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Abstract

We consider a quasilinear KdV equation that admits compactly supported travel-
ing wave solutions (compactons). This model is one of the most straightforward
instances of degenerate dispersion, a phenomenon that appears in a variety of
physical settings as diverse as sedimentation, magma dynamics and shallow wa-
ter waves. We prove the existence and uniqueness of solutions with sufficiently
smooth, spatially localized initial data. © 2019 Wiley Periodicals, Inc.

1 Introduction

1.1 The Equation

In this article we consider the existence and uniqueness of real-valued solutions
u:R; x Ry — R of the quasilinear Korteweg—de Vries (KdV) equation,

ur + (u(uuy)x + Mu3)x =0,

(4. u(0) = uy.

Here, the parameter p can take the values +1 (focusing case), —1 (defocusing
case), or 0 (neutral case). This model appeared in [17] as a variation of the degen-
erate dispersive models of Rosenau and Hyman [53]. The Hamiltonian structure of
these models was investigated in [51, 62].

The equation (1.1) may be formally derived from the Hamiltonian,

1
(1.2) H(u) := §/|uux|2dx—%/u4dx,
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given the symplectic form w(u, v) = [u -3 'v dx. In addition to the usual trans-
lation and reflection symmetries, the equation (1.1) enjoys the scaling symmetry,

(1.3) u(t, x) = VAu(rt,x), A >0,

which makes it L2-subcritical.
Formally, the flow of the equation (1.1) conserves, besides the Hamiltonian, the
mass M and the momentum J defined by

Mu) = /uzdx, J(u) = /udx.

Finally, denoting u4+ = max(0, u), the positive momentum

Jy(u) = /u+ dx,

is also conserved for smooth solutions: indeed,

d

Uy
E/u+ dx = —/ 7(u(uux)x + pu?) dx

= /8(14) Uy (u(uux)x + pu’)dx = 0.

1.2 Degenerate Dispersive Equations

Equation (1.1) is one of the simplest instances of degenerate dispersive equa-
tions: the dispersive term is superlinear, so the dispersive effect degenerates as
u — 0.

Degenerate dispersive equations occur in the description of a number of physi-
cal phenomena. To name a few: sedimentation [10,57]; dynamics of magma [58,
59]; granular media [45, 48]; shallow water waves with the Camassa-Holm equa-
tion [12, 14] and Green-Naghdi equations [40]; liquid crystals with the Hunter-
Saxton equation [30]; elasticity [21]; nonlinear chains dynamics [2, 3,46, 54,61];
cosmology [1]. More recently degenerate dispersive equations were found to de-
scribe waves propagating on interfaces [11,29] and even to provide a model for
weak turbulence [15, 16].

Similar types of degenerate behavior occur in other PDE contexts: gradient
flows such as the porous medium equation or the parabolic p-Laplacian flow (see,
for example, the monographs [22,60]); higher-order diffusion such as the thin film
equation [24, 26, 36-38]; and weakly hyperbolic equations [20, 41], in particular
the compressible Euler equations near vacuum [18,31]. Indeed, many of the tech-
niques in this paper were inspired by previous work on degenerate parabolic and
hyperbolic equations.

1.3 Compactons

A feature of many degenerate dispersive equations is that they support com-
pactons: traveling waves with compact support. This was first emphasized by
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Rosenau and Hyman [49, 53], who introduced the model K (m, n) equations,
(1.4) ur + W™)x + U )xxx = 0.

Subsequently, numerous classes of degenerate dispersive equations exhibiting an
array of remarkable traveling wave solutions have been introduced and studied. We
refer the reader to the forthcoming review article of Rosenau and Zilburg [56] and
the papers [49-53, 55, 62] for a more detailed history of these problems and some
recent results.

In a recent article [23] the authors considered the equation (1.1) in the focusing
case 4 > 0 and established the variational properties of several families of traveling
wave solutions. They actually worked in a more general framework, where u* is
replaced by |u|?, with p > 2, in the Hamiltonian H (u); for simplicity, we restrict
our attention in this paper to the case p = 4. The explicit compacton solutions are
then given by

u(t,x) = ®p(x —ct),

where either B =0,¢c > 0or B > 0, ¢ € R, and we define

(1.5) Ppc(x) = \/C + V4B + c2cos(v/2x), x € (—XB.c. XB,c)

where xp . > 0 is the smallest positive solution to cos(v/2x) = _\/ugﬁ' We
c

note that in contrast to the usual KdV equation, the compactons may travel in
either the positive or negative direction (or even remain stationary). Further, the
B = 0 compactons are the minimizers of the Hamiltonian for fixed mass (see [23,
theorem 1.2]).

1.4 Degenerate Initial Data

Local well-posedness for nondegenerate initial data (say, perturbations of a con-
stant or of strictly positive traveling wave solutions) may be obtained from the
result of Akhunov [4], building on the work of Kenig-Ponce-Vega [32-34] (see
also [8,13,27,28,35,42,43,47]). Thus, we now restrict our attention to degenerate
initial data.

One motivation for considering degenerate initial data is the stability of com-
pactons: we saw that they are variationally stable if B = 0, but it seems to be very
difficult to construct solutions to the equation (1.1) (in any sense) for perturbations
(in any topology) of the compactons. In other words, this leads to the question:

Do there exist finite mass / energy solutions to (1.1) for initial data
in an open neighborhood of the compacton solutions (in a suitable
topology)?

The main goal of this article is to take a first step towards answering this question
by proving local existence and uniqueness of solutions to equation (1.1) for suitable
initial data, although we note that our initial data does not include the compacton
solutions themselves.
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In a recent article [63] Zilburg and Rosenau show that classical solutions to (1.1)
in the focusing case must lose regularity in finite time, and that sufficiently smooth
solutions obey a “waiting time” effect analogously to solutions of degenerate par-
abolic problems outlined in [22]. In Section 5 we briefly sketch their argument
and show that it may be adapted to the cases u = 0,—1. As a consequence, the
solutions constructed in the present article, which have fixed support, will either
develop a singularity or start moving in finite time.

The existence of global weak solutions for a degenerate KdV equation sim-
ilar to (1.1) admitting compactons was previously considered by Ambrose and
Wright [9]. The same authors considered the existence of classical solutions to
another related model [7]. However, previous existence proofs have relied on the
presence of higher-order conservation laws for solutions, giving a priori control of
higher-order Sobolev norms. In this article we use the toy model (1.1) to develop
a rather more robust proof of the existence of solutions. Indeed, our proof does
not explicitly use the Hamiltonian structure of (1.1), but rather the existence of a
hydrodynamic formulation (see (1.10)), and hence we expect it may be applied to
a much broader class of degenerate dispersive equations. In particular, we expect
that our argument can be applied to obtain existence and uniqueness of solutions
to the K(m, n) equations (defined as in (1.4)) whenever m > 1 and n > 3.

1.5 Endpoint Decay Rates

We will subsequently assume that the initial data ug for (1.1) is the positive
square root of a continuous nonnegative function p = u% with a simply connected
set of positivity

I :={x e R: p(x) > 0}.

In this subsection, it is a bounded open interval, I = (x_, x4).
In order to understand the effect of the endpoint decay on the solution, we con-
sider the leading-order part of the linearization of (1.1) about the initial data,

(1.6) ut + puxxx == 0.

As in [19], in the semiclassical regime, if u¢ is initially localized in phase space
around (xg, o), the solution u to the equation (1.6) will be localized on the bichar-
acteristics of the symbol a(x, ) = —p(x)&3, given by the classical Hamiltonian
flow

(1.7) {x = ag(x.§) = =3p(x)§>,

£ =—ax(x,£) = px(x)&>.

