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Abstract

It has been recently shown that the nodal deficiency of an eigenfunction is encoded in
the spectrum of the Dirichlet-to-Neumann operators for the eigenfunction’s positive
and negative nodal domains. While originally derived using symplectic methods, this
result can also be understood through the spectral flow for a family of boundary
conditions imposed on the nodal set, or, equivalently, a family of operators with delta
function potentials supported on the nodal set. In this paper, we explicitly describe this
flow for a Schrödinger operator with separable potential on a rectangular domain and
determine a mechanism by which lower-energy eigenfunctions do or do not contribute
to the nodal deficiency.

Keywords Nodal domains · Nodal sets · Dirichlet-to-Neumann map · Spectral
indices

Mathematics Subject Classification 58J50 · 35B05 · 35P05 · 35J10

1 Introduction

Let Ω ⊂ R
d be a bounded domain with sufficiently smooth boundary, and denote by

λ1 < λ2 ≤ λ3 ≤ · · · the eigenvaluesof the Laplacian, with eigenfunctions φ1, φ2, . . .,
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where we have imposed either Dirichlet or Neumann boundary conditions on ∂Ω . As
in Sturm–Liouville theory, one is often interested in quantifying the oscillation of φk

in terms of the index k.
The nodal domains of φk are the connected components of the set {φk �= 0}. We

denote the total number of nodal domains by ν(φk). Courant’s nodal domain theorem
says that φk has at most k nodal domains [7]. In other words, the nodal deficiency

δ(φk) := k − ν(φk) (1)

is nonnegative. Beyond this, however, little is known. While it has been shown that
the deficiency only vanishes for finitely many k [15], it is generally very difficult to
compute or even estimate.

In [5] the first author, Kuchment and Smilansky gave an explicit formula for the
nodal deficiency as the Morse index of an energy functional defined on the space of
equipartitions of Ω . More recently [9], the second two authors, with Jones, have com-
puted the nodal deficiency in terms of the spectra of Dirichlet-to-Neumann operators
using Maslov index tools developed in [8,10]. In particular, for a simple eigenvalue
λk with Lipschitz nodal domains, it was shown that

δ(φk) = Mor (Λ+(ε) + Λ−(ε)) (2)

for sufficiently small ε > 0, where Λ±(ε) denote the Dirichlet-to-Neumann maps for
the perturbed operator Δ + (λk + ε), evaluated on the positive and negative nodal
domains Ω± = {±φk > 0} and Mor denotes the Morse index, or number of negative
eigenvalues. For more on the spectrum of Dirichlet-to-Neumann operators, see [2,11,
14] and the recent survey [12].

Similarly, if φ∗ is an eigenfunction for a degenerate eigenvalue λ∗, the same argu-
ment yields

δ(φ∗) = 1 − dim ker(Δ + λ∗) + Mor (Λ+(ε) + Λ−(ε)) . (3)

Note that the Dirichlet-to-Neumann maps depend explicitly on the choice of eigen-
function φ∗ ∈ ker(Δ + λ∗). In defining the nodal deficiency of φ∗, we let k = k∗ =

min{n ∈ N : λn = λ∗}.
Equations (2) and (3) remain valid for the Schrödinger operator L = −Δ + V

with sufficiently regular potential, for instance V ∈ L∞(Ω). These formulas were
originally obtained from a general spectral decomposition formula, derived using
symplectic methods in [9]. In Sect. 2, we give a more direct proof using spectral flow.
For a fixed φ∗ we construct a monotone family of self-adjoint operators {Lσ }σ≥0,
starting at L0 = L , such that the nodal deficiency of φ∗ equals the number of eigenvalue
curves for Lσ that pass throughλ∗+ε for some σ > 0; see Fig. 1 for an illustration. This
invites a question of potentially great significance: what properties of the eigenpair

(λ j , φ j ), λ j ≤ λ∗, determine whether the corresponding spectral flow curve will cross

λ∗ + ε and thus contribute to the nodal deficiency of the eigenfunction φ∗?
The main result of this paper is a beautifully geometric answer to this question on

rectangular domains, illustrated in Fig. 2. Informally speaking, the intersecting curves
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Fig. 1 Numero-analytic solution of the spectral flow on the tetrahedron quantum graph (left) and on a
rectangle (right), as described in Appendix A. In both cases, the number of curves crossing λ∗ + ε matches
the nodal deficiency (2 on the left and 3 on the right)

