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Abstract. We consider the focusing nonlinear Schrodinger equation on a large class of ro-
tationally symmetric, noncompact manifolds. We prove the existence of a solitary wave by per-
turbing off the flat Euclidean case. Furthermore, we study the stability of the solitary wave un-
der radial perturbations by analyzing spectral properties of the associated linearized operator. Fi-
nally, in the L2-critical case, by considering the Vakhitov—Kolokolov criterion (see also results
of Grillakis—Shatah—Strauss), we provide numerical evidence showing that the introduction of a
nontrivial geometry destabilizes the solitary wave in a wide variety of cases, regardless of the curva-
ture of the manifold. In particular, the parameters of the metric corresponding to standard hyperbolic
space will lead to instability consistent with the blow-up results of Banica-Duyckaerts (2015). We
also provide numerical evidence for geometries under which it would be possible for the Vakhitov—
Kolokolov condition to suggest stability, provided certain spectral properties hold in these spaces.
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1. Introduction. The focusing nonlinear Schréodinger equation
(1.1) i0pu(t, ©) + Agu(t, ) + u(t, z)|u(t,z)P~t =0, p>1

for an unknown u : R x R — C, is a prototypical dispersive partial differential
equation that arises in various situations in physics, e.g., in nonlinear optics or as an
effective equation in many particle quantum mechanics. We refer the reader to the
standard monograph [66] for the general background. It is a classical result that in
the parameter range 1 < p < 1+ % (d > 2, no upper bound if d = 2), (1.1) possesses
solitary waves or solitons, i.e., solutions of the form

(1.2) up (t,x) = emthRd,a(x), a >0,

where the profile function Qga , € H'(R?) is radial, smooth, positive, and exponen-
tially decaying; see [22, 65, 23, 33, 34, 7, 9]. Note that Qga , satisfies the elliptic
equation

(1.3) —AQga o + 0*Qra g — Qra o|Qra o/’ =0
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The upper bound p =1+ ﬁ has an interpretation in terms of scaling. Observe that
if u is a solution to (1.1), then so is the rescaled function

ur(t,x) = ATt A2, 2 /\)

for any A > 0. When measured in homogeneous Sobolev spaces, the rescaled solution
satisfies

d_g_ 2
llux(ts ) gre may = A2 777 [[ut/A%, )| 7o (rays

and thus, if p = 1+ 114?2, the Hl(Rd)—norm is invariant under the scaling. This is
called the energy-critical case. Similarly, p = 1 + % is called the mass-critical or
L2-critical case as it leaves the L?(R?)-norm invariant. The scaling symmetry also
shows that it is enough to consider a = 1 in (1.2), and in this case, the solution uf is
unique [22, 51, 47] and called the ground state.

The ground state has a variational characterization that is closely related to sta-
bility properties. More precisely, this refers to the notion of orbital stability. Roughly
speaking, uj is orbitally stable if any solution u that starts out close to u} stays close
to uj for all times, modulo symmetries of the equation. It is known that the ground
state u is orbitally stable in the L2-subcritical case p < 1+ % and unstable otherwise
[8, 15, 70, 61, 72, 36, 35, 37].

The stronger notion of asymptotic stability of u refers to the property that all
solutions u starting out sufficiently close to u} converge to uj as t — 0o, modulo sym-
metries of the equation. Proving asymptotic stability is challenging as it presupposes
a detailed knowledge of the spectrum of the nonself-adjoint operator that arises upon
linearization of the equation at the ground state. Unfortunately, the mathematical
understanding of this operator is still unsatisfactory and one has to rely in part on
numerical evidence. Consequently, asymptotic stability is known only in special cases
or under suitable spectral assumptions; see, e.g., [63, 64, 13, 57, 25, 26, 14, 55, 29, 59,
5, 28, 6, 52] for an incomplete selection of available results.

1.1. Main results. In the present paper we change the geometry and investigate
the existence of solitary waves and their spectral stability for Schrédinger equations
on manifolds. More precisely, let M? = (0,00) x4 S¢~1, d > 2, be a warped product
manifold with warping function A : R — R and S? ! equipped with the standard
round metric; see, e.g., [56]. For the sake of concreteness, we use the stereographic
projection ¢ : R4—1 — S4=1,

(2 Y- 1)
o= (T )
to parametrize the sphere. Then we have

4

Dath? (y)Opib; (y) = WPE+1?

6aba

and the components g;j; of the Riemannian metric on the warped product M? are
given by

4A(r)?
gjk(T, y) = (513‘511@ + W(Sﬂg(l - 51j61k)
for j,k € {1,2,...,d}. We also remark that the sectional curvatures of M¢ are given
by
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_A”(r)
Ar)’

for a,b € {1,2,...,d — 1}; see [56].

Hypothesis 1.1. We make the following assumptions on the warping function A.
e A:R — R is smooth and odd with A’(0) = 1.
o A(r) 2 r for all r > 0.
e There exists a constant V5 4 € R such that

d—1A"(r) N (d—1)(d—3) {A’(r)2
2 A(r) 4 A(r)?

1— A'(r)?
Ar)?

K(aﬂ ay“)(rv y) = K(ay“aayb)<rv y) = (1 - 505)

- 2| = Vol + O

for all » > 0.

Remark 1.2. A classical example covered by Hypothesis 1.1 is A(r) = sinh(r) so
that M? is the hyperbolic space.

As usual, we denote by (g7*) the matrix inverse of (g;;) and det g is the determi-
nant of the latter matrix. Explicitly, we have

Vet g(r,y) = A(r)¢! ( 2 )d—1’

lyl> +1

and for the inner product (|-)z2ay on L?(M?) we obtain the expression

d—1
> dy dr.

Furthermore, the Laplace-Beltrami operator Ay on M¢ is given by
1
Vdet g

where ;1 = 0, and 9; = 0,;-1 for j = 2,3,...,d. We consider the focusing nonlinear
Schrodinger equation

(f|g)L2(Md) = AOO i fr,y)g(r, y)A(T)dil (|y2—|—1

Appa = 0 ( detggjkak) ,

(1.4) dhu(t, ) + Aygar(t, ) + ult, ut, )P~ =0

on M? for a function w : R x M?% — C. Our first result concerns the existence of
solitary waves or solitons.

THEOREM 1.3 (existence of solitary waves). Assume Hypothesis 1.1 and 1 <
p<l1l+ ﬁ (no upper bound in the case d = 2). Then there exists an ag > 0 such

that for any o > g, there exists a real-valued function Quua , € C?(M?) for which
u¥, : R x M? — C, given by

* i
’U/a(t,T’ y) =e' tQMd,a(ra y)7

is a solution to (1.4) for allt € R. More precisely, we have
d—1

)2 [QRdJ(arel) + pa(arel)] ,

QMd,oe(Ta y) = 04% (147(;")

where po € C*(R?) satisfies ||pallmrzway + [lpallLe®sy S a™t for all a > ag. In
particular, Quya o s radial.
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Remark 1.4. The soliton profile on the manifold is a perturbation of the Euclidean
profile. The heuristic behind this fact is that for large a the soliton is supposed to
concentrate near the origin, and one expects the curvature to become negligible. This
effect is quantified in Theorem 1.3.

We continue by investigating the linear Stzability of the solitary wave from Theorem
1.3. By plugging the ansatz u(t,r,y) = " "[Qua o(r,y) + w(t,r,y)] into (1.4), one
obtains, upon dropping the nonlinear terms, the evolution equation

(1.5) o (iﬁzg g) — By GD;EZEE g) :

with the operator
~ 0 Logd o
L = ~ AL I
Md,a (—LMd’ari» 0 )

EMd,a,— = —AMd + 012 — ‘QMd7a|p71,

~ 2 —1
LMd,a7+ = —Ape + —p|QMd,a|p .

where

Evidently, the linear stability of u¥ is encoded in the spectral properties of (a closed
realization of) the operator Ly . We restrict our attention to the radial case and
consider Ly , on the space L2 (M4, C?) with domain

D(Lyga o) = {(f1, f2) € C(M?,C2) : fi, fo radial}.
Accordingly, we equip the scalar operators EMd_’ayi with the domains
D(Lypi q1) = {f € C(M?) : f radial}.

THEOREM 1.5 (structure of the spectrum of the linearized operator). Assume
Hypothesis 1.1 and 1 <p <1+ d‘%? (no upper bound in the case d = 2). There exists
an ag > 0 such that for any a > «q, the operator ledﬁoé : D(Z}vﬂd’a) c L% (M4, C?) —
L2 (M? C?) is closable. Its closure Lyga o has the following properties:

o The spectrum of Ly o is a subset of R UiR.
o IfN€o(Lyay), then =X\ € o(Lypa o).
e The essential spectrum' of Liyia o 18 given by

Oe(Lyga ) ={z € C:Rez=0,[Imz| > o® + Vp q}-

The set 0(Lyga o) \ 0e(Lma o) is free of accumulation points and consists of
eigenvalues with finite algebraic multiplicities.
We have 0 € 0p(Lyga ) and

ker Lypa o = <(QM(1)L1 )>

IThere are various (in general inequivalent) definitions of the essential spectrum of a closed
operator. For us, the essential spectrum is the part of the spectrum that is invariant under relatively
compact perturbations; see Definition 4.1 and Remark 4.2 below.
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Forp #1+ % we obtain a very clear picture concerning the linear stability that
is analogous to the Euclidean situation.

THEOREM 1.6 (spectral stability in the noncritical case). Assume Hypothesis 1.1
andl <p<1l+ ﬁ (no upper bound in the case d = 2). Then there exists an ag > 0
such that for all a > oy the following holds.

o Ifp# 1+ 32, the algebraic multiplicity of 0 € o,(Lya o) equals 2.

o Ifp<1+ %, there are no positive eigenvalues of Lya .

o Ifp>1+ %, there exists precisely one positive eigenvalue Ao € 0p(Lya o)
and the eigenvalues £\, € 0p(Lya o) are simple.

In the critical case p = 14—%7 the stability of the solitary wave is more involved and
depends on finer properties of the underlying geometry. The corresponding condition

is formulated in terms of L:R?ﬂ}l,a,+v where Lyga o 4+ is the closure of Lyga 4 4.

THEOREM 1.7 (spectral stability in the critical case). Assume Hypothesis 1.1
andl <p <1+ ﬁ (no upper bound in the case d = 2). Then there exists an ag > 0

such that for all o > o the operator EM(i’a’+ : D(Emd’ad,) C L2 (M) — L2 (M%)
is essentially self-adjoint and its closure Lya o 4 8 bounded invertible. If p =1+ %,
then for all « > ay the following holds.
o If (ﬁgﬂi Q+QMd,a|QMd7a)L2(Md) > 0, then Ly, has precisely one positive
eigenvalue Ao and the eigenvalues =\ € 0p(Lya o) are simple.

o If (;CMﬁ’a,+QMd7a|QMd,Q)L2(Md) <0, then Ly o has no positive eigenvalues.

Remark 1.8. If 0,Qa ,, is sufficiently smooth and belongs to the domain of
Ly o+, the (in)stability condition in Theorem 1.7 can be simplified. Indeed, by
differentiating

7AMdQMd,a + QZQMd,a - QMd,alQMd,awil =0
with respect to «, we find

‘ch,a,JraaQMd,a = _ZQQM‘i,ou

and thus,

-1
(£t s Qurt | Qua )

£2(M4) = % (aaQMd,a |QMd,a) L2(Md): - iaa ||QMd,a ”%,Z(Md)

Remark 1.9. Theorem 1.7 raises the intriguing question of whether it is possible
to “stabilize” the borderline unstable soliton in Euclidean space by changing the back-
ground geometry. Unfortunately, we cannot answer this question in the affirmative as
we are unable to provide a sufficient criterion for stability in the critical case. This
appears to be challenging, as it requires a good understanding of eigenvalues and reso-
nances on the imaginary axis, a question which is still largely open even in the purely
Euclidean setting. However, Theorem 1.7 provides a sufficient criterion for (linear)
instability. Using this, we provide numerical evidence that there exists a large class
of negatively curved manifolds such that the soliton becomes (linearly) unstable; see
section 6. This fits well with the blow-up instability for the L? critical (and supercrit-
ical) nonlinear Schrédinger equation on the hyperbolic space HY computed via virial
identities in [4]. Blow-up was also established in [12] in the L? critical setting with a
Riemannian manifold that is locally like H? and asymptotically like R%.
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1.2. Further related results. Unfortunately, there is still no general satisfac-
tory understanding of the linearized operator even in the Euclidean case, and as a
consequence, this classical problem remains a topic of contemporary research. For
instance, see [30] for an analysis of embedded eigenvalues in the essential spectrum
and [16] for a modern account of the general theory and new numerical results. Fur-
thermore, decay properties of eigenfunctions are investigated in [42]. The paper [59]
is concerned with asymptotic stability but also contains a thorough analysis of the
linearized operator. In [24], a novel computer-assisted method is introduced to prove
the absence of eigenvalues in the essential spectral gap. In addition, in [50], the au-
thors give a numerically assisted proof for the absence of embedded eigenvalues in a
variety of settings on R?. In the case of potential perturbations, stability analysis
in both the small and large mass limits have been studied through both dispersive
techniques as well as bifurcation theory on R? for a range of nonlinearities in many
works; for a small sampling, see, e.g., [69, 27, 39, 45, 44, 49, 54, 53] and the references
captured within.

Needless to say, the literature on Schrodinger equations on manifolds is vast, and
we just mention some closely related recent works. There is a number of papers
devoted to the study of the focusing nonlinear Schrodinger equation on hyperbolic
space. A recurring theme, compare Remark 1.9, is the question whether the negative
curvature may improve the situation compared to the Euclidean case and stabilize
the evolution; see, e.g., [2, 1, 4]. Spectral properties in hyperbolic space are studied
in [10] and the existence of ground states on noncompact manifolds is investigated in,
e.g., [21, 67, 20]. See also the recent works [18, 19, 17] for advances on the spectral
measure for asymptotically hyperbolic manifolds, the analysis of which is required
for good dispersive estimates that can lead to results on asymptotic stability when
understood with perturbations and for the linearized operator. The literature on
spectral measures for the asymptotically Euclidean and conic cases is quite vast, but
see [48, 11, 40] and references therein.

