
decay, or

� u0 is supported on R and asymptotically approaches a bounded nondegen-
erate traveling wave or zero.

Then there exists a time T > 0 and a unique hydrodynamic solution of the equation
(1.1) on the time interval Œ0; T �.

A rigorous statement of Theorem 1.5 is given in Theorem 4.1.
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Remark 1.6. The regularity and localization assumptions on the initial data are

roughly:

(1) There exists some integer K0 � 0 so that

�Z x

0

�.s/�
1
3 ds

� 6
5

K0

�.x/ & 1 (see (3.9)).

(2) For integers 1 � n � 2K0 C 4 we have

@n
x

�
�

n
3

C 1
6

�
2 L2 (see (3.10)):

Remark 1.7. For compactly supported data, our result is essentially optimal as far

as endpoint decay rates are concerned: we can handle all smooth initial data that

satisfies � � dist.x; x˙/˛˙ as x ! x˙ for ˛˙ > 3 (see Section 3.3). This is

optimal in two respects:

� in the light of the bicharacteristic computation done in (1.5);

� in the hydrodynamic formulation, where ˛˙ > 3 corresponds to requiring

b 2 C1. This is essentially optimal if one wants to define characteristics by

the Picard-Lindelöf theorem.

Remark 1.8. It is possible to obtain a quantitative lower bound for the lifespan of

existence from our result, although as it is likely far from optimal we do not attempt

to track it carefully. However, it is clear from the proof that the lifespan depends

not only on the size of the initial data, but also on the rate of decay of the initial

data at the endpoints of its support and on the smallest local minimum of the initial

data on the set of positivity I .

1.7 Strategy of the Proof

We now outline the strategy of the proof. The first difficulty is to give the equa-

tion an appropriate form to derive energy estimates. This is done in several steps:

Lagrangian formulation. A key difficulty of working in the original frame is

that the degeneracy at the endpoints will be time dependent. In order to remove

this time dependence, we switch to a moving frame, an approach that is common

in degenerate hyperbolic and parabolic equations (see, for example, [20,24,26,39,

41]). Recalling the hydrodynamic formulation (1.10), we let X be the Lagrangian

map associated to the vector field b; in other words,

(1.11)

(
Xt .t; x/ D b.t; X.t; x//;

X.0; x/ D x:

Letting

Z.t; x/ D 1

Xx.t; x/
� 1 and � D .u0/

2;
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the Cauchy problem for u is equivalent to

(1.12)

8
ˆ̂<
ˆ̂:

Zt C .1CZ/2
�

1
2
.1CZ/

�
.1CZ/

�
.1CZ/2�

�
x

�
x

C �.1CZ/2�
�

x
D 0;

Z.0; x/ D 0:

Change of independent coordinates and the Mizohata condition. The linearized

problem for Z about Z D 0 reads Zt C �Zxxx C � � � D 0. In order to make the

leading-order coefficient constant, we set

y D
Z x

0

1

�.s/1=3
ds;

so that the linearized problem around Z D 0 becomes

(1.13) Zt CZyyy C 5

2

�y

�
Zyy C � � � D 0:

The top order term has a constant coefficient, which greatly simplifies estimates.

However, a new problem arises since this linearized problem violates the Mizo-

hata condition: recall that a necessary condition for (forwards in time) local well-

posedness in Sobolev spaces of the equation

(1.14) wt C wyyy C a.y/wyy D 0

on R, where a is assumed to be smooth and bounded, is the Mizohata condition [5,

6, 8, 44]

(1.15) sup
y1�y2

Z y2

y1

a.s/ds < 1:

Thus, when proving local well-posedness for nondegenerate quasilinear KdV equa-

tions, one typically assumes additional L1-type integrability conditions for the ini-

tial data to ensure the condition (1.15) is satisfied. Indeed, one may take advantage

of the failure of (1.15) to obtain ill-posedness in Sobolev spaces for quasilinear

problems [5, 47]. See also the ill-posedness result in [6], where the leading-order

term has a sign change. We remark that for nondegenerate initial data the Hamil-

tonian structure of (1.1) may be used to remove integrability conditions and prove

local well-posedness in Sobolev spaces.

In order to circumvent this difficulty and obtain well-posedness for (1.14), we

must consequently work in a different topology. This relies on two key observa-

tions about linear KdV-type equations of the form (1.14): first, introducing the

weight ˆ D e.1=3/A, where A is an antiderivative of a, we may obtain energy es-

timates for (1.14) in the weighted space L2.ˆ2 dx/. Indeed, integrating by parts

yields

d

dt
kˆwk2

L2 . kakW 3;1kˆwk2
L2 :
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Second, for sufficiently smooth initial data, polynomial weights are propagated by

the linear KdV flow onO.1/ timescales. This is most readily seen from the identity

Œ@t C@3
y ; y�3t@2

y � D 0, and leads to the definition of the weighted Sobolev spaces

HN;K in Section 2.1.

Returning to the linearization (1.13) of the equation forZ, we see that we should

take ˆ D �5=6. Due to the subcritical endpoint decay assumptions, �.y/ decays

polynomially (as will be illustrated on several examples below); this implies that

the Mizohata condition is barely violated, and we can use the fact that the linear

KdV equation propagates polynomial weights on O.1/ timescales to prove the

existence of solutions of the equation (1.12) in weighted Sobolev spaces of the

type L2.�5=3 dx/. However, it will be more convenient to perform one last change

of coordinates.

Change of dependent coordinates. Motivated by the previous discussion, we set

W D �5=6Z; it satisfies the equation

(1.16) Wt C .1C g/Wyyy C 7

5
gyWyy CN.y;W;Wy/C �5=6F D 0;

where N is a polynomial in W and Wy , F is a function of � and its derivatives,

and

g D .1C ��5=6W /5 � 1:

This is the form of the equation that we will use to perform estimates.

Notice that the linearization of the equation around 0 now reads

Wt CWyyy C fterms of order less than 1g D 0I

in particular, the quadratic term Wyy term has disappeared.

Construction of solutions. Equation (1.16) is the one that we use to construct

solutions. Our scheme is the following:

� Regularization of the equation is achieved by adding a term ��Wyyyy on

the right-hand side of (1.16). This allows construction of local solutions

over a time span Œ0; T .�/�.

� Energy estimates in weighted Sobolev spaces allow us to obtain a uniform

time of existence (in �) as well as uniform bounds on the corresponding

solutions. These energy estimates are delicate, and rely crucially on the

structure of (1.16).

� Finally, a simple compactness argument allows us to pass to the limit � !
0, first finding a convergent sequence of solutions, and then passing to the

limit in the equation.
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2 Some Technical Estimates

2.1 Function Spaces

We will seek solutions to equation (1.16) in the weighted Sobolev spaces HN;K �
L2, defined to be the completion of C1

0 .R/ under the norm

(2.1) kf kHN;K D
KX

kD0

2.K�k/CNX

nD0



hyik@n
yf




L2 :

Before recording some of the basic properties of the HN;K space, let us explain

in a few sentences why this space is adapted to the (flat) Airy equation. Arguing

heuristically, consider data ofL2 mass 1, which are localized in phase space around

.x0; �0/; this gives a norm in HN;K of order A �
PK

kD0 x
k
0 �

2.K�k/CN
0 . At time

t D 1, the solution of the Airy equation should be localized in phase space around

.x0 � 3�2
0 ; �0/, giving a norm of order B �

PK
kD0.x0 � 3�2

0 /
k�

2.K�k/CN
0 . Since

B . A, it should be expected that the Airy equation is locally well-posed in HN;K .