(a) simple eigenvalue (b) degenerate eigenvalue

Fig. 2 The result of Observations 1 and 2. For the simple eigenvalue (a), the nodal deficiency is 4, which
equals the Morse index of Λ+ + Λ−. The degenerate eigenvalue (b) also has nodal deficiency 4. The
point (6, 2) generates an additional negative eigenvalue of Λ+ + Λ− but does not contribute to the nodal
deficiency

arise from the eigenvalues corresponding to the points within the ellipse but outside
the rectangle (both regions are specified by (λ∗, φ∗)). This geometric interpretation of
the nodal deficiency on a rectangle appeared in [3] (see in particular Figure 10). The
advantage of our construction is that it describes precisely how these lattice points
contribute to the nodal deficiency, through a mechanism (the spectral flow) which
is defined on any domain. Before we explain the precise meaning of this statement,
we mention that for non-separable problems the situation is likely to be far more
complicated due to the presence of avoided crossings; for example, the “intersection”
around arctan(σ ) = 0.2 in Fig. 1(left) is in fact an avoided crossing; see Fig. 3.

Consider the rectangular domain Rα = [0, απ ] × [0, π ] with α > 0. We first
illustrate our result for the Laplacian, where the computations can be done explicitly.
The general statement is formulated and proved in Sect. 4. The spectrum of −Δ with
Dirichlet boundary conditions on Rα is in one-to-one correspondence with the points
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Fig. 3 Suspected intersection of flow curves for a quantum graph and its zoom

of N
2, namely

σ(−Δ) =

{

(m

α

)2
+ n2 : m, n ∈ N

}

. (4)

For a given eigenvalue λ∗ = (m∗/α)2 + n2
∗, we have λ∗ = λk∗ , where

k∗ = #
{

(m, n) : (m/α)2 + n2 < λ∗

}

+ 1.

This counts the lattice points in the region bounded by the quarter ellipse

Eλ∗ =
{

(x, y) : x > 0, y > 0, (x/α)2 + y2 < λ∗

}

, (5)

plus the point (m∗, n∗), which lies on the ellipse. On the other hand, the corresponding
eigenfunction sin(m∗x/α) sin(n∗y) has m∗n∗ nodal domains, which coincides with
the number of lattice points contained in the rectangle

Rλ∗ = {(x, y) : 0 < x ≤ m∗, 0 < y ≤ n∗} . (6)

That is, the nodal deficiency equals the number of lattice points under the ellipse but
outside the rectangle, as illustrated in Fig. 2.

Observation 1 The nodal deficiency of the (m∗, n∗) eigenfunction is equal to the num-

ber of lattice points in the region E∗\R∗.

This holds whether or not λ∗ is simple. When λ∗ is simple, we conclude from
(2) that the Morse index of Λ+(ε) + Λ−(ε) equals the number of lattice points in
E∗\R∗. On the other hand, when λ∗ is degenerate, Λ+(ε) + Λ−(ε) has an additional
dim ker(Δ + λ∗) − 1 negative eigenvalues, according to (3). This coincides with the
number of lattice points on the ellipse, as shown in Fig. 2b.

Observation 2 The Morse index of Λ+(ε) + Λ−(ε) is equal to the number of lattice

points in the region E∗\R∗.
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Using the spectral flow, we prove that this is not just a numerical coincidence—it is
precisely the eigenvalues corresponding to points in E∗\R∗ [via Eq. (4)] that give rise
to the spectral flow curves which cross λ∗ + ε and thus generate negative eigenvalues
of Λ+(ε) + Λ−(ε). In Sect. 4, we formalize this statement as Theorem 1 and prove
it. The result is valid for any Schrödinger operator with separable potential and hence
does not rely on having explicit formulas for the eigenvalues and eigenfunctions, as
was the case above.

The spectral flow method can be easily generalized to other settings, such as
Schrödinger operators on manifolds and metric graphs. Figure 1(left) shows the results
of a numerical computation of eigenvalues of Lσ defined on the nodal set of a defi-
ciency 2 eigenfunction of a metric graph (see, for instance, Berkolaiko [4] for an
accessible introduction to the subject). Figure 1(right) shows a similar computation
for a deficiency 3 eigenfunction of a rectangular domain. In both cases, the number
of curves crossing λ∗ + ε matches the nodal deficiency. As above, the main issue is
to determine which eigenpairs (λ j , φ j ) are responsible for the nodal deficiency.