2. Preliminary transformations. We proceed by transforming the radial case
of (1.4) to a standard nonlinear Schrédinger equation on R? with a potential. This is
a well-known reduction; see e.g. [3, 21].

2.1. The Laplace—Beltrami operator. The Laplace-Beltrami operator Ay

is given by
1

Vdet g

We now assume that f(r,y) = f(r); i.e., we restrict ourselves to the radial case. Then,

Ay f = 9; ( detggjkak.f> .

Buge 1) = <z, (VAT G1) 01 () = s [A)10.10)]

det g(r,y)

_ [ag - 1)‘;‘1/((:)) ar} i)

= AR f ().

Obviously, Ar¢ is formally self-adjoint on L%, ,(0,00). Equation (1.4) for radial

functions reduces to
(2.1) GOVI(L, ) + AL, ) + a(t, [t )P =0

for w: R x (0,00) — C.
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2.2. Conjugation to Euclidean. In order to perturb off the Euclidean case,
we would like to compare the Laplace—Beltrami operator Apa to the ordinary Laplace
operator on R%, henceforth denoted by Aga. The restriction of the Euclidean operator
to radial functions yields the operator

d—1
A= 92 4 Ta“

acting on L|2~|d*1 (0,00). To compare the two operators, we need to conjugate by the

unitary map that relates the radial function spaces.
Let Uy : L‘z_ld,l((), 00) = Lid,l(O, o0) be defined by

%ﬂm:QLQt}m,

so that Hudf||L2Ad_1(07oo) = ||f||L‘2,‘d,—1(07oo)' Now we consider the operator ¢ ' A4/,

on LIQ_‘d,1 (0, 00). Explicitly, we have

—1A"(r _ _ Al (r)? _ _
U AR U (r) = (A@d—d 5 ! A(Eﬂ))—(d ll(d 3) A((r))Q +(d Z):j 3)> f(r).

By setting

d—1

ﬂ@m—w@@»m—(45)2mm»

for a function ¥ : R x (0,00) — C, (2.1) can now be written as
i00(t, ) + Uy AFEULD(E, ) + B, Ut )P =0

In fact, we find it more convenient to formulate this equation in terms of the auxiliary
function v : R x R — C, given by v(t, ) := 9(t, |x|). This yields

(2.2) D0(t, ) + Agav(t, ) — Vao(t,-) + papo(t, o(t, )P =0,

= (25

" l 2
V() = 221 A'(Jzl) | (d=1(d=3) A(jz])* _ (d-1)(d=3)
2 A(lz]) 4 A(l2])? Af|?
We keep in mind that v(t,-) is radial. Note that (2.2) resembles a standard nonlinear
Schrédinger equation on Euclidean space with a potential V.
To look for solitons, we plug the ansatz v(t,z) = €' 'R, (z) into (2.2) with R,
radial. This yields the elliptic equation

with

(d=1)(p=1)
2

and

(2:3) AgiRo — 0’ Ro — VaRa + ¢apRa|RalP ™' = 0.
In terms of the rescaled profile Ry, defined by Rq(z) = avT Ry, (ax), (2.3) reads

(24)  AgiFa(2) = Ra(@) = a2V (a7'2) Ra(@) + ¢ap (a7 '2) F, (Ra(2)) =0,
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where F,(s) := s|s|P~!. We intend to solve (2.4) by perturbing off the Euclidean
situation and hence insert the ansatz R, (z) = Qra(x)+ p(z) into (2.4), where Qga :=

Qg 1. In view of (1.3), we obtain
—Aap(@) = qa(2)F(Qra(7))p() + [ga(x) — 1IN (p)(2)

(2.5) + a*2Vd (oflx) Qra(x) + (]a(f)Fp(Q]Rd (7)),

where

Aup(2) = —Bgap() + p(x) — FL(Qga(a))ol(a) + 02V (a~') pla),
ga(®) =1 —a,p (a_lx)
N(p)(x) := Fp(Qra(z) + p(x)) — Fp(Qre (7)) — Fi(Qra(z))p(@).

3. Existence of a soliton. In this section we show that (2.5) has a solution
P = pa, provided a > 1 is sufficiently large. This way, we obtain a soliton solution

Vit x) = a7 T [Qpa(az) + palax)]

to (2.2).

3.1. Analysis of the linear operator. Initially, we define the operator A,
as a classical differential operator acting on C°(R%). Recall that Qra € C™(R?),
Qrae > 0, and V; € C*°(R?) by Hypothesis 1.1. As a consequence, A, is a continuous
map from D(R?) to D(R?). Furthermore, A, is formally self-adjoint on L2(R?) and
thus, A, extends to D'(R?) by

Aau(p) = u(Aap)

for u € D'(R?) and ¢ € D(R?). In the limit a — oo, A, formally reduces to L,
given by
Lyf(x) =—Agaf(x)+ f(z) = F)(Qra(2))f(2).

This is a well-known operator in the Fuclidean setting that occurs in the linearization
about solitary waves.

Note that both A, and £, map radial distributions to radial distributions since
Qre and Vy are radial. Consequently, A4, and £, may be viewed as unbounded

operators on L2 4(R%).

LEMMA 3.1. The operator L4 : H? J(R?) C L2 ,(RY) — L2 ,(RY) is self-adjoint.

Furthermore, Ly is invertible, and we have the smoothing estimate
”L-_}-lgHH?(Rd) S lgllzz ey
for all g € L? 4(RY).

Proof. By the exponential decay of Qga and [68, p. 258, Theorem 10.2], we see
that £ is self-adjoint with domain H2 j(R?) and essential spectrum o (L) = [1, 00).
Consequently, 0 ¢ o(L,) follows from [16, Lemma 2.1]. Thus, it remains to prove the
smoothing estimate. To this end, let Lo : H2 (R?) C L2 ,(RY) — L2 ,(R?) be given
by Lof = —Agaf + f. For f € S(R?) we have

FLof(§) = F(—Apaf + £)(€) = (4m*[€]* + 1) FF(©),
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where F denotes the Fourier transform
Ff§) = / e 28T f (1) du.
Rd

Thus, on the Fourier side, the equation Lyf = g reads

(1+4m®[¢]?) Ff(&) = Fy(€).
Consequently, by Plancherel,

_ -1
1£5 2ty = 1S sraqmey = I1C2F Al ey = ||(92 (1 + 472 - 12) 7

L2(R)
S Fallzz@ey = gl L2 mey

for g € S(R?). By approximation, this bound holds for all g € L2 ,(RY). Let B :
L2, 4(RY) — L2 4(RY) be given by Bf(z) = —F}(Qga(z))f(z). By definition, we have
the identity
Ly =(1+BLy") Lo,
2

and this shows that £ Ly ! is a bounded operator on L2, ,(R%). By the open mapping
theorem, its inverse EOL’;l is also bounded. Consequently, the smoothing property
of £y implies the bound

1£3 gl mr2ray = 1£5  LoLT gl w2 ray S NLoLT gl 12 ray S 119l 12 (Ra)
for all g € L2, 4(RY). O

LEMMA 3.2. There exists an oy > 0 such that, for any o > «q, the operator
Ao o H2 (RY) € L2 (RY) — L2 ,(R?) is self-adjoint and invertible. Furthermore,

r rad rad
we have the smoothing estimate

IAZ fllrz@ay S 1 Fllz2mey
for all f € L2 4(RY) and all o > «.
Proof. For any o > 0 we define a bounded operator B, on Lfad(]Rd) by setting
Bof(x):=-Vy (a_lm) f(x).

Since Vg € L>®(R%) by Hypothesis 1.1, we infer ||Bof|r2re) < ||fllr2@a) for all
a > 0. Consequently, a Neumann series argument shows the existence of the operator
(1 —a™2B,L;") ! with the bound

_ 1y -1
I (1—aBali)  fllawey S I N2

for all &« > «g, provided g > 0 is sufficiently large. Thus, from the identity A, =
(1- a‘23a£11)£+, we obtain the existence of the operator

A7 =L (1-a2Balyh) !,
with the bound
JAZ Fllz ey S 1ES" (1= a?Bal) ™ fllieeay S 1 (1= a™Balsh) ™ fllraa
SNl z2 ey
for all f € L2 4(RY) and a > ay. d

rad
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As a consequence of Lemma 3.2, we can now reformulate (2.5) as the fixed point
problem

(3.1)

p=—As [0F(Qra()p + (g — DN (p) + a7 Va(a ™' (1)) Qra + qaFp(Qra ()] -

3.2. Refined bounds for A_*'. Next, we prove an L™ bound for A;', again
by first proving the corresponding result for ﬁj_l.

LEMMA 3.3. We have the bound

||£Ilg||Lw(Rd) S lgllze@ey + 191l oo (ray

for all g € L2 ;(RY) N L>=(RY) N C(RY).

rad
Proof. By Sobolev embedding and Lemma 3.1 the result is immediate in the case
d=2,1ie.,
1£5 gl e @2y S 1L gl a2y S llgllzeee)-
Thus, we may restrict ourselves to d > 3. Since all functions are radial, problems
occur only at the origin. Indeed, by the one-dimensional Sobolev embedding and
Lemma 3.1, we have

”‘C-_i-lg”Lw(Rd\]B'i) S ”L:-T-lg”Hl(JRd) S llgll 22 ey
for all g € L2 ;(R?). Consequently, it suffices to prove the estimate
L3 gl poo By S 91l 2 ray + 119l Loe (mey

for all g € L2, ;(R%) N L>(R?) N C(RY).

Let f = £;lg. Then f € H2 4 (R?), and by the radial Sobolev embedding we
infer that f € C(R?\ {0}) N LL (R?). The equation £ f = g implies Aga f* = h¥ in
D'(R?) with

h@) = —g(x) + F(x) — Fi(Qga(2)f(2);

see Definition A.2 for the notation. Evidently, h € C(R%\ {0}) N L} .(R9) and thus,

Lemma A.3 shows that the function f(r) = r%f(rel) belongs to C2(0,00) and
satisfies

(d-1Dd-3)7 . = -

(32) ) = S 0) - T + By Quatren) fir) = = glren)

for all » > 0. Now we consider the homogeneous version of (3.2), i.e.,

(d—1)(d—3)
e

(3-3) ¢"(r) - ¢(r) — o(r) + Fy(Qra(rer))d(r) = 0.

Equation (3.3) has a fundamental system {¢o, ¢oo } With the asymptotic behavior

|po(r)| =~ 7= for r € [0,1], |po(r)| ~ e" for r > 1,
\64(r)| ~ 7 for r € [0,1], I60(r)| = € for r > 1,
(oo (r)| = 7~ % for r € (0,1], (oo (F)| = €7 for v > 1,
¢ (r)| ~ 7= for € (0,1], ¢ ()| ~ e " for r > 1,
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and we may normalize so that W (¢, doo) = 1; see Lemma B.1 below. Consequently,
the variation of constants formula yields the existence of constants a,b € C such that

f(r) = a¢0(r)+b¢m(r)—¢o(r)/ gboo(s)s%g(sel)dsfqﬁoo(r)/o gbo(s)st;lg(sel)ds,
and f € HL ;(RY) implies that @ = b = 0. Furthermore, we have the bounds
n(r)| [ [6ne(o)s" glser)| ds

1 . -~ oo _ _
sﬂfwmﬂwﬂ/s”fﬁfm+/ f%%vﬁsﬂﬁmmwm
0 1

6] [

for all r € (0,1]. Consequently,

[f(red)| = | % f(r)

for all r € (0, 1], which implies the desired bound

and

d—1 d—3 r
Po(s)s 2 9(561)‘d5577 2 HQHLOC(]RUZ)/ s lds
0

d+3
Sre HgHLOO(]Rd)

N HgHLOC(]Rd)

1£3 gl oo gy = I1f1 oo @y S N9l oo (a)- 0

By a simple perturbative argument, we obtain an analogous L°° bound for the
operator A

COROLLARY 3.4. There exists an ag > 0 such that
IAS gl oe (ray S 91l 22 Ray + 19l Loe (ma)
for all g € L2 ;(RY) N L= (RY) N C(RY) and a > .
Proof. Let X := L2 ;(RY) N L= (RY) N C(R?), and write
l9llx = llgll L2 a) + lgll oo (ma)-
As in the proof of Lemma 3.2, we set
Bag(z) = Vg (o 'z) g(x).

Note that [|Bagllx < |lg]lx for all g € X and a > 0 by Hypothesis 1.1. Consequently,
the operator (1 —a~2B,) : X — X is bounded invertible on X for any a > g by a
Neumann series argument, provided «q is sufficiently large. Furthermore,

11— a™?Ba) " gllx < llgllx

for all g € X and a > ap. By Lemmas 3.1 and 3.3, we have [|£'g|x < ||gx for all
g € X, and thus,

_ _ _ _ -1 _ i
1AL gl e ey < AL gllx = 1I£51 (1—a2Ba L) gllx S (- ' Balh) gl x
Sllgllx S lgllz2gay + 119l Loe (may

for all g € X and o > «p, as desired. 0
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3.3. Bounds on the right-hand side of (3.1). Next, we provide suitable
estimates for the terms appearing on the right-hand side of (3.1).