Remark 2.1. Many of the techniques here closely follow the results of Akhunov

[4,5] on quasilinear equations of KdV type. In particular, the regularization scheme

used here, the propagator estimates in Lemma 2.2, the gauge in Proposition 2.8, and

the linear theory have ideas that overlap with those developed by Akhunov for that

study.

Turning to the properties of HN;K , we remark first that

k@n
yf kHN;K . kf kHN Cn;K ;

and that we have the interpolation estimate,

(2.2) kf k2
H4;K . kf kH1;K kf kH7;K :

Further, if P�j is the usual Littlewood-Paley projection to frequencies . 2j and

P>j D 1 � P�j , we have the estimate for j � 0

kP�jf kHN Cn;K . 2nj kf kHN;K ;

kP>jf kHN;K . 2�nj kf kHN Cn;K :
(2.3)

We will construct solutions using a parabolic regularization given by the semi-

group e��t@4
y . This motivates defining the subspace ZN;K � C.Œ0; T �IHN;K/

with norm

(2.4) kf kZN;K D
3X

nD0

k.�t/n
4 f kL1.Œ0;T �IHN Cn;K/:



A QUASILINEAR KDV EQUATION WITH DEGENERATE DISPERSION 2459

We then have the following lemma:

LEMMA 2.2. Let N;K � 0, 0 < � � 1, and T . ��1. Then for all G 2
C1

0 .Œ0; T � � R/ we have the estimates

ke��t@4
xf kZN;K . kf kHN;K ;(2.5)






Z t

0

e��.t�s/@4
yG.s/ds






ZN;K

. �� 3
4T

1
4 k.�t/ 3

4GkL1.Œ0;T �IHN;K/;(2.6)

where the constant is independent of �.

PROOF. Starting with the case K D 0, denote the Fourier transform of e��4

by  . The kernel of @n
ye

��.t�s/@4
y is then given by

1

.�.t � s//nC1
4

 .n/

�
x

.�.t � s//1=4

�
;

which has L1 norm . 1
.�.t�s//n=4 . Therefore, applying Minkowski’s inequality we

obtain

.�t/n=4k@n
ye

��t@4
xf kH N . kf kH N ;

and similarly,

.�t/n=4






Z t

0

@n
ye

��.t�s/@4
yG.s/ds






H N

.

Z t

0

1

.1 � s
t
/n=4

kG.s/kH N ds

. t
1
4 kt 3

4GkL1H N ;

where we used the fact that for 0 � n � 3,
Z 1

0

1

.1 � s/n=4s3=4
ds . 1:

This gives the desired result for K D 0.

Turning to the case K � 1, observe that

Œe��t@4
y ; y� D �4�t@3

ye
��t@4

y :

Therefore, ŒyK@n
y ; e

��t@4
y � is a linear combination of terms of the type

@n
y.�t@

3
y/

`e��t@4
yym with `Cm � K;

where the kernel of @n
y.�t@

3
y/

`e��t@4
y is given by

.�t/
`�n�1

4  .3`Cn/

�
x

.�t/1=4

�
;

which has L1 norm . .�t/
`�n

4 . .�t/�n=4 if �t . 1. Arguing as before then

gives the desired inequality. �
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2.2 Pointwise Bounds

In order to control the pointwise behavior of solutions, we first recall the usual

one-dimensional Sobolev estimate,

(2.7) kf kL1 . kf kH 1 :

Applying this estimate to hyik@n
yf we obtain the following lemma:

LEMMA 2.3. If 0 � k � K and f 2 C1
0 .R/, we have the estimate

(2.8)

2.K�k/CN �1X

nD0

khyik@n
yf kL1 . kf kHN;K :

Remark 2.4. We recall that the embedding (2.7) is locally compact. As a conse-

quence, the embedding (2.8) is also locally compact.

Remark 2.5. In our application of the pointwise estimate (2.8) to control products

of functions in HN;K , we will require a slight refinement when N is even and n is

odd. Suppose that 0 � k � K�1, that 1 � n � 2.K�k/CN , and thatN is even

while n is odd. Then, for any f 2 C1
0 .R/ we may integrate by parts to obtain

khyikC 1
2 @n

yf k2
L2

D �
Z

hyi2kC1@nC1
y f � @n�1

y f dy � .2k C 1/

Z
yhyi2k�1@n

yf � @n�1
y f dy

�


hyikC1@n�1

y f




L2



hyik@nC1
y f




L2 C



hyikC1@n�1
y f




L2



hyik�1@n
yf




L2

. kf k2
HN;K ;

where we have used the fact that as n is odd while N is even, we have n � 1 �
2.K�.kC1//CN and nC1 � 2.K�k/CN . Applying the usual one-dimensional

Sobolev estimate (2.7) then yields the slight refinement of the pointwise estimate

(2.8), 

hyikC 1
2 @n�1

y f




L1 . kf kHN;K :

2.3 Product Laws

Given sufficiently smooth functions f1; : : : ; fM , we define the multilinear op-

erator

LnŒy; f1; : : : ; fM � D
X

j˛j�nC3;
max ˛m�n

�
C˛.y/ı

�.M�1/hyiK.M �1/
MY

mD1

@˛m
y fm.y/

�
;

where ı > 0 and K � 0, and we assume that the coefficients C˛ are smooth,

uniformly bounded functions. This type of multilinear expression will appear in

the perturbative terms of the equation for W considered in Section 3. We will also

use this as a notation, writing

G D LnŒy; f1; : : : ; fM �
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if a multilinear operator G can be written in this form.

We then have the following estimate for multilinear operators of this form:

LEMMA 2.6. Let 0 � k � K and 0 � n � 2.K � k/C 4. Then if f1; : : : ; fM 2
C1

0 .R/ and C˛ 2 C1.R/, we have the estimate

(2.9) khyikLnŒy; f1; : : : ; fM �kL2 .

ı�.M �1/
�X

˛

kC˛kL1

� MY

mD1

kfmkH4;K

!
:

PROOF. First reduction. After reordering the indices, we can assume that ˛1 �
˛2 � � � � � ˛M .

Let us see quickly why the result is easy if the ˛i are sufficiently small: first,

if ˛M � 3, the desired bound easily holds, since k � K. Second, assume that

˛1 : : : ˛m0
are all � 2, with 1 � m0 � K � 1. Then one can estimate hyiK@

˛m
y fm

in L1, for m � m0, and matters reduce to proving the desired result for

L0
nŒy; fm0C1; : : : ; fM � D

X

j˛j�nC3;
max ˛m�n

�
C˛.y/ı

�.M�m0�1/hyiK.M �m0�1/
MY

mDm0C1

@˛m
y fm.y/

�
:

In other words, we can assume in the following that ˛m � 3 for m � M � 1 and

˛M � 4.

Also notice that the case k D 0 is easily dealt with; therefore, we shall assume

in the following that k � 1.

The case M D 1. It is immediate.

The case M � 3. Our aim is to bound in L2

hyikCK.M �1/
MY

mD1

@˛m
y fm;

where ˛1 � ˛2 � � � � � ˛M , under the assumption that fm 2 H4;K for all m.

The idea is to estimate the function carrying the most derivatives, namely fM ,

in L2, and all the others in L1. Observe that

� On the one hand, khyiˇM @
˛M
y fM kL2 . kfM kH4;K provided that ˛M �

2K � 2ˇM C 4 and ˇM � K, and the latter condition follows from the

former since ˛M � 4.