2 The spectral flow

We now describe in more detail the spectral flow mentioned in the introduction, in the
process giving a new proof of (2) and (3), and setting the stage for our analysis of the
rectangle.

Consider the Schrödinger operator L = −Δ + V on a bounded, Lipschitz domain
Ω , with Dirichlet boundary conditions. Let λ∗ ∈ spec(L), and suppose φ∗ is an
eigenfunction for λ∗, with nodal set Γ = {x ∈ Ω : φ∗(x) = 0}. Throughout this
section, we impose the following assumption.

Hypothesis 1 Each nodal domain of φ∗ has Lipschitz boundary.

For n = 2, the hypothesis is always satisfied (see [6, Theorem 2.5]), but its validity
appears to be unknown in higher dimensions. In the absence of this assumption one
can still define the Dirichlet-to-Neumann maps, following [1], but it is not immediately
clear that they will have compact resolvent, and so the spectral flow argument becomes
more complicated. We do not pursue this technical issue in the current paper.

We define a family of self-adjoint operators Lσ via the bilinear forms

Bσ (u, v) =

∫

Ω

[∇u · ∇v + V uv] + σ

∫

Γ

uv (7)

on H1
0 (Ω) for any σ ∈ [0,∞), and let L∞ denote the operator with Dirichlet boundary

conditions on ∂Ω ∪Γ . We denote by {γk(σ )} the analytic eigenvalue branches for Lσ .
We first describe the relationship between these eigenvalue curves and the spectrum
of Λ+(ε) + Λ−(ε).

Lemma 1 For ε sufficiently small, the value −σ is an eigenvalue of Λ+(ε) + Λ−(ε)

if and only if λ∗ + ε = γk(σ ) for some k ∈ N.
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Proof First suppose −σ is an eigenvalue of Λ+(ε) + Λ−(ε), with eigenfunction f ∈

H1/2(Γ ). Then, there is a function u ∈ H1
0 (Ω) such that u

∣

∣

Γ
= f , with

−Δu + V u = (λ∗ + ε)u (8)

in Ω\Γ and

∂u

∂ν+

+
∂u

∂ν−

+ σu = 0 (9)

on Γ . This means λ∗ + ε is an eigenvalue of Lσ , and so λ∗ + ε = γk(σ ) for some
k ∈ N.

Conversely, suppose λ∗ + ε = γk(σ ) for some k. The corresponding eigenfunction
u will by definition satisfy (8) in Ω\Γ and (9) on Γ , and so f := u

∣

∣

Γ
satisfies the

eigenvalue equation

Λ+(ε) f + Λ−(ε) f + σ f = 0.

To complete the proof, we must show that f is not identically zero on Γ . If this was
the case, λ∗ + ε would be an eigenvalue of L∞, which is not possible because λ∗ is
the first eigenvalue of L∞ and ε > 0 can be taken sufficiently small such that λ∗ + ε

lies in the spectral gap. ��

Motivated by this result, we make the following definition.

Definition 1 An eigenvalue curve γk(σ ) is said to give rise to a negative eigenvalue of
Λ+(ε) + Λ−(ε) if γk(σ ) = λ∗ + ε for some σ > 0.

Lemma 1 says that −σ is a negative eigenvalue of Λ+(ε) + Λ−(ε) if and only
if there is an eigenvalue curve γk(σ ) that gives rise to it. In other words, the Morse
index of Λ+(ε) + Λ−(ε), and hence the nodal deficiency of the eigenfunction φ∗,
is completely determined by the curves {γk(σ )}. Determining whether or not a given
curve intersects λ∗ + ε for some σ > 0 is simplified by the following monotonicity
result, which says that one simply needs to check the endpoints γk(0) and γk(∞).

Lemma 2 If uk(σ ) is an analytic curve of normalized eigenfunctions for γk(σ ), then

γ ′
k(σ ) =

∫

Γ

uk(σ )2. (10)

If γk(0) ∈ spec(L∞), then γk(σ ) is constant; otherwise, γk(σ ) is strictly increasing.