Suppose that / = R4 and p(x) = x¥ for 0 < x <« 1. We may then explicitly
solve the equation (1.7) with initial data (x¢, £o) for some 0 < xo < 1 to obtain

_3
xo(1+ (k= 3)xk=1826)3F, k #3,
xoe_3x(%53’, k=3,

x(t) = %
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k
£(1) = Eo(l + (k —3)xk=1£21)F3, k #3,
goe¥okot, k =3.
In particular, whenever k < 3 the frequency will blow up in finite time, whereas
when k > 3 the frequency blows up in infinite time.

These heuristics suggest that solutions to (1.6) may form singularities instan-
taneously whenever kK < 3, whereas one can hope for well-defined solutions on
sufficiently short time intervals whenever k > 3. As a consequence, we make the
following definition:

DEFINITION 1.1. After translation, assume that 0 € /. We say that ug has super-
critical left endpoint decay if p = u% satisfies

0
/x_ —p(s)1/3 ds < o0.

Similarly, we say that p has supercritical right endpoint decay if

/0 —,o(s)l/3 ds < o0o.

Unfortunately our existence result will not hold for all data without supercritical
left endpoint decay, but rather initial conditions for which the frequency grows at a
subexponential rate. As a consequence, we make a further definition:

DEFINITION 1.2. After translation, assume that 0 € I. We say that ug has a
subcritical left endpoint decay if x_ = —oco or p = u% satisfies

(1.8) p(x) = o(dist(x, x_)3), x| x_.

Similarly, we say that uo has a subcritical right endpoint decay if x4 = oo or
p= u% satisfies

(1.9) p(x) = o(dist(x, x4)%), x 1 xy.

If p has neither subcritical nor supercritical left (respectively, right) endpoint decay,
we say it has critical left (respectively, right) endpoint decay.

We note that, provided p is sufficiently smooth, the bicharacteristics will leave
a small neighborhood of the right endpoint eventually, leading to a smoothing ef-
fect near x. Consequently, we do not expect the right endpoint decay to signif-
icantly affect the existence of solutions, only the left endpoint decay. However,
in this article we restrict our attention to the case of subcritical right endpoint de-
cay. The more involved case of critical or supercritical right endpoint decay will
be addressed in a future article.
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1.6 Hydrodynamic Solutions and the Main Result

We observe that the equation (1.1) may be written in the hydrodynamic form
1
(1.10) Uur + (bu)y =0 where b = E(uz)xx + Muz.
The equation (1.10) makes sense whenever
ueCl(0,T]xR) and b e C([0,T];:C'R)).
This motivates the following definition:

DEFINITION 1.3. Given T > 0 we say that a nonnegative functionu € C ([0, T']x
R) is a hydrodynamic solution of (1.1) if u?> € C([0, T]; C3(R)) and u satisfies the
equation (1.10) for all (z,x) € [0, T] x R.

Evidently, classical solutions to (1.1), i.e.,
u e C([0,T]:C*(R)) N C'([0, T]: C(R)),

are hydrodynamic solutions. However, if either endpoint is finite, this definition
allows for the case that u(z,x) = o(dist(x, x+)3?) as x — x4, which is sub-
critical endpoint decay in the sense of Definition 1.2, but not a classical solution.
We note that this definition is not restricted to solutions that vanish at infinity and
hence includes nondegenerate solutions.

To further motivate this definition, we have the following uniqueness result, the
proof of which is delayed to Section 4.2:

THEOREM 1.4. Given nonnegative initial data ug € Cb1 (R) so that u% € Cg’ R)

and ug/ ‘ecC b2 (R) there exists at most one hydrodynamic solution of (1.1) so that
u? € C([0, T]: C2(R)) and u*/3 € C([0, T]: C2(R)).

Here we write C lﬁ‘ = Ck N Wk The restriction that u(t)4/ 3ecC 172 is required
to rule out the possibility that u? vanishes quadratically at an isolated zero, and it
seems reasonable to expect this may be replaced by assuming that u% eC b3 (R) has
simply connected set of positivity.

Our main result is then (roughly) the following:

THEOREM 1.5 (Rough statement). Let ug be sufficiently smooth and with simply
connected set of positivity. Assume further that

e cither ug is compactly supported with subcritical left and right endpoint
decay, or

e ug is supported on R and asymptotically approaches a bounded nondegen-
erate traveling wave or zero.

Then there exists a time T > 0 and a unique hydrodynamic solution of the equation
(1.1) on the time interval [0, T].

A rigorous statement of Theorem 1.5 is given in Theorem 4.1.
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Remark 1.6. The regularity and localization assumptions on the initial data are
roughly:

(1) There exists some integer Ko > 0 so that

x 1 %Ko
(/ p(s)73 ds) p(x) = 1 (see(3.9)).
0
(2) Forintegers 1 <n < 2Ky + 4 we have

2 (p3*6) € L* (see (3.10)).

Remark 1.7. For compactly supported data, our result is essentially optimal as far
as endpoint decay rates are concerned: we can handle all smooth initial data that
satisfies p ~ dist(x,x+)*t as x — x4 for + > 3 (see Section 3.3). This is
optimal in two respects:

e in the light of the bicharacteristic computation done in (1.5);

e in the hydrodynamic formulation, where o+ > 3 corresponds to requiring
b € C!. This is essentially optimal if one wants to define characteristics by
the Picard-Lindel6f theorem.

Remark 1.8. It is possible to obtain a quantitative lower bound for the lifespan of
existence from our result, although as it is likely far from optimal we do not attempt
to track it carefully. However, it is clear from the proof that the lifespan depends
not only on the size of the initial data, but also on the rate of decay of the initial
data at the endpoints of its support and on the smallest local minimum of the initial
data on the set of positivity /.

1.7 Strategy of the Proof

We now outline the strategy of the proof. The first difficulty is to give the equa-
tion an appropriate form to derive energy estimates. This is done in several steps:

Lagrangian formulation. A key difficulty of working in the original frame is
that the degeneracy at the endpoints will be time dependent. In order to remove
this time dependence, we switch to a moving frame, an approach that is common
in degenerate hyperbolic and parabolic equations (see, for example, [20,24,26, 39,
41]). Recalling the hydrodynamic formulation (1.10), we let X be the Lagrangian
map associated to the vector field b; in other words,

Xe(t,x) =b(t, X(2,x)),

(11D X(0,x) = x.

Letting

1
Z({,x) = — — 1 d p= 2
(¢, x) X0 and p = (uo)
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the Cauchy problem for u is equivalent to

Zi+(1+ Z)Z(%(l +Z2)((1+ 2)((1 + 2)%p),),
(1.12) + ol + Z)Zp) =0,
Z(0,x) = 0.

Change of independent coordinates and the Mizohata condition. The linearized
problem for Z about Z = O reads Z; + pZxxx + --- = 0. In order to make the
leading-order coefficient constant, we set

x 1
— - ds,
Y /0 ps)172

so that the linearized problem around Z = 0 becomes

d Py

EFZyy + cr = 0
The top order term has a constant coefficient, which greatly simplifies estimates.
However, a new problem arises since this linearized problem violates the Mizo-
hata condition: recall that a necessary condition for (forwards in time) local well-

posedness in Sobolev spaces of the equation

(1.13) Zi+ Zyyy +

(1.14) Wy + Wyyy +a(y)wyy =0

on R, where a is assumed to be smooth and bounded, is the Mizohata condition [5,
6,8,44]

y2
(1.15) sup / a(s)ds < oc.
Y1=Y2 Jyq

Thus, when proving local well-posedness for nondegenerate quasilinear KdV equa-
tions, one typically assumes additional L !-type integrability conditions for the ini-
tial data to ensure the condition (1.15) is satisfied. Indeed, one may take advantage
of the failure of (1.15) to obtain ill-posedness in Sobolev spaces for quasilinear
problems [5,47]. See also the ill-posedness result in [6], where the leading-order
term has a sign change. We remark that for nondegenerate initial data the Hamil-
tonian structure of (1.1) may be used to remove integrability conditions and prove
local well-posedness in Sobolev spaces.