LEMMA 3.5. We have the bounds

|9a(2)] S 1,
4o (2) Fy (Qra(2))] S a7,
|a™?Va (a7 e) Qra(2)] S o™ (2) 7%,
|4 (2) Fp(Qra(2))] S o™ (z) ™1

for all z € R and all o > 1.
Proof. Recall that we assume Hypothesis 1.1. For r € [0, a%] we have

a~lr a~lr
= =14+0(a"!
A(a=1r)  a=lr[l + O(a=2r?)] +0(™),
and thus,
a1zl (@=1)(p=1)
a 'z
fe =1- -1 =1—( —- < o1
ol = 1= a0 (7)) = 1 = () =
for all |z| < a?. For |z| > a? we trivially estimate
la-1a] (@-1)p-1)
a 'z
<1 - <1
o) S 1+ (= <1

since A(Ja~'z|) 2 |a~'z|. This yields the first statement.
For the second one we recall that F, (Qga(z)) = p|Qga(x)[P~" decays exponentially
as |z] — oo. In particular, |F)(Qga(z))| < ()72, and thus,

4o () F)(Qra(2))] < (aZ) 2 <o

provided |z| > a2. In the case || < a2 we use the bound |ga(z)| < a~! from above.
This proves the second bound, and the fourth bound follows analogously. Finally, the
third estimate is obvious from V; € L>(R?) and the exponential decay of Qga. a0

Next, we provide Lipschitz estimates for the nonlinearity from (3.1).
LEMMA 3.6. We have the bound

IN() = N (@)l 2y
S (11 tgy + 1 ey + 9ty + Nl rracey ) 1 = gll a2 ey
for all f,g € H?*(R?). Furthermore,
IN () = N (9) | o= ety
S (U= gy + 1 ey + g1 gy + gl o ey ) 1S = ll s ey

for all f,g € L>=(RY).

Proof. Recall that we assume p € (1, H2) and d > 2. Let N(to,t) := F,(to+1t) —
Fy(to) — F,(to)t. Then we have
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N(p)(z) = N(Qra(z), p(2)),
and the fundamental theorem of calculus yields

Ni(to,t) — Ni(to,s) = / 0uN(to, s + u(t — 5))du
(3.4) 0

— (- s)/o [F)(to + 5 + u(t — 5)) — Fy(to)]du.

Now we distinguish the cases p € (1,2] and p > 2. We proceed with the former and
note the elementary estimate

(3.5) [Ito +¢[P~1 = Jto [P~ S [P

for all to,t € R. Since F)(s) = p|s[P~!, we obtain from (3.4) the bound

[N(to,t) = N(to, s)| S |t — s /1 |5+ ult — 5)["~ du
< (e s - o
for all tg,t, s € R. Consequently, by Holder’s inequality and Sobolev embedding,
INU) = N @)y S NP = Dz + g™ (F = 9l ece
S U5 e 1 = gll oty + 1912t 1 = gl zncea
S (U7 Wty + 19 Eraty ) 15 = g2y
In the case p > 2 (which only occurs if d < 5), we use the bound
(3.6) [[to + 2P~ — [t~ S 177 + [tolP 22,

which yields

1
IN(to,t) — N(to, s)| < [t — s / (Is +u(t = )P~ + [to[P %[5 + u(t - 5)|) du
0

S ([P~ + [t [P72[t] + [P~ + [to[P72[s]) [t — s

for all tg,t, s € R. Consequently,

IN() = N (@)l 2@y S WP = 9l 2 @ay + 1Qra ] g 1 (F = )22y
gl (F = 9y + 1Qeal?=2 g l9(F = 9l gy

Sz gy I1F = all Loy + 1 f sy | f = 9lls ey

+ 190152 ey 1 f = 9l 20 gy + 19l a1 = 9llLacee)

< (11t 1 a2y 19 ety Hlg a2 ey ) 192 ety

by the Sobolev embeddings H?(RY) — L*(RY) and H?(R?) — L*(R?) (recall that
d <5). The L™ bound is immediate from the above. |
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3.4. Existence of the soliton. Now we are ready to prove the existence of the
soliton profile Qe -

PROPOSITION 3.7. There exists an o > 0 such that (3.1) has a real-valued solu-
tion p = po € H2 (R N C(RY) for any a > ag. Furthermore, p, satisfies

rad
Pl a2 ey + lpall oo (ray S !
for all a > .

Proof. Let X := H?

rad (Rd) N C(Rd> with norm
1£1x = [z ey + [ Fll e ey

and set X5 := {f € X : ||f|lx < §}. Similarly, we define Y := L?

rad (Rd) n.L> (Rd)
with

[flly = Il fllc2®ay + [[fll Lo ma)-
Note that Lemmas 3.2 and 3.6 and Corollary 3.4 imply the estimates
1A Fllx S I flly
WG =N @y < (171 + 115+ lallx + lglB) 17 — ol

for all f,g € X C Y and a > «g, provided o > 0 is sufficiently large. In view of
(3.1), we define a map K, on X5 by

Ka(f) = =AS" [0aFp(Qra () f+(da = DN (f)+a"*Va(a™ (1) Qri+da Fp(Qra())] -
Then, by Lemma 3.5,
1Ka(Hllx < NlaaFp(@ra())flly + (ga = DN ()lly
+a7?Vala™' () @Qually + laaFp(Qra())lly

Sa M Ifllx + I + I +a™? +at
Sa o+ +62+a2+at

for all f € Xs5. Thus, K,(f) € X5 for all f € X5 and a > «g, provided § > 0 is
sufficiently small and ag > 1 is sufficiently large. Similarly,

H]Ca(f) - ]Ca(g)”X
S 14y (Qra())(f = 9lly + (g = DN (f) = N(9))lly

S a7t f = glx + (1A + 17 + g5 + llgllx ) 1f = gllx
S @+ 0)f —gllx.

Thus, K, is a contraction on X for all @ > «, provided § > 0 is small enough and
ag > 1 is large enough. Consequently, the contraction mapping principle yields the
existence of a fixed point p, € X5 C H24(R?) NC(R?) of K, which, by construction,

rad
is a solution to (3.1). Finally, for the stated estimate on p,, it suffices to note that

lpallx = IKa(pa)llx < @ Hlpallx + 06" pallx + dllpallx +a™* +a™,

by the above estimate for ICo(f). d
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3.5. Decay and regularity. From now on we denote by p, the solution con-
structed in Proposition 3.7. Note that the radiality of p, immediately implies a
pointwise decay estimate. To see this, we recall the classical Strauss estimate.

LEMMA 3.8. We have the bound
d—1
i1

< 1
Lo (i) Il e (mery

for all f € HL J(R?).

Proof. It suffices to prove the bound for real-valued f. First, we assume that
f € C*(RY). Then f is given by f(x) = f(|z|) for some f € C>®(R). By the
fundamental theorem of calculus and Cauchy—Schwarz, we obtain

rF(r)? = — /OO Os [Sd_lf(s)ﬂ ds

—d-1) /OO $1-2F(s)2ds — z/m 1 (5)F(s)ds

S A 2@V 2@y S 11 @ay

for all » > 0, which implies the desired estimate. By approximation, the bound
extends to all f € HL  (R?). 0

Lemma 3.8 implies the decay

d—1

(3.7) |pa ()] S (2)” 7
for all z € RY.
LEMMA 3.9. We have p, € C2(R%). In particular, the function Ry () = Qga(z)+
pa(x) satisfies
ARdﬁa(:ﬂ) — ﬁa(w) —a Y, (oflx) Ea(x) + ©Vdp (oflx) F, (Ea(x)> =0

for all x € RY, in the classical sense.

Proof. Let

90(®) = = [4a(2) Fy (Qra (%)) pa () + [ga(x) = N (pa)(2)
+a7?V, (Ofli) Qra(x) + o (2) F,(Qpra (x))] .

Then, by Lemma 3.6, we have g, € L2 ;(R?) N L>(R?) NC(R?), and by construction,

rad

Anpl, = gf,. Equivalently, Agapf, = hf, with
ha(@) = pa(r) = Fy(Qra(2))pa(z) + a7V (a7 ') pa(z) = ga(2).

Since pa, ha € C(RY) are radial, the claim follows from Lemma A.4. d
Proof of Theorem 1.3. For o > 0 sufficiently large, let

d—1
r

Quusalrn) = (475) 7 (Quslaren) + pufaren)]

By Lemma 3.9 and Hypothesis 1.1, Qa o € C?(M?) and by construction, u* (¢,7,y) =

eio‘QtQMdﬂ(r, y) solves (1.4) for all ¢ € R. The remaining properties follow from
Proposition 3.7. O
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4. Spectral stability of the soliton. In this section we investigate the linear
stability of the soliton

Vi (t,x) = € Ry (2) = a7 1 [Qpa(az) + palaz)]

as a solution to the nonlinear Schrédinger equation (2.2). More precisely, we study
spectral properties of the linearized operator £, associated to the soliton v’. We will
see that the qualitative behavior is very similar to the Euclidean case.

4.1. The linearized operator. The notion of spectral stability derives from
spectral properties of the operator that is obtained by linearizing (2.2) at the soliton
v’ . More precisely, we insert the ansatz

o(t, ) = vt 3) + e w(t,x) = e [Ra(2) + w(t, 2)]
into (2.2). This yields

i0yw(t, ) + Agaw(t,-) — w(t, ) — Vyw(t,-)
+ @dpFp (Ra(-) +w(t,-) — aplp(Ral) =0,

where we have used (2.3), i.e.,

(4.1)

AgiRy — a’Ry — VaRo = — 4, Fp(Ra ().
Now note that for all ag,a,b € R,
lag 4+ a + b’ = (a2 + 2apa + a* + bQ)]%1
= lag|"™" + 252 (a3) "= ! (2a0a + a + b%) + Ny (ao, a,b)
= |ao/P™! 4 (p — 1)aolao|?3a + Na(ao, a, b),
where Ni(ap,a,b) and Ny(ag,a,b) are quadratic in a and b. Hence,
F,(ap +a+ib) = (ap + a +ib)|ag + a + ib|P~*
= aglao|P™" + plao|P~a + ilag[P~ b + N(ao, a,b),
where N(ag, a,b) is quadratic in a and b. This yields
Fp (Ro(z) +w(t,x)) = F, (Ra(z) + Rew(t, z) + iImw(t, x))
= Fy(Ra(@)) + p|Ra(2) P~ Rew(t, ) + i Ra (2)[P~ ! Imw(t, z)
+ N (Ro(z), Rew(t, z), Imw(t, x)) .
By dropping the nonlinear terms, we obtain from (4.1) the linearized problem
iatw(tv ) + A]Rdw(tv ) - azw(tv ) - de(ta )
Ro()|P ' Rew(t, ) + ipap| Ra ()P~ Imw(t, -) = 0.

+ P¥d,p
Finally, we rescale by setting w(t, r) = w(a?t, ax). This yields

(4.2)
i0,w(t, ) + Aga ,0(t, ) — 0(t, ) — a Vg (o™ 'z) w(t, z)

p—1

—1 > p—1 ~ . —1 > ~
+ ppa,p (a x) ’Ra(x)’ Rew(t, x) + ipaq,p (a m) ’Ra(x) Imw(t,-)=0
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with R () = a" TR, (a~'z). Equation (4.2) is equivalent to the system
Rew(t,-)\ _ Rew(t,-)
(4:3) f%Gmw@q)—ﬁaGma@)

with the spatial differential operator

where

p—1

fl@) +a™Vy (a7 '2) f(x)

p—1

flx)+ a"?Vy, (071:17) fx).

Lo f(x) = —Apaf(2) + f(2) = Pap (a7') |Ra(@)

Lot (@) i= —dga f(2) + f(2) = pay (a7'2) | Ralo)

Consequently, (linear) stability properties of the soliton v}, are encoded in the spec-
trum of the operator L,, which we consider on the space L2 ,(R¢ C?). This is a

natural choice since the operators L, 4 are self-adjoint on L2 ;(R%). Formally at

least, in the limit a — oo, £, reduces to its well-known Euclidean counterpart L,
given by
0 L
ﬁ(—5+ 0>

L_f(z) = —Apaf(@)+ f(z) = |Qra(z)"" f(2)
Ly f(x) =—Apaf(@)+ f(2) — p|Qra(z)["™ f(2).

This suggests a perturbative spectral analysis, based on the Euclidean situation.

and

4.2. Spectral properties in the Euclidean case. Our base case will be the
Euclidean operator £ which was extensively studied in the literature; see, e.g., [70,
71, 35, 16]. Nevertheless, there are still a number of substantial questions that remain
unanswered. We summarize some of the known results but restrict ourselves to the
radial case. Since we will be dealing with spectra of nonself-adjoint operators, there
are some ambiguities that need to be clarified first.

DEFINITION 4.1. Let T be a closed operator on a Banach space X. We define the
essential spectrum o.(T) of T by

o(T):= (] o(T+K),
KeK(X)

where K(X) denotes the set of all compact operators on X. Furthermore, o,(T) is
the set of all eigenvalues of T .

Remark 4.2. There are other meaningful definitions of essential spectra for nonself-
adjoint operators in the literature; see, e.g., [38, 32, 42] for a discussion on this. The
choice we made is the largest possible that is invariant under relatively compact per-
turbations. However, for the particular class of operators we will be concerned with,
all the usual definitions turn out to be equivalent; see [42].

THEOREM 4.3 ([70, 71, 35,16, 59]). The operator L : H2 (R, C?) C L2 ,(R4,C?)
— L2 (R4, C?) is closed and has the following properties.
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o The spectrum o(L) is a subset of R UiR.
o If A e o(L), then =\ € o(L).
o The essential spectrum of L is given by

0.(L)y={2€C:Rez=0,|Imz| > 1}.

o The set a(L)\o.(L) is free of accumulation points and consists of eigenvalues
with finite algebraic multiplicities.

o We have 0 € 0,(L) and
ker £ = <<Q(]1)§d>> .

o For the kernels of powers of L we have

2 144
dim ker(£?) = dim ker(£?) = { pr 7L 4
4 ifp=1+3.
In particular, the algebraic multiplicity of the eigenvalue 0 € o,(L) equals 4
in the L?-critical case p =1+ % and 2 otherwise.
e In the L?-subcritical case p < 1+ %, L has no positive eigenvalues. In the
L2-supercritical case p > 1+ %, L has precisely one positive eigenvalue A and
the eigenvalues £ are simple.