The existence of an analytic curve of eigenfunctions for γk(σ ) is a consequence of
the self-adjointness of Lσ ; see [13].
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Proof To simplify the notation, we fix a value of k and let γ = γk(σ ) and u = uk(σ ).
The eigenvalue equation Lσ u = γ u is satisfied if and only if

Bσ (u, v) = γ 〈u, v〉 (11)

for all v ∈ H1
0 (Ω), where 〈·, ·〉 denotes the L2(Ω) inner product. Differentiating (11)

with respect to σ , we find that

B ′
σ (u, v) + Bσ (u′, v) = γ ′ 〈u, v〉 + γ

〈

u′, v
〉

. (12)

On the other hand, letting v = u′ in (11) leads to Bσ (u, u′) = γ
〈

u, u′
〉

, and so,
evaluating (12) at v = u, we obtain

γ ′ = B ′
σ (u, u) =

∫

Γ

u2

as desired.
If γk(0) ∈ spec(L∞), the associated eigenfunction uk(0) vanishes on Γ , so (9)

is satisfied for any value of σ , and hence, γk(0) ∈ spec(Lσ ). The analyticity of the
eigenvalue curves then implies γk(0) = γk(σ ) for all σ .

If γk(σ ) is not strictly increasing, then γ ′
k(σ0) = 0 for some σ0. From (10), we

infer that the associated eigenfunction vanishes on Γ , and hence, γk(σ0) ∈ σ(L∞).
The argument in the previous paragraph now implies that γk(σ ) is constant, with
γk(0) = γk(σ0) ∈ spec(L∞). ��

Using Lemmas 1 and 2, we can now verify (2) and (3). Indeed, let {λn(σ )} denote the
ordered eigenvalues of Lσ , which are non-decreasing. As σ → ∞, they converge to
the ordered eigenvalues of L∞, which by definition has Dirichlet boundary conditions
on ∂Ω ∪ Γ (cf. [2, Proposition 3]). Since λ∗ is the first Dirichlet eigenvalue on each
nodal domain of φ∗, and hence is simple (on each domain), we have that the first
eigenvalue of L∞ is λ∗, with multiplicity ν(φ∗). It follows that

lim
σ→∞

λn(σ ) = λ∗, 1 ≤ n ≤ ν(φ∗) (13)

and
lim

σ→∞
λn(σ ) > λ∗, n > ν(φ∗). (14)

If λ∗ is simple, L0 has precisely k∗ eigenvalues λ ≤ λ∗. Since the first ν(φ∗) of these
converge to λ∗ as σ → ∞, the remaining k∗ − ν(φ∗) will converge to values greater
than λ∗. Choosing ε > 0 sufficiently small, we conclude that each of these k∗ − ν(φ∗)

eigenvalue curves passes through λ∗ + ε for some finite σ > 0, in the process giving
rise to a negative eigenvalue of Λ+(ε) + Λ−(ε). This verifies (2). Similarly, if λ∗ is
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1618 G. Berkolaiko et al.

degenerate, and we define k∗ = min{n ∈ N : λn = λ∗}, then L0 will have precisely
k∗−1+dim ker(Δ+λ∗) eigenvalues λ ≤ λ∗, and so k∗−1+dim ker(Δ+λ∗)−ν(φ∗)

of them will pass through λ∗ + ε as σ increases from 0 to ∞. This verifies (3).

3 The one-dimensional case

We now refine the general results of Sect. 2 in the one-dimensional case. Let {Zi }
m
i=1

be a partition of the interval [0, �], so that

0 < Z1 < · · · < Zm < �.

For this partition, and some constant σ ∈ R, we define a self-adjoint operator Lσ by

Lσ = −
d2

dx2 + q(x)

together with the boundary conditions

u(0) = u(�) = 0 (15)

u(Zi−) = u(Zi+) (16)

u′(Zi+) − u′(Zi−) = σu(Zi ) for all 1 ≤ i ≤ m. (17)

Let {λn(σ )} denote the ordered eigenvalues of Lσ . As σ → ∞, these converge to
the ordered eigenvalues of L∞, which has Dirichlet conditions imposed at each Zi .
Moreover, if {Zi } is the nodal partition of some Dirichlet eigenfunction φ∗ = φk∗ ,
the spectrum of L∞ consists of λ∗ = λk∗(0), with multiplicity ν(φ∗), and other
eigenvalues strictly greater than λ∗.