In order to circumvent this difficulty and obtain well-posedness for (1.14), we
must consequently work in a different topology. This relies on two key observa-
tions about linear KdV-type equations of the form (1.14): first, introducing the
weight & = e(/34 where A is an antiderivative of a, we may obtain energy es-
timates for (1.14) in the weighted space L?(®? dx). Indeed, integrating by parts
yields

d 2 2
7 12wlz2 < llafws.co [ PwlE..
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Second, for sufficiently smooth initial data, polynomial weights are propagated by
the linear KdV flow on O(1) timescales. This is most readily seen from the identity
[0, +03,y—3t 85] = 0, and leads to the definition of the weighted Sobolev spaces
HN-K in Section 2.1.

Returning to the linearization (1.13) of the equation for Z, we see that we should
take & = ps/ 6. Due to the subcritical endpoint decay assumptions, p(y) decays
polynomially (as will be illustrated on several examples below); this implies that
the Mizohata condition is barely violated, and we can use the fact that the linear
KdV equation propagates polynomial weights on O(1) timescales to prove the
existence of solutions of the equation (1.12) in weighted Sobolev spaces of the
type L2(p5/3 dx). However, it will be more convenient to perform one last change
of coordinates.

Change of dependent coordinates. Motivated by the previous discussion, we set
W = p5/®Z; it satisfies the equation

7
(1.16) Wet (Lt ) Wyyy + gy Wyy + N(p. W. Wy) + p3/6F =0,

where N is a polynomial in W and W),, F is a function of p and its derivatives,
and

g=(+p W)’ —1.

This is the form of the equation that we will use to perform estimates.
Notice that the linearization of the equation around 0 now reads

Wi + Wyyy + {terms of order less than 1} = 0;
in particular, the quadratic term W), term has disappeared.

Construction of solutions. Equation (1.16) is the one that we use to construct
solutions. Our scheme is the following:

e Regularization of the equation is achieved by adding a term —v Wy, on
the right-hand side of (1.16). This allows construction of local solutions
over a time span [0, T'(v)].

e Energy estimates in weighted Sobolev spaces allow us to obtain a uniform
time of existence (in v) as well as uniform bounds on the corresponding
solutions. These energy estimates are delicate, and rely crucially on the
structure of (1.16).

o Finally, a simple compactness argument allows us to pass to the limit v —
0, first finding a convergent sequence of solutions, and then passing to the
limit in the equation.
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2 Some Technical Estimates

2.1 Function Spaces

We will seek solutions to equation (1.16) in the weighted Sobolev spaces H™-X ¢
L?, defined to be the completion of Cs°(R) under the norm

K 2(K—k)+N

@.1) Iflve =" Y [¥onf] 2.
k=0 n=0

Before recording some of the basic properties of the H™X space, let us explain
in a few sentences why this space is adapted to the (flat) Airy equation. Arguing
heuristically, consider data of L2 mass 1, which are localized in phase space around
(x0, £o); this gives a norm in H™-X of order 4 ~ Zf=0 x(’)‘ég(K_kHN. At time
t = 1, the solution of the Airy equation should be localized in phase space around

2 . K ok e2(K—K)+N o
(xo — 3£5. o), giving a norm of order B ~ ) i '_q(xo — 3£5)" &, . Since

B < A, it should be expected that the Airy equation is locally well-posed in HN-K.

Remark 2.1. Many of the techniques here closely follow the results of Akhunov
[4,5] on quasilinear equations of KdV type. In particular, the regularization scheme
used here, the propagator estimates in Lemma 2.2, the gauge in Proposition 2.8, and
the linear theory have ideas that overlap with those developed by Akhunov for that
study.

HN’K

Turning to the properties of , we remark first that

105 f llggnv.x S S Nlpgn+nc

and that we have the interpolation estimate,

2.2) 1F 150k SIS gL S Nk

Further, if P<; is the usual Littlewood-Paley projection to frequencies < 2/ and
P~ ; = 1 — P<;, we have the estimate for j > 0

|P<j f lpgtnic < 29| f k.

(2.3) Y
1P>j f llggnv.xe S 27N f Nlggnvn i

We will construct solutions using a parabolic regularization given by the semi-
group ¢™V1%  This motivates defining the subspace ZV-K < C([0, T]; HN-X)
with norm

3
2.4) I lzna =D 1003 fllpooo,r1mn-+n.k)-

n=0
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We then have the following lemma:

LEMMA 22. Let NNK > 0,0 < v < 1,and T = v~ L Then for all G €
Cs° ([0, T] x R) we have the estimates

_ 4
(2.5) le™"%% fll gk S Nf llpgmxcs

t
e |[ e tomas| v ATHEN 61,
0

zZN.K

where the constant is independent of v.

PROOF. Starting with the case K = 0, denote the Fourier transform of et
by . The kernel of B;e_”(t =93 is then given by

;w(n)(;)’
w(t —s)" (v(t — 5))1/4

which has L! norm Therefore, applying Minkowski’s inequality we

1
S (w(E—s)n/+"
obtain

_ 4
) 4|37 fllgn < U f g

and similarly,

t
o)/ / 3e NG (s)ds
0

t
1
S| o7 1GG)gn ds
HN /0(1—§)”/4 "
1 3
Stat3G]|peogn

where we used the fact that for 0 <n < 3,

1
1
e <
/0 (l—s)"/4s3/4dSN 1.

This gives the desired result for K = 0.
Turning to the case K > 1, observe that

e y] = —4vt8;e_”a‘yl.
Ka;’ e—vtaﬁ

Therefore, [y ] is a linear combination of terms of the type

3 (v13) ey with € +m < K,

where the kernel of 3} (vtaf,)ee_”’ai is given by

E—Z—l (30+n) X
CORERE 2 (—(W)IM),

which has L! norm < (vt)e%n < (vr)™*if vt < 1. Arguing as before then

~

gives the desired inequality. U
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2.2 Pointwise Bounds

In order to control the pointwise behavior of solutions, we first recall the usual
one-dimensional Sobolev estimate,

2.7) I fllzee < N e
Applying this estimate to (y)¥ 3} f we obtain the following lemma:

LEMMA 23. If0 <k < K and f € C5°(R), we have the estimate
2(K—k)+N-1

2.8) Yo YO Sl S 1S v

n=0
Remark 2.4. We recall that the embedding (2.7) is locally compact. As a conse-
quence, the embedding (2.8) is also locally compact.

Remark 2.5. In our application of the pointwise estimate (2.8) to control products
of functions in H™-X we will require a slight refinement when N is even and  is
odd. Suppose that 0 < k < K—1,that 1 <n <2(K —k)+ N, and that N is even
while 7 is odd. Then, for any f € C5°(R) we may integrate by parts to obtain

I(y)*+2an 112,
B _/<y>2k+133+1f'3§_1f dy — (2k + 1)/Y(y>2"‘18§f-8$_1f dy
< [T S L OV o+ BV T A o [V T 8 1 o

2
S I gw.x -

where we have used the fact that as n i1s odd while N is even, we have n — 1 <
2(K—(k+1))+N andn+1 < 2(K—k)+ N. Applying the usual one-dimensional
Sobolev estimate (2.7) then yields the slight refinement of the pointwise estimate
(2.8),

V22 ] oo S I f g

2.3 Product Laws

Given sufficiently smooth functions f1, ..., far, we define the multilinear op-
erator
M
Lalyfieo Sl = 3 (ca<y)8—<M—“<y>K<M—“ [T oo fm(y)),
|| <n+3, m=1
max &;; <n

where § > 0 and K > 0, and we assume that the coefficients C, are smooth,
uniformly bounded functions. This type of multilinear expression will appear in
the perturbative terms of the equation for W considered in Section 3. We will also
use this as a notation, writing

G = Luly. f1,-.., ful
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if a multilinear operator G can be written in this form.
We then have the following estimate for multilinear operators of this form:

LEMMA 2.6. Let0 <k < Kand0 <n <2(K —k)+ 4. Thenif f1,..., fu €
Cs°(R) and Cy € C*°(R), we have the estimate

2.9 1) Luly. fio.., fulllLe <

M
M- (3 ||ca||Loo)(1‘[ ||fm||H4.K)-
o m=1

PROOF. First reduction. After reordering the indices, we can assume that oy <
ay << ay.