� On the other hand, if m � M � 1, khyiˇm@
˛m
y fmkL1 . kfM kHN;K

provided ˛m � 2K � 2ˇm C 3 and ˇm � K, and the latter condition

follows from the former since ˛m � 3.
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Since ˇM and ˇm must be integers, the best choice possible is

ˇM D
�
K C 2 � ˛M

2

�
and ˇm D

�
K C 3

2
� ˛m

2

�
for 1 � m � M � 1

(notice that ˇm � 0 for all m since k � 1). In order for the desired bound to hold,

we need
PM

mD1 ˇm � k CK.M � 1/, which follows from

K C 2 � ˛M

2
C

M �1X

mD1

�
K C 3

2
� ˛m

2

�
� M

2
� k CK.M � 1/;

where the summand �M
2

on the left-hand side comes from the rounding errors.

Since
P
˛m � nC 3, the above inequality holds if

n � 2K � 2k C 2M � 2:
This inequality is satisfied, under the assumptions of the lemma, if M � 3.

The case M D 2. The above argument suffices if ˛1 C ˛2 � 2.K � k/ C 5.

Further, in the case that ˛1 C ˛2 D 2.K � k/ C 6, the j̨ have the same parity,

so taking ˇ1; ˇ2 as above we see that ˇ1 C ˇ2 D k C K. In the remaining case

˛1 C ˛2 D nC 3 D 2.K � k/C 7, we take

ˇ1 D K C 3

2
� ˛1

2
; ˇ2 D K C 2 � ˛2

2
:

If ˛1 is odd and ˛2 is even, then the ǰ are integers. If instead ˛1 is even and ˛2 is

odd, we apply the refined L1 and L2 estimates of Remark 2.5 (using k � 1, and

since 4 � ˛1 � 4C 2.K � k/ and 5 � ˛2 � 4C 2.K � k/) to obtain the desired

bound. �

Remark 2.7. From Remark 2.4 and the proof of Lemma 2.6 we see that whenever

f .j / * f in H4;K we may pass to a subsequence to ensure that

hyikLnŒy;

M‚ …„ ƒ
f .j /; : : : ; f .j /� * hyikLnŒy;

M‚ …„ ƒ
f; : : : ; f �

in L2 for any 0 � k � K and 0 � n � 2.K � k/C 4.

2.4 Linear Estimates

We complete this section by considering a priori estimates for a model linear

equation,

(2.10)

(
wt C .1C g/wyyy C ˇgywyy C awy C f D ��wyyyy ;

w.0/ D 0;

where ˇ 2 R, � � 0 are constants and g; a; f are sufficiently smooth functions.

This will provide a model for the equation satisfied by @n
yW and will subsequently

be used to obtain uniform (in �) bounds for solutions.

Our main a priori estimate for solutions to (2.10) is the following:
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PROPOSITION 2.8. Let T > 0 and suppose that

(2.11) kgkL1.Œ0;T �IL1/ � 1

2
; kgkL1.Œ0;T �IW 3;1/ C kakL1.Œ0;T �IW 1;1/ . 1:

Then, if w is a sufficiently smooth, localized solution to (2.10) and 0 � � � 1 is
sufficiently small, we have the estimate

(2.12) kwk2
L1.Œ0;T �IL2/

C �kwyyk2
L2..0;T /IL2/

. �.T /kfk2
L1.Œ0;T �IL2/

;

where

(2.13) �.T / D eC
R T

0 .1Ckgt kL1 /dt � 1;
and the constants are independent of �.

Further, we have the weighted estimate for k � 1,

(2.14)

khyikwk2
L1.Œ0;T �IL2/

C �khyikwyyk2
L2..0;T /IL2/

. �.T /

�
khyikfk2

L1.Œ0;T �IL2/
C

2X

nD0

khyik�1@n
ywk2

L1.Œ0;T �IL2/

�
;

where again the constants are independent of �.

PROOF. Differentiating with respect to time and integrating by parts, we obtain

d

dt



.1C g/
1
3

ˇ� 1
2 w


2

L2

D 2
˝
.1C g/

2
3

ˇ�1w;wt

˛
C
�
2

3
ˇ � 1

�˝
.1C g/

2
3

ˇ�2gt w;w
˛

D �1
3
ˇ
˝�
.1C g/

2
3

ˇ�1gy

�
yy

w;w
˛
C
˝�
.1C g/

2
3

ˇ�1a
�
y

w;w
˛

� 2
˝
.1C g/

2
3

ˇ�1f;w
˛
C
�
2

3
ˇ � 1

�˝
.1C g/

2
3

ˇ�2gt w;w
˛

� 2�


.1C g/

1
3

ˇ� 1
2 wyy



2

L2 C 2�
˝�
.1C g/

2
3

ˇ�1
�
yy

wy ;wy

˛

� 2�
˝�
.1C g/

2
3

ˇ�1
�
yy

w;wyyi:
We note that from hypothesis (2.11) we have 1 C g � 1. As a consequence, we

may interpolate to obtain

kwyk2
L2 . k.1C g/

1
3

ˇ� 1
2 wkL2k.1C g/

1
3

ˇ� 1
2 wyykL2 :

Choosing 0 < � � 1 sufficiently small, we may apply the hypothesis (2.11) to

obtain the estimate

d

dt



.1C g/
1
3

ˇ� 1
2 w


2

L2 . .1C kgtkL1/


.1C g/

1
3

ˇ� 1
2 w


2

L2

C


.1C g/

1
3

ˇ� 1
2 f


2

L2 � �


.1C g/

1
3

ˇ� 1
2 wyy



2

L2 :

The estimate (2.12) then follows from Gronwall’s inequality.
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To prove (2.14) we define �w D ykw and L D .1C g/@3
y Cˇgy@

2
y C a@y C �@4

y .

We then observe that �w satisfies the equation (2.10) with f replaced by

zf D ykf � ŒL; yk�w:

Integrating by parts in the terms involving �, we obtain the estimate

ˇ̌˝
.1C g/

2
3

ˇ�1zf;�w
˛ˇ̌

.

�
kykfkL2 C

2X

nD0

khyik�1@n
ywkL2

�

.1C g/
1
3

ˇ� 1
2 zw




L2 C �


hyikwy



2

L2 :

In order to bound �khyikwyk2
L2 , we wish to replace the term

�2�


.1C g/

1
3

ˇ� 1
2�wyy



2

L2

that appears in the expression for

d

dt



.1C g/
1
3

ˇ� 1
2�w


2

L2

by the term

�2�


.1C g/

1
3

ˇ� 1
2ykwyy




L2 :

Consequently, we integrate by parts to obtain

ˇ̌

.1C g/
1
3

ˇ� 1
2�wyy



2

L2 �


.1C g/

1
3

ˇ� 1
2ykwyy



2

L2

ˇ̌
.

khyikwyk2
L2 C khyikwk2

L2 ;

and by interpolation we have

khyikwyk2
L2 .