Remark 4.4. The picture one has in mind is as follows. Starting from the
supercritical case p > 1 + %, the two nonzero real eigenvalues move towards the
origin as p decreases. Precisely when p = 1 + %, the two eigenvalues merge and the
algebraic multiplicity of 0 € ¢,(£) increases by two. If one decreases p further into the
subcritical regime p < 1+ %, a pair of purely imaginary eigenvalues emerges from 0.
In particular, the ground state is linearly stable in the subcritical case and unstable in
the supercritical case. These linear stability properties are reflected in the nonlinear
theory. Indeed, in the subcritical case the ground state is orbitally stable and in the
supercritical case it is unstable. The critical case p =1 + % is more delicate as there
is spectral stability (that is to say, no spectrum away from the imaginary axis) but
quite strong instability in the nonlinear theory.

Remark 4.5. Important issues that remain unsolved concern the existence of ei-
genvalues and/or resonances embedded in the essential spectrum and the “gap prop-
erty.” The latter refers to the absence of eigenvalues on the imaginary axis between
0 and 7 in the supercritical case. These spectral properties are important for the
(nonlinear) asymptotic stability theory of the ground state. Some of them have been
verified numerically or even proved rigorously in special cases; see, e.g., [31, 46, 16, 24],
but there is no systematic theoretical understanding so far.

4.3. Spectral properties in the curved geometry. To begin, we show that
the structural properties of the spectrum in the curved case are the same as in the
Euclidean case. An important prerequisite is the nonnegativity of £, _, which we
establish first.

PROPOSITION 4.6. There exists an ag > 0 such that, for all o« > og, Lo :
(RY) L2 ((RY) — L2 (RY) is self-adjoint with the following properties.

rad rad

o The essential spectrum of Lq, — is given by oc(La,—) = [1 + Vo,aa™2, 00).
o We have 0 € 0,,(Lq,—) and ker Lo~ = (Qra + pa)-

H2

rad
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o The operator L, _ satisfies
(‘Ca,—f‘f)L2(Rd) Z Hf“%ﬁ(Rd)

for all f € (Qpa + pa)t N H?4(RY) and all a > «y.

Proof. We define L, 0 : H2 4(RY) C L2 (RY) — L2 (RY) by Laof := —Apaf +
(14 Voqa™2)f and set

Wa(@) = —¢ap (07 '2) [Qra(x) + pa(@)" ™" + a2 [Va (a™"z) = Vo -
Then we have Lo f = Lo of + Wof. By Fourier analysis it follows that
U(,Ca,o) = Ue(ﬁa,o) = []. =+ V()’d()éiz, OO)

Furthermore, by Hypothesis 1.1, Lemma 3.5, Proposition 3.7, and Lemma 3.8, we
have W,, € L>=(R%) N C(R?) and

lim W, (x)=0.

|z|— 00

Consequently, f — Wof : L% (R?) — L2 ,(R?) is bounded and the Kato-Rellich
theorem (see, e.g., [68, p. 159, Theorem 6.4]) shows that L, _ is self-adjoint. In
particular, 0(Ls,—) C R. Furthermore, by [68, p. 258, Theorem 10.2], the operator
f= Wof : L2 (RY) — L2 (R?) is relatively compact with respect to L4, and
Weyl’s theorem (see, e.g., [68, p. 171, Theorem 6.19]) implies that o¢(Lq —) = [1 +
Vo.aa™2,00). As a consequence, 0(Lq,—) \ 0c(Lq ) consists of isolated eigenvalues
only. The same is true for the limiting operator £_, i.e., o(L_) \ 0e(L_) consists of
isolated eigenvalues only, where o.(£_) = [1,00).

Next, we show that there exists a constant p > 0 such that

(4'4) (—OO,—//,) - p(‘caﬁ)

for all v > . To this end we use the resolvent bound [[(A — Lo.o) |2y < [A71,
valid for all A < 0, which is a consequence of the self-adjointness of L0 and 0(L4,0) C
[1+ Vo,qa™2,00). Furthermore, we note that the operator B, f := W, f satisfies

1Bofll 2y < [[Wallpoo ey | fllL2@ey S f Nl L2 (may

for all @ > ¢ and f € L2 ;(R?). Consequently, if u > 0 is sufficiently large, the

rad
operator 1—B,(A—L,0) ! is invertible for all A < —u by a Neumann series argument,

and the identity,
A—Ly_ = [1 —Ba(A— £a70)’1] (A= La0),

proves (4.4).
Now we turn to the computation of ker £, _. Obviously, 0 € o0,(Lq,—) since

Re = Qpa + po € H2 4(RY) N C2(RY) by Lemma 3.9 and

p—1

Lo Ro(x) = —ApaRa(z) + Ra(z) — pap (0 '2) )ﬁa(x)’ Ro()

+ a2V (a_lx) ﬁa(x)
=0.
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In particular, (Ra) C ker(L,,—). To prove the reverse inclusion, suppose f € H2 ;(R%)\
{0} satisfies Lo, f = 0. By the one-dimensional Sobolev embedding we have f €
C(R?\ {0}), and thus W f e L2 (RY) NC(RE\ {0}). Consequently, Lemma A.3

implies that f( )i=7 = f(rel) belongs to C2(0, 00) and satisfies

Py~ T fay 14 Vo aa) ) = Watren) Fir)

for all » > 0. According to Lemma B.1, there exist constants a,b € C such that

7(r) = ago(r) + biio(r), where |go(r)| = r*7*, |gh(r)| = r*7*, and

7‘2|10g7°| d=2, ~2|logr|, d=2,
|¢o()|—{ S gz |?/fo()|—{ —ag Q49
for 7 € (0, 3]. Since f € HL ;(R?), we must have b = 0 and this shows that the kernel
of L,,_ is one-dimensional. Consequently, ker £, _ = <R ), as claimed.
Now we define an operator Co, : L2 4 (RY) — L2 ;(RY) such that L, — = L_ + Ca,
ie.,
Caf(x) = La,~f(x) = L_f(2)
= —¢ap (@~ 95) |Qra(2) + pal(@)["™" f(2) + |Qpa ()P~ f(2)
+a7%V, (o x) fx)
=: Ua(z)f(2).
We have

Ua(z)| < ’\QRd () + pa(@)["" = 1Qra(@)P7!| + |ga(2)| |Qra (z) + pa(a)|"™
+a Vg (e ') |
S 1pa(@) P71+ |pal@)]| + g0 (@) Fy(Qra (2))| + ga(@)]|pa(@)[P! + a7
< a~ =D 4 o714 o2

for all x € R? by Lemma 3.5 and Proposition 3.7. Here we have used the elementary
estimates (3.5) and (3.6) from the proof of Lemma 3.6. Consequently, ||Uy|| o0 (ra) — 0
as a — 0o, and this shows that the operator C, converges to 0 in norm as o — oo.
Recall that £_ is nonnegative. This is a consequence of Qra > 0, L_Qra = 0, and
the Sturm oscillation theorem. Let dy := dist(0,0(£-) \ {0}). Since 0 is an isolated
eigenvalue of £_, we have dy > 0. Let v : [0,27] — C be a simple, closed, smooth
curve that encircles the interval [—1 — i, 1do] and such that y(t) N [3dy, 00) = 0 for
all t € [0,27]. By construction, v(t) € p(£_) for all ¢t € [0,27] and thus, the spectral

projection
1

_ _ —1
=5 [Y(z L) dz

is well defined. By the self-adjointness of £_, we have rg’ P = ker L_ = (Qga) since 0
is the only spectral point of £_ inside of 7. Recall that C, — 0 in norm as a — co
and thus, v(t) € p(Lq,—) for all ¢ € [0,27] and o > g, provided g > 0 is sufficiently
large. This follows immediately from the identity

2=Lo-=[1=Colz— L) "(z- L),
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valid for all z € p(£_). Thus, the spectral projection

Po = i/(z —Lo-) 2
gl

211

is well defined, and we have P, — P in norm as ¢ — oo. Consequently, by [43,
p. 34, Lemma 4.10], it follows that dimrgP, = dimrgP = 1 for all @ > ag. Since
0 € 0,(La,—), we conclude that 0 is the only spectral point of £, _ in the interval
[—1 — p, $do]. Finally, with (4.4), we infer that (—oo, tdo] N0 (La,—) = {0} for all
a > og. In particular, £, — is nonnegative, and this finishes the proof. 0

We also note the following simple observation concerning the operator £, ;.

LEMMA 4.7. The operator Lo + : H2 4 (R?) C L2 (RY) — L2 (R?) is self-adjoint
and invertible.

Proof. We write Lo + = L4 + By with B, f(x) = W, (x)f(x) and

Wale) = —p [pap (072) [Qua(2) + pala) ™" ~ Qe ()P~ | + 02V (™).

We have |[We| e ®e) — 0 as a — oo (cf. the proof of Proposition 4.6), and thus,
B, is a bounded symmetric operator on L2 ;(R?) that converges to 0 in norm as
a — oo. Consequently, the Kato-Rellich theorem implies that £, 1 is self-adjoint.

Since 0 € p(L4), it follows from the identity
Loy =14 BaL3YE,,

and a Neumann series argument, that £, ; is invertible for all & > «p, provided
ag > 0 is sufficiently large. 0

Based on the results on £, +, we can now establish some basic structural prop-
erties concerning the spectrum of L.

LEMMA 4.8. There exists an g > 0 such that for all @ > «ag the operator L, :
(R4, C?) C L2 4(RY,C?) — L2 (R%,C?) is closed and the following holds.

o The spectrum of L, is a subset of R UR.
If A€ o(Ly), then =X € 0(Ly).

o The essential spectrum of L., is given by

H2

rad

0e(Lo) ={z€C:Rez=0,|Imz| > 1+ V07da72}.

There exists a pr > 0 (independent of a) such that (—oo, —u)U(p, 00) C p(Ly).
The set 0(Lq) \ 0c(La) is free of accumulation points and consists of eigen-

values with finite algebraic multiplicities.
We have 0 € 0,(L,) and

0
ker L, = <<QRd +Pa>>.

Proof. First of all, L, + are self-adjoint and hence closed. This implies the closed-
ness of £,. Now consider the unitary operator & : L?(R% C?) — L%(R? C?) given

by
1 /1
w350 5)
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and set H,, := 1 UL U*. Explicitly, we have

. . V(Lo + Loy —£a+£a+> ,
Ho =iUL U = = ’ ’ ’ ’ =Hoo +H,,

! 2 (ﬁa, Loy Lo — Loy 0,

where
H L 7ARd + 1+ Vo’dai2 0
O == 0 Ags — 1 — Vo qa2
7‘[/ fl — Ua Wa fl

*\fe)  \—Wa —-Us)\f2)’

and

Uy(z) := *L;l@d,p (oflyc) |Qga () + pa(@)[P "+ a2[Vy (oflx) —Vo.d],
Wa(z) = =27 04, (a7 '2) |Qpa(@) + palz)P .

Evidently, Ho o is self-adjoint, and
0’(7‘[0704) = 0'5(7'[0@) = (7007 —-1-— V07d0472} @] [1 + V()’dOéiz, OO)
Furthermore, ., is bounded, and U,, W, € L*°(R%) N C(R?) with

lim U,(z) = lim Wy(x)=0
by Hypothesis 1.1, Proposition 3.7, and Lemma 3.8. By [68, p. 201, Lemma 7.21],
we see that H/ (2 — Ho o) ' is compact for any z € p(Ho.). In other words, H., is
relatively compact with respect to Hg . Consequently, by [58, p. 173, Theorem 7.28],

O’e(’Ha) = O’e(Ho,a + ’H;) = JQ(HO@L) = (*OO, -1 - V()’dOéiQ} U [1 + V()7d0672, OO),

and, since H,, is unitarily equivalent to iL,, the statement on o.(L,) follows.
From the identity

z—Ha=[1-Ho(z— 7—[0,0‘)_1} (z—Hoa), z€p(Hoa)

we infer that z — H,, is invertible for z € p(Ho o) if and only if 1 — H/ (2 — Ho o)~ is
invertible. By the self-adjointness of H o we have the bound ||(z—Ho,a) || L2(ra,c2) <
|Im 2|~ and thus, z — H, is certainly invertible for all z sufficiently far away from
the real axis. Furthermore, |1/, | 12®a,c2) S 1 for all a > ap, and thus, there exists a
> 0 such that

{z€C:Rez=0,|Imz| > u} C p(Ha)

for all & > . Consequently, the analytic Fredholm theorem (see, e.g., [62, p. 194,
Theorem 3.14.3]) applied to H/, (2 — Ho o) "' shows that o(Ha) \ 0e(Ha) consists of
isolated eigenvalues of finite algebraic multiplicities that do not accumulate at any
point outside of o.(Hs)-

Next, we turn to the proof that o(L,) C R UiR. Since o.(L,) C iR and
0(La) \ 0e(Ly) consists of eigenvalues only, it suffices to prove that 0,(L,) C RUR.
Furthermore, we may restrict ourselves to nonzero eigenvalues. Let A € 0,(L,,) \ {0}
with eigenfunction f = (f1, fo) € H?(R%, C?). The eigenvalue equation (A—L,)f =0
is equivalent to
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(4.5) Lot f1=—Afa.