Let us see quickly why the result is easy if the ¢; are sufficiently small: first,
if apy < 3, the desired bound easily holds, since k < K. Second, assume that
o1 ...0m, are all <2, with 1 < my < K — 1. Then one can estimate (y)KE)j'f’” fm
in L°°, for m < my, and matters reduce to proving the desired result for

Loy, fmo+1.---. fu] =

M
)3 (ca(y)é—w—’"o—“<y>K(M—'"°—“ I 8§"”fm(y))-
loe| <n+3, m=mo+1

max o, <n

In other words, we can assume in the following that o, > 3 form < M — 1 and
oy > 4.

Also notice that the case k = 0 is easily dealt with; therefore, we shall assume
in the following that &k > 1.

The case M = 1. It is immediate.
The case M > 3. Our aim is to bound in L2

M
(p) e EM=DTT 05 fn,

m=1

where &1 < ap < --- < apy, under the assumption that f,, € H*K for all m.
The idea is to estimate the function carrying the most derivatives, namely fas,
in L2, and all the others in L°°. Observe that

e On the one hand, ||(y)#™ M fmll2 < |l fallye.x provided that apr <
2K —2Bp + 4 and By < K, and the latter condition follows from the
former since otps > 4.

e On the other hand, if m < M — 1, [|(y)8735" fullLee < | furllggn.x
provided o, < 2K — 28, + 3 and B,, < K, and the latter condition
follows from the former since o, > 3.
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Since Bps and B, must be integers, the best choice possible is

3
By = LKJFZ_O[TMJ and B = {KJFE—“T’"J forl <m<M—1
(notice that B,, > 0 for all m since k > 1). In order for the desired bound to hold,

we need Z,]Z[:l Bm =k + K(M — 1), which follows from

M
K 2—— E K+-———)—-—>k+KM-1),
+ + ( + ) 7z + K( )
where the summand —7 on the left-hand side comes from the rounding errors.

Since Y oy < n + 3, the above inequality holds if
n<2K-2k+2M —2.

This inequality is satisfied, under the assumptions of the lemma, if M > 3.

The case M = 2. The above argument suffices if &y + o < 2(K — k) + 5.
Further, in the case that a1 + o = 2(K — k) + 6, the «j have the same parity,
so taking f1, B2 as above we see that 1 + B2 = k + K. In the remaining case
a1 +ar =n+3=2(K—-k)+ 7, we take

3 (03} (0%)
,31—K+2 5 Br=K+2 5
If o1 is odd and « is even, then the B; are integers. If instead 1 is even and «> is
odd, we apply the refined L and L? estimates of Remark 2.5 (using k > 1, and
since4 <o) <4+2(K—k)and5 < ap <4+ 2(K —k)) to obtain the desired
bound. Il

Remark 2.7. From Remark 2.4 and the proof of Lemma 2.6 we see that whenever
FU) —~ £ in H*X we may pass to a subsequence to ensure that
M M
—_— ——
DLnly. fO o fOT = ) Laly. .. f]
ianforanyO <k<Kand0<n<2(K—k)+4.

2.4 Linear Estimates

We complete this section by considering a priori estimates for a model linear
equation,

we + (1 + 2)Wyyy + BgyWyy + awy, + = —vwy,)y,

(2.10) w(0) = 0.

where § € R, v > 0 are constants and g, a, f are sufficiently smooth functions.
This will provide a model for the equation satisfied by 97 W and will subsequently
be used to obtain uniform (in v) bounds for solutions.

Our main a priori estimate for solutions to (2.10) is the following:
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PROPOSITION 2.8. Let T > 0 and suppose that
1
2.11) |IgllLeoo,T1:L00) = > gl oo [0, 17;w3-20) + all Lo o, 17w 1.00) < 1.

Then, if w is a sufficiently smooth, localized solution to (2.10) and 0 < v K 1 is
sufficiently small, we have the estimate

(2.12) W13 cogo.71:22) + VIWsy 17 20,1922y = 0TI o0 0.77:22):
where
(2.13) o(T) = € Jo (ledlizoo)dr _

and the constants are independent of v.
Further, we have the weighted estimate for k > 1,

YW sogo.73:22) + VIOV W3 17200 79:22)

2
< om(n<y>kf||ioo([0,T];L2) + ||<y>"—la;w||ioo([0,m2)),
n=0

(2.14)

where again the constants are independent of v.

PRrROOF. Differentiating with respect to time and integrating by parts, we obtain
d lg 1 2
Ljapiiviz,
28_
=2((1+2) ¥ 'w,w) + ( B 1) (1+2) 3 2g,w.w)
= ——,3(((1 + g)"B ! ) w,w) + (((1 + g)3’3 ! )yw, w)

—2((1—|—g)3‘3 1fw ( —1 (l—l—g)%ﬂ_zgtw,w)

—2v] (1 + g)%ﬂ_iwyy HL2 +2v(((1 + g)%ﬁ_l) Wy, Wy)

yy

—2v(((1 + g)%ﬂ_l)yyw’ Wyy)-

We note that from hypothesis (2.11) we have 1 4 g ~ 1. As a consequence, we
may interpolate to obtain

lg_1 lg_1
IWylZ2 < 10+ )3 72wl (1 + 237 72wy 2.
Choosing 0 < v « 1 sufficiently small, we may apply the hypothesis (2.11) to
obtain the estimate

d
T+ 22 w] s < (4 flel) | (1 + 932w

+ [+ 320, — v+ 23 2wy, |1

The estimate (2.12) then follows from Gronwall’s inequality.



2464 P. GERMAIN, B. HARROP-GRIFFITHS, AND J. L. MARZUOLA

To prove (2.14) we define w = ykwand £ = (1 + g)ai + ,Bgy8§ +aod, + va;.
We then observe that W satisfies the equation (2.10) with f replaced by

= ykf— L, yk]w.

Integrating by parts in the terms involving v, we obtain the estimate

(1 + )3 E W) <
2
(nykfan s ||<y>k—la;w||Lz) [0+ 385 + v oy 2.
n=0

In order to bound v||(y)* wy || iz, we wish to replace the term

20| (1 + )5, |

that appears in the expression for

d lg 1.2

[
by the term

—2v| (1 + g F Iykw,, |2
Consequently, we integrate by parts to obtain
[+ 25y 7. = [+ 932 ykwy |72 <
Y wylZ2 + 1) wilZ».
and by interpolation we have
1Y Ewy 125 5 (1 4+ 232 () w1 (1 4+ 2372 () w10
+ [+ 2372 (y)kw| 7.

Proceeding as in the proof of (2.12) we obtain the estimate (2.14) whenever 0 <
v < 1 is sufficiently small. g

3 Local Well-Posedness for W

3.1 Reformulating the Problem

Lagrangian Coordinates
Considering the hydrodynamic form of (1.1)

1
ur + (bu)y =0 whereb = E(uz)xx + pu?,

and recalling the definition (1.11) of the Lagrangian map X(¢, x),

X:(t,x) = b(t, X(t,x)),
X(0,x) = x,
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we may write sufficiently smooth solutions to (1.1) in the form
1
Xx (t’ x)

Assuming that the map X is sufficiently smooth, we define

3. u(t, X(t,x)) = uo(x).