We also know from Lemma 2 that λk∗(σ ) is constant. Since each λn(σ ) is simple
and non-decreasing, this implies

lim
σ→∞

λn(σ ) = λ∗, 1 ≤ n ≤ k∗ (18)

and

lim
σ→∞

λn(σ ) > λ∗, n > k∗. (19)

This behavior is illustrated in Fig. 4.
Comparing (18) and (19) to (13) and (14), it follows that ν(φ∗) = k∗, and so we

obtain Sturm’s theorem as a consequence of the monotonicity and simplicity of the
eigenvalues of Lσ in the one-dimensional case.
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σ

λ

λ4(0) = λ∗

λ1(0)

λ2(0)

λ3(0)

λ5(0)

Fig. 4 The behavior of the first four eigenvalues of Lσ in one dimension, with k∗ = 4. The fourth eigenvalue,
λ4(σ ) = λ∗, is constant, whereas the first three strictly increase to λ∗, and the fifth converges to some number
strictly greater than λ∗, as claimed in (18) and (19)

4 The rectangle

We now return to the rectangle [0, απ ] × [0, π ], considering a Schrödinger operator

L = −Δ + q(x) + r(y)

with separable potential, where q ∈ L∞(0, απ) and r ∈ L∞(0, π). Let {λx
m} and

{λ
y
n} denote the Dirichlet eigenvalues for −(d/dx)2 + q(x) and −(d/dy)2 + r(y),

respectively. The Dirichlet spectrum of L is then given by

spec(L) =
{

λx
m + λ

y
n : m, n ∈ N

}

.

For convenience, we let λmn = λx
m +λ

y
n . Now suppose λ∗ = λm∗n∗ ∈ spec(L), and let

Γ denote the nodal set of the corresponding eigenfunction. As above, we define the
family {Lσ } of self-adjoint operators, with analytic eigenvalue curves {γk(σ )}. Note
that {γk(0)} are the eigenvalues of L , so for any (m, n) there exists a k = k(m, n) with
γk(0) = λmn .

Definition 2 A lattice point (m, n) is said to give rise to a negative eigenvalue of
Λ+(ε) + Λ−(ε) if the curve γk(σ ) does, where k = k(m, n) as above.

Our main result, generalizing the picture in Fig. 2, is the following.

Theorem 1 The point (m, n) gives rise to a negative eigenvalue of Λ+(ε) + Λ−(ε) if

and only if λmn ≤ λ∗ and either m > m∗ or n > n∗.

That is, the eigenvalue curve γk(σ ), with initial value γk(0) = λmn , crosses λ∗ + ε

for some finite, positive value of σ if and only if m and n satisfy the given conditions.
In the case V ≡ 0, these conditions reduce to (m, n) ∈ E∗\R∗, as promised in the
Introduction.

Proof Let k = k(m, n), so that γk(0) = λmn = λx
m + λ

y
n .
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σ

λ

λ∗

λ∗ +

σ0

Fig. 5 The behavior of γk (σ ) as σ → ∞. The dashed curve has γk (0) = λmn < λ∗ and γk (∞) > λ∗,
and hence generates a negative eigenvalue −σ0 for Λ+(ε) + Λ−(ε). The other two eigenvalue curves
correspond to (m, n) ≤ (m∗, n∗) and hence stay below λ∗ for all finite values of σ

Given λ∗ = λx
m∗

+λ
y
n∗

as above, let ux
m∗

and u
y
n∗

denote the eigenfunctions for λx
m∗

and λ
y
n∗

, with nodal sets {Z x
k } ⊂ (0, απ) and {Z

y
k } ⊂ (0, π), respectively. With respect

to these nodal partitions, we define operators Lx
σ and L

y
σ , as in Sect. 3, for σ ∈ R.