.1C g/
1
3

ˇ� 1
2 hyikw




L2



.1C g/
1
3

ˇ� 1
2 hyikwyy




L2

C


.1C g/

1
3

ˇ� 1
2 hyikw



2

L2 :

Proceeding as in the proof of (2.12) we obtain the estimate (2.14) whenever 0 �
� � 1 is sufficiently small. �

3 Local Well-Posedness for W

3.1 Reformulating the Problem

Lagrangian Coordinates

Considering the hydrodynamic form of (1.1)

ut C .bu/x D 0 where b D 1

2
.u2/xx C �u2;

and recalling the definition (1.11) of the Lagrangian map X.t; x/,
(
Xt .t; x/ D b.t; X.t; x//;

X.0; x/ D x;
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we may write sufficiently smooth solutions to (1.1) in the form

(3.1) u.t; X.t; x// D 1

Xx.t; x/
u0.x/:

Assuming that the map X is sufficiently smooth, we define

Z.t; x/ D 1

Xx.t; x/
� 1

and compute the equation satisfied by Z,

Zt C .1CZ/2
�
1

2
.1CZ/

�
.1CZ/

�
.1CZ/2�

�
x

�
x

C �.1CZ/2�

�

x

D 0;

(3.2)

where � D u2
0 is defined as above. We note that equation (3.2) is an inhomoge-

neous equation with forcing term

(3.3) F WD
�
1

2
�xx C ��

�

x

:

In particular, F D 0 for all x 2 I whenever � corresponds to the initial data for a

traveling wave solution of (1.1).

Change of Independent Coordinates x ! y

The leading-order linear part of (3.2) is given by

Zt C �Zxxx C lower-order terms D 0:

This motivates a change of variables, defining

(3.4) y.x/ D
Z x

0

1

�.s/1=3
ds;

so that the map yW I ! R is a diffeomorphism.

Next we compute the equation (3.2) in these coordinates,

Zt C .1CZ/5Zyyy C 5

2

�y

�
.1CZ/5Zyy

C 7.1CZ/4ZyZyy CR.y;Z;Zy/C F D 0;

(3.5)

where R is a polynomial in Z;Zy satisfying R.y; 0; 0/ D 0 (see (A.3) for the

explicit expression) and in the new coordinates the inhomogeneous term (3.3) be-

comes

(3.6) F D 1

2

�
�yyy

�
� 4

3

�yy�y

�2
C 5

9

�3
y

�3

�
C �

�y

�1=3
:

For completeness, the full computation is given in (A.2). We remark that here and

subsequently we slightly abuse notation writing Z.t; y/ instead of Z.t; x.y// and

similarly for �; F .
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Change of Dependent Coordinates Z ! W

In order to work in unweighted L2 spaces, we take W D �56Z. The equation

(3.5) may then be written as

(3.7) Wt C .1C g/Wyyy C 7

5
gyWyy CN.y;W;Wy/C �

5
6F D 0;

where N is a polynomial in W;Wy satisfying N.y; 0; 0/ D 0 (see (A.4) for the

explicit expression), and we define

(3.8) g D .1C �� 5
6W /5 � 1:

We will then consider the existence of solutions to (3.7) in the weighted Sobolev

spaces HN;K defined as in (2.1).

3.2 The Initial Data

We now describe our assumptions on the initial data � D u2
0, which are most

easily stated in the y-coordinates. However, they may be phrased in the original

coordinates using the change of variables (3.4), and we compute a couple of special

cases in Section 3.3.

We first make the assumption that there exists an integer K0 � 0 and some

ı > 0 so that in the y-coordinates,

(3.9) inf
y2R

�.y/
5
6 hyiK0 � ı:

It seems reasonable to expect this hypothesis to be true whenever (in the x-coordi-

nates) � 2 C 3.R/ has subcritical decay at both endpoints in the sense of Defini-

tion 1.2. We verify that it is indeed true for polynomially decaying data in Sec-

tion 3.3.

Next we assume that

(3.10) k�kL1 C
2K0C7X

nD1






@n

y�

�






L2

. 1:

Finally, we assume that there exists some M > 0 so that the inhomogeneous term

F , defined as in (3.6), satisfies

(3.11) k� 5
6F k

H4;K0 � M;

where the integer K0 � 0 appears in the lower bound (3.9).

Remark 3.1. For most estimates we will treat � and its derivatives as coefficients in

the linear and nonlinear terms involving W . In this case it will be more convenient

to use that from the estimate (3.10) and Sobolev embedding we have the pointwise

bound

(3.12) k�kL1 C
2K0C6X

nD1






@n

y�

�






L1

. 1:
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The only exception to this will be when 2K0 C 7 derivatives fall on �, where we

will instead use the estimate (3.10) directly.

Remark 3.2. We note that when� D 1 the assumptions on� do not preclude the case

that � 2 .ˆB;c/
2 C �C1

0 .R/ where c > 0, �1
4
c2 � B < 0, and 0 < � �B;c 1;

i.e., � is a small perturbation of the nondegenerate traveling wave ˆB;c .

Remark 3.3. The assumptions (3.11) and (3.12) are far from the optimal regularity.

In future work we will show that it is possible to improve the regularity by taking

further advantage of the dispersive smoothing effects similarly to [27, 28, 42, 43].

The main result of this section is the existence of solutions to the equation (3.7):

THEOREM 3.4. Suppose that in the x-coordinates � D u2
0 2 C 3.R/ satisfies the

subcritical left and right endpoint decay conditions (1.8) and (1.9). Suppose also
that in the y-coordinates � satisfies the estimates (3.9), (3.10), and (3.11). Then
there exists a time T > 0 and a unique (classical) solution W 2 C.Œ0; T �IH4;K0/

to the equation (3.7).

Remark 3.5. We note that by using the usual frequency envelope approach it is

possible to show that in the y-coordinates the map ln � 7! W is continuous as

a map from L1 \ PH 1 \ PH 2K0C7 ! H4;K0 . However, as the y-coordinate is

defined in terms of �, this does not imply continuous dependence on the initial data

for the original equation (1.1). Similarly, the uniqueness stated in Theorem 3.4

does not imply uniqueness for (1.1), so we must apply Theorem 1.4 instead. As

a consequence, we omit the proof of continuity of the solution map for (3.7) and

only include the proof of uniqueness because it is brief.

3.3 Two Particular Cases

In order to better understand the conditions (3.9)–(3.12), we will illustrate them

in two specific cases.

Case 1. Supp � D Œ�1; 1�, with �.s/ � .1 � s/˛, ˛ > 3, as s ! 1. By this,

we mean that � is sufficiently smooth in .�1; 1/, and that for sufficiently many

derivatives of �, there holds @k
s �.s/ D Ck.1�s/˛�k Co..1�s/˛�k/ for a constant

Ck 2 R. Notice that we only discuss here the right endpoint, but the left endpoint

can of course be dealt with symmetrically. Then

y.x/ D
Z x

0

ds

.1 � s/˛=3
� .1 � x/1� ˛

3 :

This implies that, in the coordinate y,

�.y/ D �.x.y// � y
3˛

3�˛ and F.y/ � y�3:

Therefore, the condition (3.10) always holds, while the conditions (3.9) and (3.11)

become, respectively,

K0 >
5

2

˛

˛ � 3 and K0 <
5

2

2˛ � 3
˛ � 3 :
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For ˛ > 3, there exists an integer K0 satisfying these two constraints.

Case 2. Supp � D R with �.s/ � s�ˇ , ˇ � 0, as s ! 1 (once again, the case

s ! �1 can be dealt with symmetrically). Then

y.x/ D
Z x

0

sˇ=3 ds � x1C ˇ
3 :

This implies that

�.y/ � y� 3ˇ
3Cˇ and F.y/ � y� 3ˇC3

ˇC3 :

Therefore, the condition (3.10) always holds, while the conditions (3.9) and (3.11)

become, respectively,

K0 >
5

2

ˇ

ˇ C 3
and K0 <

10ˇ C 3

2ˇ C 6
:

For ˇ � 0, there exists an integer K0 satisfying these two constraints.