Z(t,x) = X0 -1

and compute the equation satisfied by Z,

Zi+ (1 + 2)2(%(1 +2)(A+2)((1+ 2)%p) ),
(3.2)
+op(l+ Z)zp) =0,

X

where p = u% is defined as above. We note that equation (3.2) is an inhomoge-
neous equation with forcing term

1
(3.3) F = (prx + I'Lp) .

X
In particular, F = 0 for all x € I whenever p corresponds to the initial data for a
traveling wave solution of (1.1).

Change of Independent Coordinates x — y
The leading-order linear part of (3.2) is given by

Z: + pZxxx + lower-order terms = 0.

This motivates a change of variables, defining

* o1
(3.4) y(x) =/0 st’

so that the map y: I — R is a diffeomorphism.
Next we compute the equation (3.2) in these coordinates,
5 py 5
Zi+ (14 2)°Zyyy + =20+ 2)°2
3.5) t e, yy
+7(1+ 2)*ZyZyy + R(y, Z,Zy) + F =0,

where R is a polynomial in Z, Z, satisfying R(y,0,0) = 0 (see (A.3) for the
explicit expression) and in the new coordinates the inhomogeneous term (3.3) be-
comes

L(pyyy _4pyypy 5P Py
3.6 F=- - — - o
G0 2( p 3 p2 op) TR
For completeness, the full computation is given in (A.2). We remark that here and

subsequently we slightly abuse notation writing Z(z, y) instead of Z(z, x(y)) and
similarly for p, F.
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Change of Dependent Coordinates Z — W
In order to work in unweighted L2 spaces, we take W = p>°Z. The equation
(3.5) may then be written as

7 5

where N is a polynomial in W, W), satisfying N(y,0,0) = 0 (see (A.4) for the
explicit expression), and we define

(3.8) g=(1+p sW) -1

We will then consider the existence of solutions to (3.7) in the weighted Sobolev
spaces HN-K defined as in (2.1).

3.2 The Initial Data

We now describe our assumptions on the initial data p = u%, which are most
easily stated in the y-coordinates. However, they may be phrased in the original
coordinates using the change of variables (3.4), and we compute a couple of special
cases in Section 3.3.

We first make the assumption that there exists an integer Ko > 0 and some
8 > 0 so that in the y-coordinates,

(3.9) inf p(y)s (y)Ko > 6.
yeR

It seems reasonable to expect this hypothesis to be true whenever (in the x-coordi-
nates) p € C3(R) has subcritical decay at both endpoints in the sense of Defini-
tion 1.2. We verify that it is indeed true for polynomially decaying data in Sec-
tion 3.3.
Next we assume that
2Ko+7

a0
(3.10) lpllzee + >
n=1 p

< 1.
L2

Finally, we assume that there exists some M > 0 so that the inhomogeneous term
F, defined as in (3.6), satisfies

G.11) e F |0 < M,
where the integer K¢ > 0 appears in the lower bound (3.9).

Remark 3.1. For most estimates we will treat p and its derivatives as coefficients in
the linear and nonlinear terms involving W. In this case it will be more convenient
to use that from the estimate (3.10) and Sobolev embedding we have the pointwise
bound

2Ko+6

ay0
(3.12) Il +
n=1 p

<.
LOO
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The only exception to this will be when 2K + 7 derivatives fall on p, where we
will instead use the estimate (3.10) directly.

Remark 3.2. We note that when . = 1 the assumptions on p do not preclude the case
that p € (®p,c)*> + €CSP(R) where ¢ > 0, —3¢? < B < 0,and 0 < € <p I;
i.e., p is a small perturbation of the nondegenerate traveling wave ®p ..

Remark 3.3. The assumptions (3.11) and (3.12) are far from the optimal regularity.
In future work we will show that it is possible to improve the regularity by taking
further advantage of the dispersive smoothing effects similarly to [27,28,42,43].

The main result of this section is the existence of solutions to the equation (3.7):

THEOREM 3.4. Suppose that in the x-coordinates p = u% € C3(R) satisfies the
subcritical left and right endpoint decay conditions (1.8) and (1.9). Suppose also
that in the y-coordinates p satisfies the estimates (3.9), (3.10), and (3.11). Then
there exists a time T > 0 and a unique (classical) solution W € C([0, T]; H*K0)
to the equation (3.7).

Remark 3.5. We note that by using the usual frequency envelope approach it is
possible to show that in the y-coordinates the map Inp +— W is continuous as
a map from L>® N H! n H2Ko+7 5 34Ko  However, as the y-coordinate is
defined in terms of p, this does not imply continuous dependence on the initial data
for the original equation (1.1). Similarly, the uniqueness stated in Theorem 3.4
does not imply uniqueness for (1.1), so we must apply Theorem 1.4 instead. As
a consequence, we omit the proof of continuity of the solution map for (3.7) and
only include the proof of uniqueness because it is brief.

3.3 Two Particular Cases

In order to better understand the conditions (3.9)—(3.12), we will illustrate them
in two specific cases.

Case 1. Suppp = [—1,1], with p(s) ~ (1 —$)*, o > 3, as s — 1. By this,
we mean that p is sufficiently smooth in (—1, 1), and that for sufficiently many
derivatives of p, there holds 8§p(s) = Cr(1—5)** +0((1—5)**) for a constant
Cr € R. Notice that we only discuss here the right endpoint, but the left endpoint
can of course be dealt with symmetrically. Then

x d o
= [

This implies that, in the coordinate y,

p(y) = p(x(y) ~ y>& and F(y)~y~>

Therefore, the condition (3.10) always holds, while the conditions (3.9) and (3.11)
become, respectively,
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For o > 3, there exists an integer K¢ satisfying these two constraints.

Case 2. Supp p = R with p(s) ~ s, B > 0, as s — oo (once again, the case
s — —oo can be dealt with symmetrically). Then

x B
y(x):/ sP3ds ~ x1+53.
0
This implies that
_ 38 _38+3
p(y)~y 3*F and F(y)~y F¥3.
Therefore, the condition (3.10) always holds, while the conditions (3.9) and (3.11)
become, respectively,
5 10 3
> —L and Ko < L
2843 28+ 6

For B > 0, there exists an integer K¢ satisfying these two constraints.

Ko

3.4 Existence of Solutions

We now consider a parabolic regularization of (3.7) with initial data W,
W) = Wy,

where g is defined as in (3.8), N as in (A.4), and F as in (3.6).
We then have the following existence result:

LEMMA 3.6. Let § > 0 be the constant defined in (3.9) and Wy € H*X0 satisfy
the estimate

(3.14) 1 Wollysx0 < 6.

Then, for each 0 < v <K 1 sufficiently small, there exists a time T = T(v) > 0
and a (mild) solution W € Z4-Ko of the equation (3.13).

PROOF. We take B C Z*X0 to be the ball
B ={W e z4Ko. |\ W| 4k, < K8},

where the constant Z ~ 1 may be chosen independently of p, Wy, v. We then
define

(3.13)

t
TIW] = eV, + / e V(=93 (G(s) + p%F)ds,
0
where
7
G=(0+gWyy + ggyWyy + N.
From the semigroup estimate (2.5) and the estimate (3.14) we have the estimate

_ 4
le ™% Wl 4.0 < [|Wollzak0 S 6.
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Similarly, from the estimate (3.11) for the inhomogeneous term F and the semi-
group estimate (2.6) we have the estimate

t
‘ / e—u(t—s)a;ng dy
0

provided T < v=L.
For 0 <n < 2Ky + 3 we may write B;G as a multilinear operator of the form

3.1
SvaTaM,

Z4,K0

M
6
NG =" > Ly[y. 09 W..... 0% W],
M=1 |x|<3
where the coefficients of the L, may be uniformly bounded in L using the lower
bound (3.9) and pointwise estimate (3.12) for p. When n = 2Ky + 4, we may
instead write