Let Py : L2 4(R?) — L2 ,(R?) be the orthogonal projection onto (Qra + pa), and set
Pt :=1-P,. Note that we must have P f, # 0 because otherwise,

fi= %[u’_(,Pan —|—'Péf2) = %‘Ca,—fpan =0,

by Proposition 4.6, and from the second equation in (4.5) we infer that fo = 0. This
is a contradiction to f = (f1, f2) being an eigenfunction. Note further that P, is the
spectral projection associated to the eigenvalue 0 € 0,(L, ) and thus, P, commutes
with £,,_. From the first equation in (4.5) and Proposition 4.6 we obtain

0# (La,fpo%fﬂpofﬁ)ﬂ(ﬂzd) = (‘Ca,ff2|f2)L2(]Rd) = A(fl'f?)Lz(Rd)v
and the second equation in (4.5) yields
(Lot f1lf1)L2@ey = =Afalf1) L2wey = = A(f1lf2) L2 ey
Consequently, since (f1]f2)r2(ra) # 0,

N2 (La,—falfo) L2@a)(La,+ f1lf1) 2 rey cR
|(f1lf2) L2 ey ? ’

which implies that A € RU4R. From (4.5) it is also evident that —\ € 0,(L,).
Finally, by setting A = 0 in (4.5), we obtain from Proposition 4.6 and Lemma 4.7

that
()
¢ Qrd + pa ’

In particular, 0 € 0,(Ly). 0

{ﬁa,fz = A1,

Now we can show that the linear stability of the soliton in the curved geometry
is determined by the stability of the Euclidean ground state, at least if p # 1 + %.

LEMMA 4.9. If p # 1+ %, then there exists an ag > 0 such that for all @ > ag
the following holds.
o The algebraic multiplicity of 0 € op(La) equals 2.
° pr<1+%, there are no positive eigenvalues of L,,.
o Ifp>1+ %, there exists precisely one positive eigenvalue Ao, € 0(Ly), and
the eigenvalues £, € 0,(Ly) are simple.

Proof. Acoording to Lemma 4.8, there exists a p > 0 such that (—oo, —p) U
(1,00) C p(Ly) for all @ > . Let v : [0,1] — C be a simple, closed, smooth curve
such that v(t) € p(£) for all ¢ € [0,1] and v encircles the interval [—p — 1, u + 1]
in such a way that only real eigenvalues of L lie inside of . This is possible since
0 € o,(L) is isolated. Let

1
Pi=_— /(z — L) tdz.
2mi J,
Since £, — £ is bounded and converges to 0 in norm as o — oo (see the proofs
of Proposition 4.6 and Lemma 4.7), v(t) € p(Ly) for all ¢ € [0,1] and all a > ay,
provided ag > 0 is sufficiently large. Consequently,
1
Poi=— [ (2 — L) tdz

211 -
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is well defined, and P, — P in norm as a — oo. This implies

4
dimrg P, = dimrg P = {2’ p<l+ Z’
4, p>1+3,
by Theorem 4.3. Suppose now that p < 1+ % and there exists a positive eigenvalue
Aa € 0p(Ly). Then, by Lemma 4.8, —\, € 0,(L,) and, since 0 € 0,(Ls), we
must have dimrgP, > 3. This contradicts dimrgP, = 2 and thus, there can be
no positive eigenvalue of £, in the case p < 1 + %. Ifp>1+ %, there exists a
unique positive eigenvalue A € o,(£) with algebraic multiplicity 1 (Theorem 4.3). Let
5 :10,1] = p(£) C C be a simple, closed, smooth curve that encircles the interval
[%, w1+ 1] and such that X is the only spectral point of £ that lies inside of 7. Set

-1
Pi=— [ (2— L) tdz.
271 5

As above,

Po = ! /(z—ﬂa)_ldz

21 5

is well defined for sufficiently large o and dimrg 75(1 = dim rgﬁ = 1. Consequently,
there exists a positive simple eigenvalue A, € o,(L,) and by Lemma 4.8, —\, €
0p(Ly). Furthermore, by symmetry, —A, € 0p(Ly) must be simple, too. Since
dimrgP, = 4 and 0 € 0,(L,), there can be no other nonzero eigenvalues in [—u —
1, + 1] as they would have to come in pairs. Since (u,00) C p(Ly), it follows
that there exists a unique simple positive eigenvalue A\, € 0,(L4). In particular, the
algebraic multiplicity of 0 € 0,(L,) must equal 2. d

5. Spectral stability in the critical case. In the critical case p =1+ %, the
situation is subtle, and the stability of the soliton depends on the fine structure of the
geometry.

5.1. Refined properties of L, ;.

LEMMA 5.1. There exists an ag > 0 such that for all a > g the following holds.
We have
Je(ﬁa&) = [1 + V(J,d04727 Oo)a
Lo+ has precisely one negative eigenvalue A}, < 0, and this eigenvalue is simple.

Furthermore, if fi € H2 4 (R?) \ {0} is an associated eigenfunction, i.e., Lo 4 [k =
AL fx, then we have

(fx|Qra + pa)LQ(Rd) £ 0.

Proof. As in the proof of Proposition 4.6, we write Lo 4 f = Lao,0f + Waf, where
Loo: H2 (RY) C L2 (RY) — L2 4(R?) is given by Lo 0f = —Agaf+(1+Voaa2)f,
and

Wo(z) == —P®Pd.p (Oflx) |Qra(z) + Pa($)|p_1 +a? [Vd (047133) - VO,d] .
Thus, by repeating the argument from the proof of Proposition 4.6, we find 0. (L +) =

[1 4 Vp,aa™?,00), and there exists a u > 0 such that (—oo, —u) C p(L4,+) for all
sufficiently large.
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We define C,, : L2 ;(R?) — L?

rad rad
Cof(@) = Loy f(x) = Ly f(x)
= [ -1 (07'2) [Qza () +pale) [ +pIQea () P~ +a~2Va (074)] f(x).

(RY) by

As in the proof of Proposition 4.6, we infer that C, — 0 in norm as o — oo. Let
v :10,1] — C be given by ~(t) = —u + pe?™™. Then, by Lemma 4.7 and the above,
v(t) € p(La,4) for all t € [0,1) and all & > ag, provided o > 0 is sufficiently large.
Define the spectral projections

1

1 -1 -1
P:=_— - d Py = — — Lo dz.
; A/(z L) dz, 2[/(2 Lot)  dz

Then P, — P in norm as o — oo. Furthermore, £, has precisely one simple
eigenvalue inside of « [71, 16], which implies that dimrgP = 1. Consequently, from
[43, p. 34, Lemma 4.10], we conclude that dimrgP, = dimrgP =1 for all & > «p.
In conjunction with (—oo, —p) C p(L4,+) and the self-adjointness of £, + (Lemma
4.7), this means that £, + has precisely one negative eigenvalue A5 < 0, and this
eigenvalue is simple.

Let f* € rgP with || f*| p2rey = 1, and set f; := P f*. Then f* is an eigenfunc-
tion of L4 to the eigenvalue A* < 0. Furthermore,

| fa — f*||L2(Rd) = [[(Pa —P)f*”L?(Rd) —0

as o — oo and thus, fr # 0 for all @ > «ap if a9 > 0 is sufficiently large. As
a consequence, fx is an eigenfunction of L,  with eigenvalue A}, and any other
eigenfunction to this eigenvalue is a multiple of fZ. Since A* is the only negative
eigenvalue of L, it follows by Sturm oscillation theory that f* does not have zeros.
In particular, (f*|Qga)r2(rae) 7 0. The fact that

(falQra + pa)r2mey = (f*1Qra)L2(re)
as a — oo thus implies that (f;|Qra + pa)r2@e) 7 0 for all a > ag, provided ag > 0
is sufficiently large. 0

LEMMA 5.2. Let a > 0 be sufficiently large and denote by P2 the orthogonal
projection onto (Qpa + pa)*, i.e.,

(fIQra + pa)L2(ra)
||Q]Rd + pa”i2(Rd)

Paf=f~ (Qra + pa).

Then the operator PrL PL: H2,(RY) C L2 (RY) — L2

rad

(RY) is self-adjoint, and
0e(PELo +PE) =14 Voga™2, 00).

Proof. The proof is based on the standard trick (see, e.g., [43, p. 246]) of using
the decomposition

PrLo Pt =Lot +(Pr—1)La s Pr+ Loy (PE—1)=: L0y +Ka.

Since dimrg(PL+ — 1) = 1, the operator K, : H2

rad(Rd) C L?ad(Rd) - L2
finite rank. The estimate,

rad

(R?) has
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Lo +PEf|Ra - R, -
Ko flpaguey < CotalBolanlyz ) JR @ e )
| Rq ||Lz(Rd | Ra ||Lz(Rd
(f|P Lo +R Jreray  La, +Ra | 2 (re)
+ 11l 22 (ray
| R | 2 (me) | R | 2 (re)

H‘Ca +R HL2 R4
< ot ED | £ o e

[ BRallL2 e

for all f € H?,(RY), where R, = Qrt + pa, shows that I, extends to a bounded
operator Ko : L2 (RY) — L2  (R?) of finite rank. In particular, K, is compact.
Furthermore,

Ky =PrLo (Pr 1)+ (P:—1)Lay =PLLoa PE— Lot =Ka,

and thus K, is self-adjoint. By the Kato—Rellich theorem (see, e.g., [68, p, 159, The-
orem 10.2]) it follows that PLL, P is self-adjoint. Weyl’s theorem (see, e.g., [68,
p. 171, Theorem 6.19]), in conjunction with Lemma 5.1, yields the statement on the
essential spectrum. 0

Next, we establish a crucial dichotomy for L, .

PROPOSITION 5.3. Let a > 0 be sufficiently large.

o If (L’;}JF(QRd + pa)|Qre + pa)r2mey > 0, then there exists an fo € (Qra +
pa)t N HZ (RY) such that

(‘Ca,+fa|fa)L2(]Rd) <0.
o If (Ll;,l-&-(QRd + Pa)|Qra + Pa) 2wy <0, then
(La+fI1f)r2@ay >0

for all f € (Qga + pa)t N HZ G (RY).
Proof. We first assume that

(_

o+

* E") L2(R4) >

where R, = Qra + po- Let P2 be the orthogonal projection on (R,)*, i.e.,

Ro)p2(rd) =
prf— g UHfe)rms )QL ED R...
A,

We set f, := Pjﬁ;ﬁréa € (Ro)t N H2

rad

(R4). Then we have

(Ea,Jrfoz‘fa)L?(Rd) = (£a7+77i£;7iéa

)L?(Rd)

a+1te

(fr;#ﬁa\éa)m(u@d)

= (Ra|ColiRa) =t
@ L2(R?) IRallZz ga)
S (L3 Ral Ra) 2 (5 |5
X (;Ca’+Ra ‘COL,LRQ) o 7+~ : ( )(Ra Ra) o
L2(R?) ||RaHL2(Rd) L2(R?)
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(L34 RalRa)T2 gay

_ Lo +Rao|Ra
[Rall7z ga) ( >L2<Rd>
e (LY Ro|R,)2 i~
_ (L;LRQ Ra) pt 0 LR (£Q,+Ra Ra)
’ L2(R) IRall7z a) L2 (R4)
CorlblReliwn (715
[Rall7z a) ’ L*(R%)
Thus, it suffices to show that (Ea’+ﬁa‘§a)L2(Rd) < 0. Explicitly, we have
~ ~ ~ p—1
Lo +Ro(z) = Lo -Ral(z) — (p—1)pay (0 ') ‘Ra(x)‘ Ry (x)
_1 - p—1
= _(p - 1)<pd,p (a x) ‘Ra(x) Ra($),
and thus,
Lo Ra|R i 1) [Ra@)|" dz <0
( a,+1la a)LQ(Rd) = _(p_ X/]Rd Pd,p (a {IT) ‘ a(x)‘ Tz <0,

since g, > 0 by Hypothesis 1.1. In summary, (Lo, 4 folfa)r2®e) < 0, as claimed.
Next, we assume that

(£ Ra

R.) <0
L2(R4)
Suppose there exists an fo € (Ro)*™ N HZ (RY) such that (Lo 1 falfa)r2we) < 0.

Consider the operator P+ L, +P+. By assumption, we have

0> (ﬁa,+fa

o) paguy = (Lot P

Pafa) yn = (PaLasPifa

fa)L?(Rd)’

and thus, by Lemma 5.2, Pj/:m_ﬂ?j must have a negative eigenvalue A\, < 0. In other
words, there exists a nontrivial g, € (R ) N Hfad(]Rd) such that PL L, 1 g0 = Aaba-
This means that there exists a ¢, € C such that

L2(R%)

£a,+ga = /\aga + calRo.

We claim that ¢, # 0. To see this, recall that £, 4+ has a unique negative eigen-
value ¥ < 0 (which is simple), and if f* is an associated eigenfunction, we have
(f;|EQ)L2(]Rd) # 0; see Lemma 5.1. Suppose now that ¢, = 0. Then g, is an eigen-
function of £, + with negative eigenvalue \,, and thus, A, = A}, and g, must be a
multiple of fZ. This, however, contradicts (ga|Ra) r2rdy = 0, and the claim ¢, # 0
follows. Note further that A, # A’ because otherwise we would arrive at the contra-
diction

0= (ga’<£a7+ - )\:c)f(;>L2(Rd) = ((Ea,Jr - )‘:y)ga’f;)Lz(Rd) = Ca (Ea‘fgz)Lz(Rd) 7é 0.

Consequently, we have N
(ch,+ - )\a)ilRa = iga-
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Furthermore,

R, 1

((£Q,+ - )\a)_léa = a(ga|§a)L2(Rd) =0.