3.4 Existence of Solutions

We now consider a parabolic regularization of (3.7) with initial data W0,

(3.13)

(
Wt C .1C g/Wyyy C 7

5
gyWyy CN C �

5
6F D ��@4

yW;

W.0/ D W0;

where g is defined as in (3.8), N as in (A.4), and F as in (3.6).

We then have the following existence result:

LEMMA 3.6. Let ı > 0 be the constant defined in (3.9) and W0 2 H4;K0 satisfy
the estimate

(3.14) kW0k
H4;K0 � ı:

Then, for each 0 < � � 1 sufficiently small, there exists a time T D T .�/ > 0

and a (mild) solution W 2 Z4;K0 of the equation (3.13).

PROOF. We take B � Z4;K0 to be the ball

B D fW 2 Z
4;K0 W kW k

Z4;K0 � Kıg;
where the constant K � 1 may be chosen independently of �;W0; �. We then

define

T ŒW � D e��t@4
xW0 C

Z t

0

e��.t�s/@4
y .G.s/C �

5
6F /ds;

where

G D .1C g/Wyyy C 7

5
gyWyy CN:

From the semigroup estimate (2.5) and the estimate (3.14) we have the estimate

ke��@4
xW0k

Z4;K0 . kW0k
H4;K0 . ı:
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Similarly, from the estimate (3.11) for the inhomogeneous term F and the semi-

group estimate (2.6) we have the estimate





Z t

0

e��.t�s/@4
y�

5
6F dy






Z4;K0

. �� 3
4T

1
4M;

provided T . ��1.

For 0 � n � 2K0 C 3 we may write @n
yG as a multilinear operator of the form

@n
yG D

6X

MD1

X

j˛j�3

Ln

�
y;

M‚ …„ ƒ
@˛1

y W; : : : ; @˛M
y W

�
;

where the coefficients of the Ln may be uniformly bounded in L1 using the lower

bound (3.9) and pointwise estimate (3.12) for �. When n D 2K0 C 4, we may

instead write

@2K0C4
y G D

6X

M D1

X

j˛j�3

L2K0C4

�
y;

M‚ …„ ƒ
@˛1

y W; : : : ; @˛M
y W

�

C
@

2K0C7
y �

�

�
1

2
�

5
6

�
.1C �� 5

6W /5 � 1
�

� 1

3
.1C �� 5

6W /5W

�
;

where the coefficients of the L2K0C4 are uniformly bounded and the final term

may be bounded by estimating @
2K0C7
y �=� 2 L2 using (3.10) and the remaining

terms in L1 using (2.8). As a consequence, we may apply the multilinear estimate

(2.9) to obtain

kGk
H4;K0 . .�t/�

3
4 .1C ı�1kW k

Z4;K0 /
5kW k

Z4;K0 . .�t/�
3
4 ı

provided 0 < T . ��1. We then apply the semigroup estimate (2.6) to obtain





Z t

0

e��.t�s/@4
yG.s/ds






Z4;K0

. �� 3
4T

1
4 ı:

Applying identical estimates for the difference T ŒW .1/� � T ŒW .2/� we see that

we may choose the timescale 0 < T D T .�/ � 1 sufficiently small so that the

map T WB ! B is a contraction on B . The result then follows from an application

of the contraction principle. �

In order to pass to a limit as � ! 0 in equation (3.13), we must prove uniform

(in �) estimates for the solutions to (3.13). However, these will follow directly

from the a priori estimates for the model equation:

PROPOSITION 3.7. Let W0 D 0 and W 2 Z4;K0 be a mild solution of (3.13).
Then there exists a time T� D T�.K0;M; ı/ > 0 so that provided 0 < T � T� we
have the estimate,

(3.15) kW k2
L1.Œ0;T �IH4;K0 /

C �kW k2
L2..0;T /IH6;K0 /

� ı2;
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where the constants are independent of sufficiently small 0 < � � 1.

PROOF. We make the bootstrap assumption that for some K > 0 we have

(3.16) kW k2
L1.Œ0;T �IH4;K0 /

C �kW k2
L2..0;T /IH6;K0 /

� .Kı/2:

We then observe that W .n/ D @n
yW satisfies the equation

(3.17) W
.n/
t C .1C g/W .n/

yyy C
�
7

5
C n

�
gyW

.n/
yy

C a.n/W .n/
y CN .n/ C @n

y.�
5
6F / D ��@4

yW
.n/;

where the coefficient

a.n/ D a.n/.y;W;Wy ; Wyy/

is a polynomial in ��5=6W; ��5=6Wy ; �
�5=6Wyy with bounded coefficients, and

the perturbative term

N .n/ D
6X

MD1

LnŒy;

M‚ …„ ƒ
W; : : : ;W �;

whenever 0 � n � 2K0 C 3, with the slight modification when n D 2K0 C 4,

N .2K0C4/ D
6X

M D1

L2K0C7Œy;

M‚ …„ ƒ
W; : : : ;W �

C
@

2K0C7
y �

�

�
1

2
�

5
6

�
.1C �� 5

6W /5 � 1
�

� 1

3
.1C ��5=6W /5W

�
:

We then note that (3.17) is in the form of the model equation (2.10) with g D g,

ˇ D 7
5

C n, a D a.n/, and f D N .n/ C @n
y.�

5
6F /.

Applying the Sobolev estimate (2.8) and the pointwise estimate (3.12) for � with

the bootstrap assumption (3.16), we may bound

(3.18) kgkW 3;1 . .1C K/4K; ka.n/kW 1;1 . .1C K/5:

In particular, the coefficients satisfy the hypothesis (2.11) of Proposition 2.8 when-

ever 0 < K � 1 is sufficiently small.

From the Sobolev estimate (2.8) we may bound

kgtkL1 . .1C K/4ı�1kWtkH1;K0 :

We then use equation (3.13) to write

Wt CG C �
5
6F D ��Wyyyy ;

where, for 0 � n � 2K0 C 1,

@n
yG D

6X

MD1

LnC3Œy;

M‚ …„ ƒ
W; : : : ;W �:
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Applying the multilinear estimate (2.9) with the pointwise estimate (3.12) for �

and H4;K0-estimate (3.11) for F , we then obtain

kWtkH1;K0 .
�
1C ı�1kW k

H4;K0

�5kW k
H4;K0 C M C �kW k

H5;K0 :

As a consequence, we may use the bootstrap assumption (3.16) to obtain

(3.19)

Z T

0

kgtkL1 dt . .1C K/4
�
.1C K/5KT C ı�1

MT C K
p
�T
�
:

Finally, we apply the multilinear estimate (2.9) (and the Sobolev estimate (2.8)

for the final term when n D 2K0 C 4) to obtain

(3.20) khyikN .n/kL2 . .1C K/5Kı

whenever 0 � k � K0 and 0 � n � 2.K0 � k/C 4.