M
6
M=1|a|<3
32K0+7 1 1
+ yTp(Epi((l +pTEW) - 1) - S+ p_gW)SW)’

where the coefficients of the Lyk,+4 are uniformly bounded and the final term

may be bounded by estimating 8§K°+7 p/p € L? using (3.10) and the remaining
terms in L °° using (2.8). As a consequence, we may apply the multilinear estimate
(2.9) to obtain

3 3
1Gll35.0 S WO+ §THW | 34.x0) W | g4.x0 S (v1) 738
provided 0 < T < v~!. We then apply the semigroup estimate (2.6) to obtain

t 4 3 1
/ e V9% G(s)ds <VTaATHS.
0

24,[(0

Applying identical estimates for the difference T[W (D] — TTW @] we see that
we may choose the timescale 0 < T = T'(v) < 1 sufficiently small so that the
map 7: B — B is a contraction on B. The result then follows from an application
of the contraction principle. U

In order to pass to a limit as v — 0 in equation (3.13), we must prove uniform
(in v) estimates for the solutions to (3.13). However, these will follow directly
from the a priori estimates for the model equation:

PROPOSITION 3.7. Let Wy = O and W € z24Ko pe a mild solution of (3.13).
Then there exists a time Ty« = T« (Ko, M, §) > 0 so that provided 0 < T < Ty we
have the estimate,

(3.15) “W“ioo([o,T];’H“sKO) + 1’”W||iZ((o,T);7—L6-K0) <4



2470 P. GERMAIN, B. HARROP-GRIFFITHS, AND J. L. MARZUOLA

where the constants are independent of sufficiently small 0 < v < 1.
PROOF. We make the bootstrap assumption that for some X > 0 we have

2 2 2

(316) ||W||L°°([O,T];H4~K0) + v||W”L2((0,T);’;-[6~KO) = (ICS) .

We then observe that W) = dy W satisfies the equation

5
+aPWM L N® (08 F) = vt w®,

7
G317 W+ 1+ W) + (— + n)gyWy(;’)

where the coefficient
a®™ =a™ W, Wy, Wyy)
is a polynomial in p_s/ W, p_s/ 6 Wy, ,o_s/ 6 W)y with bounded coefficients, and
the perturbative term
M

6
——
N® = 3" Loly.W.... . W],
M=1
whenever 0 < n < 2Ky + 3, with the slight modification when n = 2K + 4,

6 J‘“

NCKHD = N Lokoraly. W ... W]
M=1

82K0+7

y

1 1
+ T‘)(Epg((l +pTIW)S 1) — F0+ p_S/GW)SW).

We then note that (3.17) is in the form of the model equation (2.10) with g = g,
B = % +n,a=a™, andf = N® + 8;(,0%F).
Applying the Sobolev estimate (2.8) and the pointwise estimate (3.12) for p with

the bootstrap assumption (3.16), we may bound
G18)  gllwsee SA+KK, a®preo £ (1 +K)°.

In particular, the coefficients satisfy the hypothesis (2.11) of Proposition 2.8 when-
ever 0 < K « 1 is sufficiently small.
From the Sobolev estimate (2.8) we may bound

lgellzee S (1+ KT Wil
We then use equation (3.13) to write
5
Wi+ G+ ng = —UWyyyy,
where, for0 <n <2Kg + 1,
M

. 6
"G = > Luysly. W.....W].
M=1
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Applying the multilinear estimate (2.9) with the pointwise estimate (3.12) for p
and H*Ko_estimate (3.11) for F, we then obtain

— 5
IWellzgk0 < (1+87HIWllggak0) IIW llggax0 + M A VIIW ..

As a consequence, we may use the bootstrap assumption (3.16) to obtain

T
(3.19) / lgellzoe dt < (1 +K)*((1 + K)’KT + 8§ MT + KVvT).
0

Finally, we apply the multilinear estimate (2.9) (and the Sobolev estimate (2.8)
for the final term when n = 2K + 4) to obtain

(3.20) IVEN® 2 < (14 K)°KS

whenever 0 < k < Kgand 0 <n <2(Ko —k) + 4.

Choosing 0 < K « 1 and 0 < v < 1 sufficiently small, we may then apply
Proposition 2.8 (noting that it applies to mild solutions via a standard approxima-
tion argument) to obtain the estimate

”W”ioo([O,T];’H‘LKO) + v||W||i2((O,T);’H6’KO) S G(T)sz

where
(3.21) o(T) = cCUHSTIMTHCWT _

and the constant is independent of v. Note that we use repeatedly (2.14), along
with the elementary inequality (e€! — 1)(e€2 — 1) < ¢€17€2 — | for C, C5 > 0,
to absorb these terms into the constant C = C(Kp).

We may thus find a 7 independent of v such that for all 0 < T < T, we have

1
2 2 2
|| w ||L°°([0,T];H4’K0) +v ” w ||L2((0,T);H6’K0) S E(’CS) ’
allowing us to close the bootstrapping argument for existence. O

3.5 Uniqueness of Solutions

We now consider the linearization of (3.7), taking w and p, F to be the first
variations of W, p, F, respectively, to obtain the equation

W+ (14 g)wyyy + %gywyy +awy, +bw +f+ p%F =0,

(3.22) w(0) = 0.

where we define g as in (3.8), the coefficients a = a(p, W), b = b(p, W) may be
bounded using the Sobolev estimate (2.8), and the estimates (3.9) and (3.10) for p
so that for each 0 < k < K¢ we have

2(Ko—k)+2 2(Ko—k)+1
(323) Y () FFallLe + Y ()bl <
n=0 n=0

(1487 W llya.x0)°,
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and the inhomogeneous term f = f(p, W, F, p) may be bounded similarly to obtain

2Ko+4
(3.24)  |Ifll3.x0 = (1 +3_1||W||H4J<o)6(IIPIILOo + > ||3§(1nP)IIL2)-
n=1

We then have the following estimate for the linearized equation:
PROPOSITION 3.8. If
W e C([0, T]; H*Koy n ([0, T]; H'-Ko)

and w € C([0, T]; H*X0) is a solution of equation (3.22), then we have the esti-
mate

(3.25) ||W||Loo([o,T];H1=Ko) <
2Ko+4 X
U(T)(llpllLoo + Y l3np)lL + ||06F||H1.K0),
n=1
where o(T) = O(T) as T — 0 and the constants depend on || W || .o (0, 77:44 Ko0)
and [[Well Lo fo, 71701 %0y,

PROOF. Proceeding as in the proof of Proposition 3.7 we apply the a priori
estimate for the model equation (2.10) with v = 0 with the estimates (3.23) and
(3.24) for the coefficients and inhomogeneous term. The details are left to the
reader. O

COROLLARY 3.9. Solutions to (3.7) are unique in the space C([0, T]; H*%0) N
c'([o, T]; H Koy,

PROOF. Given any two solutions W) and W@ of (3.7) we define
WO =w® 4 (1 -oyw®?,

We then see that the difference w = W) — W@ satisfies the linearized equation
(3.22) about W@ with p = 0and f = O integrated fromt = Otor = 1.
Observing that the proof of the estimate (3.25) may be applied with g replaced by
fol g dt, we may proceed as in Proposition 3.8 to show that w = 0. O

3.6 Proof of Theorem 3.4

We now complete the proof of Theorem 3.4. The argument is an essentially
standard application of the energy method, so we only sketch the details:

(1) Existence of solutions to the regularized equation (3.13). We first apply
Lemma 3.6 for each 0 < v <« 1 sufficiently small to obtain a solution
W e z24:Ko of the regularized equation (3.13) with Wy = 0.