Denoting the eigenvalues by {λx
m(σ )} and {λ

y
n(σ )}, we have γk(0) = λx

m(0) + λ
y
n(0),

hence

γk(σ ) = λx
m(σ ) + λ

y
n(σ ) (20)

for all σ .
Since γk(σ ) is non-decreasing, the equation γk(σ ) = λ∗ + ε will be satisfied for

some σ > 0 if and only if γk(0) ≤ λ∗ and γk(σ ) > λ∗ for sufficiently large σ . The
condition γk(0) ≤ λ∗ is equivalent to λmn ≤ λ∗. On the other hand, it follows from
(18) and (19) that

lim
σ→∞

λx
m(σ ) > λx

m∗

if and only if m > m∗, and similarly for the limit of λ
y
n(σ ), hence

lim
σ→∞

γk(σ ) > λx
m∗

+ λx
n∗

= λ∗

holds if and only if either m > m∗ or n > n∗ (see Fig. 5 for an example). ��
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Appendix A. Example for a Rectangle

Let us consider first the one-dimensional eigenvalue problem for the case q(x) = 0
from Sect. 3. Namely, we wish to compute the eigenvalues {λn(σ )} for σ ≥ 0.

A.1. {Zk} = { 1
2
�}

The second Dirichlet eigenfunction for the Laplacian the interval [0, �] has a zero at
�/2. Using this nodal point to define the boundary conditions in σ , as in Sect. 3, we
look for the eigenvalues λn(σ ). We will use the notation λn(σ ; 2) to denote the nth
eigenvalue that arises from the spectral flow in σ set at the nodal point of the second
Dirichlet eigenfunction. Symmetry considerations guarantee that the corresponding
lowest eigenfunction, u1(x) = u1(x, σ ; 2), is symmetric with respect to �/2. The
eigenvalues λn(σ ; 2) in this case can be found by taking u1(x) = sin(κx) on [0, �/2]

for κ2 = λn . Condition (17) gives

−2u′
1

(

�

2

)

= σu1

(

�

2

)

,

and hence

σ = −2κ cot

(

κ
�

2

)

. (21)

Thus, λ1(σ ; 2) = κ2 is given as the implicit solution to (21) for finding the lowest
eigenvalue.

A.2. {Zk} = { 1
3
�, 2

3
�}

Now, let us consider the next excited state, or the case of the nodal set given by 2
zeros equidistributed throughout the interval. As before, the lowest eigenfunction of
Lσ , denoted u1(x) = u1(x, σ ; 3), is symmetric with respect to �/2 and we can write

u1(x) =

{

a sin(κx), x ∈ [0, �/3]

b cos(κ(�/2 − x)) x ∈ [�/3, �/2]

Hence, conditions (16) and (17) at �/3 imply

a sin

(

κ�

3

)

= b cos

(

κ�

6

)

= c,

−

(

aκ cos

(

κ�

3

)

− bκ sin

(

κ�

6

))

= σc,

for c = u1(�/3). Solving out for c, we arrive at

σ = κ

(

tan

(

κ�

6

)

− cot

(

κ�

3

))

,
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1622 G. Berkolaiko et al.

which can be solved implicitly for λ1(σ ; 3) = κ2.
A similar approach applies to find the second eigenfunction u2(x) = u2(x, σ ; 3),

which is anti-symmetric with respect to �/2. Following the same logic, we arrive at

σ = −κ

(

cot

(

κ�

3

)

+ cot

(

κ�

6

))

,

which can be solved implicitly for λ2(σ ; 3) = κ2.

A.3. An example with nodal deficiency 3 on the rectangle

Let us now consider a rectangle of the form [0, π ] × [0, απ ] with α < 1 but such that
1 − α � 1. We observe in this case that for the Laplacian with Dirichlet boundary
conditions,

12 +

(

1

α

)2

= λ1,1 < λ2,1 < λ1,2 < λ2,2 < λ3,1 < λ1,3 = 12 +

(

3

α

)2

.

Therefore, the sixth eigenvalue λ6 = λ1,3 has 3 nodal domains and therefore nodal
deficiency 3, see Fig. 6.

Setting λ∗ = λ6 = λ1,3, we obtain the spectral flow

γ6(σ ) = λ∗,

γ5(σ ) = 32 + λ
y
1(σ ; 3),

γ4(σ ) = 22 + λ
y
2(σ ; 3),

γ3(σ ) = 12 + λ
y
2(σ ; 3),

γ2(σ ) = 22 + λ
y
1(σ ; 3),

γ1(σ ) = 12 + λ
y
1(σ ; 3),

which was the flow depicted in Fig. 1(right). The above equations can be analyzed to
show that γ2, γ4, γ5 all cross γ6 as σ → ∞, whereas γ1 and γ3 do not.

Fig. 6 The nodal deficiency
count for the rectangle example
in Appendix A
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