Choosing 0 < K � 1 and 0 < � � 1 sufficiently small, we may then apply

Proposition 2.8 (noting that it applies to mild solutions via a standard approxima-

tion argument) to obtain the estimate

kW k2
L1.Œ0;T �IH4;K0 /

C �kW k2
L2..0;T /IH6;K0 /

. �.T /M2;

where

(3.21) �.T / D eC.1Cı�1M/T CC
p

�T � 1;
and the constant is independent of �. Note that we use repeatedly (2.14), along

with the elementary inequality .eC1 � 1/.eC2 � 1/ � eC1CC2 � 1 for C1; C2 > 0,

to absorb these terms into the constant C D C.K0/.

We may thus find a T� independent of � such that for all 0 < T � T� we have

kW k2
L1.Œ0;T �IH4;K0 /

C �kW k2
L2..0;T /IH6;K0 /

� 1

2
.Kı/2;

allowing us to close the bootstrapping argument for existence. �

3.5 Uniqueness of Solutions

We now consider the linearization of (3.7), taking w and ���, F to be the first

variations of W; �; F , respectively, to obtain the equation

(3.22)

(
wt C .1C g/wyyy C 7

5
gywyy C awy C bw C f C �

5
6 F D 0;

w.0/ D 0;

where we define g as in (3.8), the coefficients a D a.�;W /;b D b.�;W / may be

bounded using the Sobolev estimate (2.8), and the estimates (3.9) and (3.10) for �

so that for each 0 � k � K0 we have

(3.23)

2.K0�k/C2X

nD0

khyik@n
yakL1 C

2.K0�k/C1X

nD0

khyik@n
ybkL1 .

.1C ı�1kW k
H4;K0 /

5;
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and the inhomogeneous term f D f.�;W; F;���/may be bounded similarly to obtain

(3.24) kfk
H1;K0 . .1C ı�1kW k

H4;K0 /
6

�
k���kL1 C

2K0C4X

nD1

k@n
y.ln���/kL2

�
:

We then have the following estimate for the linearized equation:

PROPOSITION 3.8. If

W 2 C.Œ0; T �IH4;K0/ \ C 1.Œ0; T �IH1;K0/

and w 2 C.Œ0; T �IH4;K0/ is a solution of equation (3.22), then we have the esti-
mate

(3.25) kwkL1.Œ0;T �IH1;K0 / .

�.T /

�
k���kL1 C

2K0C4X

nD1

k@n
y.ln���/kL2 C k� 5

6 Fk
H1;K0

�
;

where �.T / D O.T / as T ! 0 and the constants depend on kW kL1.Œ0;T �IH4;K0 /

and kWtkL1.Œ0;T �IH1;K0 /.

PROOF. Proceeding as in the proof of Proposition 3.7 we apply the a priori

estimate for the model equation (2.10) with � D 0 with the estimates (3.23) and

(3.24) for the coefficients and inhomogeneous term. The details are left to the

reader. �

COROLLARY 3.9. Solutions to (3.7) are unique in the space C.Œ0; T �IH4;K0/ \
C 1.Œ0; T �IH1;K0/.

PROOF. Given any two solutions W .1/ and W .2/ of (3.7) we define

W .�/ D �W .1/ C .1 � �/W .2/:

We then see that the difference w D W .1/ �W .2/ satisfies the linearized equation

(3.22) about W .�/ with ��� D 0 and f D 0 integrated from � D 0 to � D 1.

Observing that the proof of the estimate (3.25) may be applied with g replaced byR 1
0 g d� , we may proceed as in Proposition 3.8 to show that w D 0. �

3.6 Proof of Theorem 3.4

We now complete the proof of Theorem 3.4. The argument is an essentially

standard application of the energy method, so we only sketch the details:

(1) Existence of solutions to the regularized equation (3.13). We first apply

Lemma 3.6 for each 0 < � � 1 sufficiently small to obtain a solution

W .�/ 2 Z4;K0 of the regularized equation (3.13) with W0 D 0.

(2) Uniform bounds. Next we apply Proposition 3.7 with Lemma 3.6 and a

standard bootstrap argument to find a time T > 0 independent of � so that

the set fW .�/g is uniformly bounded in C.Œ0; T �IH4;K0/. Further, asW .�/
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is a mild solution of (3.13), we see that fW .�/
t g is uniformly bounded in

L2.Œ0; T �IH1;K0/.

(3) Existence of a solution to the equation (3.7). By weak compactness there

exists a weak limit point W 2 L1.Œ0; T �IH4;K0/ \ H 1..0; T /IH1;K0/

satisfying the estimate

(3.26) kW kL1.Œ0;T �IH4;K0 / � ı:

Further, from the compactness of the Sobolev embedding (2.8) (see Re-

marks 2.4 and 2.7), by passing to a subsequence �j ! 0 we may take

a limit in (3.13) to show that W is a distributional solution of (3.7). In

particular, W 2 L1.Œ0; T �IH4;K0/ \ W 1;1..0; T /IH1;K0/ satisfies the

equation (3.7) almost everywhere.

(4) Continuity in time. It remains to show that the solution W 2 C.Œ0; T �I
H4;K0/. To do this we define the mollified data,

ln ��j D P�j .ln �/; .�
5
6F /�j D P�j .�

5
6F /:

From the estimate (3.10) for �, we see that

jln � � ln ��j j . 2�j k@y ln �kL1 . 2�j ;

and hence by shrinking ı slightly we may ensure that ��j satisfies the

lower bound (3.9) whenever j � 1. We note that ��j satisfies the L2-

estimate (3.10) and .�5=6F /�j satisfies the estimate (3.11) uniformly in

j � 1. Further, we have the estimates

(3.27) kln ��j k PH 2K0C4Cn . 2nj ; k.� 5
6F /�j k

H4Cn;K0 . 2nj
M;

whenever n � 0. Finally, we note that as j ! 1, we have

kln ��j � ln �k PH 1\ PH 2K0C1 D o.2�3j /;

k.� 5
6F /�j � .� 5

6F /k
H1;K0 D o.2�3j /:

(3.28)

Repeating the proof of the existence of W , after shrinking the time T

slightly we may find a solution

W�j 2 L1.Œ0; T �IH4;K0/ \W 1;1..0; T /IH1;K0/

to the equation (3.7) with � replaced by ��j and �5=6F by .�5=6F /�j .

However, differentiating the equation we obtain an equation that is still

of the form of the model equation and hence we may apply essentially

identical estimates to Lemma 3.6 and Proposition 3.7 to show that

W�j 2 L1.Œ0; T �IH7;K0/ \W 1;1..0; T /IH4;K0/;

satisfies the estimate

(3.29) kW�j kL1.Œ0;T �IH7;K0 / . 23j ı:

By redefining W�j on a set of measure zero we may also assume that

W�j 2 C.Œ0; T �IH4;K0/.
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Next we consider the equation for the difference W � W�j . Estimat-

ing the difference W � W�j using the a priori estimate for the linearized

equation (3.25) as in the proof of Corollary 3.9, and applying the estimate

(3.28), we then obtain

(3.30) kW �W�j kL1.Œ0;T �IH1;K0 / D o.2�3j ı/; j ! 1:

Applying the interpolation estimate (2.2) with the estimate (3.29), we may

then show that the sequence W�j is Cauchy in C.Œ0; T �IH4;K0/. Further,

from (3.30) the limit is given by W and hence W 2 C.Œ0; T �IH4;K0/.

(5) Uniqueness. This follows from Corollary 3.9.

This completes the proof of Theorem 3.4. �

4 Existence and Uniqueness of Solutions to (1.1)

In this section we prove a rigorous version of Theorem 1.5, giving the exis-

tence and uniqueness of hydrodynamic solutions to (1.1) for the set of initial data

considered in Theorem 3.4.