)LZ(Rd)

Now we define a function ¢, : (—o0, 0]\ {AL} — R by

00 = (Eae =N Ral )

Note that ¢, is differentiable, and

Rq
2

>0
L2(R%)

(N = (ot =N *Ra

~ (o =N "Ra

Loy — A)_lﬁa)

)L2(]Rd) L2(R4)

= [ €as =N Ra

for all A € (—o0,0] \ {\%}. By assumption,

R, <0

6a(0) = (Lol Ra|Ra) |, . <

and ¢ (Aa) = 0. Thus, we must have A\, < A% since otherwise, we would arrive at
the contradiction

——
=0

0
02 6a(0) = [ NN+ galha) >0
Aa
However, A\, < A} is also impossible since it leads to the contradiction

0= 6a(ra) = ((ca,+ — Aa)"'Rq EQ)LQ(W) - ((,cm+ WAL

O‘)LZ(Rd)

~ . ~ 9
Sa>L2(Rd) +(a -~ /\O‘)HSO‘HLQ(Rd)

where ga = Lo+ f/\oz)’léoK and we have used the fact that £, 1 —\}, is nonnegative;
see Lemma 5.1. In summary, we see that there cannot exist an f, € (Rq)>NHZ  (R?)
with (La,+ falfa)r2@ey < 0, and this finishes the proof. O

1 1
5.2. The auxiliary operator L7 L 4L/, _. By Proposition 4.6, L, — is

1
nonnegative and thus, the square root £; _ is well defined either via the functional
calculus for self-adjoint operators or by the Dunford-Taylor integral; see, e.g., [43,

p. 281, Theorem 3.35]. Furthermore, since Eé_ is self-adjoint, we have
1
ker L2 _ =ker Lo = (Qra + pa)

1
and rg L _ = (Qra + pa)* by Proposition 4.6. As expected from the Euclidean case,
1 1
the auxiliary operator L, _ L, + L, _ plays a crucial role.

DEFINITION 5.4. Let o > 0 be sufficiently large. We define an operator

Ta: D(ja) C <Q]Rd +Pa>l - <QR'1 +p0¢>l
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by
D(Ja)
={re DLE )N Qg+ pa) : L2 _f € D(Lay) and Lo LE_f € D(Eé’,)}

and Jo f = E%_Eaﬂrﬁ%’_f,

It is not immediately obvious that 7, is densely defined. Thus, we first establish
this fact using the following simple property of maximally defined products.

LEMMA 5.5. Let (X, |- |x), (Y,| - |ly), and (Z,] - ||z) be Banach spaces. Fur-
thermore, let A : D(A) CY — Z and B : D(B) C X — Y be densely defined
linear operators and assume that B is bounded invertible. Then the mazimally defined
operator’ AB : D(AB) C X — Z is densely defined and D(AB) is a core for B.

Proof. Let x € X and € > 0 be arbitrary. Since D(B) is dense in X, we can find
an 2’ € D(B) such that ||z — 2'||x < §. By the density of D(A) in Y, there exists
a y € D(A) such that ||Bz’ — gy < §||B*1||g(1x y)- Set & := B~'y. By definition,
Z € D(AB) and

lz = Zllx = llo = a'llx + ]2’ = Zllx < 5+ [|1B~ (B2’ - Ba)||x

IN

§ 1B s 1Ba' —glly <e

To prove the second assertion, let € D(B). We have to show that there exists a
sequence (T )nen C D(AB) such that x,, — « in X and Bz, - Bz in Y as n — oo.
Since D(A) is dense in Y, there exists a sequence (y,)neny C D(A) such that y, — Bz
inY asn — oo. We set x, := B~ ly,. Then (z,)nen C D(AB), and we have
Bz, — Bx inY as well as

lzn = @llx = [|1B~ (By — Bx)|x < llyn — Bz|ly — 0

as n — oo. O

LEMMA 5.6. Let o > 0 be sufficiently large. Then the operator J, is densely
defined.

Proof. To begin with, we define an auxiliary operator A, : D(A,) C L2 4(RY) —
(Qra + pa>J— by

1
D(A) i= {[ € D(Las) = H2aRY) : Ly f €D (25 )}

and A, f = Eé_’,ﬁagrf. Since 0 ¢ 0(Lqa,+) by Lemma 4.7 and Lemma 5.5 shows

that A, is densely defined. Next, we define another auxiliary operator B, : D(B,) C

<Q]Rd —+ po¢>L — <Q]Rd + pa>L by

D(B,) :=D (.Ci_) N (Qra + pa)t

and B, f := L’jff. Obviously, B, is densely defined and, since ker 5%77 = (Qra+pa),

1 1
it follows that B, is injective. Furthermore, by the self-adjointness of £; _,rg L] _ =

a,—)

2That is to say, D(AB) := {z € D(B) : Bx € D(A)}.
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1
(Qra + po)* and thus, for any g € (Qga +po)* we can find an f € D(L; _) such that
1 1
Ej,fpjf =L, _f =g, where PL denotes the orthogonal projection on (Qga + pa ).
Consequently, P+ f € D(B,) and B,PL f = g. This shows that B, is surjective. From
1

the closedness of £2 _ it follows immediately that B, is closed, and the closed graph

theorem implies that B, is bounded invertible. Now observe that J, = A.Bs, where
the product A,B, is maximally defined. Consequently, Lemma 5.5 implies that 7,
is densely defined. 0

Remark 5.7. Lemma 5.5 also shows that D(J,) is a core for the operator B,
defined in the proof of Lemma 5.6.

The importance of 7, derives from the following observation.

LEMMA 5.8. Let a > 0 be sufficiently large and A € C\ {0}. Then we have the
following implications.
o If X € p(Ly), then A2 + T, is surjective.
o The operator A — L, is injective if and only if \?> + T, is injective.
Proof. Let X € p(L,) and g € (Qra + pa)-. We have to show that there exists
1
an f € D(J,) such that (A\> + J,)f = g. By the self-adjointness of L2 _, we have

1 1 L
gLl = (kerci )

and thus, there exists an g; € D(ﬁé,_) such that )\Eiv_gg = g. Since A € p(L,),
there exists (f1, fo) € H?(R?, C?) such that

a0 () = ()

A.fl _‘Ca,—f2 207
Lo+ J1+ A2 = g2.

Equivalently,
(5.1)

By inserting the first equation into the second one, we find
1
LoiLofo=—Nfy+Ags €D (,cc;_) :
and applying E%’_ yields
1 1 5 1 5
Lo _La+Ly [f==-XNF+ALS _g2=—-Nf+g

1
with f:= L2 _fo € D(Ja)-
To prove the second assertion, we first assume that A\? 4+ 7, is injective. Suppose

R

Then, by setting g = go = 0 in the above computation, we find (A2 + J,)f = 0 for
1 1
f =L _f2. This shows that fo € ker L} _ = ker L, _, and the first equation in (5.1)
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implies that f; = 0. Subsequently, the second equation in (5.1) with go = 0 shows
that fo = 0 as well.
It remains to prove the reverse implication; i.e., we assume that A— L, is injective
and show that \? + 7, is injective. Consider the equation (A\?> + J,)f = 0 for an
1

arbitrary f € D(J,). We have to show that f = 0. Set f; := L2 _f. From f € D(Ja)
we infer that f; € D(£é7_£a’+) C D(La+) = H?4(RY). Furthermore, we define
fo = —§£a7+f1 = —%£a7+£%,_f € D(ﬁéy_). Then we have

LE_fo=—1Juf =M €D(Ja) CD(LE_),

which shows that fo € D(L, ) = H2

rad

A L) <f1> _ (Afl —Ea,f2> _(MeE_f-aci_f) _ <0)
"\ f2 Lo+f1+Af2 0 0/’
and it follows that f; = fo = 0 by the injectivity of A — L. Since f; = L(%’_f, we

infer that f € ker LZ%_ = (Qre + pa). Together with f € D(J,), this implies that
f=0. O

A consequence of Lemma 5.8 is the self-adjointness of 7.

(R?). Consequently,

LEMMA 5.9. Let a > 0 be sufficiently large. Then the operator [J, is self-adjoint.
Proof. By the self-adjointness of £% Lo+ and Lemma 5.6, it follows that 7,

a,—)

is symmetric. In other words, J, C J; and, since J; is closed, J, is closable and

its closure 7, is symmetric, too. Now consider the operators +i + Jo = p3 + Ja,
i

where py := % =+ 7 By Lemma 4.8, uy € p(L,) and thus, Lemma 5.8 implies
that +i + J, is surjective. Consequently, i + J, is surjective and therefore, 7, is
self-adjoint (see, e.g., [43, p. 271, Theorem 3.16]). Let g € D(J,) be arbitrary. By
the surjectivity of i + J,, there exists an f € D(J,) such that (i + Jo)f = (i + Ja)g
and J, C J, implies that (i + J,)(f —g) = 0. Since 0,(J,) C R, we must have
f—g =0 and therefore, g € D(J,). Thus, we have proved that D(7,) C D(J,), and
this shows that J, = Ja. 0

We need one last technical result.
LEMMA 5.10. Let o« > 0 be sufficiently large and define B, : D(Bs) C (Qre +

pa)t = (Qra + pa)t by D(Ba) := D(LZ_) (1 (Qpa + pa)t and Buf := L2 _f. Then
the (mazimally defined) operator L, +Bq is densely defined, closed, and D(Ja) is a
core for Lo, Bo.

Proof. Recall from the proof of Lemma 5.6 that B, is closed and bounded in-
vertible. As a consequence, Lemma 5.5 shows that £, B, is densely defined. Let
(fn)nen C D(La +Ba) C D(B,) with f, — f and Lo +Bafn — h as n — oco. Then

we have
HBafn - ‘C;,1+h|‘L2(Rd) = H‘C(;}Jr (‘Ca,+6af’ﬂ - h)HL2(Rd) 5 ||‘C06,+Bafn - hHL?(Rd) —0

as n — oo, and the closedness of B, implies that f € D(B,) and B, f = E;’Lh €
D(La,+). Consequently, f € D(Ly +Bq) and Lo +Bof = £a7+£;1+h h. This
proves the closedness of L, 1 B,.
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Next, we claim that L, 1B, has closed range. Indeed, let (hy)nen C rg(La,+Ba)
with h, — h as n — oo. Then there exists a sequence (fy)nen C D(Ly,+B4) such
that Lo 4+Ba fn = hy. In other words, f, = B;lf,;ﬁrhn and thus, f, = fasn — o
for some f € (Qra+pa)t. By the closedness of £, 1 Ba, we infer that f € D(L, +Ba)
and Lo +Baf = h, which shows that h € rg(Lqo,+Ba).

Now we define an auxiliary operator A, : D(An) C (Qpre + pa)t — 18(La 1+ Ba)
by D(Ay) :=D(Lo+Bs) and Ay f := Lo +Baf. By the above, A, is densely defined,
closed, and bijective. Thus, the closed1 graph theorem shows that A, is bounded
invertible. By definition, D(Ja) = D(L; _Aqa). Lemma 5.5 implies that D(J,) is a
core for A, and hence for L, 4 B,. 0

5.3. Spectral stability in the critical case. Now we can establish a stability
criterion also in the critical case p =1+ %.

LEMMA 5.11. Ifp=1+ %, then there exists an ag > 0 such that for all a > «g
the following holds.
o If (E;)lJr(Q]Rd + pa)|Qra + pa)r2(ray > 0, then L, has precisely one positive
eigenvalue A, and the eigenvalues £\, € 0,(Ly) are simple.
o If (E;}JF(QRd +pa)|Qra + pa) L2may < 0, then L, has no positive eigenvalues.

Proof. Let P and P, be the spectral projections from the proof of Lemma 4.9.
By Theorem 4.3 and [43, p. 34, Lemma 4.10], we have dimrg P, = dimrgP = 4 and
thus, by Lemma 4.8, there can be at most one positive eigenvalue A, > 0 and if so,
the eigenvalues £\, € 0,(L,) will be simple since 0 € 0,(Lq).

Now assume that (E;,l_,’_(QRd + pa)|Qrd + pa)r2(rey > 0. Then, by Proposition
5.3, we can find an f, € (Qra + pa)t N HZ4(RY) such that (Lo 4 falfa)r2@e) < 0.
From the self-adjointness of £, _, we have

1 1 1
gLy = (ker[,;,,) =ker(Lo )" = (Qpa + pa)*

1 1
Thus, since fo L Qga + pa, there exists a g, € D(L; _) such that Ej(,_ga = fa. Set
= PL§., where Pr is the orthogonal projection onto (Qga + pa ). Then we have

Jga € D(B ) and Bogo = £2 _Plrg. = ﬁ{_ﬁa fa, where B, is the operator defined
in Lemma 5.10. By construction,

('Ca,+Bozga

Baga) = (Ea,+foz|fa)L2(Rd) < 0.

L2(R%)

Since D(Ja) is a core for Lo, 1Baq (Lemma 5.10), we can find for any given € > 0 an
fa € D(J,) such that || La,+Ba fa — Lo+ Bogallr2 ey < € and

”Ba}; - BagaHB(Rd) = ||£;1+ [ﬁa#Baﬁx - £a7+8a9a“|L2(Rd) S e

Consequently, by choosing € > 0 sufficiently small, we find

0>( wiBafa

Ba fa)

= (€3 Lot Ta

= (Catd _Fuolcd

fa) L2(R4)
};‘)LZ(W)'

2(Rd)

fo‘) L2RY) (Jafa
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Lemma 5.9 therefore implies that J, has negative spectrum; i.e., there exists a A, > 0
such that —A\2 € o(J,). If =22 —Jo = —(A\2 + J,,) is not surjective, then, by Lemma
5.8, Ao € 0(Ly) and by Lemma 4.8, A\, € 0,(Ls). If —(A\2 + J,) is not injective,
Lemma 5.8 implies that A, € 0,(Lq).

If, on the other hand, (E;}JF(QRd + Pa)|Qra + pa) L2 ey < 0, we obtain

>0

(TaflF)rae = (LorldF|LA-F)

for all f € D(J,), by Proposition 5.3. Thus, Lemma 5.9 implies that o(J,) C [0, 00),
and from Lemma 5.8 we infer that A\ — £, is injective for any A > 0. Consequently,
Lemma 4.8 shows that o(L,) "R = {0}. d

Proof of Theorems 1.5, 1.6, and 1.7. Consider the map V, : L2 (M%) — L2  (R?)

rad
given by
a (Ao d%l
vaf(e)=at (S ) T paely

a~!z|
with inverse s
d T

Vil f(ry) =a? (A(r)) N flarey).