(2) Uniform bounds. Next we apply Proposition 3.7 with Lemma 3.6 and a
standard bootstrap argument to find a time 7' > 0 independent of v so that
the set {W )} is uniformly bounded in C ([0, T]; H*X0). Further, as W)



3)

(3.26)

4

(3.27)

(3.28)

(3.29)
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is a mild solution of (3.13), we see that {Wt(v)} is uniformly bounded in
L2([0, T]; HV Koy,
Existence of a solution to the equation (3.7). By weak compactness there
exists a weak limit point W e L®([0, T]; H* Koy n H1((0, T); H1-Ko)
satisfying the estimate

|| W||L°°([0,T];H4’K0) << 8

Further, from the compactness of the Sobolev embedding (2.8) (see Re-
marks 2.4 and 2.7), by passing to a subsequence v; — 0 we may take
a limit in (3.13) to show that W is a distributional solution of (3.7). In
particular, W e L°([0, T]; H*K0) n w1-2°((0, T'); #1-K0) satisfies the
equation (3.7) almost everywhere.

Continuity in time. It remains to show that the solution W e C([0, T];
1*%0). To do this we define the mollified data,

5 5
Inp<j = P<j(Inp), (poF)<j = P<j(peF).

From the estimate (3.10) for p, we see that

Inp—Tnps;| S 27713y Inplloe S 277,
and hence by shrinking § slightly we may ensure that p<; satisfies the
lower bound (3.9) whenever j > 1. We note that p<; satisfies the L2-
estimate (3.10) and (p5/ 5F)< ;j satisfies the estimate (3.11) uniformly in
J > 1. Further, we have the estimates

. 5 )
I p<j |l goxo+atn S 2", [(p® F)<jllggatn.xo < 2" M,

whenever n > 0. Finally, we note that as j — oo, we have
Inp<j —Inpll g1 gaxerr = 0(27),

s s —3;
(08 F)<j = (8 F)llg1.0 = 027).
Repeating the proof of the existence of W, after shrinking the time T
slightly we may find a solution

Wsj € L22(0, T HE0) n Whe((0, ) 7 50)

to the equation (3.7) with p replaced by p<; and 0>/ F by (,05/6F)§j.
However, differentiating the equation we obtain an equation that is still
of the form of the model equation and hence we may apply essentially
identical estimates to Lemma 3.6 and Proposition 3.7 to show that

WSj € LOO([(), T); ’H7,Ko) N Wl,OO((O, T):; 7_[4,[(())’
satisfies the estimate
1W< i1l Loo o, 77:7¢7-K0) S 2% 8.

By redefining W<; on a set of measure zero we may also assume that
W<; € C([0, T]; H*Ko).
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Next we consider the equation for the difference W — W< ;. Estimat-
ing the difference W — W< ; using the a priori estimate for the linearized
equation (3.25) as in the proof of Corollary 3.9, and applying the estimate
(3.28), we then obtain

(3.30) IW — W<l oo qo. 71001 -K0y = 0277 8),  j — oo.

Applying the interpolation estimate (2.2) with the estimate (3.29), we may
then show that the sequence W< is Cauchy in C([0, T]; H*X0). Further,
from (3.30) the limit is given by W and hence W e C ([0, T]; H*X0).

(5) Uniqueness. This follows from Corollary 3.9.

This completes the proof of Theorem 3.4. g

4 Existence and Uniqueness of Solutions to (1.1)

In this section we prove a rigorous version of Theorem 1.5, giving the exis-
tence and uniqueness of hydrodynamic solutions to (1.1) for the set of initial data
considered in Theorem 3.4.

THEOREM 4.1. Suppose that in the x-coordinates p = u% e C3(R) satisfy the
subcritical left and right endpoint decay conditions (1.8) and (1.9). Suppose also
that in the y-coordinates p satisfies the estimates (3.9), (3.10), and (3.11). Then
there exists a time T > 0 and a unique hydrodynamic solution to equation (1.1).

To prove Theorem 4.1 we first reverse the derivation of the equation (3.7) and
apply Theorem 3.4 to construct a solution. We then prove Theorem 1.4 to show
that this is the unique hydrodynamic solution of the problem.

4.1 Existence

Given initial data as in Theorem 4.1, we may apply Theorem 3.4 to obtain
a solution W e C([0, T]; H*%0) n C1([0, T]; H1-K0) satisfying the equation
(3.7). Taking Z = p_s/ W we may use the lower bound (3.9) to show that
Z e C([0,T]; HY) N C1([0, T]; H') is a classical solution of equation (3.5).

Next we invert the change of coodinates (3.4) and extend Z to R by O to obtain a
solution of the equation (3.2) on R, where we note that, by applying Sobolev embed-
ding in the y-coordinates, in the x-coordinates we have p"/ 30" Z € Cp([0, T x R)
forn =0,1,2,3.

Naively we wish to define the Lagrangian map X by taking X, = H-;Z How-
ever, this only defines X up to a time-dependent constant. To choose the constant
we define

U(t,x) = (1 4+ Z(t, x))uo(x),
and observing that p/3)~1 3" (U?) € Cp([0, T] x R)), we may define

B = %(1 +Z)((1 + 2)(U?)x)x + nU? € C([0, T]; G (R)).
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Using this, we find the characteristic passing through (¢, x) = (0, 0) by finding a
solution £ € C1([0, T']) of the ODE

E(t) = B(1,0),
£(0) = 0.

We may then define

X(Z,X)ZS([)—F/O I—FZ;(IS)dS’

where we note that from the proof of Theorem 3.4 we have

sup [ Z][re <1,
t€l0,T]

and hence X € C([0, T] x R). By construction, it satisfies
X:(t,x) = B(t,x) for(t,x) €[0,T] xR.

The map x — X(¢, x) is a diffeomorphism, so we may find an inverse Y €
C1([0,T] x R) so that Yy (¢t,x) = (1 + Z(¢,Y(, x))) and hence

p(Y (1, x)"3" 1Y (1, x) € Cp([0.T] xR) forn =1,2,3.

‘We then define

u(t, x) = Yx(t, x)uo(Y(t,x)),
and observe that u € Cbl([O, T] x R) and u? € C([0, T]; Cg’ (R)). Further, with
this definition we see that

B(t,x) = b(t, X(t, x)),

where b = %(uz)xx + pu?. In particular, X satisfies the ODE (1.11) (recalling
that Z(0, x) = 0) and hence u is a hydrodynamic solution of (1.1). Further, using
the bounds on Y it is straightforward to verify that u*/3 € C([0, T]; Cb2 (R)) and
hence satisfies the hypothesis of Theorem 1.4.

4.2 Uniqueness

We now prove Theorem 1.4: the uniqueness of hydrodynamic solutions.
We first note that if u is a hydrodynamic solution of (1.1), then w = u? is a
nonnegative classical solution of the equation

wr +2(Fwxx + pw) w + (Awxx + pw)wy =0,

2

@D w(0) = wo := uj.

Next we define the Lagrangian map X as in (1.11) and, treating b as a fixed
function, uniqueness of solutions to linear transport equations ensures that ¥ may
be written in the form

u(t,X) = Yx(t’ X)MO(Y(t,X)),
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where Y € C1([0, T] x R) is the inverse of the map x > X (¢, x). From the ODE
satisfied by Yy, we obtain the estimate

t
InYy] < [ 142l .00 dis.
0

so as ug > 0 we have u > 0. In particular, provided classical solutions to (4.1) are
unique, so are hydrodynamic solutions to (1.1).
Taking w the first variation w in the equation (4.1), we have

Wi + WWxxx + %wxwxx + (%wxx + 3puw)wy
4.2) + (Wxxx + 3pwx)w =0,

w(0) = wp.
We then have the following lemma:

LEMMA 4.2. Suppose that w € C([0,T]; C;(R)) N CL([0, T]; Cp(R)) is a non-
negative classical solution of (4.1) such that

w3 € C([0. T} CZ(R))

and
w e C([0,T]; G (R) N C1([0, T]; Cp(R))

is a classical solution of (4.2) with w61/3w0 € L2(R). Then w™'3w e C([0, T];
L?(R)) satisfies the estimate

—1 cTy, %
(4.3) [w™3Wllpeoqo,71:22) S €7 lwy *Wollz2-

PROOF. Replacing w by ~/€2 + w2 and then taking a limit as € — 0 it suffices
to assume that w > 0. Further, by a standard approximation argument we may
assume that w has compact support. Integrating by parts we then obtain

_1 2
D juwtwiz,
2

- _§<w_%th, w) — Z(w%w’ Wixxx) — (w_%wxwa Wixx)
- (w_%w_xxw, Wx) - 2<w_%wxxxw, W) - 6/,L<w%W, Wx)
2
— 6 (w3 wxw, W)

2, _2 4 s 5 8
=_§<w 3wxxxW,W)—§< 3

3WxWxxW, W) + E(w_-3 W W, W)
— S/L(w_%wxw, w).