THEOREM 4.1. Suppose that in the x-coordinates � D u2
0 2 C 3.R/ satisfy the

subcritical left and right endpoint decay conditions (1.8) and (1.9). Suppose also
that in the y-coordinates � satisfies the estimates (3.9), (3.10), and (3.11). Then
there exists a time T > 0 and a unique hydrodynamic solution to equation (1.1).

To prove Theorem 4.1 we first reverse the derivation of the equation (3.7) and

apply Theorem 3.4 to construct a solution. We then prove Theorem 1.4 to show

that this is the unique hydrodynamic solution of the problem.

4.1 Existence

Given initial data as in Theorem 4.1, we may apply Theorem 3.4 to obtain

a solution W 2 C.Œ0; T �IH4;K0/ \ C 1.Œ0; T �IH1;K0/ satisfying the equation

(3.7). Taking Z D ��5=6W we may use the lower bound (3.9) to show that

Z 2 C.Œ0; T �IH 4/ \ C 1.Œ0; T �IH 1/ is a classical solution of equation (3.5).

Next we invert the change of coodinates (3.4) and extendZ to R by 0 to obtain a

solution of the equation (3.2) on R, where we note that, by applying Sobolev embed-

ding in the y-coordinates, in the x-coordinates we have �n=3@n
xZ 2 Cb.Œ0; T �� R/

for n D 0; 1; 2; 3.

Naively we wish to define the Lagrangian map X by taking Xx D 1
1CZ

. How-

ever, this only defines X up to a time-dependent constant. To choose the constant

we define

U.t; x/ D .1CZ.t; x//u0.x/;

and observing that �.n=3/�1@n
x.U

2/ 2 Cb.Œ0; T � � R//, we may define

B D 1

2
.1CZ/..1CZ/.U 2/x/x C �U 2 2 C.Œ0; T �IC 1

b .R//:



A QUASILINEAR KDV EQUATION WITH DEGENERATE DISPERSION 2475

Using this, we find the characteristic passing through .t; x/ D .0; 0/ by finding a

solution � 2 C 1.Œ0; T �/ of the ODE
(

P�.t/ D B.t; 0/;

�.0/ D 0:

We may then define

X.t; x/ D �.t/C
Z x

0

1

1CZ.t; s/
ds;

where we note that from the proof of Theorem 3.4 we have

sup
t2Œ0;T �

kZkL1 � 1;

and hence X 2 C 1.Œ0; T � � R/. By construction, it satisfies

Xt .t; x/ D B.t; x/ for .t; x/ 2 Œ0; T � � R:

The map x 7! X.t; x/ is a diffeomorphism, so we may find an inverse Y 2
C 1.Œ0; T � � R/ so that Yx.t; x/ D .1CZ.t; Y.t; x/// and hence

�.Y.t; x//n=3@nC1
x Y.t; x/ 2 Cb.Œ0; T � � R/ for n D 1; 2; 3:

We then define

u.t; x/ D Yx.t; x/u0.Y.t; x//;

and observe that u 2 C 1
b
.Œ0; T � � R/ and u2 2 C.Œ0; T �IC 3

b
.R//. Further, with

this definition we see that

B.t; x/ D b.t; X.t; x//;

where b D 1
2
.u2/xx C �u2. In particular, X satisfies the ODE (1.11) (recalling

that Z.0; x/ D 0) and hence u is a hydrodynamic solution of (1.1). Further, using

the bounds on Y it is straightforward to verify that u4=3 2 C.Œ0; T �IC 2
b
.R// and

hence satisfies the hypothesis of Theorem 1.4.

4.2 Uniqueness

We now prove Theorem 1.4: the uniqueness of hydrodynamic solutions.

We first note that if u is a hydrodynamic solution of (1.1), then w D u2 is a

nonnegative classical solution of the equation

(4.1)

(
wt C 2

�
1
2
wxx C �w

�
x
w C

�
1
2
wxx C �w

�
wx D 0;

w.0/ D w0 WD u2
0:

Next we define the Lagrangian map X as in (1.11) and, treating b as a fixed

function, uniqueness of solutions to linear transport equations ensures that u may

be written in the form

u.t; x/ D Yx.t; x/u0.Y.t; x//;
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where Y 2 C 1.Œ0; T � � R/ is the inverse of the map x 7! X.t; x/. From the ODE

satisfied by Yx , we obtain the estimate

jlnYxj .

Z t

0

ku2kW 3;1 ds;

so as u0 � 0 we have u � 0. In particular, provided classical solutions to (4.1) are

unique, so are hydrodynamic solutions to (1.1).

Taking w the first variation w in the equation (4.1), we have

(4.2)

8
<̂

:̂

wt C wwxxx C 1
2
wxwxx C .1

2
wxx C 3�w/wx

C .wxxx C 3�wx/w D 0;

w.0/ D w0:

We then have the following lemma:

LEMMA 4.2. Suppose that w 2 C.Œ0; T �IC 3
b
.R// \ C 1.Œ0; T �ICb.R// is a non-

negative classical solution of (4.1) such that

w
2
3 2 C.Œ0; T �IC 2

b .R//

and
w 2 C.Œ0; T �IC 3

b .R// \ C 1.Œ0; T �ICb.R//

is a classical solution of (4.2) with w�1=3
0 w0 2 L2.R/. Then w�1=3w 2 C.Œ0; T �I

L2.R// satisfies the estimate

(4.3) kw� 1
3 wkL1.Œ0;T �IL2/ . eC T kw� 1

3

0 w0kL2 :

PROOF. Replacing w by
p
�2 C w2 and then taking a limit as � ! 0 it suffices

to assume that w > 0. Further, by a standard approximation argument we may

assume that w has compact support. Integrating by parts we then obtain

d

dt
kw� 1

3 wk2
L2

D �2
3

hw� 5
3wt w;wi � 2hw 1

3 w;wxxxi � hw� 2
3wxw;wxxi

� hw� 2
3wxxw;wxi � 2hw� 2

3wxxxw;wi � 6�hw 1
3 w;wxi

� 6�hw� 2
3wxw;wi

D �2
3

hw� 2
3wxxxw;wi � 4

9
hw� 5

3wxwxxw;wi C 5

27
hw� 8

3w3
xw;wi

� 5�hw� 2
3wxw;wi:

As w.t/
2
3 2 C 2

b
.R/ is nonnegative, a simple argument of Glaeser [25] shows that

w.t/
1
3 2 W 1;1 and we may bound

kw� 2
3wxkL1 C kw� 1

3wxxkL1 C kwxxxkL1 . kw 2
3 kW 2;1 C kwkW 3;1 :
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As a consequence, using equation (4.1) to bound wt

w
we have the estimate

d

dt
kw� 1

3 wk2
L2 . kw� 1

3 wk2
L2 ;

and the estimate (4.3) then follows from Gronwall’s inequality. �

Arguing as in the proof of Corollary 3.9, we may then use estimate (4.3) to show

that any two hydrodynamic solutions u; zu satisfying the hypothesis of Theorem 1.4

with initial data u0; zu0 satisfy the estimate

ku 4
3 � zu 4

3 kL2 .u;zu;T ku4=3
0 � zu4=3

0 kL2 ;

and hence solutions are unique.

This completes the the proof of Theorem 1.4 and hence of Theorem 4.1. �

5 The Virial Argument

For the convenience of the reader, and since it is short and elegant, we recall

here the virial argument of Zilburg and Rosenau in [63] in the focusing case � D
1; we further observe that an analogous approach works in the defocusing case

� D �1 and that this approach applies to hydrodynamic solutions, defined as in

Definition 1.3.