We have
d|qd—1 17”) -t 1 2 d—1
Vi Py = a8 [ (F52) it tnpe=tar
Sd 1|/ (r,y)| 2A )dildr
= {11172 ey

and thus, V, is unitary for any o > 0. Furthermore, recall that

d—1

)2 (Qusares) + palares)],

QMd,a(Ta y) = 04% <A:7”)

and thus, for any radial f € C2°(M9), we have
Lygtqrf =0V LazVaf.

Consequently, the closure Ly , of ZM(i’a is given by

o 0 VolLa Ve
£Md,a =« (Valﬁa,+va 0 5

and Ly , is unitarily equivalent to a?L,. This implies the claimed statements. 0O

6. Stability and curvature. From [4], we know that in negative curvature there
is blow-up instability for sufficiently high energy. In this last section we give numerical
evidence of how this instability manifests in the bifurcation theory from the Euclidean
situation. The soliton may become linearly unstable in the curved geometry if the
curvature is strictly negative everywhere or otherwise. More precisely, we consider
the model case of a warping function A(r) = r+cy7® +cor®, in the critical case d = 2,

p = 3. The sectional curvatures of the manifold M? are given by

B A" (r) 6cq1 + 20¢o12 1— A'(r)? B (3c1 + 5car?) (2 + 3c17? + begr?)

A(r) 14172 + cort’ A(r)? (14 172 + cort)?
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6.1. A formal expansion. As before, we write Ra = @r2 + po with p, from
Proposition 3.7. By Lemma 3.9, R, € C?(R?) and

ArzRo () — Ro(z) — a2V, (o '2) Ro(x) + a3 (o '2) Ro(2)> =0
for all z € R?. When written out explicitly for our model case, this reads
(14 c1a72r? 4 coa 12 (Age — 1) R,
(6.1) — a2 [2¢1 + (2 + 8ca)a" 2% + bercoart + 4cka 0% R,
+(1+ca?r?+ 620747'4)I§§ =0,
where r(z) = |z|. Now we assume an asymptotic expansion of the form
(6.2) Ra(#) = Qa2(2) + a7*Qu(#) + a™'Qa(2) + a”°Q(w, ),

where [|Qp (-, @)||r2r2) S 1 and [|[0aQEe(- a)| 22y S @™t for all @ > 1. Then, in
view of Theorem 1.3, the soliton profile on M? is given by

Quz,o(ry) =« (/17(67*)) ’ [QRz (arey) + a_QQl(arel) + 04_4Q2(047°el)

+a %Qg(arey, )]

and thus,
oo 2 o0

1Qu2 |72 2 :/ /QMZ,a(ﬁy)QA(T)TdydT:?W/ Quiz,a (1, y)>A(r)dr
o Jr y*+1 0

= 27T/ [QR2 (rer) + a72Q1(T61) + a74Q2(rel)
0
+0z_6QE(rel,a)]2rdr
= (| Qrz |72 R2) + 207 (Qr2|Q1) L2 2)
+ a7 10132 ey + 2(Qe2lQ2) 2| + O(a™®).

In order to compute the profiles @ and Q2, we plug the ansatz (6.2) into (6.1) and
solve order by order in «. This yields

o’ : Ag2Qpr2 — Q2 + Q32 =0,
a2 L.Q = —c1(2Qg: + TQQJ:I))@)’
a™t L1Qs = —2¢1Q1 + (3¢} — 8¢2)r*Qre — 31 Q2 Q1 + 3Qw2QF + (¢f — ) Qe

with £ = —Ag2 + 1 — 3Q3.. By definition, Qg2 ,(z) = aQg:(ax) satisfies
Ap2Qp2,q — 0*Qp> o + Q2 o, = 0.
By differentiating this equation with respect to a, we see that
S0(2) = 0aQrz,a(2)la=1 = 270;Qra (z) + Qra(2)

satisfies
LSy =—Agr2So + So — 3Q2250 = —2Qg:.
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Consequently,

(Qr2|Q1)2r2) = — 5 (L450|Q1) L2(R2) = — 3 (S0|L4+Q1) L2(R2)
c1(S0|Qr2) r2(r2) + 3¢1(So|r* Q) 12 (r2)
0,

since
0= 0al|Qr2 [ Z2(Re) = OallQr2 all72z2) = 2(0aQr2,a|Qrz,0) L2 (r2)
and
0= OallrQfelltz(me) = OallrQRe oll72re) = 4(0aQr2,a 1O o) L2 (r2),
which, when evaluated at o = 1, reads
0 = (So|Qr2)r2(re) = (So|r’Qi2)r2(r2).

This implies that
1Qm2 0l T2 2y = |Qrz |72y +7* [||Q1||2L2(R2) + 2(Q]R2|Q2)L2(R2)} +0(a™%).
The sign of 8a||QMz7a||2LQ(R2) is to leading order determined by the sign of
k= (| Q172 re) + 2(Qr2|Q2) L2 (E2)-
More precisely, we have
al|Quz al|F2ap2) = —4a ™k +O(a”)

and the soliton is linearly unstable for sufficiently large « if k > 0; see Theorem 1.7
and Remark 1.8.

6.2. Stability. By using the defining equation for @2, we find the expression
k= Q11722 — (£+50|Q2) 22y = [ Qull72(r2) — (SolL4Q2) L2 (m2)
= [|Q1 1172 g
+(S0{261Q17(3C% — 862)7'2Q]R2+3017‘2Q]§2Q1*3QR2Q%7(C% — CQ)TAQ]?p)LQ(RQ).

It is convenient to introduce the function @1, defined as the unique solution (in
HZ2 (R?)) of the equation

rad
L4Q1 = —2Qz= — Q3.

Then we have Q1 = 01@1, and we arrive at Kk = c%bl + caby with

by = ||©1H2L2(R2) + (S0|2Q1 — 3r2Qre + 3r°Q3:Q1 — 3Qr2 Q% — 7’4Q%2)L2(R2),

by = (S0/8r*Qr2 + 7' Q32) ;. ®):

Consequently, the issue is to determine the signs of b; and by (which depend only on
the Euclidean profile Qgz). An integration by parts yields

by = —8(Qr2|r’Qr2) 2 2) — 5 (Qr2|r* QR2) 22y <0,
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and numerical evaluation shows, somewhat surprisingly, that b; > 147; see Appendix
C. This means that the simple choice ¢; = 1 and ¢ = 0 provides a negatively curved
metric that makes the soliton linearly unstable. In addition, we see that there are
values of ¢; < ¢o such that the mass condition for stability is possibly true. Of course,
to establish orbital stability, further analysis is required on such a manifold, for which
the metric expansion is far from standard examples.

Appendix A. Background material.
For the convenience of the reader and to fix notation, we compile some background
material on radial distributions and distributional solutions of Poisson’s equation.

A.1. Radial distributions. As usual, for U C R? open, we denote by D(U) =
C(U) the set of test functions. For (¢,)neny C D(U) and ¢ € D(U), we say that
lim,, 00 on = ¢ in D(U) if there exists a compact K C U such that supp ¢, C K for
all n € N and for any k € N, |l¢n — @[lwr.c () — 0 as n — oo. Here,

lllweowy = Z ||66S0||L°°(U)
1BI1<k

with the usual multi-index notation. This notion of convergence defines a topology
on D(U) and the space D'(U) of continuous linear functionals on D(U) is called the
space of distributions.

In order to define radial distributions, we start with a test function f € D(R9)
and define its spherical mean M f by

M) = g [ Fel)do(e)

where o is the standard surface measure on the sphere S4~1. Clearly, M f = f if and
only if f is radial. The most important properties are summarized in the next lemma.

LEMMA A.1. We have Aga M f = MAgaf for all f € C(RY). Furthermore, for
any s > 0 we have

M fllrre ey S I f s may
for all f € C*(R?). Finally, M extends to a self-adjoint operator on L?(R?).

Proof. We use polar coordinates © = rw’ defined by r = |z|, W’ = % for x €

B
R\ {0}. Since M f is radial, we obtain

AgaMf(x) = (02 + E&, Mf(ru') = % 0 + E&, flrw)do(w)
T |Sa=1] T g1
1 5 d—1
— i [ (2 20 stdoto)
! s d—1. 1
— W - (8T + T@, + 7ﬂ2A541’W> frw)do(w)
1
= W L Aga f(rw)do(w)
= MAgaf(z)

for any # € R?\{0}. Next, by Cauchy—Schwarz,
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oo
2 2 d—1
1M 112 2 g :/0 /S | M f (rw)[2do (w)rd=Ldr

S /000 /Sd?l /Sdil |f (rw")|?do (W) do (w)r?~Ldr
S F 1172 gay-
Since M commutes with Agras, we can also estimate
| M £ o (ray = ||A]1k§de||L2(Rd) + [|M fll 2 wey = ”MA]]k{deLz(Rd) + [|M £l 2 ey
S AR fll2@ay + 1 Fll L2 eey
= ||fHH2k(Rd)

for any k € Ny. By interpolation, we obtain the claimed estimate. Clearly, M f has
compact support if f € C>(R?), and the Sobolev embedding theorem shows that in
fact M f € C2°(R?). In particular, Aga M f(x) = M Agaf(z) holds for all x € R? by
continuity.

By density, M extends to a bounded operator on L?(R%), and we have

(M flg) L2 () :/Rd Mf(ﬂf)g(w)dx=/0oo Sdile(rw)mda(w)rd_ldr

=g, [ [ seee o

N ‘ST{” /OOo Sd-1 f(re) /Sd—l mda(w)da(w/)rdfldr

= /000 f(rw"YMg(rw")do(w')ré=tdr

= (f\Mg)L"‘(Rd)

for all f,g € C2°(R?) by Fubini. Consequently, M extends to a self-adjoint operator
on L?(R9). o

We use the same symbol M to denote the extension of the spherical mean to
L*(R%). For s > 0 we define the closed subspace H?  (R?) C H*(R?) of radial
functions in H*(R%) by

ndRY) = {f e H*R?): M[ = f}.

It is now straightforward to further extend M to distributions. Indeed, for u €

D'(R?) we define Mu by
(Mu)(p) := u(Mgp)

for all ¢ € D(RY). Obviously, Mu is a linear form on D(RY) and, for any K C R?
compact, we can find a k € Ny such that

|(Mu)(p)] = [u(M@)| S [Mpllwe@ey S M@l eragay S llmerame
S llellwrra.ce (r)
for all ¢ € C*(K) by Sobolev embedding and Lemma A.1. This estimate shows
that Mu € D'(R%) and by the self-adjointness of M on L?(R%), the operator M :
D'(RY) — D'(R?) is an extension of M to the space of distributions. Consequently, it

is justified to simplify notation by writing M instead of M. Accordingly, a distribution
u € D'(R?) is said to be radial if Mu = u. Note that by Lemma A.1, Ags maps radial
distributions to radial distributions.
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A.2. Regularity results. We state and prove two regularity results for radial
distributional solutions of Poisson’s equation. It is convenient to introduce the fol-
lowing notation.

DEFINITION A.2. Let U C R be open and f € Ll _(U). Then we define the
distribution f* € D'(U) by

ﬂwwzéfwwwm

for ¢ € D(U).
LEMMA A.3. Let f,g € C(R?\ {0}) N LL (R?) be radial and suppose f satisfies

loc

Agaft = g% in D'(RY).

Then the function f : (0,00) — R, defined by f(r) := Pz f(rey), belongs to C%(0, o)
and satisfies

Ry R ()
for all r > 0.
Proof. Let
Dp(r) = vr) — L=

The operator Dy maps D(0,00) to D(0,00) continuously and is formally self-adjoint
on L?(0,00). Thus, Dy extends to D’'(0,00) by setting Dgv(v)) := v(Dgyp) for v €
D'(0,00) and 9 € D(0, 00). Furthermore, we have the identity

d—1

g (117701 D)) (@) = [2 =" (Pav) ()

for all z € R%. Now note that 1) € C2°(0,00) implies | - |~ = (] - |) € C=(R?) and
thus, every distribution u € D’(R?) defines a distribution @ € D’(0, c0) by setting

() =u (1177 ()
for ¢ € D(0,00). Then we have

for all ¢ € D(0, 00), and the equation Agaf = ¢* in D’(R?) implies that
Dyft = gt in D'(0, 00).
Explicitly, we have
~ d—1 d—1 o0 d—1
Frtw) = £ (117700 -D) = [ F@lel T vl = 89 [ 77 frenuiryar,
R 0
and thus, fﬁ = f* with f(r) = \Sd_1|r%f(rel). This yields
Dyf* = ¢* in D'(0, ),

and by [41, p. 58, Corollary 3.1.6], it follows that f € C2(0, ) and Dyf = § holds in
the classical sense. O
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LEMMA A.4. Let f,g € C(R?) be radial, and suppose f satisfies
Agaft = g% in D'(RY).
Then f € C*(R?) and Agaf(x) = g(z) for all x € R in the classical sense.

Proof. From Lemma A.3 we know that f(r) := rie f(re1) belongs to C?(0,00)
and satisfies

Friy ~ = ) -2 e

for all » > 0. In particular, f € C?(R?\ {0}). We set ¢(s) := s~ 1 f(\/3) = f(v/s€1).
Then ¢ € C%(0,00) N C([0,00)) and

§'(5) + 58/ (5) = Th(s)

s
for all s > 0 and h(s) := g(y/se1). Obviously, h € C([0,00)). A fundamental system
for the homogeneous equation is given by {1, g}, where tg(s) = 23‘% ifd>3

4
2

and ¥y (s) = logs if d = 2. Note that W (1,10)(s) = s~ 2,
of constants formula, ¢ can be written as

and thms7 by the variation

B(s) = co + c190(s) / o (1) t2_1h( t)dt + 1o(s )/st%_lh(t)dt

0

for some constants cg,c; € R. Since ¢ € C([0,00)), we must have ¢; = 0, and
therefore,

¢ (s) = h(s) /Ostg_lh(t)dt =5 % /Osté‘—lh(t)dt.