As w(t)% € CbZ(R) is nonnegative, a simple argument of Glaeser [25] shows that

w(t)% € W1 and we may bound

2 _1 2
w3 wxllzee + w3 wxxllLoe + [WxxxllLoe S w3 llw2.00 + wllps.co.
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As a consequence, using equation (4.1) to bound % we have the estimate

_1 2 _1 2
S twiza < e twia,

and the estimate (4.3) then follows from Gronwall’s inequality. O

Arguing as in the proof of Corollary 3.9, we may then use estimate (4.3) to show
that any two hydrodynamic solutions u, u satisfying the hypothesis of Theorem 1.4
with initial data ug, %o satisfy the estimate

4 _4 4/3  ~4/3
s =512 Swar lug” =iy N,
and hence solutions are unique.
This completes the the proof of Theorem 1.4 and hence of Theorem 4.1. Il

S The Virial Argument

For the convenience of the reader, and since it is short and elegant, we recall
here the virial argument of Zilburg and Rosenau in [63] in the focusing case p =
1; we further observe that an analogous approach works in the defocusing case
@ = —1 and that this approach applies to hydrodynamic solutions, defined as in
Definition 1.3.

5.1 Hydrodynamic Solutions

We will be dealing with solutions u € C1([0, T] x R), u? € C([0, T]; C3(R))
satisfying the hydrodynamic formulation of (1.1),

1
us + (bu)y =0 where b = E(uz)xx + (u?).

It is clear that these solutions conserve the Hamiltonian H, mass M, and momen-
tum J and that these solutions propagate nonnegativity or nonpositivity: ¥ > 0 or
u <0.
5.2 The Focusing Case u = 1
LEMMA 5.1. Assume that ug # 0 and H(ug) > 0. Then there does not exist a
globally defined hydrodynamic solution

u € C1([0,00) x R), u* € C([0,00); C>(R)),
and a real number M > 0 such that
(5.1 Vt e R suppu(t,-) C [-M, M].

PROOF. Pairing (1.1) with xu and integrating by parts leads to the identity
1d 5 3
3 xu?dx = -3 / lury|? dx — 1 f lu|* dx.

Using the conservation of the Hamiltonian, this becomes

1d

EE/XMZCZX = —/|uux|2dx—3H(u0).
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Combined with the conservation of the mass M, this identity leads to a contradic-
tion under the hypothesis (5.1). O

5.3 The Defocusing Case p = —1

LEMMA 5.2. Assume that ug > 0 or ug < 0. Then there does not exist a globally
defined hydrodynamic solution u € C ([0, 00) x R), u? € C([0, 00); C3(R)), and
a real number M > 0 such that

(5.2) Vit e R suppu(t,-) C [-M, M].

PROOF. Multiplying(1.1) by x and integrating leads to the identity

d
E/xudx=—/u|ux|2dx+M/u3dx.

Combined with the conservation of the momentum J, this identity leads to a con-
tradiction under the hypothesis (5.2). U

5.4 The Neutral Case u = 0
In the neutral case, both Lemma 5.1 and Lemma 5.2 hold true.

Appendix A Coordinate Changes
A.1 The Equation for Z in x-Coordinates
Let us start with the hydrodynamic formulation
ur + (bu)y =0 where b = %(uz)xx + Muz.
Denote by X (¢, x) the Lagrangian map defined by
Xi(t,x) =b(t, X(t,x)),
Xt =0,x)=x.
Differentiating the above in x and letting Z (¢, x) = m — 1 leads to
Z:i(t,x) = —(Z(t,x) + Dbx(t, X(¢, x)).

We observe that u (¢, X (¢, x)) = (Z(t, x) + 1)uo(x) and hence, denoting by Y (¢, -)
the inverse map to X(¢, -),

u?(t,x) = [(Z(@t,-) + D*ug] (Y, x)).
We further observe that, for any function F,
ax[F(t9 Y(t’ X))] = [(1 + Z(t’ '))8yF(t» )](Y(tv X))

Introducing the notation p = (u¢)?, this leads to

Z:+(1+ 2)2(%(1 + 2)((1+ 2) (1 + Z2)?p)x), + n(l + Z)z,o) =0,

X
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which becomes after expanding
7
Zi+ p(1+ Z)* Zxx + 5px (Lt 2)° Ziex +7p(1 + 2)* Zi Zx
9 19
(A1) +opre(l+ 2) Ze + Spe(L+ 2)* 23 + 4p(1 + 2)°Z3

1
+ 2oxxx(L+ 2) 4 ppx(1+ 2)* + 2pp(1 + Z)°Zx = 0.

A.2 The Equation for Z in y-Coordinates
Making the change of variables

we have

1
d = p 33, 2= p_%(3§ - —p—yay),

5 i
2% = p—l(a; _ %32 20y —py—yay),

X

and therefore the equation becomes

Zi+ (14 2)° Zyyy + ——(1 +2)Zyy + 701+ 2)*Zy Zy,y

19 p> 25
—;p—y(1+Z)SZ ¥ 6’°”(1+Z)SZ +— (1+Z)4z2

(A2)

1 4 5
+4+2)°23 + E(Pyyy _ PyPyy | SPy

6
Pt 3)(1+Z)

+ up §(py(1 +Z) 1201+ Z)3zy) —o.
As a consequence, we obtain the equation
Zi+ (1 + Z)° Zyyy + = (1 +Z)°Zyy
+ 701+ 2)*ZyZyy + R(y, Z, Zy) + F =0,

where

L(pyyy 4pyypy | 5 py Py
h= 5( T3 2 Top) s
p p P> p
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and

19 p2 25
M%ZZﬂ———lﬂ+Zf% 6B?a+zf4

M
—wg%u+zyﬁ+wa+zfﬁ

(A-3) 1{p 4 pyp 5/03
yyy yFyy Yy 6
Z —_ 7 1+ 2)0 -1
2( P 3 p? 9p3)(( ) )

+Mﬁ(%«l+zf—U+za+zfzo.

A.3 The Equation for W
Writing Z = p~3/OW , we obtain the expressions

W+ 2w

_ép_yW Spyy 55/0
3 Y6 36
P P p?

5 5 55 5
Zyyy = P_% Wyyy — _p_yWyy Py Wy + /Oy Wy MW
2 p 2 ,o 12p 6 p
n 15 oypyy y, 935 py W
12 p? 216 03 )

Plugging these into (A.2) leads to

7 5
Wi+ (1 +g)Wyyy + ggyWyy + N(y.W.Wy) + ps F =0,

where we define .
g=0+peWw) —1

and
N(y, W, Wy)
J Pyy 2 S 505 ~2 s
= ———=2(1 s WY W, + ——=(1 s W)W,
3 (L p AWy S W,
5 55
5 Pyyy (I + p o w)Sw py Bt oiwyw
A 6 p 108 p3
’ 5
R Y A4
6 p
_s _5 5p Sp 55 p2
7(1 W) o W)y (-2 W, — W 4 =W

+ P R(y. p WL (pTSW)y),
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and finally R is defined as in (A.3).
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