5.1 Hydrodynamic Solutions

We will be dealing with solutions u 2 C 1.Œ0; T � � R/, u2 2 C.Œ0; T �IC 3.R//

satisfying the hydrodynamic formulation of (1.1),

ut C .bu/x D 0 where b D 1

2
.u2/xx C .u2/:

It is clear that these solutions conserve the Hamiltonian H , mass M , and momen-

tum J and that these solutions propagate nonnegativity or nonpositivity: u � 0 or

u � 0.

5.2 The Focusing Case � D 1

LEMMA 5.1. Assume that u0 ¤ 0 and H.u0/ � 0. Then there does not exist a
globally defined hydrodynamic solution

u 2 C 1.Œ0;1/ � R/; u2 2 C.Œ0;1/IC 3.R//;

and a real number M > 0 such that

(5.1) 8t 2 R suppu.t; �/ � Œ�M;M�:

PROOF. Pairing (1.1) with xu and integrating by parts leads to the identity

1

2

d

dt

Z
xu2 dx D �5

2

Z
juuxj2 dx � 3

4

Z
juj4 dx:

Using the conservation of the Hamiltonian, this becomes

1

2

d

dt

Z
xu2 dx D �

Z
juuxj2 dx � 3H.u0/:
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Combined with the conservation of the mass M , this identity leads to a contradic-

tion under the hypothesis (5.1). �

5.3 The Defocusing Case � D �1

LEMMA 5.2. Assume that u0 � 0 or u0 � 0. Then there does not exist a globally
defined hydrodynamic solution u 2 C 1.Œ0;1/� R/, u2 2 C.Œ0;1/IC 3.R//, and
a real number M > 0 such that

(5.2) 8t 2 R suppu.t; �/ � Œ�M;M�:

PROOF. Multiplying(1.1) by x and integrating leads to the identity

d

dt

Z
xudx D �

Z
ujuxj2 dx C �

Z
u3 dx:

Combined with the conservation of the momentum J , this identity leads to a con-

tradiction under the hypothesis (5.2). �

5.4 The Neutral Case � D 0

In the neutral case, both Lemma 5.1 and Lemma 5.2 hold true.

Appendix A Coordinate Changes

A.1 The Equation for Z in x-Coordinates

Let us start with the hydrodynamic formulation

ut C .bu/x D 0 where b D 1

2
.u2/xx C �u2:

Denote by X.t; x/ the Lagrangian map defined by
(
Xt .t; x/ D b.t; X.t; x//;

X.t D 0; x/ D x:

Differentiating the above in x and letting Z.t; x/ D 1
Xx.t;x/

� 1 leads to

Zt .t; x/ D �.Z.t; x/C 1/bx.t; X.t; x//:

We observe that u.t; X.t; x// D .Z.t; x/C1/u0.x/ and hence, denoting by Y.t; �/
the inverse map to X.t; �/,

u2.t; x/ D
�
.Z.t; �/C 1/2u2

0

�
.Y.t; x//:

We further observe that, for any function F ,

@xŒF .t; Y.t; x//� D Œ.1CZ.t; �//@yF.t; �/�.Y.t; x//:
Introducing the notation � D .u0/

2, this leads to

Zt C .1CZ/2
�
1

2
.1CZ/

�
.1CZ/..1CZ/2�/x

�
x

C �.1CZ/2�

�

x

D 0;
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which becomes after expanding

(A.1)

Zt C �.1CZ/5Zxxx C 7

2
�x.1CZ/5Zxx C 7�.1CZ/4ZxZxx

C 9

2
�xx.1CZ/5Zx C 19

2
�x.1CZ/4Z2

x C 4�.1CZ/3Z3
x

C 1

2
�xxx.1CZ/6 C ��x.1CZ/4 C 2��.1CZ/3Zx D 0:

A.2 The Equation for Z in y-Coordinates

Making the change of variables

y.x/ D
Z x

0

ds

�.s/1=3
;

we have

@x D �� 1
3 @y ; @2

x D �� 2
3

�
@2

y � 1

3

�y

�
@y

�
;

@3
x D ��1

�
@3

y � �y

�
@2

y C 5

9

�2
y

�2
@y � 1

3

�yy

�
@y

�
;

and therefore the equation becomes

(A.2)

Zt C .1CZ/5Zyyy C 5

2

�y

�
.1CZ/5Zyy C 7.1CZ/4ZyZyy

� 19

9

�2
y

�2
.1CZ/5Zy C 25

6

�yy

�
.1CZ/5Zy C 43

6

�y

�
.1CZ/4Z2

y

C 4.1CZ/3Z3
y C 1

2

�
�yyy

�
� 4

3

�y�yy

�2
C 5

9

�3
y

�3

�
.1CZ/6

C ��
2
3

�
�y

�
.1CZ/4 C 2.1CZ/3Zy

�
D 0:

As a consequence, we obtain the equation

Zt C .1CZ/5Zyyy C 5

2

�y

�
.1CZ/5Zyy

C 7.1CZ/4ZyZyy CR.y;Z;Zy/C F D 0;

where

F D 1

2

�
�yyy

�
� 4

3

�yy�y

�2
C 5

9

�3
y

�3

�
C �

�y

�1=3
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and

(A.3)

R.y;Z;Zy/ D �19
9

�2
y

�2
.1CZ/5Zy C 25

6

�yy

�
.1CZ/5Zy

C 43

6

�y

�
.1CZ/4Z2

y C 4.1CZ/3Z3
y

C 1

2

 
�yyy

�
� 4

3

�y�yy

�2
C 5

9

�3
y

�3

!
�
.1CZ/6 � 1

�

C ��
2
3

�
�y

�

�
.1CZ/4 � 1

�
C 2.1CZ/3Zy

�
:

A.3 The Equation for W

Writing Z D ��5=6W , we obtain the expressions

Zy D �� 5
6

�
Wy � 5

6

�y

�
W

�
;

Zyy D �� 5
6

�
Wyy � 5

3

�y

�
Wy � 5

6

�yy

�
W C 55

36

�2
y

�2
W

�
;

Zyyy D �� 5
6

�
Wyyy � 5

2

�y

�
Wyy � 5

2

�yy

�
Wy C 55

12

�2
y

�2
Wy � 5

6

�yyy

�
W

C 15

12

�y�yy

�2
W � 935

216

�3
y

�3
W

�
:

Plugging these into (A.2) leads to

Wt C .1C g/Wyyy C 7

5
gyWyy CN.y;W;Wy/C �

5
6F D 0;

where we define

g D .1C �� 5
6W /5 � 1

and

(A.4)

N.y;W;Wy/

D �5
2

�yy

�
.1C �� 5

6W /5Wy C 5

12

�2
y

�2
.1C �� 5

6W /5Wy

� 5

6

�yyy

�
.1C �� 5

6W /5W � 55

108

�3
y

�3
.1C �� 5

6W /5W

� 5

6

�y�yy

�2
.1C �� 5

6W /5W

C 7.1C �� 5
6W /4.�� 5

6W /y

�
�5
3

�y

�
Wy � 5

6

�yy

�
W C 55

36

�2
y

�2
W

�

C �
5
6R
�
y; �� 5

6W; .�� 5
6W /y

�
;
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and finally R is defined as in (A.3).
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