Consequently, by de I'Hopital’s rule,

: t :
g, 16) = g, 2 = g

and we see that ¢ € C*([0,00)). Furthermore,

¢"(s) = s""h(s) — §s7 5 / (= 57 h(s) — 57 (),
0

and thus,
lim [s¢”(s)] = lm [h(s) — 4¢/(s)] = 0.

s—0+ s—0+

By definition, f(z) = ¢(|z|?) and thus,
00k f(x) = dajane” (|2]*) + 2¢' (|2 |*) 3.

This implies that
lim 905 f (x) = 2¢'(0)d;,
xTr—r

since
220" (J2*)] < |2*[¢" (J2[*)] — 0
as |z| — 0. Consequently, f € C%(R%). O
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Appendix B. Construction of a fundamental system.

LEMMA B.1. Let A > 0 and V € C*°([0,00)). Furthermore, suppose that for any
k € Ny there exists a Cy, > 0 such that |[V®) (r)| < Cy(r)=27F for all v > 0. Then the
equation

(d—1)(d—3)
R

(B.1) ¢"(r) — ¢(r) = V(r)d(r) = X¢(r) =0

has fundamental systems {¢o, o} on (0, %] and {Poo, Voo } 0N [i o0), respectively, of
the form

_ st . ” = rz log r[1 + bo(r)], d=2,
do(r) =17 [1+ ao(r)], Po(r) = {—diﬂd?g[l-kbo(?“)], 442,
oo (r) = e [L + aco (1)), oo (r) = g€ L+ oo (7).

For any k € Ny there exists a Cj, > 0 such that’

|a(()k)(r)| < Cprtk for all r € (0, %],

(k) |logr|~tr=F d=2,

|a((>§)(r)| + \bg’;) (r)] < Cpr— 17k for all v > i.

for allr € (0, 1],

Proof. We start with the construction of the solution ¢g. Note that the equation

(d—1)(d—3)
—

() = flr)=0

has the fundamental system { fo, go}, given by

d—1 e logr if d =2,
= 2 = _
folr)=r—=", " go(r) {_d12rd23 ifd 42,

and W(fo, go) = 1. Thus, in view of the variation of constants formula, ¢ is supposed
to solve the equation

b0(r) = folr) — folr) / " 0(8)[V(s) + X2Jdo(s)ds + go(r) / " fols)[V(s) + X2)o(s)ds.

We rewrite this equation in terms of the auxiliary function h, defined by ¢g = foh.
This yields the Volterra equation

(B.2) hr) =1 —i—/OTK(r,s)h(s)ds,

with the kernel

— [%(r) $)% = fo(s)go(s s 2
K(rs) o= |20 flo)? = folshon(s)| V(5) + 2]

3The bounds on the error functions ag, by are not optimal but simple to work with and sufficient

for our purposes.
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If d > 3 we have the bound
|K(r,s)| <4247 4 5 < s
for all 0 < s <r < 1. If d = 2, we fix an arbitrary § € (0,1) and estimate
K ()] < Togrls + s|logs] < '

for all 0 < s < r < 3. Consequently,

N[

[N

[ sw K51,
0 refs,3]

and the standard existence result for Volterra equations (see, e.g., [60, Lemma 2.4])
yields the existence of a solution h € L>(0, 3) to (B.2), satisfying the bound

Ih(r) — 1] £ / K (r, $)[In(s)lds S 1l o) / 51705 < r2

for all 7 € [0,4]. This proves the existence of ¢o(r) = fo(r)h(r) = fo(r)[1 + ao(r)],
with the bound |ag(r)| < 727° S r for all r € [0, 4]

Next, we turn to the derivative bounds on ag. For any 7 € Ny we have the bound
00K (r,s)| Srds?0 Srdforall 0 <7 < s < 1. If we set k;(r) := 4K(r,s)|s=r,
then, for j, k € Ny, we have |/{§-k) (r)] S r797* for all 7 € (0, ]. In terms of ag, (B.2)

reads ; .
= / K(r,s)ds —|—/ K(r,s)ag(s)ds
0 0
Thus, for k € N, we obtain

k—1

al?(r) = kF V(1) +Z(mjao (k=1=9)(y / OFK (r,5)ao(s)ds.

=0

Inductively, we find
|a(k)(r)| < plok 2ok < 1k

for all r € (0, } which is the desired bound.
The smgular solution v is constructed via the reduction formula. Since ¢o(r) =

r%[l + O(r)], there exists an ro € (0, 1] such that ¢o(r) > 0 for all r € (0,7¢].
Consequently,

Yo(r) == —do(r) / " so(s)-2ds

is well defined for all r € (0, rg] and provides a solution to (B.1) on (0,7g]. We define
the function by on (0, 9] by 1o(r) = go(r)[1 + bo(r)], i-e.,

bo(’f‘) = 7f 1+a0 / fo ]. +a0( )] 2d$ — 1.

Observe that

- 2
fo = =Jo"

(go)' _ fogo = fo90 _ W(fo,90)
f& f&
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and thus, - ") (o)
Jo(r) [T 20614 Jo(r o 90lT0
go(r) /r fols)"ds =1 Yg0(r)’ * folro)
Consequently,
bo(r):ao(r)—cogzg;[1+ao(r)] Jol : [1+ao( / fo(s)72 [(1 + ao(s)) "% — 1] ds,

and in the case d > 3 we obtain

To
[bo(r)| S+ ri2 4 rd_Q/ st g2=0 <r+ rd=2 4 270 <r

T

for all 7 € [0,7¢]. In the case d = 2 we have the weaker bound

)
lbo(r)| S+ |logr| ™t + |1ogr|_1/ s71s270ds < |logr| ™!

for all € (0,79]. The derivative bounds on by follow directly by differentiating the
explicit formula for by. By solving an initial value problem with data at r = rq, we
extend the solution ¢y to (0, 1] and clearly, 19 € C*((0, 3]) since the coefficients of
(B.1) are smooth on (0, c0).

The solution ¢, is constructed by a similar procedure. This time we treat the
term — 4= 14)T(2d 3)¢( ) perturbatively since it is negligible for large r. That is to say,
we first note that the equation

f(r) = X2 f(r) =0

has the fundamental system {foo,goo}, Where foo(r) = e and goo(r) = zxe
Consequently, we write ¢, = fooh and consider the Volterra equation

—Ar

(B.3) h(r)=1 +/ K(r,s)h(s)ds
with the kernel

K(r8) = | ) 9) = 950 1o [ v

We estimate
[K(r,s)] S (1+ee™)s72 <577

for all % < r <'s, which yields
/ sup |K(r,s)|ds < / s72ds < 1.
1 rElhsl 1

The Volterra theorem (see, e.g., [60, Lemma 2.4]) then implies the existence of a
solution h € L*(§,00). Furthermore,

Ih(r) — 1] < / (K (r, $)[I(s)lds S 1Al g (3,00 / s7%ds St

for all 7 > 1, and thus, ¢oo(r) = foo (r)[1 + aoo(r)] with |ase(r)| < vt for all 7 >

1
-
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For the bounds on the derivatives of a.,, we rewrite the Volterra equation for
oo = h—1 as

/ (r, s)ds + / K, $)as(s)ds
fow

(r, s—|—7‘)ds+/ K(r,s +1)ac(s + 1)ds.
0

Note that

K(r,s 1) = . <1 B :A,\:e_»(sw)) [(d4—(1)(d—3) +V(s+ 7“)]

1
2X s+7)2

L [@=D@=3)

—)\(l—e ’\)[W—FV(s—i—r)],

and thus, for j € Ng, ‘ )
OIK (r,s+7)| S (s+7)72

for all i <r <s. Now let k € N and assume that for any j € Ny with j <k —1, we

have \ag)) (r)] Sr~'79 for all r > §. Then we obtain
al (r / 8Krs+rds+/ O [K (1,5 + 7)aoe (s + 7)] ds
=O0(r 7% —|—/ K(r,s)a) (s)ds,
and thus, ax(r) := itk (r) satisfies the Volterra equation

ar(r) = O(r°) —|—/ K(r,s)rtt*s™1=Fq; (s)ds.
Since
’K(r, s)r“ks_l_k‘ <572

for all i < r < s, a Volterra iteration yields a; € Loo(i, 00), and we obtain

k —1-k —1-k —1-k
jal ()] = [r~ Fan(r)] < v M lar] e (1 00y ST
for all r > %. Consequently, the stated bounds on the derivatives of a., follow
inductively.
Finally, for the growing solution %.,, we note that there exists an r; > i such
that ¢oo(r) > 0 for all » > 1 and set

Yoo (1) = Poo(r) /r boo(s) 2ds.

Then 1, solves (B.1) on [r1,00), and the function b, defined by Yoo = goo(l + b ),
is given explicitly by

boo(r) _ foo( 1+aoo / foo 1+aoo( )]72d571.
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As before,
Folt) [T ey el gl
PRNES /n foo(s)"ds =1 o)’ L)
and thus,
bo) = e (1)1 22 e (1)} 2 e 0] [ )20 )2 1.

This yields the bound

T
|boo(r)| S 7‘71 + 672)\T + 672>\T/ 62>\5571d8 5 7”71

T1

for all r > %. The bounds on the derivatives of b, follow in a straightforward manner
by differentiating the explicit expression for b,,. By solving an initial value problem,
the solution 94, smoothly extends to all of [i, 00). |

Appendix C. Numerics.

C.1. Numerical construction of the soliton profile. We would like to obtain
a radial solution to

ApQ —Q+ Q% =0.

That is to say, we need to solve the radial equation

(1) P+ L5 ()~ F) + FP =0

for > 0. Asymptotically, the nonlinearity is negligible, and thus, we expect the
behavior f(r) ~ 1 asr — 0+ and f(r) ~ r~2e™" as r — oo. We encode the expected
asymptotics in the definition of the new variable g, given by

Fr) = (1+7) e (jjj) |

In terms of g and z := 2=, (C.1) reads

r417
o 322 —6x -5 3(3—1x)
R(g) ==g"(z) + mg (z) — mg(@
(C.2) + ﬁedi:g(w)3 =0

for € [-1,1). We compactify the problem (C.2) by allowing = € [—1, 1]. Evidently,
the endpoints x = £1 are singular, and this yields the regularity conditions

(C.3) 49’ (1) = 3g(—1) = 16¢'(1) + 3g(1) = 169" (1) — 5¢'(1) — 39(1) = 0.

Note that these conditions are determined by the linear part of the equation since
the coefficient of g(z)? is not singular at z = +1. We solve (C.2) by a Chebyshev
pseudospectral method. To this end, we use the basis functions ¢, : [-1,1] — R,
n € Ny,

¢n($) = Tn(x) + ag,n + a1.nd + a2,n$27
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where T), are the standard Chebyshev polynomials and a;, are chosen in such a
way that each ¢,, satisfies the regularity conditions (C.3). Note that this leads to

¢o = ¢1 = ¢p2 = 0. Then we numerically solve the root finding problem
25
n=3
for k = 0,1,2,...,22, and z3 € [—1,1] some collocation points. The expansion

coefficients (8,,)224 are given in Table C.1.

TaBLE C.1
Ezxpansion coefficients for the approzimate soliton profile.

n 3 4 5 6 7 8
8 2542 8061 23 _ 17127 _ 113 407

n 141001 72860 25643 731900 61446 88530
n 9 10 11 12 13 14
/8 80 _ 195 _ 167 3 3 1

n 79969 296276 607101 91531 109289 42237921
n 15 16 17 18 19 20
B8 1 1 1 1 1 |

n 163112 171418 1839428 412985 693490 3459389
n 21 22 23 24 25
3 1 1 1 1 1

n 5641102 2626342 15286837 10226264 9836273

C.2. Numerical construction of Ql. The goal is to numerically construct the
unique (radial) solution @1 to the equation

L4Q1 = —2Qz= — Q3.
Recall that Sp(z) = 270;Qr2(z) + Qre(x) satisfies £45) = —2Qgz. Consequently, it

suffices to solve £,.57 = —TQQ%Q because then, Q1 = Sy + S1. In other words, we
need to solve the radial equation

1
(C.4) fr(r) + ;f’(r) — f(r) +3fo(r)2f(r) = r? fo(r)?,

where fo(r) = Qrz(re1). Again, we introduce the auxiliary variable g, defined by

Fr) = (1+7) e ( - 1) |

r+1

which transforms (C.4) into

(C.5)
')+ S ) - )+ e (o)
= 287:?)262% go(x)?,
where z = % and gg is given by

1 r—1
=(1 Tz2e " .
folr) = () Ee 0 (27
We replace go by the approximation obtained in section C.1 and solve (C.5) by a
Chebyshev pseudospectral method with the basis functions ¢, from above. This
yields an approximate solution of the form Zf}:g Ynbn With the coefficients (7,,)20 5
given in Table C.2.
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TABLE C.2
Ezxpansion coefficients for approzimation to Si.

n 3 4 5 6 7 8 9 10
54973 _ 3088 _ 11563 | _ 622 935 715 972 _ 245
Tn 96387 102021 65730 123831 19694 80273 107461 66869
n 11 12 13 14 15 16 17 18
43 6 7 23 10 1 7 _ 3
Tn 75440 13097 79466 138473 87071 41044 100544 79736
n 19 20 21 22 23 24 25 26
1 1 1 1 1 1 1 1
Tn 247350 98688 104302 181864 1748151 795239 519650 1141942
n 27 28 29 30 31 32 33 34
1 1 1 1 1 _ 1 1 1
In 2632970 | 3481458 4334802 3856839 14342913 142634956 42463795 12658667
n 35 36 37 38 39 40
1 ! 1 1 1 1
Tn | 15132528 14926347 | 15529718 15419336 | 13135736 36714512

With the numerical approximations to the functions Qg2 and @1 at hand, it is

straightforward to compute (an approximation to) the constant by from section 6.2.
By numerical integration we find ;’—; ~ 7.39.
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